The Department of Chemistry and Chemical Engineering provides an outstanding environment to learn chemical sciences as an integrated subject that is not divided by traditional boundaries. We have state-of-the-art teaching and research facilities. Our experienced faculty strives to be at the forefront of research in their respective fields. Our ethos is to produce world-class & socially responsible individuals by providing them with an excellent academic environment that combines unique curriculum, cutting-edge research, scholarship and service to the society.
Selenium is a vital trace element that plays a crucial role in our…
Selenium is a vital trace element that plays a crucial role in our health, influencing various biochemical pathways due to its antioxidant properties. In nature, it often finds its way to our plates through foods like tuna, enriching our bodies with its antioxidant prowess.
The intricate relationship between Selenium and antioxidant properties has been extensively studied by researchers in the field, including Dr. Rahman Shah Zaib Saleem from the Department of Chemistry and Chemical Engineering at SBASSE, who is one of the contributors to a paper on Selenium derivatives. The paper was published after Dr. Rahman’s DAAD (Deutscher Akademischer Austauschdienst) scholarship visit to Germany in 2019 in collaboration with eleven international researchers, including Dr Rama Alhasan, Dr. Guilherme M. Martins, Dr. Pedro P. de Castro, Dr. Claus Jacob.
Selenium, acting as an antioxidant powerhouse, takes center stage in this study. Nature carries very few selenium containing organic compounds, Selenoneine being one of those. In this work, the team has worked on the preparation of novel organoselenium compounds. The research zeroes in on Selenohydantoin derivatives, synthetic compounds inspired by Selenoneine. These derivatives, with their fascinating range of pharmacological applications, hold the potential to serve not just as antioxidants but as versatile agents with capabilities spanning anti-inflammatory, anticancer, and antiplatelet realms. Through Selenocysteine enzymes like Glutathione Peroxidase, it acts as a powerful defender, effectively reducing peroxides to explore their potential in combating oxidative stress, a state where an imbalance occurs between the production of free radicals and the body's ability to neutralize them.
Using a unique synthetic method, the researchers synthesized Selenohydantoin molecules, paving the way for a comprehensive evaluation of their antioxidant capabilities. The study employed classical radical scavenging and metal-reducing techniques to unravel the true potential of these synthetic compounds. Cytocompatibility assays demonstrated that the Selenohydantoin derivatives were not only effective antioxidants but also non-toxic to primary human aortic smooth muscle cells. Cytocompatibility refers to the compatibility of a substance with living cells, ensuring that these compounds do not harm or disrupt normal cell function, a promising aspect for further biological evaluations.
Among the synthesized compounds, those adorned with trifluoro-methyl (-CF3) and chlorine (-Cl) substituents emerged as molecules displaying noteworthy antioxidant activities. Dr. Rahman's work highlights these compounds as potential candidates for future biological studies, offering hope for innovative therapies against chronic diseases. This research focuses not only on synthetic compounds but also on the broader context of organoselenium compounds in living organisms. Looking into the future a larger picture emerges - synthesis of Selenium-based compounds could play a crucial role in developing novel and effective prevention and treatments for diseases such as cancer, cardiovascular diseases, cystic fibrosis and rheumatoid arthritis.
Dr. Rahman has recently been honored with another DAAD (Deutscher Akademischer Austauschdienst) scholarship grant by the German Academic Exchange Service. Through the scholarship Dr. Rahman and his research team will delve into the study of various signaling proteins and kinases, with a particular focus on the innovative molecule known as Proteolysis Targeting Chimeras (PROTACs). To learn more about Dr. Saleem's cutting-edge research and the potential impact of PROTACs on cancer treatment, follow this link.
“We sympathise with all the families who have suffered the loss of a…
“We sympathise with all the families who have suffered the loss of a child,” expressed a spokesperson from Sanofi Pasteur, the French multinational pharmaceutical company, upon the deaths of school-age children in the Philippines after being administered Sanofi’s dengue virus vaccine, Dengvaxia. Notably, no deaths had been reported during more than a decade-long clinical trials of the world’s first dengue vaccine. However, in November 2017, Sanofi disclosed that Dengvaxia “might increase the risk of severe disease in people who had never been exposed to the virus.
Despite extensive efforts, current dengue prevention strategies, including vaccinations, have significant limitations, leaving no specific treatment for dengue fever. This vector-borne disease, primarily affecting Asia, is transmitted by infected mosquitoes (vectors) that carry and transmit the dengue virus from person to person, causing severe fever.
