The work described in this thesis profiled the transcriptome of undifferentiated (TSCs) and 4-days differentiated (TGCs) cells through RNA-seq and identified ~7,800 differentially expressed genes which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism and various signaling pathways. We revealed that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identified hitherto undiscovered, cell-type-specific alternative splicing events in 31 genes and expression of 19 novel exons in 12 genes in TSCs and TGCs. Similarly, we discovered that the expression of Cyclin-dependent Kinase 1 (Cdk1) was downregulated in fused BeWo cells and its inhibition through small-molecule inhibitor induced fusion in these cells. The role of Caspase3 downregulation in conferring resistance to genotoxic stress-induced apoptosis in developmentally programmed polyploid cells was also investigated. Finally, we discovered that the polyploid nuclei in fused BeWo cells result from nuclear fusion following the fusion of the cells. Overall, results described in this dissertation uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development. Moreover, these results will help in understanding the role and regulation of apoptosis in differentiated TGCs.
The Department of Life Sciences at LUMS offers rigorous undergraduate and graduate programs, which impart cutting-edge knowledge of 21st-century life sciences exposing students to its theoretical as well as experimental aspects. Two streams are offered to the aspiring Biology majors: Molecular and Cellular Biology (MCB) and Computational Biology (CB). Biology is important since it aims to tell us about the natural world around us. Recent advances have brought the subject to the forefront of contemporary sciences and have integrated it with numerous disciples, including chemistry, mathematics, physics, electrical engineering and computer science. This has led to the emergence of new areas of study and research such as molecular biology, cell and developmental biology, computational biology, diseases, biophysics and systems biology, all of which are in the realm of the biology program at SBASSE.

زراعت پاکستانی معیشت کا بنیادی جزو ہے، مگر موسمیاتی تبدیلی، بدلتی آب…
زراعت پاکستانی معیشت کا بنیادی جزو ہے، مگر موسمیاتی تبدیلی، بدلتی آب و ہوا اور قدرتی آفات، جیسے سیلاب اور خشک سالی، نے ملک کی زراعتی پیداوار پہ خطروں کے گہرے سائے ڈال دئیے ہیں۔
اسی جانب ایک اہم تحقیق حال ہی میں جریدے" پلانٹ اینڈ سیل فزیا لو جی" (1) میں شائع ہوئی جس میں لمز شعبہ حیاتیات کے پروفیسر ڈاکٹر خرم بشیر نے ثابت کیا کہ ایتھانول(2) کی معمولی مقدار اگر کھیت کی مٹی میں شامل کرلی جائے، تو خشک سالی کے دوران فصلوں کی نشوونما میں بہتری دیکھی جا سکتی ہے۔ یہ تجربات جاپان میں گندم اور چاول فصلوں پہ کیے گئے۔
چونکہ ایتھانول ایک سستا اور آسانی سے ملنے والا کیمیکل ہے، جو بے شمار صنعتوں میں بھی استعمال ہوتا ہے اور اس میں کھاد ساز صنعتوں کی اجارہ داری بھی شامل نہیں ،یہ حیران کن تجربات خشک زمینوں میں فصلوں کی نشوونما اور افزائش میں سنگِ میل کا درجہ رکھتے ہیں۔

ڈاکٹر خرم بشیر لمز کی زرعی زمین پر اپنے تجربات کا مشاہدہ کرتے ہوئے
اس انقلابی تجربے کو عالمی سطح پر بے حد پذیرائی ملی ہے اور بہت سی بین الاقوامی ویب سائٹس جیسا کہ ٹیلی گراف، ریکن جاپان ، یوریک الرٹ ،گولڈ مین ایسوسئیٹس ،وغیرہ نے اس موضوع پہ خبر یں شائع کی ہیں۔ نیز مذکورہ بالا جریدے نے اس کہانی کو اپنے ستمبر شمارے کے سرِ ورق کی زینت بھی بنایا ہے۔

