The Department of Chemistry and Chemical Engineering provides an outstanding environment to learn chemical sciences as an integrated subject that is not divided by traditional boundaries. We have state-of-the-art teaching and research facilities. Our experienced faculty strives to be at the forefront of research in their respective fields. Our ethos is to produce world-class & socially responsible individuals by providing them with an excellent academic environment that combines unique curriculum, cutting-edge research, scholarship and service to the society.

آپ نے کسی بیماری کے دوران اینٹی بائیوٹک تو کھائی ہوگی۔ یہ اینٹی بائیوٹک ہمیں آرام تو دیتی ہے،…
آپ نے کسی بیماری کے دوران اینٹی بائیوٹک تو کھائی ہوگی۔ یہ اینٹی بائیوٹک ہمیں آرام تو دیتی ہے، لیکن ہمارے ماحول پر بُرا اثر بھی ڈالتی ہے۔ جو اینٹی بائیوٹک انسان یا جانور استعمال کرتے ہیں اس کا بڑا حصہ فضلے میں خارج ہو جاتا ہے۔ اس کی وجہ سے ضائع شدہ پانی میں اینٹی بائیوٹک کی مقدار بڑھ جاتی ہے۔ پانی کی صفائی کا پلانٹ ضائع شدہ پانی سے اینٹی بائیوٹک نہیں نکال پاتا۔ ضائع شدہ پانی میں بیکٹریاجب اینٹی بائیوٹک سے ملتا ہے تو وُہ اپنے آپ کو بچانے کے مُختلف طریقے اپنا لیتا ہے اورادویات کے خلاف مدافعت حاصل کر لیتا ہے۔ یہ مدافعت ایک بہت بڑا عالمی مسلئہ بن گئ ہے جس کے نتیجے میں بیکٹریا اینٹی بائیوٹک کے حملوں سے محفوظ رہتا ہے اور اینٹی بائیوٹک ادویات بیماریوں کے خلاف غیر مُوثر ہوتی جا رہی ہیں۔

مختلف محلل کی کشید کرنے کی وسعت میں سب سے زیادہ ہے (DMSO)
اینٹی بائیوٹک کو پانی یا دوسرے مواد سے نکال باہر کرنے کےلیے مُحلّل1 کا ستعمال کیا جاتا ہے۔لیکن اگر کوئی زہریلا مُحلّل استعمال ہو تو اُس سے نقصان دہ فُضلہ پیدا ہوتا ہے۔ اس کے علاوہ ادویات میں استعمال ہونے والے مرکبات کا تجزیہ کرنے کے لیے وافر مقدار میں نامیاتی2 مُحلّل کی ضرورت بھی پڑتی ہے۔ چنانچہ محللوں کا استعمال بہت حد تک بڑھ گیا ہے۔ اس لئے ضروری ہے کہ ایسے مُحلّل استعمال میں لائے جائیں جو ماحول کو محفوظ رکھیں اور خطرناک فاضلات پیدا نہ کریں۔اس ماحولیاتی مسلئے کا حل ڈھونڈنے کے لیے نیویڈا یونیورسٹی کے محققین اور لمز کے ڈاکٹر توقیر عباس نے ساتھ مل کر ایسامُحلّل ڈھونڈنے کا سوچا جو مختلف اقسام کے اینٹی بائیوٹک جیسے sulfamethoxazole(SMX) ،ciprofloxacin (CPX) ،trimethoprim (TMP) and tetracycline (TC) کو کشید کرنے کی صلاحیت بھی رکھے اور ماحول پر بُرا اثر بھی نہ پڑے۔ ڈاکٹر توقیر عباس اور ان کے ساتھیوں کی یہ تحقیق ا Elsevier جرنل میں کچھ عرصےپہلےشائع ہوئی تھی۔ڈاکٹر توقیر عباس نے اس جانب بہتر اور پاکیزہ مُحلّل ڈھونڈنے کے لیے COSMO- RS نامی سافٹ وئیر کا استعمال کیا۔ COSMO-RS ایک ایسا سافٹ ویئر ہے جو مُحلّل کی تلاش کے ذریعے حل پذیری3 کا حساب کرتا ہے۔ اپنی تحقیق کے دوران ڈاکٹر تو قیر نے ناسا کے چار منصوبے بھی حاصل کیے تھے۔ جن میں بینالاقوامی خلائی اسٹیشن4 میں زہریلے اور نقصان دہ مادوں کو حل کر کے تلف کرنے کے لئے مُحلّل ڈھونڈنے تھے۔ ڈاکٹر توقیر اور دیگر مُحقیقن کا کہنا ہے کہ یہ سافٹ وئیر اتنا تیز بہدف، جامع اور موثر ہے کہ کوئی اور تجربہ کرنے کی ضرورت نہیں پڑتی بلکہ وقت اور پیسوں کی بچت بھی ہوجاتی ہے۔