Could undercounted infections explain the lack of attention to dengue’s severity?
A 2013 study published in Nature estimated the true total of infections to be more than three times the estimate of the World Health Organisation.
The traditional approach of developing new drugs from scratch can be both time-consuming and expensive. Therefore, researchers at SBASSE (Syed Babar Ali School of Science and Engineering) have pursued an alternative strategy known as drug repurposing. This approach involves identifying existing drugs that might be effective against diseases different from their original intended use. In this study, led by Hafiza Nosheen Saleem under the supervision of Dr Muhammad Saeed, a library of 1127 small molecules, initially designed as antivirus drugs, were screened to determine their potential efficacy against the dengue virus.
Nosheen and Dr Saeed, alongside their collaborators Summara Kousar, Ammar Hassan Jiskani, Iqra Sohail and Dr Amir Faisal, focused their efforts on a specific protein within the dengue virus known as DENV NS2B/NS3 protease. This protein plays a crucial role in the virus's life cycle, and inhibiting it could disrupt the virus's ability to replicate. Four molecules in the screen library, ABT263, ABT737, AT101 and TW37, demonstrated promise as inhibitors of the NS2B/NS3 protease. These molecules were initially developed as inhibitors for B-cell lymphoma 2 (Bcl-2), a member of the protein family. Notoriously associated with the survival of certain types of cancer cells, Bcl-2 plays a key role in aiding cancer cells to withstand chemotherapy. For instance, ABT263 is currently being tested for the treatment of high-grade triple-negative breast cancer and ovarian cancer.
To assess the effectiveness of these molecules in inhibiting the NS2B/NS3 protease, the researchers employed a metric called IC50, representing the "half-maximal inhibitory concentration." This metric gauges how effectively a molecule can inhibit the protease. Further analysis of these molecules' inhibition mechanisms revealed that ABT263 and ABT737 competitively inhibited the protease by binding to the same site as the target substrate. In contrast, AT101 and TW37 were identified as non-competitive inhibitors, binding to a different site and inducing changes in the enzyme's structure or activity.
The study suggests that the identified inhibitors have the potential to be developed into specific anti-dengue therapeutics. This is a promising avenue for further research and development, as these molecules have already undergone testing for their safety and pharmacological properties as anticancer drugs. With the aim of preventing tragic incidents like the loss of school-age children to dengue in the Philippines, this research provides hope for improved treatments and enhanced protection against this mosquito-borne disease.
It goes without saying that the modern era is surely a scientific era…
It goes without saying that the modern era is surely a scientific era. With recent advancements in the field of research, diseases once considered “incurable” diseases are no longer a matter of distress for the 21st-century individuals, thanks to the incredible scientists and their valuable research. Considering the pace at which researchers are discovering cures for the most dreadful diseases, it is not impractical to think of the myth of a “panacea” may soon become a reality. However, certain widely prevalent diseases such as Alzheimer (AD) and Dementia, that unfortunately have no known cure and remain areas of intensive research globally.
The scientifically motivated students of LUMS are also keeping pace with the world by exhibiting strong commitment and actively contributing towards research in this field. One such example is our bright PhD Chemistry scholar, Kainat Ahmed, who has recently successfully defended her PhD proposal. Kainat’s insightful research in the area of potent heteroaromatic hydrazone-based 1,2,4-triazine motifs development to treat Alzheimer Disease, has been published in the renowned “Journal of Molecular Structure” by Elsevier.
1,2,4-Triazine based hydrazone scaffolds are organic compounds that were synthesized after a series of complex chemical reactions using heteroaromatic aldehydes. Heteroatomic aldehydes are a class of organic compounds that contain at least one heteroatom, such as oxygen (O), nitrogen (N), or sulfur (S), in addition to a carbonyl group (-C=O) and a hydrogen atom (-H) attached to the same carbon atom. The synthesized hydrazone are biologically active compounds that have shown promising results in combating neurodegenerative disorders such as Alzheimer's and Parkinson's. Apart from having a unique chemical structure, these motifs are also found to possess strong antioxidant activity and cholinesterase inhibition properties, which make them suitable for curing Alzheimer’s disease.
