

EE 518 - Data Analysis and AI on the Sphere

Fall 2022

Instructors	Dr. Zubair Khalid
Room No.	9-251
Office Hours	
Email	zubair.khalid@lums.edu.pk
Telephone	042 3560 8477
Course URL (if	Current:
any)	

Course Teaching Methodology (Please mention following details in plain text)

- Teaching Methodology: In-Person
- Attendance is not mandatory but maintaining a good record will help students in many ways. Students not frequently attending the lecture will find difficult to cope with the course. We may take attendance during the session and monitor your presence in the class.

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	1 hour and 15 minutes
Tutorial (per week)	Nbr of Lec(s) Per Week	0/1	Duration	1 hour (tentative)

Course Distribution		
Core		
Elective	This is an elective graduate level course.	
Open for Student Category	Open for Graduates, Seniors and Juniors	
Close for Student Category		

COURSE DESCRIPTION

Data defined on the 2-dimensional surface of the 2-sphere arise whenever the underlying configuration of the problem has a spherical geometry. Hence, such data has inherent angular dependence and is encountered in various fields of science and engineering, such as wireless communication, 3D beamforming, computer graphics, medical imaging, acoustics, geodesy, quantum chemistry, cosmology, astronomy and planetary sciences. Examples of data on the sphere include gravitational, topographic and magnetic fields of the planets, cosmic microwave background (CMB), a relic radiation from the Big Bang, pouring down on us from space, electromagnetic radiation pattern of an antenna array in spherical geometry, acoustic signal received using spherical configuration of microphones etc.

As opposed to 1D and multidimensional Euclidean domain data, which are defined on flat Euclidean domains, spherical data is defined on a curved domain due to which extension of Euclidean domain analysis and processing techniques to the spherical domain is not a trivial task. However, over the years, a lot of methods developed for Euclidean domain signals/data have been carefully extended to process data on the sphere to serve the needs of above-mentioned applications and scientific areas.

This course provides a thorough introduction to the theoretical foundations of data analysis, processing and learning on the sphere. Furthermore, the students will also learn to visualize the data in the spatial (spherical) and harmonic domain using Matlab.

COURSE PREREQUISITE(S)	
•	Pre-requisites: None
•	Co-requisites: None
	The students are expected to have a basic understanding of linear algebra, vector spaces,
	Hilbert spaces and functional analysis

COURSE OB.	JECTIVES
	In broad brush, this course aims to:
	 Provide a thorough introduction to both fundamental and advanced topics related to data representation on the sphere in both the spatial and harmonic domains.
	 Provide understanding of Hilbert space of spherical signals and different subspaces
	 understand the notion of rotation of the data and its formulation in both the spatial and spectral domain.
	 Provide a detailed review of Slepian spatial-spectral concentration problem and its applications.
	 Develop computationally efficient methods to analyze and process data on the sphere.
	 Train the students to Implement convolution neural networks on the sphere and carry out so-called geometric deep learning.
	 Apply these data analysis methods in 2-3 application areas.

Learning Outcomes	
	The students should be able to:
CLO1:	Understand the core theoretical concepts serve as basis for data representation on the sphere
CLO2:	Understand the spectral domain representation of the data using spherical harmonics
CI 03.	Understand the data acquisition methods, sampling strategies, spherical harmonic transform
CL03.	rotation convolutional neural networks and geometric deen learning
CLO4:	Implement the algorithms for data analysis on the sphere using MATLAB
Grading break up: Component Details and weightages	
Assignments, 40 %	
Quizzes, 20 %	
Mid-Exam, 20 %	
Final Exam, 20 %	

Examination Detail	
Midterm Exam	Yes/No: Yes Combine Separate: Combined Duration: 120 minutes Preferred Date: TBA Exam Specifications: TBA
Final Exam	Yes/No: Yes Combine Separate: Combined Duration: 180 minutes Exam Specifications: TBA

Textbook(s)/Supplementary Readings

- R.A. Kennedy Hilbert Space Methods in Signal Processing, Cambridge, March 2013.
- Research Articles
- Class notes will be provided to supplement these readings

Outline of Topics and Tentative Weekly Schedule		
Module	Торіс	
	Course Overview, Motivation: Applications of data analysis on the sphere	
Fundamentals,	Advanced operations on vectors, norm, angle, inner product	
Spherical	2-sphere domain, Inner product, Hilbert space	
Harmonics	Spherical harmonics, spectral domain characterization	
(2-3 weeks)	Subspaces: Space-limited, band-limited, azimuthally symmetric and order-	
	limited subspaces	
	Rotations on the sphere	
Rotations and	SO(3) representation	
Convolution	Harmonic domain characterization of rotation	
(2 weeks)	SO(3) rotation group – data representation	
(Wigner-D functions	
	Convolution on the Sphere	
Sampling and	Sampling of data on the sphere and SO(3)	
Data	Notion of optimal dimensionality	
Acquisition	Equiangular sampling, Gauss-Legendre sampling, Optimal dimensionality	
(2 weeks)	sampling	
Slenian	Slepian concentration problem on the sphere	
Spatial-	Band-limited eigenfunctions with optimal spatial domain concentration	
Spectral	Space-limited eigenfunctions with optimal harmonic domain concentration	
Concentration	Equivalence of problems	
Problem	Slepian Basis - Properties and significance for data representation	
(3 weeks)	Computation of Slepian functions for different spatial regions	
,	Application: Multi-taper spectrum estimation on the sphere	
Joint-domain	Spatial-Spectral and Spatial-Slepian transforms	
transforms	Joint domain representations	
(2 weeks)	Filtering and estimation in the joint domains	
Stochastic	Anisotropic processes, isotropic processes, azimuthally symmetric processes	
Processes on	Spatial statistics	
Sphere (1 week)	Application to climate modelling	
Spherical CNNs	Convolution formulation on the sphere	
(2 weeks)	Architecture of convolutional neural network and learning framework	