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Abstract—We present spatial-Slepian transform (SST) for the
joint spatial-Slepian domain representation of signals on the
sphere to support localized signal analysis. We employ well-
optimally concentrated Slepian functions, which are obtained as
a solution of the Slepian spatial-spectral concentration problem
of finding bandlimited and spatially optimally concentrated
functions on the sphere, to formulate the proposed transform.
Due to optimal energy concentration of Slepian functions in the
spatial domain, the proposed spatial-Slepian transform allows us
to probe spatially localized content of the signal. Furthermore,
we present an inverse transform to recover the signal from
its spatial-Slepian coefficients, formulate an algorithm for fast
computation of SST, and carry out computational complexity
analysis. We compute the spatial variance of spatial-Slepian
coefficients and conduct experiments to show that spatial-Slepian
coefficients have better spatial localization than scale-discretized
wavelet coefficients. We present the formulation of SST for zonal
Slepian functions, which are spatially optimally concentrated in
the axisymmetric polar cap region, and provide an illustration
using a bandlimited Earth topography map. To demonstrate the
utility of the proposed transform, we carry out localized variation
analysis, in which we employ SST to detect hidden localized
variations in the signal. We illustrate, through a toy example,
that spatial-Slepian transform yields a much better estimate of
the underlying region of hidden localized variations than scale-
discretized wavelet transform.

Index Terms—2-sphere, spherical harmonics, Slepian spatial-
spectral concentration, localized signal analysis, bandlimited
signals.

I. INTRODUCTION

Spherical signal processing is the study and analysis of
spherical signals, i.e., signals which are defined on the sphere.
These signals are naturally encountered in many areas of sci-
ence and engineering such as computer graphics [1], medical
imaging [2]–[4], acoustics [5], [6], planetary sciences [7]–
[11], geophysics [12], [13], cosmology [14]–[16], quantum
mechanics [17], wireless communication [18]–[20] and an-
tenna design [21]. A natural choice of basis functions for
the representation of signals on the sphere is the spherical
harmonic functions (or spherical harmonics for short). Such
a representation is enabled by the spherical harmonic trans-
form (SHT) and is called the spherical harmonic (or spectral)
domain representation.

The representation of a signal in the spectral domain reveals
global characteristics of the signal, without any regard to the
scale or localization of those characteristics. In order to probe
signals at different scales, more sophisticated methods have
been proposed in the literature. One such tool that has been
extensively used to represent time domain signals at different
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scales is the wavelet transform [22]–[24], which has also been
extended for signal analysis on the sphere [25]–[30]. The
framework of wavelet transform uses wavelet functions to
record scale-dependent information of the underlying signal
as wavelet coefficients. Although wavelet functions have been
shown to exhibit good spatial localization [30], they cannot
be adapted to the shape of the region of interest on the
sphere. Consequently, for applications where signals are to
be analyzed locally over given regions on the sphere, it is
imperative to find alternate methods that can be used to probe
local characteristics of signals over a subset of the sphere.

Motivated by the idea of wavelet transform, which essen-
tially spreads out the signal content in the joint space-scale
domain, we seek to find a representation of signals to analyze
their local characteristics in an effort to detect localized
hidden features. Naturally, we revert to Slepian spatial-spectral
concentration problem on the sphere [31]–[36], which results
in optimally localized basis functions, called Slepian functions,
that can be used for accurate representation and reconstruction
of the underlying signal in a given region on the sphere. Using
well-optimally concentrated Slepian functions, which have
varying energy concentration within a region on the sphere,
we propose a transform, referred to as the spatial-Slepian
transform (SST), which is similar in formulation to the scale-
discretized wavelet transform [30] but uses bandlimited and
spatially well-optimally concentrated Slepian functions instead
of wavelet functions. Unlike the scale-discretized wavelet
transform, spatial-Slepian transform probes local content of
the signal (which is a direct consequence of the use of
well-optimally concentrated Slepian functions) and results in
spatial-Slepian coefficients, which constitute a novel joint
spatial-Slepian domain representation of signals on the sphere.
The number of spatial-Slepian coefficients is determined by
the fractional area of the region chosen to solve the Slepian
spatial-spectral concentration problem. In this context, we
summarize the main contributions of our work below:

• We use bandlimited and spatially well-optimally concen-
trated Slepian functions to formulate the spatial-Slepian
transform as the inner product between the signal and the
rotated Slepian functions in Section III, where we also
present the inverse transform to recover the signal from
its spatial-Slepian coefficients. Furthermore, we present
an algorithm for fast computation of SST by using the
framework developed in [37].

• We numerically validate the inverse spatial-Slepian trans-
form using different realizations of a random test sig-
nal at various bandlimits in Section IV, and perform
computational complexity analysis of the fast algorithm
for computing SST. We also quantify the spatial vari-
ance of spatial-Slepian coefficients and conduct differ-
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ent experiments to show that spatial-Slepian coefficients
have better spatial localization compared to the scale-
discretized wavelet coefficients. Moreover, we present
analytical expressions for the spatial-Slepian coefficients
computed using zonal Slepian functions for the axisym-
metric north polar cap region and present an illustration
on a bandlimited Earth topography map.

• In Section V, we present an application of the proposed
SST by developing a framework for the detection of
hidden localized variations in the signal. We compare the
results obtained from the proposed transform with those
obtained from the scale-discretized wavelet transform and
show that spatial-Slepian transform provides a much bet-
ter estimate of the underlying region of hidden localized
variations on the sphere.

Before formulating the spatial-Slepian transform, we review
the necessary mathematical background for signal analysis
on the sphere and briefly discuss the Slepian spatial-spectral
concentration problem in the next section.