جہاں دنیا بھر میں غذائی قلت کا شدید خطرہ ہے،وہاں ڈاکٹر خرم بشیر اور ان کے جاپانی ساتھیوں کی یہ تحقیق یقیناً قابلِ توجہ ہے۔ خاص طور پر امریکہ اور یورپ اس وقت خشک سالی کا شکار ہیں۔ انھیں ایتھانول کے مدد سے کھیتوں کو سیراب کرنے کی جانب دیکھنا ہو گا۔ پاکستان میں موسمی تبدیلیوں کی وجہ سے زراعت کے شعبے کو جو نقصانات ہوئے ہیں وہ آئندہ سالوں میں خشک سالی کا اندیشہ پیش کر رہے ہیں۔ بڑھتا ہوا درجہ حرارت گندم اور چاول کی فصل پر شدید منفی اثر بھی ڈالتا ہے اور اس صورتحال میں ایسی نادرتجویز پر عمل کرنا بہت ضروری ہو گیا ہے۔پاکستان میں کپاس کو چھوڑ کر جنییاتی طور پر تبدیل شدہ فصلیں قبول نہیں کی جاتی ۔ یعنی پاکستان جینیاتی تحریف شدہ (3) فصلیں بنانے کی صلاحیت رکھتا تو ہے مگر قانون نافذ کرنے والے ادارے اس تبدیلی کی اجازت نہیں دیتے ۔ ایسے موقع پر ایسی ٹیکنالوجی، جو فصلوں کو جنییاتی طور پر تبدیل کیے بغیر ، ایسے کیمیکل کو استعمال کر ے جس کے استعمال میں کسی کو کوئی ہچکچاہٹ محسوس نہ ہو، ایک بہت قیمتی پیش رفت ہے۔

شعبہ حیاتیات کی نباتاتی تجربہ گاہ کا ایک منظر
ڈاکٹر خرم بشیر نے اس تحقیق کی ابتدا جاپان میں کی اور اب لمز میں رہتے ہوئے ان کا مقصد اسی نوع کے کام کو پاکستان میں بڑھانا ہے۔ ڈاکڑ خرم اپنی جاپانی ٹیم کےساتھ رابطے میں ہیں اور لمز کی ٹیم کو لے کر اب پاکستانی حکومت کو بھی اس مقصد میں شامل کرنے کی کوشش کر رہے ہیں، تا کہ پاکستان میں اس کے ابتدائی تجربے اور پھر بڑے پیمانے پر تجربات کیے جا سکیں، تا کہ اس ٹیکنالوجی کو جلد از جلد میدانِ عمل میں کسان کے حوالے کیا جا سکے۔
ڈاکٹر خرم بشیر کے مقالے میں ایتھانول کی مدد سے پودوں کی کم پانی کوذخیرہ کرنے اور پتوں میں موجود مسام (4) کی بندش کے مظاہرے کو کمال تکنیکی مہارت سے دیکھا گیااور ثابت کیا گیا۔اس عمل کے کیمیائی اور جینیاتی منظر کو بھی جانچا گیا اور پودوں میں ذوقِ حفظِ زندگی اور پانی کی کمی کے باوجود زندگی کی بقا کے لیے اپنائے جانے والے کیمیائی اور جینیاتی عوامل کی بھرپور نشاندہی کی گئی۔ اِسی لیے یہ تحقیق اپنی نوعیت میں نہایت جامع ہے اور مزید آنے والے دنوں ، مہینوں اور سالوں میں قحط زدہ اور خشک سال علاقوں میں فصلوں کی نشونما کے لیے مزید راہیں دکھائے گی۔
ڈاکٹر خرم بشیر امید کرتے ہیں کہ پاکستان کی حکومت ان کا ساتھ دے گی، تا کہ اس عمل سے قلیل پانی میں فصلوں کی پیداوار کو فروغ مل سکے اور ناگہانی آفات کے اثرات سے بچاؤ کے لیے ایک مضبوط دیوار کھڑ ی کی جا سکے۔
کہانی نویس: محمد صبیح انور
(1) Plant and Cell Physiology
(2) Ethanol
(3) Genetically modified

