The work described in this thesis profiled the transcriptome of undifferentiated (TSCs) and 4-days differentiated (TGCs) cells through RNA-seq and identified ~7,800 differentially expressed genes which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism and various signaling pathways. We revealed that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identified hitherto undiscovered, cell-type-specific alternative splicing events in 31 genes and expression of 19 novel exons in 12 genes in TSCs and TGCs. Similarly, we discovered that the expression of Cyclin-dependent Kinase 1 (Cdk1) was downregulated in fused BeWo cells and its inhibition through small-molecule inhibitor induced fusion in these cells. The role of Caspase3 downregulation in conferring resistance to genotoxic stress-induced apoptosis in developmentally programmed polyploid cells was also investigated. Finally, we discovered that the polyploid nuclei in fused BeWo cells result from nuclear fusion following the fusion of the cells. Overall, results described in this dissertation uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development. Moreover, these results will help in understanding the role and regulation of apoptosis in differentiated TGCs.
The Department of Life Sciences at LUMS offers rigorous undergraduate and graduate programs, which impart cutting-edge knowledge of 21st-century life sciences exposing students to its theoretical as well as experimental aspects. Two streams are offered to the aspiring Biology majors: Molecular and Cellular Biology (MCB) and Computational Biology (CB). Biology is important since it aims to tell us about the natural world around us. Recent advances have brought the subject to the forefront of contemporary sciences and have integrated it with numerous disciples, including chemistry, mathematics, physics, electrical engineering and computer science. This has led to the emergence of new areas of study and research such as molecular biology, cell and developmental biology, computational biology, diseases, biophysics and systems biology, all of which are in the realm of the biology program at SBASSE.

زراعت پاکستانی معیشت کا بنیادی جزو ہے، مگر موسمیاتی تبدیلی، بدلتی آب…
زراعت پاکستانی معیشت کا بنیادی جزو ہے، مگر موسمیاتی تبدیلی، بدلتی آب و ہوا اور قدرتی آفات، جیسے سیلاب اور خشک سالی، نے ملک کی زراعتی پیداوار پہ خطروں کے گہرے سائے ڈال دئیے ہیں۔
اسی جانب ایک اہم تحقیق حال ہی میں جریدے" پلانٹ اینڈ سیل فزیا لو جی" (1) میں شائع ہوئی جس میں لمز شعبہ حیاتیات کے پروفیسر ڈاکٹر خرم بشیر نے ثابت کیا کہ ایتھانول(2) کی معمولی مقدار اگر کھیت کی مٹی میں شامل کرلی جائے، تو خشک سالی کے دوران فصلوں کی نشوونما میں بہتری دیکھی جا سکتی ہے۔ یہ تجربات جاپان میں گندم اور چاول فصلوں پہ کیے گئے۔
چونکہ ایتھانول ایک سستا اور آسانی سے ملنے والا کیمیکل ہے، جو بے شمار صنعتوں میں بھی استعمال ہوتا ہے اور اس میں کھاد ساز صنعتوں کی اجارہ داری بھی شامل نہیں ،یہ حیران کن تجربات خشک زمینوں میں فصلوں کی نشوونما اور افزائش میں سنگِ میل کا درجہ رکھتے ہیں۔

ڈاکٹر خرم بشیر لمز کی زرعی زمین پر اپنے تجربات کا مشاہدہ کرتے ہوئے
اس انقلابی تجربے کو عالمی سطح پر بے حد پذیرائی ملی ہے اور بہت سی بین الاقوامی ویب سائٹس جیسا کہ ٹیلی گراف، ریکن جاپان ، یوریک الرٹ ،گولڈ مین ایسوسئیٹس ،وغیرہ نے اس موضوع پہ خبر یں شائع کی ہیں۔ نیز مذکورہ بالا جریدے نے اس کہانی کو اپنے ستمبر شمارے کے سرِ ورق کی زینت بھی بنایا ہے۔