مختلف محلل کا انڈیکیٹر, جتنی کم مقدارہواتنا ما حول کے لیے بہتر (EHS)
چناچہ زیرِ نظر تحقیق میں گیارہ مُحلّل کشید کرنے کی صلاحیت5 کو پرکھا گیا اور اس کے بعد ان کا ماحول ، صحت اور نگہداشت کی خصوصیات (EHS) کا حساب لگایا گیا اور ساتھ ہی ساتھ ان کی قیمت کا موازنہ بھی کیا گیا۔ ان گیارہ محللوں میں سب سے زیادہ ماحول دوست مرکب ethanol, methyl acetate اور methanol کو پایا گیا لیکن ان کی کشید کرنے کی وسعت کم تھی۔ سب سے زیادہ کشید کرنے کی وسعت dimethyl sulfoxide (DMSO) کی ہے اور اس کا ماحول پر بُرا اثر بھی نہیں پایا گیا۔ یعنی مجموعی طور پر DMSO اینٹی بائیوٹک کو کشید کرنے کے لئے سب سے اچھا مُحلّل ہے، لیکن اس کی قیمت اس کے منافع بخش استعمال کو محدود کرتی ہے۔ اگر DMSO کی کم قیمت پیداوار کی جائے تو یہ اینٹی بائیوٹک کو کشید کرنے کے لئےسب سے بہترین مُحلّل ہے۔ صرف اینٹی بائیوٹک بلکہ کسی بھی دوا کا تجزیہ اور کشید کرنے کے لئے استعمال کیا جا سکتا ہے۔ ڈاکٹر توقیر اور ان کے ساتھیوں نے یہ دیکھا ہے کہ COSMO-RS کے ذریعے EHS اور اقتصادی امور کے ساتھ مختلف تجربات کرکےبڑی آسانی سے بہتر مُحلّل ڈھونڈے جا سکتے ہیں۔
1. Solvent
2. Organic
3. Solubility
4. International space station
5. Extraction capacity

When Dr. Rahman Shah…
When Dr. Rahman Shah Zaib Saleem was invited to write an article for the special issue on the Recent Advances in Indole Derivatives, he had one particular student in mind. One he describes as brilliant and motivated, Syed Muhammad Umer – an undergraduate student with the highest CGPA in the Department of Chemistry and Chemical Engineering in the BS 2021 session. The two bounced off a couple of ideas and decided that Umer would write a comprehensive review article summarizing recent reports on novel indole alkaloids from 2019 to 2022. The literature review deals with the isolation and characterization of 250 novel indole alkaloids, a reappraisal of previously reported compounds, and total syntheses of indole alkaloids.

The task assigned to Umer was not an easy one; it was an arduous task to go through all the reports published on novel indole alkaloids in the past few years. Usually found in biological entities, indole alkaloids are a class of naturally occurring organic compounds that contain a structural moiety of indole, an aromatic heterocyclic organic compound. What sparked Umer’s interest was that indole-containing molecules are biologically active and are bound to have some effects, with some exhibiting excellent antitumor, antibacterial, antiviral, and antifungal activities. He was especially fascinated by the generosity of the molecules containing indole alkaloids. “At first I couldn’t even comprehend what was going on, because they are really complicated”, he shares. The more he read about it, the more his interest grew. He was able to write his literature review in a relatively short period of time, during the summers after his undergraduate. LUMS is among the few universities in Pakistan which have access to databases like SciFinder and PubMed. This facilitated the literature survey. With help from co-authors, Mehwish Solangi and Dr Khalid Muhammad Khan, the literature review was ready for submission in fall 2022. When asked if they were met by any hurdles while conducting the survey, Dr Saleem simply smiled and said, “Umer was up to the mark to deal with any hurdles that came during the process”.