The world’s biggest producer of nutrients is in grave danger. Plants…
The world’s biggest producer of nutrients is in grave danger. Plants have been quiet observers of the planet since the post-Cambrian era, where life suddenly and exponentially bloomed into global proportions. Today, CO2 levels in the atmosphere are rising to the point that existing, natural mechanisms to buffer and counter this drastic change is proving inadequate. As the global trend in precipitation and air quality shifts, so does that availability of 14 essential elements for plant growth. This is making it hard for plants to survive, and if left untreated will leave plants essentially starved, leading to a global food catastrophe.
Dr. Zaigham Shahzad from the Department of Life Sciences at SBASSE, is working on understanding the effects of climate change on plant nutrition. In a paper review published recently in Current Biology Dr. Zaigham describes how various climatic stressors impact nutrient homeostasis and how natural variation studies can yield resilient crop production systems to ensure future food security.
The 14 essential elements
We understand that plants require at least 14 elements for growth, development, and food production. Therefore, plants are fundamental to the delivery of essential nutrients to humans. Notably, elevated atmospheric CO2 decreases accumulation of micro and macro nutrients. Similarly, drought impairs water uptake from the soil and results in an imbalance of plant nutrition. Therefore, climate change will aggravate dietary deficiencies of nutrients and perhaps the formation of anti-nutrient compounds. How plants regulate the interplay between climatic stressors and plant nutrition remains elusive. Elucidating mechanisms that govern these interactions is essential to drive the necessary gains in crop yield and nutritional value. Crop cultivars display remarkable diversity in how their nutrient accumulation is affected by climatic stressors. Therefore, understanding these naturally evolved mechanisms provides unique opportunities to develop high yielding and climate change-resilient varieties through molecular marker-assisted breeding or transformative technologies.
Ion homeostasis under climate change
Increased photosynthesis reflects a higher chloroplastic metabolic activity, which requires a constant supply of nutrients. Therefore, coordination between enhanced photosynthetic rate in shoots and stimulated ion transport activity can be expected. However, the high atmospheric CO2 leads to a general decrease in plant macro and microelement accumulation, besides carbon.
An outstanding question
How plants ensure enhanced growth despite meagre nutritional status is very intriguing and an outstanding question. One possibility is that under high CO2 the trade-off between vacuolar storage of nutrients and metabolic demand is tilted in the favor of the latter. Tissue-level ionomic analysis also masks heterogeneity in the concentration of specific elements in discrete cell types and subcellular compartments. Therefore, there is a need to study the effects of CO2 on accumulation of ions in different cell types and compartments in relation to photosynthesis to understand how plants can produce higher biomass under elevated atmospheric CO2 and how this scenario affects the overall nutritional quality of grain crops.

Figure shows the effect of elevated atmospheric CO2 on plant and human nutrition.
Water scarcity and crop productivity
Too much atmospheric CO2 is also predicted to cause water scarcity due to a more erratic pattern in rainfall (figure above), which can affect crop productivity. Water availability mainly drives the biological activity of ecosystems, and increased aridity will markedly impact the bioavailability of essential nutrients (nitrogen and phosphorus) for plants. While a typical plant response to water deficit stress is to restrict growth, the mechanistic link between soil drying and growth inhibition is still not fully understood. Part of the problem is that nutritional status and signals in plant adaptation to drought have been neglected. This knowledge gap hampers the design and the interpretation of screens for plant resilience to climate change.
A solution?
It is challenging to study nutrition in the context of climate change due to many counterintuitive observations regarding the response of mineral composition to climatic stressors. Improving plant nutritional status will undoubtedly lead to having plants with an improved phytonutrient content as mineral elements are the basis for phytochemical biosynthesis (i.e. ascorbic acid, carotenoids, flavonoids, sterols, and fatty acids). Recent developments in metabolomic analysis methods are of great help in obtaining novel insights into qualitative and quantitative changes in the composition of plant phytonutrients under different climate change scenarios. Taken together, continued efforts in this research
field will lead to the development of new crop breeding strategies to secure sustainable and nutritious food production against the backdrop of climate change.
Catch up with more of Dr. Zaigham Shahzad’s research here.