II. MATHEMATICAL BACKGROUND

A. Signals on the 2-Sphere

We consider complex-valued and square-integrable func-
tions on the surface of the 2-sphere (or sphere for short) that is
defined as S2 , {x̂ ∈ R3 : |x̂| = 1}, where |·| denotes the Eu-
clidean norm, x̂ ≡ x̂(θ, φ) , (sin θ cosφ, sin θ sinφ, cos θ)T

is a unit vector in R3, which is parameterized by colatitude
θ ∈ [0, π], measured from positive z-axis, and longitude
φ ∈ [0, 2π), measured from positive x-axis in the x − y
plane, and (·)T denotes the vector transpose. We denote such
functions by f(x̂) ≡ f(θ, φ) and define the inner product
between any two functions f(x̂), h(x̂) as [38]

〈f, h〉S2 ,
∫
S2

f(x̂)h(x̂) ds(x̂),

∫
S2

=

∫ π

θ=0

∫ 2π

φ=0

, (1)

where (·) denotes complex conjugate and ds(x̂) = sin θ dθ dφ
is the differential area element on the sphere. Equipped with
the inner product in (1), the set of complex-valued and square-
integrable functions on the sphere forms a Hilbert space,
denoted by L2(S2). Norm of the function f(x̂) is induced
by the inner product as ‖f‖S2 , 〈f, f〉1/2S2 and its energy is
given by ‖f‖2S2 . Functions with finite energy are referred to
as signals on the sphere. For a given spatial region R ⊂ S2,
we also define

〈f, h〉R =

∫
R

f(x̂)h(x̂) ds(x̂) (2)

as the local inner product between f(x̂) and h(x̂), where
‖f‖2R , 〈f, f〉R quantifies energy of the signal f(x̂) in the
region R.

The Hilbert space L2(S2) is separable and contains a
complete set of orthonormal basis functions called spherical
harmonics, which are given by [38]

Y m` (x̂) ≡ Y m` (θ, φ) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ

for integer degree ` ≥ 0 and integer order |m| ≤ `, where
Pm` (cos θ) is the associated Legendre polynomial of degree `
and order m [38]. As a result, any signal f ∈ L2(S2) can be
expanded as

f(x̂) =
∞∑
`,m

(f)m` Y
m
` (x̂),

∞∑
`,m

≡
∞∑
`=0

∑̀
m=−`

, (3)

where

(f)`m , 〈f, Y m` 〉S2 =

∫
S2

f(x̂)Y m` (x̂) ds(x̂) (4)

is the spherical harmonic (or spectral) coefficient of degree
` and order m, and forms the spherical harmonic (spectral)
domain representation of the signal f(x̂). Signal f ∈ L2(S2)
is considered bandlimited to degree Lf if (f)m` = 0, ∀ ` ≥
Lf , |m| ≤ `. Set of all such bandlimited signals on the sphere
forms an L2

f -dimensional subspace of L2(S2), denoted by
HLf , and their spectral coefficients can be stored in an L2

f ×1
column vector as

f =
[
(f)0

0, (f)−1
1 , (f)0

1, (f)1
1, . . . , (f)

Lf−1
Lf−1

]T
. (5)

B. Signal Rotation on the Sphere

A point on the surface of the sphere can be rotated to any
position by sequential application of sub-rotations by angles
ω ∈ [0, 2π) around z-axis, ϑ ∈ [0, π] around y-axis and ϕ ∈
[0, 2π) around z-axis, following the right-handed convention.
The angles ω, ϑ and ϕ are called Euler angles. Each rotation by
an Euler angle is represented by a 3 × 3 orthogonal rotation
matrix and the overall rotation is specified by a matrix R,
defined as

R ≡ R(ϕ, ϑ, ω) , Rz(ϕ)Ry(ϑ)Rz(ω), (6)

where Ry(ϑ) and Rz(ω) are the matrices representing rota-
tions by angles ϑ around y-axis and ω around z-axis respec-
tively [38].

Defining ρ as the 3-tuple of Euler angles, i.e., ρ , (ϕ, ϑ, ω),
signal rotation on the sphere is specified by a rotation operator
Dρ ≡ D(ϕ, ϑ, ω), whose action on a signal f ∈ L2(S2)
is defined as the inverse rotation of the spherical coordinate
system, i.e.,

(Dρf)(x̂) ≡ (D(ϕ, ϑ, ω)f)(x̂) , f(R−1x̂), (7)

where R is the rotation matrix in (6). Spectral coefficients of
the rotated signal are given by [38]

(Dρf)
m
` =

∑̀
m′=−`

D`
m,m′(ρ)(f)m

′

` , (8)

where D`
m,m′(ρ) is the Wigner-D function, defined as

D`
m,m′(ρ) ≡ D`

m,m′(ϕ, ϑ, ω) , e−imϕd`m,m′(ϑ)e−im
′ω (9)

for integer degree ` and integer orders |m|, |m′| ≤ `, and
d`m,m′(ϑ) is the Wigner-d function [38]. As a result, the rotated
signal is given by the following Fourier expansion

(Dρf) (x̂) =
∞∑
`,m

∑̀
m′=−`

D`
m,m′(ρ)(f)m

′

` Y m` (x̂). (10)
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C. Signals on the SO(3) Rotation Group

Group of all proper rotations1, parameterized by the 3-tuple
ρ = (ϕ, ϑ, ω), is called the Special Orthogonal group, denoted
by SO(3). Square-integrable and complex-valued functions
defined on the SO(3) rotation group form a Hilbert space
L2(SO(3)) such that the inner product between any two
functions v, w ∈ L2(SO(3)) is given by

〈v, w〉SO(3) ,
∫
SO(3)

v(ρ)w(ρ) dρ,

∫
SO(3)

=

∫ 2π

ϕ=0

∫ π

ϑ=0

∫ 2π

ω=0

,

(11)

where dρ = dϕ sinϑ dϑ dω is the differential element on the
SO(3) rotation group. Inner product in (11) induces a norm
of the function v ∈ L2(SO(3)) as ‖v‖SO(3) , 〈v, v〉

1/2
SO(3) and

its energy is given by ‖v‖2SO(3). Such finite energy functions
are referred to as signals on the SO(3) rotation group.

The Hilbert space L2(SO(3)) is separable and has Wigner-
D functions as the basis functions, which admit the following
orthogonality relation [38]〈

D`
m,m′ , D

p
q,q′

〉
SO(3)

=

(
8π2

2`+ 1

)
δ`,pδm,qδm′,q′ , (12)

where δm,n is the Kronecker delta function. Therefore, any
signal v ∈ L2(SO(3)) can be expanded as

v(ρ) =

∞∑
`,m,m′

(v)`m,m′D`
m,m′(ρ),

∞∑
`,m,m′

≡
∞∑
`,m

∑̀
m′=−`

, (13)

where

(v)`m,m′ ,

(
2`+ 1

8π2

)〈
v,D`

m,m′

〉
SO(3)

(14)

is the SO(3) spectral coefficient of degree ` and orders m,m′,
which constitutes the spectral domain representation of the
signal v(ρ). Signal v(ρ) is called bandlimited to degree Lv if
(v)`m,m′ = 0, ∀ ` ≥ Lv, |m|, |m′| ≤ `.

