

CS/EE-3xx, 5xx Parallelprocessing with CUDA Fall 2023

Course Catalog Description

Graphics processors (GPUs) have found new applications in AI, Data Science and computation intensive fields in last decade or so. Building fast and efficient applications to process large amount of data requires programming competencies using GPUs. Currently NVIDIA has the largest share of GPUs. NVIDIA's parallel computing platform and API, CUDA, allows General Purpose GPU programming (GPGPU). Major Components of this course include Memory Hierarchy, working with the CUDA compiler driver (nvcc), efficient programming using blocks, grid concepts used in parallel processing and CUDA Applications in Linear Algebra and AI etc.

Course Details	
Credit Hours	3
Core	None
Major Elective	EE, CS
Open for Student Category	Juniors, Seniors, Graduate
Closed for Student	
Category	

Course Prerequisite(s)/Co-Requisite(s)

Pre-requisites: Good Programming Experience in C, C++ (Junior level standing. Must have experience with OOP).

Course Offering Details						
Lecture(s)	No. of Lec(s) Per Week	2	Duration	75 min	Timings and Venue	
Recitation (per week)	No. of Rec (s) Per Week	0	Duration			
Lab (if any) per week	N0. of Session(s) Per Week	0	Duration			
Tutorial (per week)	N0. of Tut(s) Per Week	х	Duration			

Instructor	Dr. Jahangir Ikram
Room No.	317
Office Hours	ТВА
Email	jikram@lums.edu.pk
Telephone	8201
Secretary/TA	ТВА
TA Office Hours	ТВА
Course URL (if any)	LMS will be used

Lahore University of Management Sciences

Course Learning Outcomes	
	The students should be able to:
CLO1	Develop and Apply Basic Knowledge in CUDA Memory Models
CLO2	Develop and Apply Basic Knowledge in CUDA programming environment
CLO3	Design Algorithms using Threading
CLO4	Analyze Graphics Programming Algorithms
CLO5	Design Graphics Programming Algorithms

Relation to EE Program Outcomes					
EE-220	Related PLOs	Level of Learning	Teaching Methods	CLO Attainment checked in	
CLO1	PLO1	?	Instruction, Assignments	Midterm, Final	
CLO2	PLO2	?	Instruction, Assignments	Midterm, Final	
CLO3	PLO3	?	Instruction, Assignments	Midterm, Final	
CLO4	PLO2	?	Instruction, Assignments	Midterm, Final	
CLO5	PLO3	?	Instruction, Assignments	Midterm, Final	

Grading Breakup and Policy	
Quizzes (8):	20%
Assignments (3):	40%
Midterm Exam:	15%
Final Examination:	25%

Course O	verview		
Lecture	Topics	Recommended Readings	CLO Covered
1.	 Introduction to GPU Programming, Applications of CUDA CUDA Programming Model and the CUDA C API 	Chapter 1 (JS ¹)	
2. 3.	 CUDA Memory Models, Parallel Thread Execution and Basic Interesting applications in Fractals Introduction to the CUDA Computing Tools 	Chapter 2,3,4(JS ¹)	CL O 1
4. 5. 6. 7. 8.	 Shared Memory Optimization, Threading and Thread Cooperation Vector Sum optimization Dot-Product optimization Quiz 02: Assignment 01 Assigned 	Chapter 5(JS1)	
9. 10. 11. 12.	 How-To examples covering topics such as: Using support of GPU-accelerated libraries Applications to Zero-Copy Memory, Asynchronous Data Transfers, Unified Virtual Addressing, Peer-to-Peer Communication, Concurrent Kernels, Quiz 03: Assignment 02 		
13. 14.	Basic linear algebra operations: Matrix transpose Matrix-matrix multiplication Parallel sum of large arrays Viva: 25 th 26 th and 27 th February 2022		CL O 4
	Midterm Exam		

Lahore University of Management Sciences

15. 16. 17.	 Performance measurement and optimization Bandwidth tests Application profiling using timers Quiz 04: Assignment 3 	CLO 5
18. 19. 20. 21.	 CUDA Threading and Memory Models In-depth Memory Bank and Shared Memory Conflicts Parallel Patterns High level CUDA wrappers (Introduction to Thrust) Sparse Matrix Vector Multiplication Optimization Tips Quiz 05: Assignment 4 	CLO2 - CLO5
22.	Assignment 05 Quiz 06: Assignment 03 Viva: 25 th 26 th 27 th March 2022	
23. 24.	CUDA Application	
25. 26. 27. 28.	Quiz 07: Quiz 08: 11 th April 2021	
	Final Exam	

Textbook(s)/Supplementary Readings

[1] Textbook 1: "CUDA by Example – An Introduction to General Purpose GPU Programming" by Jason Sanders and Edward Kandrot, NVIDIA Corporation.

[2] Test Book 2: The CUDA Handbook: A Comprehensive Guide to GPU Programming by Nicholas Wilt, Addsion- Wesley Professional, 2013.

[3]

Examination Det	Examination Detail		
Midterm Exam	Yes/No: Yes		
Final Exam	Yes/No: Yes Duration: 3:00 hrs Exam Specifications: Closed Book, Closed Notes, Calculator Allowed		

Prepared by:	Dr. Jahangir Ikram
Date:	June 15, 2023 (draft)