

ChE 318 – Fundamentals of Biochemical Engineering / ChE 512 – Biochemical Engineering Fall 2022

Fall 2022

Instructor	Dr. Shahana Khurshid	
Room No.	SSE 4 th floor, R. 'Bob' Byron Bird Wing, 9-457A	
Office Hours	TBA	
Email	shahana.khurshid@lums.edu.pk	
Telephone	3739	
Teaching Assistant	ТВА	

Course Teaching Methodology

Teaching Methodology: The class is designed to be taught synchronously in person.

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes each (T Th 10:00-11:15)
Recitation/Lab (per week)	Nbr of Lec(s) Per Week		Duration	
Tutorial (per week)	Nbr of Lec(s) Per Week	1	Duration	60 min

Course Distribution		
Core	No	
Elective	Yes	
Open for Student Category		
Close for Student Category	Not for freshmen students	

COURSE DESCRIPTION

Biochemical engineering is the application of chemical engineering to biological systems. Biological systems are complex. They obey the rules of chemistry and physics and are susceptible to engineering analysis. Biochemical engineers use living cells on commercial scales in the biotechnology, food, and pharmaceutical industries, to develop new medicines, semisynthetic organs, nutritious foods, degrade pollutants, etc. As a biochemical engineer you would engineer and operate systems that contain living cells and biomolecules, design and operate bioprocesses to manufacture biomolecules and drugs, and apply biological principles to the engineering of living cells. This course will give you the foundational knowledge of biochemical engineering which will opens doors for pursuing careers or graduate studies in biotechnology, bioengineering and the pharmaceutical industry. No preliminary knowledge of chemical engineering is assumed in this course and we will build on the concepts taught in freshmen chemistry and biology. We will cover enzyme technology; design of bioreactors and microbial fermentations; separations of biological products; microorganisms in chemical and biochemical syntheses. These will include concepts of heat and mass transfer, as well as the application of quantitative engineering principles to the analysis of biological processes, including thermodynamics, kinetics and stoichiometry. We also aim to cover cell culture and cellular engineering including genetic manipulation of cells by classical and recombinant DNA techniques.

COURSE PREREQUISITE(S)

• CHEM 101 Principles of Chemistry and BIO 101 Introductory Biology. Or graduate standing.

COURSE OBJECTIVES				
•	Provide an introduction to the core topics in biochemical engineering connecting to the concepts taught in freshmen science courses.			
•	Cover topics in enzyme kinetics and industrial utilization of enzymes; microbial growth kinetics; cell culture and cellular engineering.			
•	Explain how to design bioreactors and microbial fermentations.			
	Apply guantitative engineering principles to the applysic of high gives proceeds, including thermodynamics, kinetics and staichiometry			

Apply quantitative engineering principles to the analysis of biological processes, including thermodynamics, kinetics and stoichiometry.

Learning Outcomes		
CLO1	Explain how enzymes work and how they can be used in industrial applications	
CLO2	Describe cellular growth kinetics in batch cultures	
CLO3	Compare different types of bioreactors	
CLO4	Apply knowledge of cell culture to bioreactor design and genetic engineering	
CLO5	Analyze biochemical engineering literature and identify the biochemical engineering methods utilized	

Relation to program outcomes				
CLO's	Related PLO's	Level of learning	Teaching methods	CLO attainment check
CLO1	PLO 1	C2	Instructions, problem solving	Homeworks, quizzes and exams
CLO2	PLO 1 & 2	C2	Instructions, problem solving	Homeworks, quizzes and exams
CLO3	PLO 1, 2 & 3	C4	Instructions, problem solving	Homeworks, quizzes and exams
CLO4	PLO 1 & 2	C3	Instructions, problem solving	Homeworks, quizzes and exams
CLO5	PLO 4 & 10	C4	Instructions	Assignments and quizzes

Grading break up: Component Details and weightages

Home Work: 20% (4 homeworks)

Quizzes and assignments: 25% (3 quizzes, 1 assignment to read and present a journal article in biochemical engineering)

Midterm Examination: 25%

Final Examination: 30%

Examination Detail		
Midterm Exam	Yes/No: Yes Combine Separate: Duration: 75 min Preferred Date: Exam Specifications: Closed book	
Final Exam	Yes/No: Yes Combine Separate: Duration: 120 min Exam Specifications: Closed book	

COURSE OVER	RVIEW (subject to modification)		
Week	Topics	Recommended Reading	Objectives/ Application
Week # 1	Introduction to Biochemical Engineering	S&K Chapter 1	Describing what is a Biochemical Engineer
Week # 1	Enzymes	S&K Chapter 3	
Week # 2	Enzyme Kinetics, Measurements.	S&K Chapter 3	Describing basics of enzymes
Week # 3	Immobilized Enzyme Kinetics	S&K Chapter 3	Describing enzyme technology
Week # 4	Applications of enzyme catalysis.	S&K Chapter 3	Using enzymes in industry
Week # 5	Microbial Growth. Batch Cultivation.	S&K Chapter 6	Learning how cells grow
Week # 6	Models of Microbial Growth.	S&K Chapter 6	Learning how to use cell growth
Week # 7	Microbial Growth. Continuous Culture.	S&K Chapter 6	Learning how to use cell growth
	Stoichiometry of Microbial Growth and	S&K Chapter 7	Learning how to use cell growth
Week # 8	Product Formation		
	Midterm Exam		
Week # 9	Bioreactor Design for suspension cultures	S&K Chapter 9	Learning principles of bioreactor design
Week # 10	Bioreactor Design for immobilized cultures	S&K Chapter 9	Learning principles of bioreactor design
Week # 11	Selection and Scale-up of Bioreactors	S&K Chapter 10	Learning mass and heat transfer concepts for bioreactor design