جہاں دنیا بھر میں غذائی قلت کا شدید خطرہ ہے،وہاں ڈاکٹر خرم بشیر اور ان کے جاپانی ساتھیوں کی یہ تحقیق یقیناً قابلِ توجہ ہے۔ خاص طور پر امریکہ اور یورپ اس وقت خشک سالی کا شکار ہیں۔ انھیں ایتھانول کے مدد سے کھیتوں کو سیراب کرنے کی جانب دیکھنا ہو گا۔ پاکستان میں موسمی تبدیلیوں کی وجہ سے زراعت کے شعبے کو جو نقصانات ہوئے ہیں وہ آئندہ سالوں میں خشک سالی کا اندیشہ پیش کر رہے ہیں۔ بڑھتا ہوا درجہ حرارت گندم اور چاول کی فصل پر شدید منفی اثر بھی ڈالتا ہے اور اس صورتحال میں ایسی نادرتجویز پر عمل کرنا بہت ضروری ہو گیا ہے۔پاکستان میں کپاس کو چھوڑ کر جنییاتی طور پر تبدیل شدہ فصلیں قبول نہیں کی جاتی ۔ یعنی پاکستان جینیاتی تحریف شدہ (3) فصلیں بنانے کی صلاحیت رکھتا تو ہے مگر قانون نافذ کرنے والے ادارے اس تبدیلی کی اجازت نہیں دیتے ۔ ایسے موقع پر ایسی ٹیکنالوجی، جو فصلوں کو جنییاتی طور پر تبدیل کیے بغیر ، ایسے کیمیکل کو استعمال کر ے جس کے استعمال میں کسی کو کوئی ہچکچاہٹ محسوس نہ ہو، ایک بہت قیمتی پیش رفت ہے۔

شعبہ حیاتیات کی نباتاتی تجربہ گاہ کا ایک منظر
ڈاکٹر خرم بشیر نے اس تحقیق کی ابتدا جاپان میں کی اور اب لمز میں رہتے ہوئے ان کا مقصد اسی نوع کے کام کو پاکستان میں بڑھانا ہے۔ ڈاکڑ خرم اپنی جاپانی ٹیم کےساتھ رابطے میں ہیں اور لمز کی ٹیم کو لے کر اب پاکستانی حکومت کو بھی اس مقصد میں شامل کرنے کی کوشش کر رہے ہیں، تا کہ پاکستان میں اس کے ابتدائی تجربے اور پھر بڑے پیمانے پر تجربات کیے جا سکیں، تا کہ اس ٹیکنالوجی کو جلد از جلد میدانِ عمل میں کسان کے حوالے کیا جا سکے۔
ڈاکٹر خرم بشیر کے مقالے میں ایتھانول کی مدد سے پودوں کی کم پانی کوذخیرہ کرنے اور پتوں میں موجود مسام (4) کی بندش کے مظاہرے کو کمال تکنیکی مہارت سے دیکھا گیااور ثابت کیا گیا۔اس عمل کے کیمیائی اور جینیاتی منظر کو بھی جانچا گیا اور پودوں میں ذوقِ حفظِ زندگی اور پانی کی کمی کے باوجود زندگی کی بقا کے لیے اپنائے جانے والے کیمیائی اور جینیاتی عوامل کی بھرپور نشاندہی کی گئی۔ اِسی لیے یہ تحقیق اپنی نوعیت میں نہایت جامع ہے اور مزید آنے والے دنوں ، مہینوں اور سالوں میں قحط زدہ اور خشک سال علاقوں میں فصلوں کی نشونما کے لیے مزید راہیں دکھائے گی۔
ڈاکٹر خرم بشیر امید کرتے ہیں کہ پاکستان کی حکومت ان کا ساتھ دے گی، تا کہ اس عمل سے قلیل پانی میں فصلوں کی پیداوار کو فروغ مل سکے اور ناگہانی آفات کے اثرات سے بچاؤ کے لیے ایک مضبوط دیوار کھڑ ی کی جا سکے۔
کہانی نویس: محمد صبیح انور
(1) Plant and Cell Physiology
(2) Ethanol
(3) Genetically modified