Cooperation between humans has spawned great things in the past. This optimism is deeply rooted…
Cooperation between humans has spawned great things in the past. This optimism is deeply rooted in the nature of collaborative work. One such opportunity has been the NORPART - Norwegian Partnership Programme for Global Academic Cooperation. Out of a total of 150 proposals that were submitted, 26 were accepted for funding, including Dr Shaper’s proposal, which aims to greatly enhance the internationalization efforts that are already underway at the Syed Babar Ali School of Science and Engineering.
The project is titled ‘Better health through partnership in higher education and bilateral student mobility: collaboration between Pakistan and Norway’. The offerings of this proposal are really exciting! Students from Norway will be offered courses at the LUMS campus. The two courses that have been selected for these international students are
Health Systems Management and Entrepreneurship and Innovation in Health Care. Alongside these courses they will also be offered a six-month internship for which the project offers two streams; Lab based Internship and Field based Internship. “To enable field based internship, we are parterning up with Indus Hospital, Institute of Public Health (with whom LUMS had already signed an MoU), Gulab Devi Hospital and Institute of Public Health, Baluchistan.”, says Dr Saper Mirza. Speaking about additional aims of the project, Dr Shaper said that the project is to develop two courses in collaboration with Institute of Global Health University of Bergen the courses are Disease Surveillance in low resource countries
Infection prevention and control in low resource countries.
We wish Dr Shaper Mirza and her team heartiest congratulations, and the best of luck for pulling off this promising project.
The NORPART aims to enhance the quality of higher education in Norway and selected partner countries in the Global South through academic cooperation and mutual student mobility. The programme is funded by the Ministry of Education and Research and the Ministry of Foreign Affairs of Norway.
For more information on the list of proposals, including the one selected from SBASSE, please visit: https://diku.no/en/programmes/norpart-norwegian-partnership-programme-for-global-academic-cooperation

What does not kill you makes you stronger. While not generally touted as absolute truth, the…
What does not kill you makes you stronger. While not generally touted as absolute truth, the above idiom correctly sums up trends in antimicrobial resistance amongst pathogens. Like the dreaded final boss in a video game, if you do not correctly eliminate these pathogenic bacteria, they evolve into stronger, smarter versions of themselves and come right back with a vengeance. These versions, commonly known as “super bacteria,” have developed mechanisms that prove resistant against common antibiotics. Antimicrobial Resistance (AMR) is currently described by the WHO as one of the top global public health threats facing humanity. This problem is exceptionally prevalent in Pakistan, where misuse of antimicrobials has resulted in increasing AMR trends amongst common pathogens. However, through the combined efforts of Dr. Nida Javaid, Dr. Safee Ullah Chaudhary and Dr. Shaper Mirza from the Department of Biology, we can start our quest in fighting back against these pathogens and defeat them once and for all.
However, every heroic journey starts with an origin story. For this tale, our researchers described how they found their passion for Biology that began a decades-long journey that culminated in the publication of a ground-breaking research study. Dr. Nida Javaid, one of the researchers for this study, tells us how curious she found illnesses to be as a child. Inquisitive from the start, she wondered how something so microscopic that it is almost invisible could profoundly impact our lives. Thus, began her fascination with these invisible yet powerful agents leading her to choose microbiology and epidemiology as her field of interest. Equipped with a world-class education, a creative mind and a steadfast determination, our heroes understood the gravity of the threat AMR posed to Pakistan and quickly endeavored to find a solution to this problem.
"Know your enemy." Arguably, the greatest military strategist in world history, Sun Tzu understands the importance of insight. To guarantee victory in any battle, one must have a thorough understanding of their opponent; otherwise, they will surely bite the dust. Therefore, the first step to combating rising AMR trends was to analyze the different types of soldiers in the bacterial army, their strengths, weaknesses, and attack strategies. From a scientific perspective, this means identifying the most common pathogens that cause deadly diseases, understanding their evolution to resist certain types of anti-biotics, their geographic distribution across Pakistan and what gender or age-group demographic are most susceptible to infection.
Along with their teams, the above-mentioned researchers have been working on a comprehensive analysis of long-term AMR trends in Pakistan and have published a paper identifying these trends from 2011 to 2015. Conducting a ground-breaking study on such a massive scale poses several formidable challenges, but our researchers have faced these difficulties head-on and dispatched them with ease. Dr. Nida describes how organizing such a vast dataset for this study, from so many sources, was a monumental task. They needed information on the site of isolation, demographics, and antimicrobial susceptibility profile of each isolate against over 15 antimicrobials. That’s more than 3000 separate profiles for each pathogen they have encountered. Even Sun Tzu himself would have blanched at such an onslaught of information. However, our researchers remained resolute and enjoyed the process of diligently visualizing this data. Dr. Nida fondly remembers how satisfying it was learning to utilize Circos plotting software and ultimately transforming the data into a single figure for each pathogen. After the data had been compiled, visualized and analyzed, the researchers began to draw conclusions from the results and buried under layers of increasing AMR trends for many a pathogen, they discovered something quite interesting.
The findings report a rise in antimicrobial resistance in several pathogens isolated from blood and cerebrospinal fluid cultures, such as the Acinetobacter species, which demonstrated the highest resistance rates to all antimicrobials. This, then, could be considered the Lieutenant General of the Bacterial Army, a potent threat that must be defeated, or we would suffer dire consequences. Almost all other pathogens also showcased increasing AMR trends following their leader and showcasing the might of their army. Interestingly, decreasing resistance trends were observed for Staphylococcus aureus against common antibiotics, unlike its other aggressive pathogen comrades. To that end, we would like to nominate ‘S. Aureus’ for Pathogen of the Month for being so well mannered. Truly a shining example for other microbes to follow. These findings were compiled into a research paper nearly half a decade in the making. Through this arduous journey, the researcher's preservation paid immense dividends, as Dr. Nida described her elation when this paper got accepted for publication. This data will be invaluable in planning a stellar counterattack against these pathogens. The paper highlights several actions we can take to stop the growing threat of AMR in its tracks. The public must be aware of the dangers of antibiotic misuse to resolve the problem at its source before it's too late.
The battle lines have been drawn. As one researcher described it, AMR is a major public health challenge. The antibiotic production pipeline is drying out, and microbes are becoming increasingly resistant by the day. By 2050, every minute, a person would die due to antimicrobial-resistant infections. Considering how the COVID-19 pandemic crippled the world and its economies, it is paramount that policymakers should prioritize antimicrobial stewardship to counter the rising trends of AMR.
References:
Title: Trends In Antimicrobial Resistance Amongst Pathogens Isolated from Blood and Cerebrospinal Fluid Cultures in Pakistan (2011-2015): A Retrospective Cross-Sectional Study
Authors: Nida Javaid, Qamar Sultana, Karam Rasool, Sumanth Gandra, Fayyaz Ahmad, Safee Ullah Chaudhary, Shaper Mirza