Writing this literature review enhanced Umer’s interest in the field further. “It sparked a desire to learn more. That’s why I have applied for postgraduate schools this year – this is something that I have read about, but now I want to do research in this field” he adds enthusiastically. This opportunity has been useful for Umer in many ways, “Not only was I preparing myself for graduate school, boosting my resumè, I was also preparing myself as a researcher”.
Umer’s contribution will facilitate new research in the field. Gathering the isolation, reappraisal, syntheses, and biological activity of indole alkaloids in one place, Umer’s review article acts as an encyclopedia over recent advancements in the field. Roughly one moth and a half after its publication, it is too early to tell the article’s impact factor through citation. However, Umer’s review article is the most read article published in this special issue of Molecules, receiving an “above-average Attention Score compared to outputs of the same age” by the journal.

Members of the very specie that accessed, utilized, and exploited…
Members of the very specie that accessed, utilized, and exploited fossil fuels for centuries, are now campaigning against it. Collectively, we’d start blushing out of embarrassment if a report card on our upkeeping of the environment were to be worn as a lanyard. But blush not – the seaweeds are here!
Seaweed, as a third-generation biofuel feed- stock, could potentially circumvent many of the challenges posed by traditional fossil fuel alternatives, as it requires no arable land, fresh water, or fertilizer for cultivation and exhibits a higher biomass yield per unit area of cultivation than its terrestrial counterparts. Unlike lignocellulose, macroalgae have almost no lignin; therefore, their sugars can be released by easier and more economic operations. Seaweed cultivation could also directly improve the marine environment by removing CO2, heavy metal pol- lutants, and dissolved nutrients that would otherwise cause eutrophication.
This study conducted by Dr. Rofice Dickson and his colleagues evaluates the environmental impacts, economic potential, and makes a case of producing bioenergy from seaweed via biological conversion pathways, including the: sugar pathway; volatile fatty acids pathway; and methane pathway to produce ethanol, ethanol and heavier alcohols, and heat and power, respectively. Much like any other form of plant-based agriculture, seaweed production consists of two stages: cultivation and harvesting. Cultivation can be subdivided into four stages: the collection of fertile seaweed; spore release and sporophyte formation; rearing and nursing of seedlings; and offshore cultivation. The harvesting consists of activities related to the collection of seaweed from the sea and their transportation to a harbor.
The maximum seaweed price and minimum product selling price are both calculated as economic indicators. Overall, results demonstrate that the sugar platform is economically superior, as it provides a higher average maximum seaweed price of USD 121.6/t compared with USD 57.7/t and USD 24.2/t for volatile fatty acids platform and methane platform, respectively. However, the study also concluded that production via fermentation is so far the best alternative for energy production since it led to better economic and lifecycle outcomes.
A seaweed biorefinery could be located near a city close to the shore, which will provide necessary infrastructure and labor, such as Karachi. A seaweed cultivation site in Republic of Korea, with a distance of 15 km from the shore to the biorefinery, was considered for the analysis of terrestrial transportation. The main challenge in seaweed transportation is its high moisture content of 85–90 wt%. If the biorefinery is located far from cultivation sites, hauling wet biomass significantly increases transportation costs. Seaweed-based food companies utilize artificial drying to optimize the storage time. When being sold as a food product, the high seaweed price compensates for its high drying costs.
Although this study provides deep insight into the economic and environmental sustainability of green energy extracted from seaweed via biochemical pathways, some barriers to large-scale deployment of seaweed biorefineries, including high-quality biomass at a low price and adequate supply to meet the demands of industrial biorefineries, remain. In this regard, mechanized offshore cultivation and efficient seaweed farming techniques need to be developed to increase productivity and decrease the seaweed production cost.
Reference
P. Fasahati, R. Dickson, C.M. Saffron, H.C. Woo, J. Jay Liu,
Seaweeds as a sustainable source of bioenergy: Techno-economic and life cycle analyses of its biochemical conversion pathways, Renewable and Sustainable Energy Reviews, Volume 157, 2022, 112011, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2021.112011

Harnessing solar energy is intricately linked with tinkering of…
Harnessing solar energy is intricately linked with tinkering of molecular structure inside state-of-the-art materials. Coating traditional silicon panels with a layer of perovskite has boosted our hopes for a better, much more efficient way of generating electricity from solar energy.