Alzheimer’s disease is a condition characterized by progressive decline in cognitive function, memory loss and behavioral changes. One of the key neurotransmitters affected in Alzheimer's disease is acetylcholine, which plays an important role in memory and learning. Cholinesterase inhibitors are a class of drugs that are commonly used in the treatment of Alzheimer's disease. These drugs work by inhibiting the breakdown of acetylcholine, thereby increasing its levels in the brain. By increasing acetylcholine levels, cholinesterase inhibitors can help to improve cognitive function and slow down the progression of the disease. Two types of cholinesterase enzymes targeted by cholinesterase inhibitors are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).
Therefore, a radical approach for the treatment of Alzheimer’s disease could involve the AChE and BChE enzymes, which play a crucial role in restoring an which progressively restore the concentration of acetylcholine. Previous research in this area yielded interesting results, where heterocyclic motifs in the form of potent free radical scavengers proved to be effective inhibitors for different enzymes, such as cholinesterase. Kainat along with her co-researchers synthesized new conjugates of 1,2,4-triazine and heteroaromatic aldehydes bridged with hydrazone skeleton, which showed effective activity as potent free radical scavengers and strong inhibitors of cholinesterases that cause Alzheimer’s disease.“Research is to see what everybody else has seen, and think what nobody else has thought.”-Albert Szent-Gyorgyi.
An innovative research technique employed by Kainat and co-researchers involved the utilization of quantum chemical and molecular docking studies to gain deeper insights into the mode of action of these motifs. These methods allowed them to explore the compounds’ electronic and structural properties, as well as their potential interactions with biological targets such as enzymes or receptors. The study’s results unveiled significant findings regarding the structure-activity relationships of the compounds. Specifically, the researchers identified crucial structural features that facilitated their interaction with cholinesterase enzymes and the scavenge reactive oxygen species. The development of these compounds represents an exciting advancement in the field of medicinal chemistry.
The publication of this article in a prestigious scientific journal and the defense of her PhD proposal is proof of Ms. Kainat’s dedication and commitment to her work. We extend our congratulations and wish her continued success in her endeavors.
جنوری ۲۰۲۳ میں بین الاقوامی جریدے "امریکن کیمیکل سوسائٹی "(1) میں لمز…
جنوری ۲۰۲۳ میں بین الاقوامی جریدے "امریکن کیمیکل سوسائٹی "(1) میں لمز شعبۂ کیمیا اور کیمیکل انجنئیرنگ سے تعلق رکھنے والے ڈاکٹر فہیم حسن اختر کے طالب علم محمد حفی وڈگاما اور سجاد حسین کا ایک تحقیقی مقالہ شائع ہوا۔ اس تحقیق کے مطابق "پولی (ایتھلین ٹیریفتھلیٹ) "(2) کو اختراعی عمل(3) سے گزار کر ایسی جھلیاں تیار کی جا سکتی ہیں جو نمکین پانی سے اضافی معدنیات علیحدہ کر کے اسے پینے اور زراعت کے لیے قابلِ استعمال بنا نے میں معاونت فراہم کرتی ہیں۔