Dr. Zaigham Shahzad, a renowned plant biologist in the Department of Life Sciences at SBASSE, has been awarded an internationally competitive Collaborative Research Programme (CRP) grant worth Rs. 18 million by International Center for Genetic Engineering and Biotechnology (ICGEB). This grant will provide Dr. Shahzad and his team with the resources and funding necessary to study how to improve the utilization efficiency of an essential nutrient, phosphorus, in a globally important rice crop. The CRP-ICGEB grant has a long history of supporting cutting-edge research and is widely considered one of the most prestigious awards in the scientific community. The award of this grant to Dr. Shahzad is a clear indication of the high regard in which his peers and the scientific community hold him.
Rice is a source of calories for billions of people across the world. This is an extremely valuable cash crop for Pakistan - earning over Rs. 500 billion in foreign exchange through exports. Phosphorus is an essential nutrient for plant growth - required for various cellular processes such as DNA synthesis, energy transfer, and photosynthesis. Therefore, current rice production strategies rely heavily on phosphorus fertilization; however, this practice is not sustainable due to the expected depletion of phosphorus reserves. Furthermore, the addition of phosphorus fertilizer is becoming an increasingly uneconomical and ecologically unsound practice because crops use only 10 to 30% of applied phosphorus and the rest is wasted causing the eutrophication of water bodies. Therefore, there is a growing interest in cultivating rice with reduced phosphorus fertilization. To develop phosphorus-use efficient rice cultivars, it is imperative to understand how plants regulate phosphorus homeostasis and adjust growth to the availability of this essential nutrient.