The world’s biggest producer of nutrients is in grave danger. Plants…
The world’s biggest producer of nutrients is in grave danger. Plants have been quiet observers of the planet since the post-Cambrian era, where life suddenly and exponentially bloomed into global proportions. Today, CO2 levels in the atmosphere are rising to the point that existing, natural mechanisms to buffer and counter this drastic change is proving inadequate. As the global trend in precipitation and air quality shifts, so does that availability of 14 essential elements for plant growth. This is making it hard for plants to survive, and if left untreated will leave plants essentially starved, leading to a global food catastrophe.
Dr. Zaigham Shahzad from the Department of Life Sciences at SBASSE, is working on understanding the effects of climate change on plant nutrition. In a paper review published recently in Current Biology Dr. Zaigham describes how various climatic stressors impact nutrient homeostasis and how natural variation studies can yield resilient crop production systems to ensure future food security.
The 14 essential elements
We understand that plants require at least 14 elements for growth, development, and food production. Therefore, plants are fundamental to the delivery of essential nutrients to humans. Notably, elevated atmospheric CO2 decreases accumulation of micro and macro nutrients. Similarly, drought impairs water uptake from the soil and results in an imbalance of plant nutrition. Therefore, climate change will aggravate dietary deficiencies of nutrients and perhaps the formation of anti-nutrient compounds. How plants regulate the interplay between climatic stressors and plant nutrition remains elusive. Elucidating mechanisms that govern these interactions is essential to drive the necessary gains in crop yield and nutritional value. Crop cultivars display remarkable diversity in how their nutrient accumulation is affected by climatic stressors. Therefore, understanding these naturally evolved mechanisms provides unique opportunities to develop high yielding and climate change-resilient varieties through molecular marker-assisted breeding or transformative technologies.
Ion homeostasis under climate change
Increased photosynthesis reflects a higher chloroplastic metabolic activity, which requires a constant supply of nutrients. Therefore, coordination between enhanced photosynthetic rate in shoots and stimulated ion transport activity can be expected. However, the high atmospheric CO2 leads to a general decrease in plant macro and microelement accumulation, besides carbon.
An outstanding question
How plants ensure enhanced growth despite meagre nutritional status is very intriguing and an outstanding question. One possibility is that under high CO2 the trade-off between vacuolar storage of nutrients and metabolic demand is tilted in the favor of the latter. Tissue-level ionomic analysis also masks heterogeneity in the concentration of specific elements in discrete cell types and subcellular compartments. Therefore, there is a need to study the effects of CO2 on accumulation of ions in different cell types and compartments in relation to photosynthesis to understand how plants can produce higher biomass under elevated atmospheric CO2 and how this scenario affects the overall nutritional quality of grain crops.

Figure shows the effect of elevated atmospheric CO2 on plant and human nutrition.
Water scarcity and crop productivity
Too much atmospheric CO2 is also predicted to cause water scarcity due to a more erratic pattern in rainfall (figure above), which can affect crop productivity. Water availability mainly drives the biological activity of ecosystems, and increased aridity will markedly impact the bioavailability of essential nutrients (nitrogen and phosphorus) for plants. While a typical plant response to water deficit stress is to restrict growth, the mechanistic link between soil drying and growth inhibition is still not fully understood. Part of the problem is that nutritional status and signals in plant adaptation to drought have been neglected. This knowledge gap hampers the design and the interpretation of screens for plant resilience to climate change.
A solution?
It is challenging to study nutrition in the context of climate change due to many counterintuitive observations regarding the response of mineral composition to climatic stressors. Improving plant nutritional status will undoubtedly lead to having plants with an improved phytonutrient content as mineral elements are the basis for phytochemical biosynthesis (i.e. ascorbic acid, carotenoids, flavonoids, sterols, and fatty acids). Recent developments in metabolomic analysis methods are of great help in obtaining novel insights into qualitative and quantitative changes in the composition of plant phytonutrients under different climate change scenarios. Taken together, continued efforts in this research
field will lead to the development of new crop breeding strategies to secure sustainable and nutritious food production against the backdrop of climate change.
Catch up with more of Dr. Zaigham Shahzad’s research here.

Cooperation between humans has spawned great things in the past. This optimism is deeply rooted…
Cooperation between humans has spawned great things in the past. This optimism is deeply rooted in the nature of collaborative work. One such opportunity has been the NORPART - Norwegian Partnership Programme for Global Academic Cooperation. Out of a total of 150 proposals that were submitted, 26 were accepted for funding, including Dr Shaper’s proposal, which aims to greatly enhance the internationalization efforts that are already underway at the Syed Babar Ali School of Science and Engineering.
The project is titled ‘Better health through partnership in higher education and bilateral student mobility: collaboration between Pakistan and Norway’. The offerings of this proposal are really exciting! Students from Norway will be offered courses at the LUMS campus. The two courses that have been selected for these international students are
Health Systems Management and Entrepreneurship and Innovation in Health Care. Alongside these courses they will also be offered a six-month internship for which the project offers two streams; Lab based Internship and Field based Internship. “To enable field based internship, we are parterning up with Indus Hospital, Institute of Public Health (with whom LUMS had already signed an MoU), Gulab Devi Hospital and Institute of Public Health, Baluchistan.”, says Dr Saper Mirza. Speaking about additional aims of the project, Dr Shaper said that the project is to develop two courses in collaboration with Institute of Global Health University of Bergen the courses are Disease Surveillance in low resource countries
Infection prevention and control in low resource countries.
We wish Dr Shaper Mirza and her team heartiest congratulations, and the best of luck for pulling off this promising project.
The NORPART aims to enhance the quality of higher education in Norway and selected partner countries in the Global South through academic cooperation and mutual student mobility. The programme is funded by the Ministry of Education and Research and the Ministry of Foreign Affairs of Norway.
For more information on the list of proposals, including the one selected from SBASSE, please visit: https://diku.no/en/programmes/norpart-norwegian-partnership-programme-for-global-academic-cooperation