D. Spatial-Spectral Concentration on the Sphere

The problem of spatial concentration of bandlimited sig-
nals (or equivalently spectral concentration of spatially limited
signals) was first investigated by Slepian and his co-authors
in their seminal work on time domain signals in 1960s. They
optimized a quadratic energy concentration measure to obtain
an orthogonal family of strictly bandlimited signals, which
were optimally concentrated within a given time interval [39].
This work was later extended to multidimensional Euclidean
domain signals [40], [41] and for signals defined on the
sphere [31]–[36]. Here, we briefly review the spatial concen-
tration of bandlimited signals on the sphere.

1An improper rotation is a reflection or a flip about either some axes or
the center of the spherical coordinate system.

To maximize the spatial energy concentration of a bandlim-
ited signal g ∈ HLg in the spatial region R ⊂ S2, following
measure of the fractional energy is optimized

λ =
‖g‖2R
‖g‖2S2

=

∫
R

Lg−1∑
p,q

(g)qpY
q
p (x̂)

Lg−1∑
`,m

(g)m` Y
m
` (x̂)


∫
S2

Lg−1∑
p,q

(g)qpY
q
p (x̂)

Lg−1∑
`,m

(g)m` Y
m
` (x̂)



=

Lg−1∑̀
,m

Lg−1∑
p,q

(g)m` (g)qpK`m,pq

Lg−1∑̀
,m

|(g)m` |2
, (15)

where

K`m,pq ,
∫
R

Y m` (x̂)Y qp (x̂) ds(x̂), (16)

and we have used orthonormality of spherical harmonics on
the sphere to get the final equality. Adopting the indexing
scheme introduced in (5), we define an L2

g × L2
g matrix K,

with elements K`m,pq for 0 ≤ `, p < Lg, |m| ≤ `, |q| ≤ p, and
an L2

g × 1 column vector g, with elements (g)m` , to rewrite
(15) in matrix form as

λ =
gHKg

gHg
, (17)

where (·)H represents conjugate transpose. Column vectors g,
which render λ in (17) stationary, are solution to the following
eigenvalue problem

Kg = λg. (18)

From (16), it can be seen that the matrix K is Hermitian
and positive definite, therefore, the eigenvalues λ are real and
eigenvectors g are orthogonal2. We index the eigenvalues (and
the associated eigenvectors) such that 1 > λ1 ≥ λ2 ≥ . . . ≥
λL2

g
> 0. For each spectral domain eigenvector gα, associated

with the eigenvalue λα, we obtain a spatial eigenfunction as

gα(x̂) =

Lg−1∑
`,m

(gα)m` Y
m
` (x̂), 1 ≤ α ≤ L2

g. (19)

Set of spatial eigenfunctions, gα(x̂), α = 1, 2, . . . , L2
g , are

orthogonal over the spatial region R and orthonormal over the
sphere S2, i.e.,

〈gα, gβ〉R = gH
αKgβ = λαδα,β ,

〈gα, gβ〉S2 = gH
α gβ = δα,β .

(20)

These functions serve as an alternate basis for the space of
bandlimited signals, i.e, HLg , and are referred to as Slepian
functions. Consequently, any signal h ∈ HLg can be repre-
sented as

h(x̂) =

L2
g∑

α=1

(h)αgα(x̂), (h)α = 〈h, gα〉S2 = gH
αh, (21)

2We choose the eigenvectors g to be orthonormal in this work.
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(a) g1(x̂) (b) g2(x̂) (c) g3(x̂) (d) g4(x̂) (e) g5(x̂) (f) g6(x̂)

(g) g7(x̂) (h) g8(x̂) (i) g9(x̂) (j) g10(x̂) (k) g11(x̂) (l) g12(x̂)

Fig. 1: Real part of Slepian functions computed for a rotated spherical ellipse, which is initially aligned with x-axis, having
focus colatitude θc = 20◦ and semi-major axis a = 25◦. The rotation angles are ρ = (60◦, 90◦, 45◦) and bandlimit Lg = 32.

where (h)α, α = 1, 2, . . . , L2
g , are called Slepian coefficients,

which constitute the Slepian domain representation of the
signal h(x̂). Fig. 1 shows the real part of the first 12 Slepian
functions, bandlimited to degree Lg = 32, which are computed
for a spherical ellipse3 that is rotated on the sphere by Euler
angles ρ = (60◦, 90◦, 45◦) (the ellipse is initially aligned with
x-axis, having focus colatitude θc = 20◦ and semi-major axis
a = 25◦).

As investigated in detail in [32], if most of the eigenvalues
in (18) are either nearly 1 or nearly 0 (suggesting maximal and
minimal concentration for the corresponding eigenfunctions in
the region R respectively) with a sharp transition, then the sum
of eigenvalues, called the spherical Shannon number, is a good
measure of the number of well-optimally concentrated Slepian
functions within the region R. Denoted by NR, the spherical
Shannon number is given by

NR ,

L2
g∑

α=1

λα = trace(K) =
AR
4π

L2
g, (22)

where AR , ‖1‖R is the surface area of the spatial region
R. Hence, the first NR number of well-optimally concentrated
Slepian functions in (19) (rounded to the nearest integer) form
a (reduced) localized basis set for the accurate reconstruction
and representation of bandlimited signals in the spatial region
R.

III. SPATIAL-SLEPIAN TRANSFORM (SST)
In this section, we propose the spatial-Slepian transform

using well-optimally concentrated Slepian functions. We show
that the transform is invertible under some constraints, and
present a fast method for the computation of spatial-Slepian
coefficients.

3We refer the reader to [42] for the definition of a spherical ellipse.