Phosphorus is taken up by plant roots. Deficiency of this nutrient alters root system architecture (overall arrangement of primary and secondary roots), thereby influencing plants' ability to explore soil zones for nutrients. Dr. Shahzad said, “Although the last green revolution during the 1960s and 70s came by adjusting shoot architecture, the next green revolution could come through research on plants’ hidden half, root systems”. Therefore, it is essential to understand the mechanisms that control the adaptation of plant root systems to fluctuating environments. Numerous genetic components regulating root developmental responses to phosphate starvation have been identified in the model plant species, Arabidopsis. This knowledge could make an invaluable contribution to crop improvement. However, at this stage, we still lack a robust mechanistic model for rice root growth in phosphorus-deficient environments. This knowledge gap confuses the design and interpretation of screens for improved phosphorus use efficiency in the field.
The CRP grant will enable Dr. Shahzad to identify root system architecture ideal for optimizing phosphorus use efficiency by identifying molecular mechanisms that influence rice root adaptation to deprivation of this nutrient. Specifically, we will employ a quantitative genetics approach to discover genes and genetic variants influencing the natural variation of rice root systems to phosphorus-limited environments, said Dr. Shahzad. To evaluate the effects of root system architecture on phosphorus utilization, experimentally mutated rice plants with varying root systems will be generated. The results of this study will develop a detailed understanding of biological processes and genetic components that link soil-derived phosphorus signals with root development and phosphorus utilization efficiency. Therefore, this study will provide a sound foundation for building breeding programs to improve crops' phosphorus use efficiency. This project will also have far-reaching implications for reducing the environmental impact of agriculture, as well as maintaining food security worldwide.
Dr. Zaigham Shahzad, a renowned plant biologist in the…

In order to thrive in an increasingly competitive milieu, it is critical for students conducting scientific research to communicate their ideas and findings effectively to their peers, supervisors, and the wider scientific community. Writing is one of the primary modes of communication in science; therefore, this workshop is designed to provide an overview of the essential elements of scientific writing. It will cover the dos and don’ts of scientific writing, and the basics of writing the different components of scientific papers. Alongside these writing skills, students will be exposed to the ecosystem of scientific publishing to elevate their understanding of how the writing and publishing processes are integrated.
In order to thrive in an increasingly competitive milieu, it is critical for students conducting scientific research to communicate their ideas and findings effectively to their peers, supervisors, and the wider scientific community.