What does not kill you makes you stronger. While not generally touted as absolute truth, the…
What does not kill you makes you stronger. While not generally touted as absolute truth, the above idiom correctly sums up trends in antimicrobial resistance amongst pathogens. Like the dreaded final boss in a video game, if you do not correctly eliminate these pathogenic bacteria, they evolve into stronger, smarter versions of themselves and come right back with a vengeance. These versions, commonly known as “super bacteria,” have developed mechanisms that prove resistant against common antibiotics. Antimicrobial Resistance (AMR) is currently described by the WHO as one of the top global public health threats facing humanity. This problem is exceptionally prevalent in Pakistan, where misuse of antimicrobials has resulted in increasing AMR trends amongst common pathogens. However, through the combined efforts of Dr. Nida Javaid, Dr. Safee Ullah Chaudhary and Dr. Shaper Mirza from the Department of Biology, we can start our quest in fighting back against these pathogens and defeat them once and for all.
However, every heroic journey starts with an origin story. For this tale, our researchers described how they found their passion for Biology that began a decades-long journey that culminated in the publication of a ground-breaking research study. Dr. Nida Javaid, one of the researchers for this study, tells us how curious she found illnesses to be as a child. Inquisitive from the start, she wondered how something so microscopic that it is almost invisible could profoundly impact our lives. Thus, began her fascination with these invisible yet powerful agents leading her to choose microbiology and epidemiology as her field of interest. Equipped with a world-class education, a creative mind and a steadfast determination, our heroes understood the gravity of the threat AMR posed to Pakistan and quickly endeavored to find a solution to this problem.
"Know your enemy." Arguably, the greatest military strategist in world history, Sun Tzu understands the importance of insight. To guarantee victory in any battle, one must have a thorough understanding of their opponent; otherwise, they will surely bite the dust. Therefore, the first step to combating rising AMR trends was to analyze the different types of soldiers in the bacterial army, their strengths, weaknesses, and attack strategies. From a scientific perspective, this means identifying the most common pathogens that cause deadly diseases, understanding their evolution to resist certain types of anti-biotics, their geographic distribution across Pakistan and what gender or age-group demographic are most susceptible to infection.
Along with their teams, the above-mentioned researchers have been working on a comprehensive analysis of long-term AMR trends in Pakistan and have published a paper identifying these trends from 2011 to 2015. Conducting a ground-breaking study on such a massive scale poses several formidable challenges, but our researchers have faced these difficulties head-on and dispatched them with ease. Dr. Nida describes how organizing such a vast dataset for this study, from so many sources, was a monumental task. They needed information on the site of isolation, demographics, and antimicrobial susceptibility profile of each isolate against over 15 antimicrobials. That’s more than 3000 separate profiles for each pathogen they have encountered. Even Sun Tzu himself would have blanched at such an onslaught of information. However, our researchers remained resolute and enjoyed the process of diligently visualizing this data. Dr. Nida fondly remembers how satisfying it was learning to utilize Circos plotting software and ultimately transforming the data into a single figure for each pathogen. After the data had been compiled, visualized and analyzed, the researchers began to draw conclusions from the results and buried under layers of increasing AMR trends for many a pathogen, they discovered something quite interesting.
The findings report a rise in antimicrobial resistance in several pathogens isolated from blood and cerebrospinal fluid cultures, such as the Acinetobacter species, which demonstrated the highest resistance rates to all antimicrobials. This, then, could be considered the Lieutenant General of the Bacterial Army, a potent threat that must be defeated, or we would suffer dire consequences. Almost all other pathogens also showcased increasing AMR trends following their leader and showcasing the might of their army. Interestingly, decreasing resistance trends were observed for Staphylococcus aureus against common antibiotics, unlike its other aggressive pathogen comrades. To that end, we would like to nominate ‘S. Aureus’ for Pathogen of the Month for being so well mannered. Truly a shining example for other microbes to follow. These findings were compiled into a research paper nearly half a decade in the making. Through this arduous journey, the researcher's preservation paid immense dividends, as Dr. Nida described her elation when this paper got accepted for publication. This data will be invaluable in planning a stellar counterattack against these pathogens. The paper highlights several actions we can take to stop the growing threat of AMR in its tracks. The public must be aware of the dangers of antibiotic misuse to resolve the problem at its source before it's too late.
The battle lines have been drawn. As one researcher described it, AMR is a major public health challenge. The antibiotic production pipeline is drying out, and microbes are becoming increasingly resistant by the day. By 2050, every minute, a person would die due to antimicrobial-resistant infections. Considering how the COVID-19 pandemic crippled the world and its economies, it is paramount that policymakers should prioritize antimicrobial stewardship to counter the rising trends of AMR.
References:
Title: Trends In Antimicrobial Resistance Amongst Pathogens Isolated from Blood and Cerebrospinal Fluid Cultures in Pakistan (2011-2015): A Retrospective Cross-Sectional Study
Authors: Nida Javaid, Qamar Sultana, Karam Rasool, Sumanth Gandra, Fayyaz Ahmad, Safee Ullah Chaudhary, Shaper Mirza