بلاشبہ پانی، بقائے حیات کا بنیادی رکن اور زندگی کی روانی کا ضامن ہے لیکن موجودہ صورتِ حال کے مطابق دنیا کی ایک تہائی آبادی کو پانی کی قلت کا سامنا ہے جبکہ سن ۲۰۵۰ء تک یہ مشکل دنیا کی آدھی آبادی کو درپیش ہو سکتی ہے۔ آبادی میں غیر متوقع اضافہ، تیزی سے بڑھتی صنعتیں اور ماحولیاتی تبدیلیاں صاف پانی کی عدم دستیابی کی اہم وجوہات ہیں۔
اس مشکل سے نمٹنے کا ایک طریقہ یہ ہے کہ نمکین پانی کو نمک ربائی(4) کے عمل سے گزار کر میٹھے پانی کے ذخائر میں اضافہ کیا جائے۔ اس مقصد کے لیے ڈاکٹر فہیم حسن اختر ،محمد حفی اور انکی ٹیم نے پولی (ایتھلین ٹیریفتھلیٹ) کا استعمال کیا۔ یہ ایتھلین کا ایک مرکب ہے جو پلاسٹک فلم کی شکل میں ہوتا ہے اور عموماً پیکنگ کے لیے استعمال ہوتا ہے۔ ستم ظریفی یہ ہے کہ بیشتر اوقات پہلی ہی مر تبہ مختصر استعمال کے بعد یہ پلاسٹک اہم ترین قدرتی نظام، جیسے دریا اور سمندر، میں پھینک دیا جاتا ہے جو یقینی طور پرقدرتی غذائی سلسلے کے لیے نقصان دہ ہے۔
بلا شبہ پلاسٹک، ماحول دشمن فطرت کا حامل اور زمینی و آبی آلودگی کا باعث ہے۔ تاہم اس کے متبادل مادے، جیسے کاغذ اور شیشہ، فضائی آلودگی کا سبب بنتے ہیں۔ لہٰذا بہتر نقطۂ نظر یہ ہے کہ پلاسٹک کے فوائد بھی حاصل کیے جائیں اور ماحول پر اس کی غیر مناسب تقویض سے پیدا ہونے والے منفی اثرات کو بھی کم کیا جائے۔
اس ضمن میں محمد حفی کے تجربات پلاسٹک کو اختراعی عمل سے گزار کر دوبارہ قابلِ استعمال بناتے ہیں۔ ضائع شدہ بوتلوں کے پلاسٹک سے جھلیاں تیار کرنے کے اس تحقیقی عمل میں غیر محلل کے ذریعے مرحلہ وار علیحدگی کے طریقہ کار کو اپنایا گیا ہے۔ ٹرائے فلوروایسیٹک ایسڈ(5) کو بحیثیت محلل اور 25 ڈگری پر پانی سے غسلِ انجماد کو غیر محلل کے طور پر استعمال کیا گیا۔ فوریئر ٹرانسفارم(6)، حرارتی ثقلی تجزیہ کاری(7) اور الیکٹرون خورد بین(8) کی مدد سے ان جھلیوں کی درجہ بندی کی گئی۔ پھر بہترین جھلی کا تعین کرنے کے لیے ان تیار کردہ جھلیوں کی سرایت پذیری(9) اور بہاؤ (10)کا مختلف موٹائی ، کثیر سالمی مرکب کی کثافت (11) اور بخارات بننے کے وقت (12) کی بنیاد پر تجزیہ کیا گیا۔
نتیجتا ًان جھلیوں میں ٪33 تک ازالہ نمک کی صلاحیت پیدا ہو جاتی ہے ۔ یہ عمل موجودہ تحقیقات کے مقابلے میں نہ صرف کم توانائی استعمال کرتا ہے بلکہ نقصان دہ کاربن کے کم اخراج کا ذریعہ بھی ثابت ہوا ہے۔ محمد حفی کی تحقیق کے نتائج کی روشنی میں مستقبل میں پلاسٹک کے دوسرے مرکبات اور ریشوں کو دوبارہ کارآمد بنانے کے لیے بھی جانچا جا سکتا ہے۔ مزید برآں یہ تحقیق استعمال شدہ پلاسٹک کے دوبارہ استعمال کے باعث ماحولیاتی آلودگی میں کمی کا جائزہ لینے کے لیے نقطہ آغاز فراہم کر تی ہے۔
جدید علوم کے حصول و ترویج کے ساتھ ساتھ لمز سکول آف سائنس اینڈ انجینئرنگ کا ایک اہم مقصد انسا ن اور اس سے وابستہ ماحول کو درپیش حقیقی مسائل کاحل تلاش کرنا ہے۔ ڈاکٹر فہیم حسن اختر کے زیر سایہ شعبۂ کیمیا ور کیمیکل انجنئیرنگ کی یہ تحقیق، اسی سلسلے کی ایک کڑی ہے جو نہ صرف پلاسٹک کے فضلات کو کار آمد بنانے کا موثر ذریعہ ہے بلکہ پانی سے نمک ربائی کی مارکیٹ کو بھی جلا بخشتی ہے۔
بی -ایس کیمیکل انجینئرنگ کے طالبِ علم محمد حفی کی یہ کامیابی ان کے چار سالہ ڈگری پروگرام کی ریاضت اور آخری سال میں کی جانے والی تحقیقی کاوشوں کا ثمر ہے ۔ محمد حفی کو اپنا علمی سفر جاری رکھنے کے لیے امریکہ کی تین اعلیٰ جامعات بشمول پین سٹیٹ یونیورسٹی (13) ، آبرن یونیورسٹی (14) ، آلاباما یونیورسٹی (15) سے مکمل وظیفے کے ساتھ پی-ایچ-ڈی کی پیشکش موصول ہونا ،لمز کے اعلیٰ تعلیمی معیار اور محمد حفی کی شاندار کارکردگی کی روشن دلیل ہے
- American Chemical Society (ACS)
- Poly (Ethylene Terephthalate) (PET)
- Innovative process
- Desalination
- Trifluoroacetic acid
- Fourier Transform Infrared (FTIR) spectroscopy.