A. SST Formulation

The well-optimally concentrated Slepian functions con-
structed for bandlimit Lg and spatial region R on the sphere,
i.e., gα(x̂), α = 1, 2, . . . , NR, can be used to obtain a new
representation of signals on the sphere through the spatial-
Slepian transform4, which we define as

Fgα(ρ) , 〈f, (Dρgα)〉S2

=

∫
S2

f(x̂)(Dρgα)(x̂) ds(x̂) (23)

for a signal f ∈ HLf , where ρ = (ϕ, ϑ, ω) is the 3-tuple of
Euler angles, Dρ ≡ D(ϕ, ϑ, ω) is the rotation operator and
Fgα ∈ L2(SO(3)) is called the αth spatial-Slepian coefficient
of the signal f(x̂). From its definition, we observe that spatial-
Slepian transform probes the signal content by projecting it
onto all possible rotated orientations of the well-optimally con-
centrated Slepian functions on the sphere, essentially spreading
the signal in the so called joint spatial-Slepian domain. The
extent of the spread of the signal in the joint spatial-Slepian
domain, which is quantified by the number of spatial-Slepian
coefficients, is specified by the rounded spherical Shannon
number, and therefore, depends on the fractional surface area
of the region R on the sphere and the bandlimit Lg of the
Slepian functions. In this context, we refer to α as the Slepian
scale and Fgα(ρ) as the spatial-Slepian coefficient at Slepian
scale α.

Using the expansion of signals in (3) and the spectral
representation of rotated signals in (8), we can write the

4We use the term spatial-Slepian transform to differentiate it from the
Slepian transform, which refers to the inner product between a signal and
a Slepian function.
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spatial-Slepian coefficient in (23) as

Fgα(ρ) =

min{Lf−1,Lg−1}∑
`,m,m′

(f)m` (gα)m
′

` D`
m,m′(ρ), (24)

where we have used orthonormality of spherical harmonics on
the sphere to obtain the result.

Remark 1: Spatial-Slepian transform has been formulated
using the definition of convolution of signals on the sphere,
given in [37]. Such definition of convolution of signals has also
been adopted to define the scale-discretized wavelet transform
on the sphere [29], [30]. Hence, the spatial-Slepian transform
in (23) appears similar in its mathematical formulation to the
scale-discretized wavelet transform on the sphere. However,
the proposed transform uses Slepian functions, rather than
scale-discretized wavelet functions, and results in a joint
domain representation which is not only different from the
multiscale wavelet representation but is not found in the litera-
ture as well, rendering this work a novel research contribution.
Since, unlike wavelet functions, Slepian functions are tuned to
the underlying local region of interest, the proposed spatial-
Slepian transform serves as an invaluable tool for probing the
contents of any signal, which is localized within a region on
the sphere.

B. Inverse SST

Spectral representation of the spatial-Slepian coefficient
Fgα(ρ) is given by

(Fgα)`m,m′ ,

(
2`+ 1

8π2

)〈
Fgα , D

`
m,m′

〉
SO(3)

= (f)m` (gα)m
′

`

(25)

for 0 ≤ ` ≤ min{Lf − 1, Lg − 1}, |m|, |m′| ≤ `, where we
have used (11) and orthogonality of Wigner-D functions on
the SO(3) rotation group to obtain the final result. Hence, we
can recover the spectral coefficients of the original signal f(x̂)
as

(f)m` =

(
2`+ 1

8π2

) 〈Fgα , D`
m,m′

〉
SO(3)

(gα)m
′

`

=

(
2`+ 1

8π2

) ∫
SO(3)

Fgα(ρ)D`
m,m′(ρ) dρ

(gα)m
′

`

(26)

for 0 ≤ ` ≤ min{Lf − 1, Lg − 1}, |m|, |m′| ≤ `. From
(26), we note that the proposed spatial-Slepian transform is
invertible only if the spherical harmonic coefficients of the
Slepian function, i.e., (gα)m

′

` , are non-zero for all degrees 0 ≤
` ≤ min{Lf − 1, Lg − 1} and at least one order |m′| ≤ `.

Remark 2: For the case where Lf > Lg , the inverse spatial-
Slepian transform cannot recover all of the spectral coefficients
of the signal f(x̂). On the other hand if Lf < Lg , the Slepian
functions are under-utilized in obtaining the spatial-Slepian
coefficients for the signal f(x̂). Therefore, in this work, we
assume that Lf = Lg , so that not only the Slepian functions
are fully utilized, signal f(x̂) is also perfectly recovered from
its spatial-Slepian coefficients.

C. Fast Computation of Spatial-Slepian Transform

Since the spatial-Slepian transform has been proposed using
the definition of convolution of signals on the sphere [37],
we adopt the framework for fast computation of convolution
of spherical signals, given in [37], to efficiently compute the
spatial-Slepian coefficients. This fast algorithm has become a
standard tool for efficient computation of transforms which
are defined through the inner product between signals on the
sphere, such as the directional spatially localized spherical
harmonic transform [42] and the scale-discretized wavelet
transform on the sphere [43].

From the definition of Wigner-D functions in (9), we note
that the spatial-Slepian coefficient in (24) can be written as

Fgα(ϕ, ϑ, ω) =

Lf−1∑
`,m,m′

(f)m` (gα)m
′

` eimϕ d`m,m′(ϑ) eim
′ω

=

Lf−1∑
`=0

∑̀
m=−`

(f)m` e
imϕ

∑̀
m′=−`

(gα)m
′

` ×

im
′−meim

′ω
∑̀

m′′=−`

∆`
m′′,m ∆`

m′′,m′eim
′′ϑ, (27)

where ∆`
m,m′ , d`m,m′(π/2) and we have used the following

expansion for Wigner-d functions [38],

d`m,m′(ϑ) = im−m
′ ∑̀
m′′=−`

∆`
m′′,m∆`

m′′,m′e−im
′′ϑ. (28)

Rearranging the summations in (27), we can rewrite the
spatial-Slepian coefficient as

Fgα(ρ) =

Lf−1∑
m,m′,m′′=−(Lf−1)

Cαm,m′,m′′ei(mϕ+m′′ϑ+m′ω),

(29)

where

Cαm,m′,m′′ = im
′−m

Lf−1∑
`=max{|m|,|m′|,|m′′|}

(f)m` (gα)m
′

` ∆`
m′′,m∆`

m′′,m′ .

(30)

The expression in (29) is a simple rearrangement of the
initial expression in (24) and hence, is not more efficient.
However, the presence of complex exponential functions in
(29) facilitates the use of the fast Fourier transform (FFT)
algorithm to compute the spatial-Slepian coefficient efficiently.
Wigner-d functions ∆`

m,m′ can be computed using either the
recursive relations given in [44] or the recursion proposed
in [45], both of which are stable up to very large degrees.