It was a monumental ship that we thought was indestructible, and what we found out was that we are still vulnerable to forces on this planet that are beyond our control,”
Remarked Jules Jaffe, a research oceanographer at the Scripps Institution of Oceanography at the University of California, who helped find the Titanic wreckage in 1985.
From the sinking of the Titanic in 1912 to the recent demise of the Titan submersible during its expedition to explore the ship’s remains in 2023, we have witnessed the unpredictable and formidable nature of water in various manifestations, whether in the depths of the ocean, flooding on land, or even its abundance. Water, a life-giving resource, exhibits a force beyond human control.
In the same vein, Artificial Intelligence (AI) has emerged as another seemingly elusive force. The launch of chatGPT, an AI chatbot by OpenAI, has redefined the standards of AI, demonstrating machines’ remarkable ability to “learn” and comprehend the intricacies of human language and interaction. However, the rapid advancements in AI technologies have raised concerns about potential risks to society and humanity. Shortly after chatGPT’s release, prominent figures in the tech industry, such as Elon Mask, called for a 6-month temporary pause on the rapid developments of advanced AI technologies.

Nevertheless, researchers at LUMS have harnessed the power of AI for water management in agriculture. To enhance water distribution to crops, the NCRA-Agriculture and Robotics Lab (NARL) has collaborated with the Punjab Irrigation Department (PID) in a project supported by the Asian Development Bank (ADB). Led by Dr. Abubakr Muhammad, Dr. Murtaza Taj and Dr. Hassan Jaleel. The collaborative effort utilised earth observation data to improve the functioning and distributary canals in the Lower Bari Doab Canal (LBDC).
Dr. Murtaza Taj and his team member Dr. Usman Nazir focused their efforts on the crop classification aspect that provided critical input to the decision-making tool.
The outcome was the development of an equitable water distribution system that provides sufficient water to different areas according to the crops’ requirements. However, classifying crops based on multispectral imagery poses significant challenges. This is where AI steps in, offering valuable solutions.
Using spatiotemporal analysis from the Copernicus Sentinel 2 satellite imagery and employing machine learning algorithms, the researchers successfully identified the crops. As the name suggests, the beauty of machine learning is its ability to develop algorithms and models that enable computers to learn and make decisions based on input data.

To achieve crop classification, Dr Murtaza and his team initially devised a unique architecture that combines convolutional neural networks (CNNs) for spatiotemporal analysis. Inspired by the organisation and functioning of the visual cortex in the human brain, CNNs are specifically designed for processing and analysing visual data like images and videos. This approach allowed them meaningful data and achieve higher accuracy compared to traditional methods and previous deep learning approaches, like Random Forest (RF). Their methodology involves usage of 3D CNNs to capture spatiotemporal patterns and 1D CNNs for redefined temporal analysis of the image data. This combined approach significantly improves crop classification accuracy by 2% while keeping the computational complexity (such as time and memory) low. However, it’s important to note that CNNs are powerful algorithms that require substantial computational power and memory resources to process data in three dimensions.
Known for its efficiency and scalability, Random Forest on the other, can handle crop classification when the data does not have complex spatial and temporal dependencies. The lower computational power required by RF makes it more practice for implementation by the PID, thus driving its adaptation over CNN. This machine-learning technique combines multiple decision trees to make predictions, with each tree offering its own prediction.
The Random Forest algorithm follows a series of steps to make predictions. First, it collects relevant data related to the problem. In this case, the PID collected two types of training data, point samples and polygon samples, for thirteen crops from the LBDC region. Next, the algorithm creates multiple decision trees, each focusing on different features of the data. The final prediction is determined by considering the input from all the trees. It’s akin to having a panel of experts, each offering their opinion, and the final decision is reached by considering everyone’s input. This "wisdom of the crowd" approach ensures more accurate and reliable results. Once trained on existing data, the Random Forest can use its collective knowledge to make predictions on new, unseen data, making it a versatile and powerful tool for various applications.