Pictured above is an artist’s rendition of what a perovskite crystal structure looks like.
However, it is not just light that perovskite is good at capturing. Let’s talk about heat – the greatest escape artist known to the physicist. Whether the process is chemical or physical in nature, or radioactive decay; heat always manages to escape into ‘the great outdoors’ of a given physical system. Wishful as it may be, imagine if this ‘wasted heat’ could be utilized to generate electricity, increasing efficiency of a thermoelectric system. Dr. Uzma Hira, a former student of Dr. Falak Sher (Chair, Department of Chemistry and Chemical Engineering, SBASSE) is the first author of a research paper that describes just that! A chemical doping process that can create a material which shows much better thermoelectric properties than conventional materials of similar kind. The answer is Hexagonal Double-Perovskite-Type Oxides, that substitutes Barium with Bismuth. The research paper entails how chemically doped Ba2−xBixCoRuO6 hexagonal double-perovskite-type oxides were prepared using a solid-state method and characterizes its interesting thermoelectric properties.
Shown above is the hexagonal interface of a double-perovskite type oxide, which offers promise as a p-type thermoelectric material. Pictured below is
Double perovskite oxides having the general formula A2BRuO6, where A is an alkaline-earth or rare-earth metal and B is a transition metal, show very interesting magnetic and electronic properties. The key parameter here is how effectively does a material demonstrate the Seebeck effect (named conspicuously after the Baltic German physicist, Thomas Johann Seebeck). In this fascinating phenomenon, temperature difference between two conductors can induce an EMF, generating a potential difference which can be measured. The material which Dr. Uzma’s team has worked on can be conveniently identified as Ba2CoRuO6, which is doped with Bismuth for better thermoelectric performance.
Conservative estimates suggest that about half of the total energy that we consume each year is lost to the environment as waste heat. Thermoelectric power generation offers an attractive route for the direct conversion of heat into electric power and is considered to be an important component of a sustainable future energy landscape. In fact, one need not invest too much into imagining the future of thermoelectric promise. As you read this, rovers on the planet Mars are creating kilometers worth of trails and roving the red planet using RTG technology as their primary power source. RTG can be unpacked as Radioisotope Thermoelectric Generator. RTG’s utilize the head from the natural decay of Plutonium.
The most common thermoelectric materials are alloys of chalcogenides such as Bi2Te3, PbTe, Bi2, and BixSb2−xTe3 are based on either bismuth telluride or lead telluride. These materials are relatively scarce and therefore expensive, toxic, and unstable at high temperatures. Transition-metal oxides were initially ignored in the search for potential thermoelectric materials until the discovery of high power factors in p-type NaxCoO2about twenty years ago. Since then, many other metal oxides have been explored and reported as promising thermoelectric materials. Yet, the performance of most oxide materials is still lower than that of non-oxide traditional TE materials, and the effort is still ongoing in the search for efficient novel TE metal oxides.
The crystal structures of hexagonal perovskite oxides that were studied in Dr. Uzma’s research were studied using XRD, SXRD, and NPD at room temperature. Their crystal structure was heated without liquefaction (sintered) at a blistering temperature of 1150 °C. An increase in the crystalline size was noticed. This increase in the grain size, which was inferred from the diffraction data, and can be explained by the presence of Bismuth. The solid-state chemical reactions consist of four main steps of diffusion, reaction, nucleation, and crystal growth. When the diffusion rate is faster and the nucleus’s growth rate is greater than the nucleation rate at the given reaction conditions, larger crystals are formed. The low melting point of Bi2O3 (817 °C) compared to BaCO3 (1360 °C) suggests that the diffusion of Bi3+ cations will be faster than that of Ba2+cations and, consequently, the crystallite/grain size will be larger in the Bismuth-doped samples for the given sintering time and temperature. Take a look at the electron micrographs obtained from this study.