IV. ANALYSIS

In this section, we validate the inverse spatial-Slepian
transform in (26), using different realizations of a random
test signal at various bandlimits, and perform computational
complexity analysis of the fast algorithm presented in Sec-
tion III-C. Moreover, we quantify the spatial variance of
spatial-Slepian coefficients and conduct different experiments
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to show that spatial-Slepian coefficients have better spatial
localization than scale-discretized wavelet coefficients. We
also present illustrations of the spatial-Slepian coefficients of
a bandlimited Earth topography map using the specialized
case of zonal Slepian functions, which are computed for the
axisymmetric north polar cap region on the sphere.

A. Inverse SST Validation

We analyze the accuracy of the inverse SST using different
realizations of a random, complex-valued test signal fT (x̂),
whose spectral coefficients are uniformly distributed in the
interval (−1, 1) in both real and imaginary parts. We compute
the spectral components of the spatial-Slepian coefficients of
the test signal, i.e.,

(
FTgα

)`
m,m′ , from (25) using Slepian func-

tions that are well-optimally concentrated in an axisymmetric
north polar cap region, defined as {x̂(θ, φ) ∈ R3 : |x̂| =
1, 0 ≤ θ ≤ Θc, 0 ≤ φ < 2π}, where Θc ∈ [0, π/2] is
the polar cap angle which is set to 15◦ in this experiment.
Spectral coefficients of the reconstructed signal, denoted by
(fR)m` , are computed from the inverse SST in (26) using the
Slepian function at Slepian scale α = 1, i.e.,

(fR)m` =

(
FTg1

)`
m,m′

(g1)m
′

`

, |m| ≤ `, 0 ≤ ` < Lf , (31)

where Lf is the bandlimit of the test signal. Numerical
accuracy of the inverse SST is evaluated by defining the
absolute mean error as follows

Emean =
1

L2
f

Lf−1∑
`,m

∣∣(fT )m` − (fR)m`
∣∣ , (32)

which is averaged over 100 different realizations of the test
signal. The results of this experiment are shown in Fig. 2 at
different values of the bandlimit Lf . As expected, average
absolute mean error is on the order of numerical precision,
which in turn establishes the numerical stability of the pro-
posed inverse SST.

B. Computational Complexity Analysis

We observe that spatial-Slepian transform in (29) requires
the computation of coefficients Cαm,m′,m′′ over the three
dimensional space of orders m, m′ and m′′. Coefficients
Cαm,m′,m′′ in turn require a single summation over the degree `
for each m, m′, m′′. As a result, the complexity of computing
Cαm,m′,m′′ scales as O(L4

f ) with bandlimit Lf . We further note
that Wigner-d functions ∆`

m,m′ do not depend on either the
signal or Slepian functions and hence, can be independently
computed in time which scales as O(L3

f ), using the recursion
in [44]. However, we compute ∆`

m,m′ on-the-fly to minimize
storage requirements and note that this does not change
the computational complexity of O(L4

f ) for the coefficients
Cαm,m′,m′′ . Computational complexity of the three dimensional
fast Fourier transform scales as O(L3

f log2 Lf ) with bandlimit
Lf . Hence, the overall complexity for computing the spatial-
Slepian coefficient in (29) is governed by the coefficients
Cαm,m′,m′′ , and is given by O(L4

f ) for a fixed Slepian scale α,
and O(NRL

4
f ) for all Slepian scales, i.e., α = 1, 2, . . . , NR.

Fig. 2: Absolute mean error Emean, computed between the
spectral coefficients of a random, complex-valued test signal
fT (x̂) and the reconstructed signal fR(x̂), is averaged over
100 different realizations of the test signal and plotted against
the signal bandlimit 8 ≤ Lf ≤ 128. Figure shows that the
error is on the order of numerical precision, which in turn
verifies the numerical stability of the proposed inverse SST.

We validate the computational complexity of the spatial-
Slepian transform using one of the Slepian functions (at
Slepian scale α = 1), computed for a spherical ellipse which
is aligned with x-axis, having focus colatitude θc = 15◦

and semi-major axis a = 20◦. Spatial-Slepian transform is
computed for a test signal, which is generated in the spectral
domain in such a way the spectral coefficients are complex,
with real and imaginary parts uniformly distributed in the
interval (0, 1). The experiment is performed in MATLAB,
running on a 2.2 GHz Intel Core i7 processor with 16 GB
RAM, for 10 different realizations of the test signal. We record
the mean time (averaged over 10 realizations) at different
values of the bandlimit Lf and plot it in Fig. 3, where we
have also shown the theoretical bound which scales as O(L4

f ).
As expected, the results in Fig. 3 corroborate the theoretically
established bound on the computational complexity of the
spatial-Slepian transform.

C. Variance of the Spatial-Slepian Coefficients

We adopt the formulation of spatial variance presented
in [46] to quantify the localization of spatial-Slepian coef-
ficients on the SO(3) rotation group as

varFgα (ρ) = µ|Fgα (ρ)|2 −
∣∣µFgα (ρ)

∣∣2 , (33)
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Fig. 3: Computational complexity analysis of the spatial-
Slepian transform for a test signal using Slepian function at
Slepian scale α = 1, computed for a spherical ellipse which
is aligned with x-axis, having focus colatitude θc = 15◦

and semi-major axis a = 20◦. Computational time (shown
in blue), which is averaged over 10 different realizations of
the test signal, is in agreement with the theoretical bound of
O(L4

f ) (shown in black).

where µf(ρ) is the spatial mean of a function f ∈ L2(SO(3))
and is defined as

µf(ρ) ,
1

8π2

∫
SO(3)

f(ρ)dρ. (34)

Using the expression for Wigner-D functions in (9) and the
following relation between Wigner-d functions and Legendre
polynomials [38]

d`m,0(ϑ) =

√
(`−m)!

(`+m)!
P`(cosϑ), (35)

we obtain the mean of the spatial-Slepian coefficients over the
SO(3) rotation group as

µFgα (ρ) =

Lf−1∑
`,m,m′

(f)m` (gα)m
′

` µ
D`
m,m′ (ρ)

=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

1

8π2

∫
SO(3)

D`
m,m′(ρ)dρ

=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

1

2
δm,0δm′,0

1∫
cosϑ=−1

P`(cosϑ)d(cosϑ)

=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

` δm,0 δm′,0 δ`,0 = (f)0
0(gα)0

0.