To further enhance the accuracy of Random Forest, Dr Murtaza and Dr Usman implemented a masking mechanism to filter out built-up regions. Using the samples provided by PID, the researchers trained and tested a multi-spectral classifier for crop classification, archiving an impressive accuracy of 96,78%.
This crop classification algorithm has become an integral part of PID’s Decision Support Systems (DSS) within LBDC. The DSS aims to forecast water demand for each 8-day period and communicate it to the Indus River System Authority (IRSA) for diversion determination.
By supplying water based on the specific crop type and age, the system not only closes the supply-demand gap but also prevents over-irrigation and crop water stress, thus maximising crop return per unit of water.

From Canal to Flood— utilising AI to Understand Disaster-Stricken Districts
Once the Random Forest algorithm was trained based on crop samples collected by the Punjab Irrigation Department (PID), its application expanded to any area with similar crops, even those struck by floods.
Immediate relief and rescue operations are the initial response to flooding, but the impact of such natural disasters extends far beyond the immediate aftermath. In August 2022, heavy rainfall in the southern region of Pakistan led to severe flooding, resulting in significant damage to agricultural land and the destruction of standing crops.
As part of ongoing research, the NARC-Agriculture and Robotics Lab (NARL) and Center for Water Informatics & Technology (WIT) at LUMS have collaborated with the NASA HARVEST team at the University of Maryland to analyse the wide-ranging effects of the 2022 floods on the winter (Rabi) crop. The researchers assessed the crop damage by comparing pre-and post-flood satellite-based remote sensing data, mapping the flooded areas and classifying crops in the flood-stricken districts of Southern Punjab, Sindh and Baluchistan in 2022.

Another factor contributing to a shortage of agricultural produce after flooding is the highly saturated soil, which may not be suitable for sowing. The researchers analysed a satellite-based soil moisture product (SMAP Level-4) to determine the changes in the soil moisture content before the flooding event and after the receding of floodwater. This analysis allows researchers to determine when the soil will be ready for sowing and thus predict food security.

Water Sense – A Ground-level Soil Moisture Sensor
Monitoring soil moisture is crucial not only during periods of water influx but also during times of abundance. With Pakistan predicted to face water scarcity by 2025, where the agricultural sector consumes 90% of freshwater resources, accurate soil moisture monitoring becomes even more essential. To address this need, the Center of Water Informatics & Technology (WIT), in collaboration with Nestle’s Pakistan’s Caring for Water Initiative, developed Water Sense, an Internet of Things (IoT) powered soil moisture sensor. Water Sense operates on the capacity measurements principle, ensuring precise and durable reading without hurting the soil chemistry. The main objective of these sensors is to conserve up to 50% of irrigation water by empowering farmers to make informed irrigation decisions.
In a pilot project conducted in 2021, WIT installed 107 Water Sense sensors across Punjab for Nestle Pakistan. Based on the data from maize crops, an average irrigation savings of 25% was reported, with no apparent yield penalty. This amounts to net water conservation of 142 million litres from the 178 acres of the Maize crop (0.8 million litres per acre), using 38 soil moisture sensors (3.7 million liters per sensor).
Compared to other efficient irrigation systems like drip irrigation and rail gun, Water Sense provides a cost-effective option due to its capital expense. The affordability makes it an ideal choice, even for smaller agricultural lands. Considering the significance of water conservation, every drop counts.
WIT is further expanding its research on Water Sense, incorporating it into a larger framework that will utilise AI (machine learning algorithms) with ground data and satellite observations to measure soil moisture. Dr Abu Bakr Muhammad, the founding director of WIT and associate professor at the Department of Electrical Engineering, has received the prestigious Khalid and Mussarrat Aziz research grant for this initiative.
The fusion of technology and water management is paving the way for a more resilient and productive agriculture sector, offering hope for a future where humans can better understand and ensure food security in the face of climate change and increasing water scarcity.
Water Desalination: A solution to Water Scarcity?
Despite covering 71% of the Earth’s surface, the amount of water available for human use and consumption is limited. Water desalination, the removal of salt and other impurities from seawater or brackish water, offers a potential solution. At LUMS, the Laboratory of Advanced Membranes and Separations (LAMS) have used recycled plastic bottles to fabricate membranes for desalination. Learn more about the research on Water Desalination here.
The LUMS Agricultural Land
Other than labs, the SBASSE has provided dedicated agricultural land on campus for researchers to conduct innovative studies. These initiatives drive advancement in the field of agriculture and tackle grand challenges of ensuring a sustainable supply of energy, food and water.
For instance, WIT utilises these grounds to test and refine their soil moisture devices, improving their effectiveness in monitoring soil conditions. While Dr Khurram Bashir, a renowned plant biologist at LUMS studies ethanol’s use to enhance drought tolerance in crops like wheat and rice. This ground-breaking research paves the way for improved crop development in drought-prone areas. You can learn more about Dr Khurram’s research here.
Dr Nauman Zafar Butt from the Department of Electrical Engineering is also utilising the LUMS agricultural for his argivoltaic research, which involves monitoring the impact of solar panels on crops. This initiative is the second recipient of the prestigious Khalid and Mussarat Aziz Research Grant for Planet Earth.
Another noteworthy research revolving around the roots of plants at LUMS, is Dr Zaigham Shahzad’s study on improving phosphorus utilisation in rice plants. This research has also received a prestigious grant, and you can find more information about it here.
It was a monumental ship that we thought was indestructible, and what we found out was that we are still vulnerable to…