The researchers, including Dr. Falak Sher and Dr. Uzma Hira, have concluded that doping the perovskite crystal with Bismuth makes for a much better choice when it comes to selecting thermoelectric materials for harnessing energy from heat.
Read more about this work here:
Ba2–xBixCoRuO6 (0.0 ≤ x ≤ 0.6) Hexagonal Double-Perovskite-Type Oxides as Promising p-Type Thermoelectric Materials. Uzma Hira, Jan-Willem G. Bos, Alexander Missyul, François Fauth, Nini Pryds, and Falak Sher. Inorganic Chemistry 2021 60 (23), 17824-17836. DOI: 10.1021/acs.inorgchem.1c02442. Also see:
Recent Advances in Electrocatalysts toward Alcohol-Assisted, Energy-Saving Hydrogen Production

Introducing Fundamentals of Environmental Engineering, an elective course set for Fall 2022.
Anyone with an interest can get enrolled if they have taken CHEM 101 in their freshman year. The course will cover water contamination and treatment processes, air pollution, solid waste management, and mathematical models to calculate the distribution of pollutants in the environment.
For more information, please contact the instructor Dr. Tauqeer Abbas: tauqeer.abbas@lums.edu.pk
Introducing Fundamentals of Environmental Engineering, an elective course set for Fall 2022.
…
Professor Jawwad Darr is the son of Pakistani immigrants from the Punjab who came to the UK in the 1960’s to work in Bradford West Yorkshire. Despite an unremarkable early education, he is now one of the UK’s leading industrially facing academics in advanced functional materials/nanomaterials process engineering, with the title of Professor of Materials Chemistry at University College London, UCL (world’s top 20 university). He has published over 200 academic publications and three patents and has been awarded funding valued at over 20 million pounds and has graduated over 45 PhD students (as of 2021). From 2016 to 2021, he was vice dean of enterprise in the Maths and Physical Sciences faculty at UCL in, which he was supporting UCL’s faculty engagement with industry.
He is visiting professor at Comsats University Islamabad (Lahore Campus) since 2008. In 2017, he co-founded the UPSIGN charity (UK-Pakistan Science and Innovation Global Network; www.upsign.org.uk) that works to support, educate and connect British Pakistani and Pakistani academics. In his UPSIGN work, he is involved in public outreach workshops and lectures, training Pakistani academics and students, and developing training and workshops to support underprivileged undergraduate black and minority Asian students in research.
He is a regular speaker at industrial forums and academic events in a wide range of topics. As well as his own latest research, he teaches on topics related to green chemistry, applications of advanced functional materials (including batteries) and at outreach lectures for (virtual/real) schools/universities in the UK and Pakistan.
Professor Jawwad Darr is the son of Pakistani immigrants from the Punjab who came to the UK in the 1960’s to work in Bradford West Yorkshire.

