

Introduction to Forensic Science

Summer term-I (Monday, June 14 – Friday, July 9)

Instructor	Muhammad Zaheer
Room No.	9-441A, SBA SSE 4 th Floor (Bob Wing)
Office Hours	Mon-Friday, 16:00 to 17:00
Email	Muhammad.zaheer@lums.edu.pk
Telephone	042-35608465
Secretary/TA	TBD
TA Office Hours	TBD
Course URL (if any)	

Course Basics					
Credit Hours	03				
Lecture(s)	Nbr of Lec(s) Per Week	5	Duration	110 min	
Recitation/Lab (per week)	Nbr of Lec(s) Per Week		Duration		
Tutorial (per week)	Nbr of Lec(s) Per Week		Duration		

Course Distribution			
Core			
Elective	Elective		
Open for Student Category	SBASSE, SAHSOL, MGSHSS, SDSB		
Close for Student Category			

COURSE DESCRIPTION

The famous character of Sherlock Holmes by Sir Arthur Conan Doyle and TV shows such as Crime Scene Investigation (CSI) demonstrate the use of science by forensic scientists or criminalists to solve criminal cases. However, how forensic science really work?

The course aims to discuss the scientific principles and techniques behind the work of forensic scientists. It will utilize case studies (from Pakistan and abroad) to shed light on the forensic Lab's role and the Criminalist/forensic scientist in solving crimes.

The course will answer questions such as: How did forensic science evolve? How a crime scene is secured, and physical evidence collected, dispatched, stored, and analyzed? How can we use blood stains and patterns to differentiate natural death from murder? How can we collect and develop fingerprints from paper, glass, and metal? How long has someone been dead? What if they have been dead for a long time? Is DNA chemistry so powerful? How can we tell if a fire incident was natural or some fire accelerant was used? How drugs and poisons are analyzed? Can a little piece of a carpet fluff, or a single hair, convict someone? How did J. F. Kenedy die? How did the forensic laboratory helped solve Zainab's murder?

This introductory course aims to make the subject of forensic science clear and comprehensible to a wide variety of students from diverse academic backgrounds. It introduces various aspects of the forensic laboratory and the forensic sciences used in collecting, preserving, and analyzing physical evidence from the crime scene.

1	COURSE PREREC	QUISITE(S)
		None

COURSE OBJECT	TIVES	
	1.	Review the interdisciplinary nature of forensic science and specify the vital roles of chemistry, biology, computers, physics, genetics, and medicine in crime analysis.
	2.	Apply chemical, biological, nuclear, spectroscopic, and computer analyses to scientific physical evidence for elucidation

Learning Outcomes	
At the end o	of the course, the students will be able to:
• Di ci	escribe methods of analyzing and identifying fluids, hairs, and fibers as to human, animal, and artificial origins and te related cases of crime solution.
• Aț	pply DNA structure and sequence analysis for criminal identification
• Le re	earn about instrumentation and techniques of evidence analysis applied to gunshots, bullets, shotshells, gunshot esidue, fires and explosions, drugs, poisons, alcohol, and toxic chemicals
• M ar	latch chemical and physical tests to analyze evidence data from metals, paint, glass, and crystalline materials, paper, nd clothing.
• Di ne	iscuss the types of chemical, biological and nuclear hazards posed by terrorists and methods used to detect and eutralize their efforts.
• D'	ifferentiate between "scientific evidence" and "expertise evidence" in forensics.
• Ev	valuate and explain various career options and educational preparations in forensic science, chemistry, law nforcement, and court-related professions.
Grading Breakup and Policy	
Case study reports and preser	ntation: 25% (2 case studies, one before and the other after the midterm)

Quiz(s): 25 % (5 Quizzes in total)

Class participation and attendance: 15%

Final Examination: 35%

Examination Detail				
Midterm Exam	Yes/No: Combine Separate: Duration: Preferred Date: Exam Specifications:	Yes Combine 120 min June 26 Closed book, Scheduled on LMS, Fixed-time, Two attempts allowed		

Г

Final Exam	Yes/No: Combine Separate: Duration: Exam Specifications:	Yes Combined 120 min Comprehensive, Closed book, Scheduled on LMS, Fixed-time, Two attempts allowed

COURSE OVERVIEW					
Week/	Territor	Recommended	Objectives/		
Lecture/	lopics	Readings	Application		
Lecture #1	Welcome to class, Review syllabus and course requirements. Scope of forensic science, A brief history of forensics, The crime lab, Functions of the forensic scientist	Chapter 1 (page 4-24)	CLO:1		
Lecture #2	Crime scene investigation, Collecting and packaging physical Evidence, Types and significance of physical evidence	Chapter 2 (page 32-51) Chapter 3 (page 62-69)	CLO:1&2		
Lecture #3-4	Lecture 3: Blood (types, characterization, forensic analysis), Bloodstain pattern analysis Lecture 4: Activity: Preparation of fake blood, bloodstain pattern and stain analysis	Chapter 4 (page 80-97) Chapter 15 (374-386)	CLO:1		
Lecture #4	Death investigation (manner, cause and time of death)	Chapter 5 (page 104-123)	CLO:1&2		
Lecture #5	Finger prints (principle, classification, methods of detection and preservation) Forensic biometrics Activity: Dusting, lifting and developing fingerprints	Chapter 6 (page 130-149) Chapter 7 (page 154-165)	CLO:1&2		
Lecture #6	Matter (nature, properties), light (theory of light) and glass (forensic analysis)	Chapter 10 (page 224-245)	CLO:1		
Lecture #7	The microscope (basics and types),	Chapter 8 (page 170-183)	CLO:1		
Lecture #8	Forensic analysis of hair and fibers Activity: Hair and fiber analysis	Chapter 11 (page 252-272)	CLO:2		
Lecture #9	Firearm (bullet, gunpowder residue, collection and preservation of fire arm evidence), tool marks and other impressions	Chapter 9 (page 188-217	CLO:2		
	Mic	term Examination			
Lecture #10	Drugs (types, control laws, collection/preservation/analysis) Activity: Analysis of over-the-counter drugs	Chapter 12 (page 280-313)	CLO:2		
Lecture #11	Forensic toxicology (analysis of poisons, alcohol, law)	Chapter 13 (page 320-342)	CLO:2		
Lecture #12	Forensic analysis of metals, paints and soil	Chapter 14 (page 348-370)	CLO:1&2		
Lecture #13- 14	DNA (structure and analysis) Activity: DNA extraction and analysis	Chapter 16 (page 398-421)	CLO:1&2		
Lecture #15	Fire (chemistry, collection and analysis of evidence) and explosion (types, collection and	Chapter 17 (page 428-454)	CLO:1&2		

	analysis)		
Lecture # 16	Document examination (handwriting and ink	Chapter 18 (page 460-474)	CLO:1&2
	analysis)		
	Activity: classroom analysis of ink and		
	handwriting		
Lecture # 17	Computer forensics (computer basics, analysis	Chapter 19 (478-500)	CLO:1&2
	of electronic data)		
Lecture # 18	Mobile device forensics	Chapter 20 (page 506-517)	CLO:1&2
		Final exam	

Textbook(s)/Supplementary Readings

Textbook

Saferstein, Richard. Criminalistics: An Introduction to Forensic Science, 12th Edition, Pearson.

Supplementary Readings

White, P.C. Crime Scene to Court: The essentials of Forensic Science, 2nd Edition, Royal Society of Chemistry.