

# Lahore University of Management Sciences EE 5614/MATH 549- Learning for Dynamics & Control Spring 2023

| Instructors             | Dr. Abubal        | Dr. Abubakr Muhammad                           |                                  |                               |                |  |  |
|-------------------------|-------------------|------------------------------------------------|----------------------------------|-------------------------------|----------------|--|--|
| Room No.                | 9-251A            | 9-251A                                         |                                  |                               |                |  |  |
| Office Hours            |                   |                                                |                                  |                               |                |  |  |
| Email                   | abubakr@          | abubakr@lums.edu.pk                            |                                  |                               |                |  |  |
| Telephone               | +92 (42) 3        | +92 (42) 3560-8132                             |                                  |                               |                |  |  |
| TA                      | ТВА               |                                                |                                  |                               |                |  |  |
| TA Office               | TBA               |                                                |                                  |                               |                |  |  |
| Hours                   |                   |                                                |                                  |                               |                |  |  |
| Course URL (if          |                   |                                                |                                  |                               |                |  |  |
| any)                    |                   |                                                |                                  |                               |                |  |  |
| Course Basics           |                   |                                                |                                  |                               |                |  |  |
| Credit Hours            |                   | 3                                              |                                  |                               |                |  |  |
| Lecture(s)              |                   | Nbr of Lec(s) Per Week                         | 2                                | Duration                      | 1hr-15min      |  |  |
|                         |                   |                                                |                                  |                               | each           |  |  |
| Labs (per weel          | <)                | Nbr of Lec(s) Per Week                         | 0                                | Duration                      |                |  |  |
| Recitation (pe          | ,<br>week)        | Nbr of Lec(s) Per Week                         | 1                                | Duration                      | 60 minutes     |  |  |
| Course Distrib          | ution             |                                                |                                  |                               |                |  |  |
| Core                    |                   |                                                |                                  |                               |                |  |  |
| Flective                |                   | BS MS PhD in Electrical Engineering            |                                  |                               |                |  |  |
| Open for Stud           | ant Category      | EF (Seniors) EF (Grad) all SSE majors          |                                  |                               |                |  |  |
| Close for Stud          | ant Category      | Anyone not meeting prerequisites               |                                  |                               |                |  |  |
|                         |                   | Anyone not meeting prerequisites               |                                  |                               |                |  |  |
| Data drivon di          |                   | assingly becoming important for modeling       | prodicting and controlling of    | amplox systems that avalue    | in time and    |  |  |
|                         | proaches are b    | being applied to climate neuroscience en       | demiology robotics fluids ch     | perical process control age   | riculture and  |  |  |
| many other ar           | ops In this cou   | urso, students will learn some of the negative | ar approaches towards discov     | aring low dimonsional patt    | orns in high   |  |  |
| dimensional d           | eas. In this cou  | ng SVD) coordinate transformations that s      | implify dynamical models (e.g.   | t by Dynamic Mode Decor       | erns in night- |  |  |
| methods for fu          | ising measurer    | ment data with analytical models (e.g. by $k$  | alman Filtering) taming insta    | hilities and disturbances hu  | ontimal        |  |  |
| feedback cont           | rol (e.g. using l | (C.G.) and designing sensor networks for m     | onitoring complex environme      | nts (e.g. via Gaussian Proce  | sses based     |  |  |
| Kernel observe          | ers) The cours    | se should appeal to students from a variety    | of disciplines in science and    | engineering especially those  | se who wish to |  |  |
| apply techniqu          | les from machi    | ine learning and data sciences to scientific   | investigations and engineerin    | g design.                     |                |  |  |
|                         |                   |                                                |                                  | 8 460.8                       |                |  |  |
| 0001011121              | EE-561 Digita     | al Control Systems OR FE-514 / CS 535 Mac      | hine Learning                    |                               |                |  |  |
|                         | The course re     | equires mathematical maturity (linear alge     | bra, differential equations, pro | obability) and the ability to | program        |  |  |
|                         | fluently (MA)     | TLAB or Python)                                |                                  |                               | p. 68. d       |  |  |
| Grading Break           | up and Policy     |                                                |                                  |                               |                |  |  |
| Homeworks (4            | x 3%) = 12%       |                                                |                                  |                               |                |  |  |
| Mini-Projects           | 4 x 6%) : 24%     |                                                |                                  |                               |                |  |  |
| Midterm Exam            | ination: 25%      |                                                |                                  |                               |                |  |  |
| Final Examination: 30 % |                   |                                                |                                  |                               |                |  |  |
| Presentation: 4%        |                   |                                                |                                  |                               |                |  |  |
| Class Participation: 5% |                   |                                                |                                  |                               |                |  |  |
| Examination Detail      |                   |                                                |                                  |                               |                |  |  |
|                         |                   |                                                |                                  |                               |                |  |  |
| Midtorm                 | Duration: 1.5     | hrs                                            |                                  |                               |                |  |  |
| Exame                   | Exam Specific     | cations: Open book, open notes, and calcu      | lators allowed                   |                               |                |  |  |
| LXdIIIS                 |                   |                                                |                                  |                               |                |  |  |
|                         |                   |                                                |                                  |                               |                |  |  |
|                         |                   |                                                |                                  |                               |                |  |  |
|                         | Duration: 3 h     | irs                                            |                                  |                               |                |  |  |
| Final Exam              | Exam Specific     | cations: Open book, open notes, and calcu      | lators allowed                   |                               |                |  |  |
|                         |                   |                                                |                                  |                               |                |  |  |
|                         |                   |                                                |                                  |                               |                |  |  |