Dr. Munawar is an Assistant Research Scientist at the Lab for Computational Sensing and Robotics (LCSR) at Johns Hopkins University (JHU). He received his Ph.D. and M.S. from Worcester Polytechnic Institute (WPI) while working at the Automation in Interventional Medicine (AIM) Laboratory. He was the recipient of the Fulbright Scholarship during his M.S. program. His research interests broadly include medical robotics, haptics and force control, simulation and animation, and digital twins.
Dr. Munawar is an Assistant Research Scientist at the Lab for Computational Sensing and Robotics (LCSR) at Johns Hopkins University (JHU). He received his Ph.D. and M.S.

حالیہ دور میں جہاں انسانوں کو بہت سی جان لیوا بیماریوں کا سامنا ہے وہیں کینسر جیسا موذی مرض سر فہرست ہے۔ کینسر ایک ایسی خطر ناک بیماری ہے جو انسانی جسم میں موجود ڈی این اے میں تبدیلی کی وجہ سے جنم لیتی ہے۔ اس کے نتیجے میں غیر ضروری اور غیر معمولی خلیوں کے جتھے کے جتھے تشکیل پاتےہیں جو بعد میں ٹیومر کی شکل اختیار کر کے پورے جسم میں پھیل جاتے ہیں

دنیا بھر میں ہر سال کینسر کے مرض میں مبتلا ہونے والے اور اس کی وجہ سے جان کی بازی ہارنے والے افراد کی تعداد تشویشناک ہے۔ اس سے قبل کینسر کے شعبے میں لا علمی اور محدود شعور کے باعث اس مہلک مرض میں مبتلا ہونے والا شخص جینے کی تمام امیدیں کھو بیٹھتا تھا ۔ لیکن موجودہ دور میں کینسر کے علاج سے متعلق اہم پیشرفت سامنے آئی ہے جس سے کینسر کے مریضوں کی زندگی میں امید کی نئی کرن روشن ہوئی ہے۔
اس حوالے سے مزید جاننے کے لئے ہم نے ماہر کینسر تحقیق ڈاکٹر عمر خالد کا انٹرویو کیا۔ ڈاکٹر عمر خالد نے پنجاب یونیورسٹی کے مائیکروبائیولوجی اور جینیٹکس کے ڈیپارٹمنٹ سے بیچلرز کی ڈگری حاصل کرنے کے بعد ۶۰۱۴ میں لمز یونیورسٹی کے ماسٹرز پروگرام میں داخلہ لیا۔ یہاں آپ دو سال تک حیاتیات شعبے سے منسلک رہے جہاں آپ کا شمار تعلیمی فضیلت پانے والے طلبہ میں ہوتا تھا اور اس کے بعد دیگر اساتذۃ کے ساتھ ایک سال تک آپ نے تحقیقی اور تدریسی معاون کی خدمات سر انجام دیں۔
اسی دوران آپ کو دنیا کے نامور کینسر تحقیق سینٹر سے پی ایچ ڈی کی آفر آئی جہاں سے آپ نے کینسر کے شعبے میں تین سال میں اپنی پی ایچ ڈی مکمل کی۔ بعد اذاں ڈاکٹر عمر کو ہارورڈ میڈیکل اسکول کے دانا فاربر کینسر انسٹی ٹیوٹ میں بطور کینسر تحقیق سائنس دان کام شروع کرنے کا موقع مل گیا۔