حیاتیاتی تنوع (1) ہماری زمین کا خاصہ ہے۔ پودوں اور جانوروں کی کروڑوں قسمیں جو ہمارے رُوئے ارض پہ آباد ہیں، نہ صرف ہماری زندگیوں کو خوبصورت بناتی ہیں بلکہ ان کا عددی توازن اور ان کی موجودگی ہمارے ماحول، آب و ہوا اور زمینی رنگا رنگی کے لیے بھی نہایت اہم ہے۔ جب انسانی سماج کی آویزش سے یہ توازن بگڑتا ہے، وہاں نسلوں کی نسلیں اپنی سانسوں کی بقا کے لیے ترس جاتی ہیں اور بالآ خر معدوم ہو جاتی ہیں۔ تہذیبِ حاضر کا ایک بڑا چیلنج یہ ہے کہ کسی طرح حیاتیاتی تنوع کی نگہداشت کی جائے اور اس کی بوقلُمونی کو انسانی صنعت، نقل و حمل اور تہذیبی ترقی کی دستبرد سے بچایا جائے۔ یہ ایک عالمی فریضہ ہے۔
میلیا ایزیڈراچ، جسے عام طور پر چائنا بیری ٹری، بیڈ ٹری، کیپ لیلک، سرنگا بیری ٹری، یا سفید دیودار کے نام سے جانا جاتا ہے، مہوگنی فیملی میں درخت کی ایک قسم ہے، یہ مقامی طور پر انڈومالیا اور آسٹریلیشیا میں پایا جاتا ہے۔
اسی مشترک عالمی فریضے میں سے ایک اہم قدم لمز میں شعبہ حیاتیات کے رکن ڈاکٹر شہزاد الحسن اور ان کے ساتھیوں نے اٹھایا اور ہمیں اپنی تحقیق سےیہ باور کرایا کہ ہماری یونیورسٹی نہ صرف ایک تعلیمی ادارہ ہے، بلکہ حیاتیاتی تنوع کا ایسا حسین اور وافر ذخیرہ بھی ہے جو دل و دماغ کو نہ صرف تازگی دیتا ہے، بلکہ فطرت شناسوں کے لیے تحقیق اور مطالعے کا سامان بھی فراہم کرتا ہے۔ "لمز کی حیاتیاتی رنگا رنگی (2)" کے عنوان سے یہ منصوبہ دراصل ادارے کا عزم ہے کہ ہمارے سو ایکڑ سے زائد رقبے پر محیط تعلیمی درسگاہ میں موجود نباتاتی اور حیوانی زندگی کے بارے میں معلومات اکٹھی کی جائیں۔
اس منصوبے کے پہلے مرحلے میں کیمپس میں موجود تمام درختوں، پرندوں اور پودوں کی نشاندہی کی گئی اور ان کے محّلِ وقوع کی جغرافیائی سند اکٹھی کی گئی۔ پتہ یہ چلا کہ پنجاب بھر میں موجود مقامی نباتات کی تمام انواع ہمارے لمز میں موجود ہیں۔ نیز 105 نباتاتی انواع جن میں نایاب پودے بھی شامل ہیں، ہمارے باغات کی زینت ہیں۔ علاوہ ازیں مہاجر پرندے (3)، حشرات الارض، رینگنے والے جانور(4)، اور بھانت بھانت کے پھول اس باغ کا حصہ ہیں۔ یہ سب کچھ کسی انمول خزانے سے کم نہیں۔ ہم روز اس چھُپی ہوئی زندگی سے صرفِ نظر کرتے آگے گزر جاتے ہیں مگر ڈاکٹر شہزاد الحسن کا انمول کام ہمارے قدموں کو روک روک کے ہمیں دعوتِ نظارہ دے رہا ہے۔
پرپل سن برڈ سن برڈ فیملی کا ایک چھوٹا پرندہ ہے جو بنیادی طور پر جنوبی اور جنوب مشرقی ایشیا میں پایا جاتا ہے۔
یہ منصوبہ شہزاد الحسن کی زیر نگرانی گورنمنٹ کالج یونیورسٹی لاہور کے شعبہ نباتیات کے تعاون سے مکمل ہوا۔ یہ پروجیکٹ اس بات کا اعلان ہے کہ اسکول آف سائنس اینڈ انجینئرنگ حیاتیاتی ماحول کے بارے میں متفکر ہے اور نوجوانوں کی توجہ اس جانب دِلانا چاہتا ہے۔ اگر ہم نے اس خوبصورت اور متوازن ماحول کی حفاظت نہ کی تو نہ صرف ہم زندگی کے حُسن میں کمی لے آئیں گے بلکہ اپنے آپ کو نئے نئے حوادث کے لیے بھی پیش کر دیں گے۔
اس منصوبے کی مزید تفصیلات کے بارے میں جاننے کے لیے یہاں کلک کریں۔
اور مجھے تو احمد شمیم کی یہ لازوال نظم یاد آ گئی جسے مرحومہ نیرّہ نُور کی آواز نے مزید لا فانی بنا دیا۔
کبھی ہم خوبصورت تھے ۔۔۔ ۔۔۔ ۔!
کتابوں میں بسی خوشبو کی صورت
سانس ساکن تھی!
بہت سے ان کہے لفظوں سے تصویریں بناتے تھے
پرندوں کے پروں پر نظم لکھ کر
دور کی جھیلوں میں بسنے والے لوگوں کو سناتے تھے
جو ہم سے دور تھے
لیکن ہمارے پاس رہتے تھے !
نئے دن کی مسافت
جب کرن کے ساتھ آنگن میں اترتی تھی
تو ہم کہتے تھے۔۔۔ ۔۔امی!
تتلیوں کے پر بہت ہی خوبصورت ہیں
ہمیں ماتھے پہ بوسا دو
کہ ہم کو تتلیوں کے،جگنوؤں کے دیس جانا ہے
ہمیں رنگوں کے جگنو، روشنی کی تتلیاں آواز دیتی ہیں
نئے دن کی مسافت رنگ میں ڈوبی ہوا کے ساتھ
کھڑکی سے بلاتی ہے
ہمیں ماتھے پہ بوسا دو۔۔۔
کہانی نویس: ڈاکٹرمحمد صبیح انور
فرہنگ
(1) Biological diversity
(2) Flora and fauna of LUMS
(3) Migratory birds
(4) Reptiles

حیاتیاتی تنوع (1) ہماری زمین کا خاصہ ہے۔ پودوں اور جانوروں کی کروڑوں قسمیں جو ہمارے رُوئے ارض پہ آباد ہیں، نہ صرف ہماری…