## Lahore University of Management Sciences

|                         |                                                                                                                                                                                                                   | ÷.                                                                                                                                                                                                                                                           |                    |                                                       |                                                                                                  |                                                        |                                                          |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--|
|                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |                    |                                                       |                                                                                                  |                                                        |                                                          |  |
| Course Le               | earning Outcomes                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              |                    |                                                       |                                                                                                  |                                                        |                                                          |  |
| CLO1:<br>CLO2:<br>CLO3: | Perform dimensionality reduction to simplify complex dynamical systems<br>Observe and control complex phenomenon by data-driven discovery<br>Implement algorithms to simplify, learn and control complex dynamics |                                                                                                                                                                                                                                                              |                    |                                                       |                                                                                                  |                                                        |                                                          |  |
| Relation t              | to EE Program Outcomes                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                    |                                                       |                                                                                                  |                                                        |                                                          |  |
|                         | Related PLOs                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              | Levels of Learning |                                                       | Teaching Methods                                                                                 |                                                        | CLO<br>Attainment<br>checked in                          |  |
| CLO1                    | PLO2-Problem Analysis                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |                    | Cog-5                                                 |                                                                                                  | Instruction, Tutorial,<br>Assignments                  |                                                          |  |
| CLO2                    | PLO1-Engineering Knowledge                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                    | g-5                                                   | Instruction,<br>Assignment                                                                       | Instruction, Tutorial,<br>Assignments                  |                                                          |  |
| CLO3                    | PLO5-Modern Tools                                                                                                                                                                                                 | PLO5-Modern Tools                                                                                                                                                                                                                                            |                    |                                                       | Instruction,<br>Assignment                                                                       | n, Tutorial, Homewor                                   |                                                          |  |
| COURSE                  | OVERVIEW                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              | <u> </u>           |                                                       | 7.6618                                                                                           |                                                        |                                                          |  |
| Week                    | Modules                                                                                                                                                                                                           | Topics                                                                                                                                                                                                                                                       |                    | Applications and Exa                                  | mples                                                                                            | Milestones                                             |                                                          |  |
| 1-2                     | Introduction                                                                                                                                                                                                      | Lectures (4): Overview; review o<br>linear dynamical systems;                                                                                                                                                                                                | f                  |                                                       | HW-1                                                                                             |                                                        |                                                          |  |
| 3-4                     | Singular Value<br>Decomposition                                                                                                                                                                                   | Lectures (3): Matrix approximation;<br>Least squares; PCA; Tensor<br>decompositions   Application: reconstruction of ren<br>sensing imagery     Tutorial (1): MATLAB/Python tools<br>and tricks for fast linear algebra   and tricks for fast linear algebra |                    | of remote                                             | Mini-project 1:<br>Reconstruct images from<br>spectral measurements<br>(Datasets to be provided) |                                                        |                                                          |  |
| 4-5                     | Dynamic Mode<br>Decomposition                                                                                                                                                                                     | Lectures (3): Nonlinear complex<br>dynamical systems; DMD<br>algorithm; sparse identification of<br>dynamical systems;<br>Tutorial (1): Using Python/MATL                                                                                                    | of<br>AB           | Application: weather models dynamics                  | , fluid <b>HW2</b>                                                                               |                                                        |                                                          |  |
| 6-7                     | Linear Control Systems                                                                                                                                                                                            | Lectures (4): Linearization; Close<br>loop linear control systems;<br>controllability; observability; LQF<br>reduced order linear models;<br>Tutorials (1): LTI systems review<br>non-EE majors                                                              | ed-<br>R;<br>for   | Applications: Mechanical sys<br>robotics              | ems; Mini-project 2: Forecast<br>Lorenz Chaotic Model<br>(Solvers to be provided)                |                                                        |                                                          |  |
| 8-9                     | Kalman Filtering                                                                                                                                                                                                  | Kalman Filtering   Tutorials (1): Review of probabili<br>and random processes                                                                                                                                                                                |                    | Applications: Air traffic control                     |                                                                                                  | HW3                                                    |                                                          |  |
| 10.11                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              | -                  | Midterm                                               |                                                                                                  |                                                        | -+ 2. 1/. 1                                              |  |
| 10-11                   | Dimensionality Lectures (4): PCA-based bala   Dimensionality realizations for feedback constraints   Reduction and System system identification of lines   Identification parameter models;                       |                                                                                                                                                                                                                                                              | d<br>;             | Applications: chemical proce<br>communication systems | ss control;                                                                                      | Mini-proje<br>Filter rada<br>discoverin<br>trajectorie | <b>ct 3</b> : Kalman<br>r returns for<br>g aircraft<br>s |  |