- Thermal Gravimetrical Analysis (TGA)
- Scanning Electron Microscope (SEM)
- Permeance
- Flux
- Polymer concentration
- Evaporation time
- Penn State University
- Auburn University
- Alabama University
In collaboration with COMSTECH (the OIC’s Standing Committee for Scientific and Technological Cooperation), we are proud to welcome another PhD researcher from abroad to the Syed Babar Ali School of Science and Engineering (SBASSE) at LUMS as part of our ongoing efforts to promote internationalization.
This year, we extend our greetings to Bella Belinga from Cameroon, Africa!
Previously, we had the pleasure of hosting Fargana Alizada from Azerbaijan, who conducted her research under the guidance of Dr. Nauman Zafar Butt in the Central Lab at SBASSE. You can learn more about our previous partnership in this video.
Ms. Bella Belinga is pursuing her PhD in Organic Chemistry at the University of Yaounde 1, Cameroon. Her thesis is entitled “Molecular networking approach, for study indole alkaloids and other constituents of two medicinal plants from the Apocynaceae family: Pleiocarpa mutica and Pleiocarpa bicarpellata and evaluation of anticancer and/or antiplasmodial activities.” In addition to her doctoral studies, since 2017 she has been serving as a lecturer at Government High School Meyila.
At LUMS, she is collaborating with Dr. Ghayoor Abbas’s research group within the Department of Chemistry and Chemical Engineering. Here, she is acquiring practical training in scientific techniques, which include the chemical modification of indoles through catalytic borylation and Suzuki coupling, as well as the isolation and biological activity studies of indole alkaloids.
Ms. Bella currently resides in on-campus accommodations at LUMS and actively engages in our sports facilities during her leisure time. She is integrating well within the LUMS community, forging new friendships, and eagerly immersing herself in Pakistani culture. Recently, she participated in an informal session with PhD students at SBASSE, sharing insights from her cross-continental experiences. Additionally, she prepared a presentation for her fellow PhD colleagues in Pakistan, offering a virtual tour of life and culture in Cameroon.
This collaboration not only supports Ms. Bella’s professional growth but also enriches our colleagues' experience with Bella's valuable knowledge and expertise, promoting the exchange of scientific ideas and solutions. We eagerly anticipate future opportunities for such collaborations.
In collaboration with COMSTECH (the OIC’s Standing Committee for Scientific and…
Abdullah Riaz studied Master of Science in Physics at University of Rostock with specialization in physics of nanomaterials and clusters. In his Master’s thesis he focused on the synthesis and characterization of bulk nanocrystalline Fe-Ni and amorphous Fe-Ni-Ta-B alloys for a potential applications as sensors and actuators in telecommunication and aeronautical industries.
Mr. Riaz worked as a research assistant in the group of Physics of New Materials at Institute of Physics, University of Rostock. He was involved in the development of 3D active implant prototype. During this time, he synthesized bulk nanostructured ceramics by conventional and Field Assisted Sintering Technique (FAST). He investigated ceramic materials and demonstrated that nanostructured bulk calcium titanate provides piezoelectric properties that resemble to the natural bone and allow faster integration of orthopedic implants into the bone. In January 2020 he received his PhD degree in experimental physics.
Since March 2020, Abdullah Riaz is a research scientist at the chair of microfluidics, University of Rostock. He is leading the research activities focused on sintering technology, the FAST sintering process. Dr. Riaz is also responsible for the development of a rapid tooling process to produce tools for the metal injection molding process by using an additive manufacturing process. He is also an associate scientist of the SFB ELAINE – Electrically Active Implants, which is a DFG collaborative research center that focuses on novel electrically active implants.
Abdullah Riaz studied Master of Science in Physics at University of Rostock with specialization in physics of nanomaterials and clusters.