(36)

Hence, spatial variance of the spatial-Slepian coefficient at
Slepian scale α becomes

varFgα (ρ) = µ|Fgα (ρ)|2 −
∣∣(f)0

0

∣∣2 ∣∣(gα)0
0

∣∣2
=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

Lf∑
p,q,q′

(f)qp(gα)q
′

p ×

µ
D`
m,m′ (ρ)D

p

q,q′ (ρ)
−
∣∣(f)0

0

∣∣2 ∣∣(gα)0
0

∣∣2
=

Lf−1∑
`,m,m′

(
1

2`+ 1

)
|(f)m` |

2
∣∣∣(gα)m

′

`

∣∣∣2 − ∣∣(f)0
0

∣∣2 ∣∣(gα)0
0

∣∣2 ,
(37)

where we have used orthogonality of Wigner-D functions
on SO(3) rotation group to obtain the final result. As is
evident from the expression in (37), variance of the spatial-
Slepian coefficient depends on the signal under consideration
in addition to the Slepian function.

We compute the spatial variance of the spatial-Slepian
coefficients for the Earth topography map5, bandlimited to
degree Lf = 64, using the Slepian functions which are well-
optimally concentrated in the axisymmetric north polar cap
region R. For comparison, we also evaluate the spatial variance
of scale-discretized wavelet coefficients of the bandlimited
Earth topography map, which is given by [46]

var
wΨ(s)

f (ρ)
=

Lf−1∑
`,m,m′

(
1

2`+ 1

)
|(f)m` |

2

∣∣∣∣(Ψ(s)
)m′

`

∣∣∣∣2 , (38)

where Ψ(s) ∈ L2(S2) is the wavelet function at wavelet scale
s, having azimuthal bandlimit Lφ6, wΨ(s)

f (ρ) is the correspond-
ing scale-discretized wavelet coefficient, given by [30]

wΨ(s)

f (ρ) =
〈
f,
(
DρΨ(s)

)〉
S2

=

∫
S2

f(x̂)
(
DρΨ(s)(x̂)

)
ds(x̂),

(39)

and we have used the fact that
(
Ψ(s)

)0
0

= 0. The minimum
wavelet scale is chosen to be 0 and the maximum wavelet
scale depends on the bandlimit as [30]

smax = dlogγ(Lf )e, (40)

where γ is the harmonic space dilation parameter of the scale-
discretized wavelet functions. We relate the polar cap angle of
the north polar cap region R to the dilation parameter γ in such
a way that the number of wavelet scales equals the number of
Slepian scales, i.e.,

NR =
2π(1− cos Θc)

4π
L2
f = smax + 1 = dlogγ(Lf )e+ 1.

(41)

We set γ = 2 which results in the maximum wavelet scale
smax = 6, NR = 7 and the polar cap angle Θc = 4.7◦. Spatial
variance of spatial-Slepian coefficients and scale-discretized
wavelet coefficients, for the bandlimited Earth topography

5http://geoweb.princeton.edu/people/simons/software.html
6The azimuthal bandlimit Lφ is set to 5 for this experiment. For a detailed

treatment of scale-discretized wavelet transform on the sphere, we refer the
reader to [30].
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Fig. 4: Spatial variance of spatial-Slepian and scale-discretized
wavelet coefficients, evaluated for the Earth topography map
bandlimited to degree Lf = 64. Spatial-Slepian coefficients
can be seen to be better localized than scale-discretized
wavelet coefficients at most of the scales.

map, is computed at each Slepian and wavelet scale and plotted
in Fig. 4. Spatial variance of the spatial-Slepian coefficients
can be seen to be smaller than that of the scale-discretized
wavelet coefficients at most of the scales, which is evidence
of better spatial localization of the spatial-Slepian coefficients
compared to the scale-discretized wavelet coefficients.

We vary the dilation parameter of the wavelet functions
while keeping the bandlimit the same, i.e., Lf = 64, to obtain
different number of wavelet scales for the scale-discretized
wavelet transform of the Earth topography map. We also com-
pute spatial-Slepian coefficients of the Earth topography map
using the well-optimally concentrated Slepian functions for the
north polar cap region with varying polar cap angles in such
a way that the number of Slepian scales equals the number of
wavelet scales, according to (41). The fractional ratio of the
number of spatial-Slepian coefficients (at each polar cap angle
Θc) having smaller spatial variance than the scale-discretized
wavelet coefficients (at each dilation parameter γ) is quantified
as

r(Θc) ,
#

{
varFgα (ρ) ≤ var

wΨ(s)

f (ρ)

}
NR

, NR ≡ NR(Θc),

(42)

where # {·} computes the number of elements satisfying the
logical condition within the braces and NR is the number
of Slepian scales (which is equal to the number of wavelet
scales). For dilation parameter γ = 1.5, 1.8, 2, 2.5, 3, 4,
we obtain the polar cap angles, using (41), as Θc =
6.2◦, 5.4◦, 4.7◦, 4.4◦, 4◦, 3.6◦, such that the number of corre-

Fig. 5: Fractional ratio r, for the Earth topography map
bandlimited to degree Lf = 64, is plotted against different
number of Slepian (wavelet) scales, which are obtained by
varying the polar cap angle Θc and the dilation parameter
γ in such a way that the number of Slepian scales equals
the number of wavelet scales. The curve shows that more
number of spatial-Slepian coefficients have smaller spatial
variance (and hence, better spatial localization) than the scale-
discretized wavelet coefficients.

sponding Slepian (or wavelet) scales are 12, 9, 7, 6, 5, 4. The
resulting fractional ratio r is plotted against the number of
Slepian (wavelet) scales in Fig. 5, which shows that more
number of spatial-Slepian coefficients have smaller spatial
variance than the scale-discretized wavelet coefficients.