### Lahore University of Management Sciences

|          |                                    | Tutorials (2): Using the MATLAB     |                                        | (Datasets and Models to   |  |  |  |
|----------|------------------------------------|-------------------------------------|----------------------------------------|---------------------------|--|--|--|
|          |                                    | control systems and system          |                                        | be provided)              |  |  |  |
|          |                                    | identification toolboxes            |                                        |                           |  |  |  |
| 12-13    |                                    | Lectures (3): Koopman theory-       | Application: Environmental monitoring; | HW4                       |  |  |  |
|          |                                    | based embeddings; data-driven       | fluid mechanics;                       |                           |  |  |  |
|          | <b>K</b>                           | discovery of dynamics; Koopman      |                                        |                           |  |  |  |
|          | Koopman Operator                   | theory of neural networks;          |                                        |                           |  |  |  |
|          | Theory                             |                                     |                                        |                           |  |  |  |
|          |                                    | Tutorials (1): Working in infinite- |                                        |                           |  |  |  |
|          |                                    | dimensional vector spaces           |                                        |                           |  |  |  |
| 13-15    |                                    | Lectures (4): Gaussian Processes    | Application: Environmental monitoring; | Mini-project 4: Discover  |  |  |  |
|          |                                    | based regression; Kernel observers; | fluid mechanics; agriculture           | and control anomalies in  |  |  |  |
|          | Evolving Gaussian                  | Kernel controllers;                 |                                        | agricultural field data   |  |  |  |
|          | Processes                          |                                     |                                        | (Datasets to be provided) |  |  |  |
|          |                                    | Tutorials (1): Using the            |                                        |                           |  |  |  |
|          |                                    | MATLAB/Python GP Toolboxes          |                                        |                           |  |  |  |
| 15       | 1 Session                          | Project presentations               |                                        |                           |  |  |  |
|          | Student Presentations              |                                     |                                        |                           |  |  |  |
| Textbook | Textbook(s)/Supplementary Readings |                                     |                                        |                           |  |  |  |

#### Primary text

 Brunton, Steven L., and J. Nathan Kutz. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2022.

#### Papers, handouts, secondary texts

#### Dynamic Mode Decomposition theory

- Proctor, J.L., Brunton, S.L. and Kutz, J.N., 2016. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1), pp.142-161.
- Kutz, J.N., Brunton, S.L., Brunton, B.W. and Proctor, J.L., 2016. *Dynamic mode decomposition: data-driven modeling of complex systems*. Society for Industrial and Applied Mathematics.

#### Koopman theory

- Brunton, S.L., Budišić, M., Kaiser, E. and Kutz, J.N., 2022. Modern Koopman theory for dynamical systems. SIAM Review, Vol 64, Issue 2.
- Dogra, A.S. and Redman, W., 2020. Optimizing neural networks via Koopman operator theory. Advances in Neural Information Processing Systems, 33, pp.2087-2097.

#### **Evolving Gaussian Processes**

- Whitman, J.E., 2018. Modeling and inference of the dynamics of spatiotemporally evolving systems using evolving gaussian processes.
- Whitman, J.E., Maske, H., Kingravi, H.A. and Chowdhary, G., 2021. Evolving gaussian processes and kernel observers for learning and control in spatiotemporally varying domains: With applications in agriculture, weather monitoring, and fluid dynamics. *IEEE Control Systems Magazine*, *41*(1), pp.30-69.
- Liu, M., Chowdhary, G., Da Silva, B.C., Liu, S.Y. and How, J.P., 2018. Gaussian processes for learning and control: A tutorial with examples. *IEEE Control Systems Magazine*, 38(5), pp.53-86.
- Kingravi, H.A., Maske, H.R. and Chowdhary, G., 2016. Kernel observers: Systems-theoretic modeling and inference of spatiotemporally evolving processes. *Advances in neural information processing systems*, 29.
- •

Prepared by:

Abubakr Muhammad, Oct 13, 2022