کیا آپ کسی ایسے کیمیائی مادے کو جانتے ہیں جو گھریلو ٹوٹکوں سے لے کر سائنسی تجربہ گاہ تک میں استعمال ہوتا ہو؟ قدرت کے اِس کارآمد کیمیائی نگینے کو سکسینک ایسڈ کے نام سے جانا جاتا ہے۔ یہ ایک ایسا سفید قلمی نامیاتی تیزاب ہے جسے اکثر اشیائے خوردونوش کی تیاری اور دواسازی میں بھی استعمال کیا جاتا ہے۔ صنعتی سطح پر سکسینک ایسڈ کو کیمیائی طور طریقوں سے تو بنایا جا ہی رہا ہے مگر پیداوار کا یہ روایتی طریقہ مہنگے خام مال اور ماحول دشمن نتائج کی وجہ سے زیادہ کارگزار نہیں۔ کیا ہی اچھا ہو کہ اِس اہم کیمیائی مرکب کی پیداوار کا ذمہ حیاتیاتی طرزِعمل کو سونپ دیا جائے! شعبۂ کیمیا اور کیمیائی انجنئیرنگ کے ڈاکٹر روفس ڈِکسن کی تحقیق اسی مرکزی خیال کو عملی جامہ پہنانے کی ایک با معنی کوشش ہے۔
ڈاکٹر ڈِکسن کا تحقیقی مقالہ حال ہی میں ایک نامور سائنسی جریدے Energy and Environmental Science میں شائع ہوا ہے۔ اِن کی تحقیق میں سکسینک ایسڈ کو سستے، موثر اور ماحول دوست طریقوں سے بنانے کی تجویز دی گئی۔ دراصل ڈاکٹر ڈِکسن کی تحقیق ۵ اہم سوالات کے جواب تلاش کرتی ہے:
۱۔ سکسینک ایسڈ کی پیداوار میں کون سا خام مال استعمال ہونا چاہیے؟
۲- پیداوار کو مزید سستا کرنے کے لیے کون کون سی فنیات و صنعتیاتی ترکیبیں استعمال کی جا سکتی ہیں؟
۳- پیداوار سے جڑے معاشی اور ماحولیاتی اثرات کیا ہوں گے؟
۴- اس پورے عمل کو سرمایہ کار کے لیے معاشی طور پر پُرکشش کرنے میں کونسے عناصر اہمیت کے حامِل ہیں؟
۵- سکسینک ایسڈ کی پیداوار میں کون سے معاشی مسائل قابلِ نظر ہیں؟
ان سوالات کو سلجھانے کے لیے ایک ایسی سیمولیشن تیّار کی گئی ہے جِس میں صرف ایسے خاکوں پر نظرثانی کی گئی جو معاشی طور پر استحکام فراہم کر سکیں۔ “مونٹیکارلو” قِسم کی سیمولیشن کے ذریعے ہر ممکن حل کے جوکھم کا تخمینہ بھی لگایا گیا۔ ایک پیچیدہ ریاضیاتی ماڈل کے ذریعے ۸۵ ہزار سے زائد متغیر عناصر اور ۳۵ ہزار سے زائد پابندیاں لگائی گئیں، گویا سکسینک ایسڈ کی حیاتیاتی طرزِعمل کے ذریعے پیداوار کو مختلف زاویوں سے مستحکم اور قابلِ عمل بنانے کی کوشش کی گئی۔ معلوم ہوا کہ سکسینک ایسڈ کو بڑے پیمانے پر بنانے کے لیے گلیسرول سے اخذ کردہ طریقہ سب سے موثر ہے، جس کی سالانہ لاگت ۱۳.۵ کروڑ ڈالر ہوگی۔
کسی بھی سرمایہ کار کے لیے نقصان سے بچاؤ اُس کی پہلی ترجیح ہوتی ہے۔ چنانچہ اِس پوری کاوِش کو صنعتی اعتبار سے کارآمد بنانا ڈاکٹر ڈِکسن کی بھی اوّلین ترجیح رہی ہے تاکہ سکسینک ایسڈ کی بڑے پیمانے پر تیاری کو حقیقی جامہ پہنایا جا سکے اور اِس اہم کیمیائی مرکب کی ماحول دوست اور معاش دوست پیداوار کو یقینی بنایا جا سکے۔ ہم ڈاکٹر ڈِکسن کی اِس قابلِ ستائش کوشش پر اِن کو مبارک باد پیش کرتے ہیں اور امید کرتے ہیں کہ ان کو مستقبِل میں بھی ایسی کامیابیاں ملتی رہیں۔
حوالہ:
Sustainable Bio-Succinic Acid Production: Superstructure Optimization, Techno-Economic, and Lifecycle Assessment Energy & Environmental Science, Apr. 2021 doi:10.1039/D0EE03545ADickson, Rofice
کیا آپ کسی ایسے کیمیائی مادے کو جانتے ہیں جو گھریلو ٹوٹکوں سے لے کر سائنسی تجربہ گاہ تک میں استعمال ہوتا ہو؟ قدرت کے اِس کارآمد کیمیائی…