کیا آپ کسی ایسے کیمیائی مادے کو جانتے ہیں جو گھریلو ٹوٹکوں سے لے کر سائنسی تجربہ گاہ تک میں استعمال ہوتا ہو؟ قدرت کے اِس کارآمد کیمیائی نگینے کو سکسینک ایسڈ کے نام سے جانا جاتا ہے۔ یہ ایک ایسا سفید قلمی نامیاتی تیزاب ہے جسے اکثر اشیائے خوردونوش کی تیاری اور دواسازی میں بھی استعمال کیا جاتا ہے۔ صنعتی سطح پر سکسینک ایسڈ کو کیمیائی طور طریقوں سے تو بنایا جا ہی رہا ہے مگر پیداوار کا یہ روایتی طریقہ مہنگے خام مال اور ماحول دشمن نتائج کی وجہ سے زیادہ کارگزار نہیں۔ کیا ہی اچھا ہو کہ اِس اہم کیمیائی مرکب کی پیداوار کا ذمہ حیاتیاتی طرزِعمل کو سونپ دیا جائے! شعبۂ کیمیا اور کیمیائی انجنئیرنگ کے ڈاکٹر روفس ڈِکسن کی تحقیق اسی مرکزی خیال کو عملی جامہ پہنانے کی ایک با معنی کوشش ہے۔
ڈاکٹر ڈِکسن کا تحقیقی مقالہ حال ہی میں ایک نامور سائنسی جریدے Energy and Environmental Science میں شائع ہوا ہے۔ اِن کی تحقیق میں سکسینک ایسڈ کو سستے، موثر اور ماحول دوست طریقوں سے بنانے کی تجویز دی گئی۔ دراصل ڈاکٹر ڈِکسن کی تحقیق ۵ اہم سوالات کے جواب تلاش کرتی ہے:
۱۔ سکسینک ایسڈ کی پیداوار میں کون سا خام مال استعمال ہونا چاہیے؟
۲- پیداوار کو مزید سستا کرنے کے لیے کون کون سی فنیات و صنعتیاتی ترکیبیں استعمال کی جا سکتی ہیں؟
۳- پیداوار سے جڑے معاشی اور ماحولیاتی اثرات کیا ہوں گے؟
۴- اس پورے عمل کو سرمایہ کار کے لیے معاشی طور پر پُرکشش کرنے میں کونسے عناصر اہمیت کے حامِل ہیں؟
۵- سکسینک ایسڈ کی پیداوار میں کون سے معاشی مسائل قابلِ نظر ہیں؟
ان سوالات کو سلجھانے کے لیے ایک ایسی سیمولیشن تیّار کی گئی ہے جِس میں صرف ایسے خاکوں پر نظرثانی کی گئی جو معاشی طور پر استحکام فراہم کر سکیں۔ “مونٹیکارلو” قِسم کی سیمولیشن کے ذریعے ہر ممکن حل کے جوکھم کا تخمینہ بھی لگایا گیا۔ ایک پیچیدہ ریاضیاتی ماڈل کے ذریعے ۸۵ ہزار سے زائد متغیر عناصر اور ۳۵ ہزار سے زائد پابندیاں لگائی گئیں، گویا سکسینک ایسڈ کی حیاتیاتی طرزِعمل کے ذریعے پیداوار کو مختلف زاویوں سے مستحکم اور قابلِ عمل بنانے کی کوشش کی گئی۔ معلوم ہوا کہ سکسینک ایسڈ کو بڑے پیمانے پر بنانے کے لیے گلیسرول سے اخذ کردہ طریقہ سب سے موثر ہے، جس کی سالانہ لاگت ۱۳.۵ کروڑ ڈالر ہوگی۔
کسی بھی سرمایہ کار کے لیے نقصان سے بچاؤ اُس کی پہلی ترجیح ہوتی ہے۔ چنانچہ اِس پوری کاوِش کو صنعتی اعتبار سے کارآمد بنانا ڈاکٹر ڈِکسن کی بھی اوّلین ترجیح رہی ہے تاکہ سکسینک ایسڈ کی بڑے پیمانے پر تیاری کو حقیقی جامہ پہنایا جا سکے اور اِس اہم کیمیائی مرکب کی ماحول دوست اور معاش دوست پیداوار کو یقینی بنایا جا سکے۔ ہم ڈاکٹر ڈِکسن کی اِس قابلِ ستائش کوشش پر اِن کو مبارک باد پیش کرتے ہیں اور امید کرتے ہیں کہ ان کو مستقبِل میں بھی ایسی کامیابیاں ملتی رہیں۔
حوالہ:
Sustainable Bio-Succinic Acid Production: Superstructure Optimization, Techno-Economic, and Lifecycle Assessment Energy & Environmental Science, Apr. 2021 doi:10.1039/D0EE03545ADickson, Rofice

کیا آپ کسی ایسے کیمیائی مادے کو جانتے ہیں جو گھریلو ٹوٹکوں سے لے کر سائنسی تجربہ گاہ تک میں استعمال ہوتا ہو؟ قدرت کے اِس کارآمد کیمیائی…