D. SST using Zonal Slepian Functions for Axisymmetric North
Polar Cap Region

Slepian spatial-spectral concentration problem for polar cap
regions has been investigated and analytically solved in [32].
In particular, we use the order m = 0 Slepian functions, which
are axisymmetric, i.e., gα(θ, φ) = gα(θ), and are called zonal
Slepian functions, to compute the spatial-Slepian transform.
Spherical Shannon number for zonal Slepian functions is
denoted by NΘc,0 and is given by [12]

NΘc,0 = Lf
Θc

π
. (43)

Using the following spectral representation for zonal Slepian
functions [38]

(gα)m` = (gα)0
`δm,0, (44)

we can write the rotated Slepian function (Dρgα)(x̂) in (23)
as

(Dρgα)(x̂) =

Lf−1∑
`,m

√
4π

2`+ 1
Y m` (ϑ, ϕ)(gα)0

`Y
m
` (x̂), (45)
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(a) f(x̂) (b) Fg1 (x̂) (c) Fg2 (x̂) (d) Fg3 (x̂) (e) Fg4 (x̂) (f) Fg5 (x̂)

(g) Fg6 (x̂) (h) Fg7 (x̂) (i) Fg8 (x̂) (j) Fg9 (x̂) (k) Fg10 (x̂) (l) Fg11 (x̂)

Fig. 6: Earth topography map and NΘc,0 ≈ 11 spatial-Slepian coefficients for the Earth topography map at bandlimit Lf = 128
using zonal Slepian functions, which are computed for an axisymmetric north polar cap region of polar cap angle Θc = 15◦.

where we have used the fact that for m′ = 0 the first rotation
by ω around z-axis has no effect and can be taken to be 0,
along with the following relation [38], to obtain the final result

D`
m,0(ϕ, ϑ, 0) =

√
4π

2`+ 1
Y m` (ϑ, ϕ). (46)

Therefore, employing orthonormality of spherical harmonics
on the sphere, SST in (23), using zonal Slepian functions com-
puted for an axisymmetric polar cap region, can be rewritten
as

Fgα(ρ) = 〈f, (Dρgα)〉S2

=

Lf−1∑
`,m

√
4π

2`+ 1
(f)m` (gα)0

` Y
m
` (ϑ, ϕ) = Fgα(ϑ, ϕ).

(47)

Note that the spatial-Slepian coefficient, in this case, is a signal
on the sphere S2, with spherical harmonic coefficients given
by

(Fgα)m` = 〈Fgα , Y m` 〉S2 =

√
4π

2`+ 1
(f)m` (gα)0

` . (48)

As a result, signal f(x̂) can be reconstructed perfectly from
the spatial-Slepian coefficients as

f(θ, φ) =

Lf−1∑
`,m

[√
2`+ 1

4π

〈Fgα , Y m` 〉S2

(gα)0
`

]
Y m` (θ, φ), (49)

for (gα)0
` 6= 0,∀ ` < Lf . We use the Earth topography map,

bandlimited to degree Lf = 128, for the computation of
spatial-Slepian transform using the zonal Slepian functions,
which are computed for an axisymmetric north polar cap
region of polar cap angle Θc = 15◦. Fig. 6 shows the spatial-
Slepian coefficients for the first NΘc,0 ≈ 11 Slepian scales,
along with the Earth topography map.

V. LOCALIZED VARIATION ANALYSIS

As discussed in Section II-D, bandlimited Slepian functions
form an alternative basis set for the representation of bandlim-
ited signals on the sphere, and well-optimally concentrated
bandlimited Slepian basis functions form a (reduced) localized
basis set for accurate representation and reconstruction of
bandlimited signals over a region on the sphere. Hence, this
reduced basis can prove to be an invaluable tool for probing
the contents of any signal, which is localized within a region
on the sphere. In this context, we present an application
of the spatial-Slepian transform, by utilizing it for detecting
hidden variations in a signal, which are localized within an
unknown region on the sphere. The objective is to detect the
presence of these variations along with an estimate of the
underlying region that these variations are localized within.
In the remainder of this section, we elaborate on the problem
of localized variation analysis and show that it is motivated
by an application in the field of medical imaging. We then
formulate a mathematical framework for localized variation
analysis using spatial-Slepian transform, and use a toy example
for illustration. We compare the results obtained from the
spatial-Slepian transform with those obtained from the scale-
discretized wavelet transform, and show that spatial-Slepian
transform performs better by achieving a better estimate of
the underlying region of localized variations.

A. Motivation

The problem of localized variation analysis is motivated
by an application in the field of medical imaging, in which
images of a human organ, e.g., the brain, are analyzed across
different patients to diagnose the growth of a hidden anomaly,
i.e., a tumor, which is not readily apparent in the images.
The tumor can be effectively modeled as a variation that is
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hidden in the spherical image of the brain. We refer to the scan
of the healthy brain, i.e., without the anomaly, as the source
signal b(x̂), which is unknown. The anomaly is modeled as
an extremely weak localized variation v(x̂), which is hidden
in the source signal b(x̂) to give the scan of the brain as the
spherical observation f(x̂) = b(x̂) + v(x̂), ‖v‖S2 � ‖b‖S2 .
We assume that N different patients take part in this medical
study, resulting in N different instances (realizations) of
such a localized variation, which gives us an ensemble of
observations as

f j(x̂) = b(x̂) + vj(x̂), j = 1, 2, . . . , N. (50)

The objective is to statistically identify the portion of the brain
which has been affected by the tumor.

B. Mathematical Framework

We compute spatial-Slepian coefficients of the observations
using the well-optimally concentrated Slepian functions in a
region R on the sphere. From linearity of the spatial-Slepian
transform, we can write the spatial-Slepian coefficient of jth

observation as

F jgα(ρ) = Bgα(ρ) + V jgα(ρ), α = 1, 2, . . . , NR, (51)

with statistical mean and variance given by

E {Fgα(ρ)} = Bgα(ρ) + E {Vgα(ρ)} (52)

and

σ2
Fgα

(ρ) = E
{
|Fgα(ρ)− E {Fgα(ρ)}|2

}
= E

{
|Vgα(ρ)|2

}
− |E {Vgα(ρ)}|2 = σ2

Vgα
(ρ) (53)

respectively, where E{·} denotes the expectation operator. We
observe that spatial-Slepian coefficients of the observation
have same variance as the spatial-Slepian coefficients of the
localized variations, which enables us to use the sample
variance across different instances, denoted by Σ2

Fgα
and given

by

Σ2
Fgα

(ρ) =
1

N

N∑
j=1

∣∣∣∣∣∣F jgα(ρ)− 1

N

N∑
j=1

F jgα(ρ)

∣∣∣∣∣∣
2

, (54)

as a statistical measure for detecting the presence of hidden
localized variations in the signal at different Slepian scales α.