ڈاکٹر عمر سے گفتگو کے دوران ہمیں ان کے کام کی نوعیت کا بخوبی اندازہ ہوا ہے۔ان کا کہنا تھا کہ بطور کینسر کار ، وہ ایسی جدید تحقیق پر کام کر رہے ہیں جس سے کینسر جیسے مرض کے علاج کو قابلِ عمل بنایا جا سکے ۔ ان کا مقصد مختلف مریضوں میں کینسر کی پیشرفت کو سمجھنا، کینسر علامات کی شناخت کرنے کے بعد ہر انفرادی کیس کو زیر غور رکھتے ہوئے منفرد اور اثر انگیز تراکیب اور اقدامات کو تجویز دینا ہے جس سے کینسر کے مرض کا پھیلاؤ نہ صرف تھم جائے بلکہ یہ مکمل طور پر جسم سے خارج بھی ہو جائے۔
انھوں نے مزید بتایا کہ ان کے پی ایچ ڈی پروجیکٹ کا موضوع ایسی منفرد علاجی تراکیب تشکیل دینا تھا جو دماغ کے کینسر میں مبتلا لوگوں کو کم ترین مضر اثرات کے ساتھ شفا دے سکے ۔ اس حوالے سے انھوں نے اہم کامیابی تب حاصل کی جب انہوں نے دو ایسی ادویات کے فارمولے تیار کیے جو اس مقصد میں نہایت کارگر ثابت ہوئیں۔

جب ہم نے ڈاکٹر خالد سے پوچھا کے کینسر کے متعلق تحقیق کا اشتیاق کیسے پیدا ہوا تو ان کا کہنا تھا کہ یہ خیال سب سے پہلے ان کے ذہن میں تب پیدا ہوا جب انھوں نے پہلی بار لمز میں ڈاکٹر امیر فیصل کے ساتھ سیل سگنلنگ کا کورس لیا جس میں خلیوں کے درمیان رابطوں کو سمجھنے کی کوشش کی جاتی ہے ۔ انھوں نے مزید کہا کہ ریسرچ تحقیقی معاونت کے دوران رونما ہونے والے سوالات اور ان کے جوابات حاصل کرنے کی جستجو نے ان کے اندر ایک نیا جذبہ پیدا کیا۔
مزید یہ کہ لمز کے اساتذہ نے ان کی کامیابی کی کہانی میں ایک اہم کردار ادا کیا۔ ان کا ماننا تھا کہ لمز میں موجود ڈاکٹر شہزاد الحسن جیسے اساتذہ کی مسلسل رہنمائی اور ہدایت کے سبب انہیں اپنے کام میں مہارت اور خود اعتمادی حاصل ہوئی۔
اپنی کہانی ختم کرتے ہوئے ڈاکٹر خالد کا کہنا تھا کہ جس تیزی سے اس شعبے میں میڈیکل سائنس ترقی کر رہی ہے،وہ وقت دور نہیں جب کینسر کی تشخیص و علاج نہایت آسان اور موثر ہو جائیں گے ۔ جو طلبہ کینسر سے متعلق تحقیق میں دلچسپی رکھتے ہیں، انھیں ڈاکٹر عمر خالد کا مشورہ ہے کہ اپنے سوالات کے جوابات کی کھوج جاری رکھیں اور ساتھ ہی ساتھ ڈیٹا پروسیسنگ اور بائیوانفارمیٹکس کے ہنر میں مہارت حاصل کریں۔ ڈاکٹر خالد کا کینسر کے علاج کی تشخیص کے حوالے سے جوش و جذبہ اس میدان میں تجدیدی عمل کے امکانات اور بہترین مستقبل کی نوید سناتا ہے جو کینسر میں مبتلا افراد کے لئے امید کی ایک نئی اور واضح کرن ہے۔


حالیہ دور میں جہاں انسانوں کو بہت سی جان لیوا بیماریوں کا سامنا ہے وہیں کینسر جیسا موذی مرض سر فہرست ہے۔ کینسر ایک ایسی…