C. Illustration

As an illustration, we consider a realization of a zero-mean
and anisotropic Gaussian process as the background source
signal b(x̂), with bandlimit Lb = 32. We generate localized
variations within the region R̃, which is taken to be a spherical
ellipse, initially aligned with x-axis having focus colatitude
θc = 20◦ and semi-major axis a = 25◦, that is rotated by the
Euler angles ρ = (60◦, 90◦, 45◦). The localized variations are
given by

vj(x̂) =

NR̃≈30∑
β=1

ajβ g̃β(x̂), (55)

(a) |b(x̂)| (b)
∣∣f1(x̂)

∣∣

Fig. 7: Magnitude of (a) the source signal, which is a realiza-
tion of a zero-mean and anisotropic Gaussian process, and (b)
the first observation that contains localized variation hidden in
the source signal within the elliptical region. Both signals are
bandlimited to degree 32.

where g̃β(x̂) are the well-optimally concentrated Slepian func-
tions in the region R̃, bandlimited to degree Lg̃ = 32, ajβ are
random scalars drawn from the standard normal distribution
and NR̃ ≈ 30 is the rounded spherical Shannon number for
the region R̃. The strength of these variations is specified by
the background-to-variation ratio (BVR), defined as

BVR = 10 log
‖b(x̂)‖2S2

‖v(x̂)‖2S2

. (56)

We generate N = 10 instances of the localized variations
such that BVR is 20 dBs for each variation, yielding N = 10
different observations on the sphere as

f j(x̂) = b(x̂) +

NR̃≈30∑
β=1

ajβ g̃β(x̂), 1 ≤ j ≤ N = 10,

(57)

where each observation is bandlimited to degree Lf = 32.
Magnitude of the source signal b(x̂) and the observation,
which contains the first instance of localized variation, i.e.,
f1(x̂), are shown in Fig. 7. As can be seen, the localized
variation in the highlighted elliptical region is hidden in
the source signal. It must be noted that the source signal,
localized variations and the spherical elliptical region R̃ are
unbeknownst to the framework of spatial-Slepian transform.

The presence of hidden variations is detected by obtaining
the spatial-Slepian coefficients using the zonal Slepian func-
tions for an axisymmetric north polar cap region R of polar
cap angle Θc = 15◦, having bandlimit Lg = 32, and finding
the sample variance across N = 10 different instances at each
Slepian scale α = 1, . . . NΘc,0 = 3. The results are shown
in Fig. 8 where the unknown spherical elliptical region R̃ is
drawn for reference only. For comparison, we also plot the
sample variance of the scale-discretized wavelet coefficients,
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Fig. 8: (a) Magnitude of the first instance of localized variation, (b)–(d) sample variance of the spatial-Slepian coefficients
Σ2
Fgα

(ŷ), α = 1, . . . , NΘc,0 = 3, ŷ ≡ ŷ(ϑ, ϕ), (e)–(h) sample variance of the scale-discretized wavelet coefficients
Σ2

wΨ(s)

f

(ŷ), s = 0, 1, . . . , 3. As can be seen, sample variance of spatial-Slepian coefficients quite accurately detects the region

of localized hidden variations at each Slepian scale, whereas sample variance of scale-discretized wavelet coefficients yields an
over-estimate of the region of localized variations. The spherical elliptical region of localized hidden variations is unbeknownst
to the framework of spatial-Slepian and scale-discretized wavelet transforms and is drawn for reference only.

which are obtained from the axisymmetric scale-discretized
wavelet functions Ψ(s) ∈ L2(S2) as [30]

wΨ(s)

f (ŷ) =
〈
f,
(
DŷΨ(s)

)〉
S2

=

∫
S2

f(x̂)(DŷΨ(s))(x̂)ds(x̂),

(58)

where ŷ ≡ ŷ(ϑ, ϕ) and s is the wavelet scale. Dilation
parameter is set to 2, minimum wavelet scale is chosen to
be 0, and maximum wavelet scale at bandlimit Lf = 32 is 5.
However, we choose to show the sample variance for the first
4 wavelet scales as there is negligibly small sample variance
at wavelet scales s = 4, 5.

As can be seen from Fig. 8, sample variance using the
spatial-Slepian transform yields a very accurate detection of
the hidden localized variations. In comparison, sample vari-
ance using the scale-discretized wavelet transform performs
poorly; yielding an over-estimate of the underlying region
of the localized variations. The superior performance of the
spatial-Slepian transform is due to the fact that well-optimally
concentrated Slepian functions are better suited to probe the
local content of the signal than wavelet functions. Although
wavelet functions have been shown to exhibit good spatial
localization [30], unlike Slepian functions, their characteristics

are not defined by the shape of the underlying region, which
makes them ill-suited for localized signal analysis on the
sphere.

VI. CONCLUSION

We have proposed spatial-Slepian transform (SST) for
the representation of a spherical signal in the joint spatial-
Slepian domain and for localized analysis of signals on the
sphere. The proposed transform is similar in formulation to
the scale-discretized wavelet transform, however, instead of
using wavelet functions that cannot be adapted to a given
region on the sphere, it uses bandlimited and spatially well-
optimally (energy) concentrated Slepian functions, which en-
ables it to probe the local contents of a signal. We have derived
constraints under which the SST is invertible, presented an
algorithm for the fast computation of spatial-Slepian coeffi-
cients, and carried out computational complexity analysis. We
have numerically validated the proposed inverse SST using dif-
ferent realizations of a random test signal at various bandlim-
its. We have computed the spatial variance of spatial-Slepian
coefficients and have conducted different experiments to show
that spatial-Slepian coefficients have better spatial localization

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on July 09,2021 at 16:40:44 UTC from IEEE Xplore.  Restrictions apply. 



1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3093260, IEEE
Transactions on Signal Processing

12

than scale-discretized wavelet coefficients. As an illustration,
we have applied the proposed transform to a bandlimited Earth
topography map using the zonal Slepian functions, which are
well-optimally concentrated in the axisymmetric north polar
cap region on the sphere. To demonstrate the utility of the
proposed transform, we have also devised a framework to
carry out localized variation analysis for the detection of
hidden localized variations in the signal and have shown
better performance of spatial-Slepian transform than scale-
discretized wavelet transform in this regard. We consider the
use of the proposed transform for carrying out localized signal
analysis and optimal filtering as subjects of future work.
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