Week # 12	Operation and Control of Bioreactors	S&K Chapter 10	Learning bioreactor design
	Cell Culture	S&K Chapter 12	Describe basics of cell culture
Week # 13	Cell Culture and Mixed Culture	S&K Chapter 12 and 16	Describe basics of cell culture
Week # 14	Cellular Engineering	S&K Chapter 14	Utilizing genetically engineered organisms
	Student Presentations on Journal Articles		Analyzing biochemical engineering literature
Week # 15	Medical Applications of Biochemical	S&K Chapter 15	Linking to medical devices, tissue
	Engineering		engineering, and other aspects of medicine
Week # 16	Final Exam		

Textbook

Required Textbook: Bioprocess Engineering: Basic Concepts, 3rd Edition, Prentice Hall, by Michael Shuler, Fikret Kargi, Matthew DeLisa, 2017. ISBN-10: 0137062702

Teaching Philosophy

I expect students to come prepared for lectures by reading the recommended material beforehand. To incentivize students to do this, I will occasionally hold a short quiz (usually at the start of class) to test some basics of the chapter/sections. Reading the material before prepares you to better absorb the material taught in class.

I will not be able to cover every topic in detail in the lectures. This is also why you are responsible for reading all the recommended material. If you don't understand any of the material, make use of the office hours of the instructor(s)/teaching assistant(s). I believe that 2-way interaction between the instructor and the students leads to better learning and will also try to facilitate that to the extent that our class time permits.

To succeed in college courses, you should expect to spend 3 hours reading and practicing problems for every 1 hour spent in class. Think about homework problems before you come to office hours to discuss them. Work on your own on homework questions; if you are stuck, then seek help from your peers and instructors. Seeking help without first thinking through the questions on your own will limit your learning which can affect your performance on exams. Study groups can be useful, but view your classmates as fellow teachers, not as a quick way to get the answer.

Keep up with the material. Get help early if you are having trouble.

Code of Conduct for Class Participation and Group Work with Peers

- Attend classes regularly, come prepared by having done the reading, take good notes, ask questions.
- Be attentive and respectful in class. Consider others' perspective with respect even if you disagree.
- Be proactive and flexible and take ownership of your learning experience as individuals and as a group.

Homework Policy

Assignments will be given to help you practice your problem-solving skills. I strongly encourage you to attempt problems on your own before working in groups, if all your work is done in a group setting you are not adequately preparing for quizzes and exams. Copying from other students or other sources (e.g. solution manuals, old solutions, etc.) is viewed as academic misconduct and will be dealt with seriously.

Timely submissions of homework help you stay on track. To discourage late submissions, 5% will be deducted from your score per day after the due date (e.g. if you submit homework 2 days late the maximum you can get will be 90%) for the first 3 times you submit homework late. If you submit homework late more than 3 times, your submission may only be accepted for documented cases of family emergency or illness.

Grading Policy

- The final grade will be on a relative basis.
- We will strive to fairly grade all of your assignments and exams. In all these evaluations, you will be penalized if there is a
- serious conceptual or mathematical mistake, error in the use of appropriate units, or indication of copying from other students.
 If you feel that an assignment or exam has been graded incorrectly you may ask for a re-grade. All requests for re-grading any work must be presented within 7 days of the day the work is returned to the class (note: If a quiz is returned to the class on a Tuesday but you aren't there, re-grades requests still are due by the following Tuesday even though you missed the class when the quiz was returned). Clearly state reasons for requesting a re-grade, enumerating what issues you believe were incorrectly addressed. When work is submitted for a re-grade, the entire document (exam or homework) will be re-graded, NOT just the section or problem for which the re-grade was requested.

Academic Honesty

I expect that you:

- Take responsibility for your own learning.
- Attend classes regularly.
- Do not attempt to take credit for any work that you did not prepare yourself.
- Be respectful.

Any instances of academic dishonesty in this course (intentional or unintentional) will be dealt with swiftly and severely. Potential penalties include receiving a failing grade on the assignment in question or in the course overall. Your work (on homeworks, quizzes, exams, other submitted materials) must comply with the policies described in the LUMS Student Handbook.

Harassment Policy

There is absolutely zero tolerance for any behaviour that is intended, or has the expected result of making anyone uncomfortable and negatively impacts the class environment, or any individual's ability to work to the best of his/her potential. In case a differently-abled student requires accommodations for fully participating in the course, students are advised to contact the instructor so that they can be facilitated accordingly.

If you think that you may be a victim of harassment, or if you have observed any harassment occurring in the purview of this class, please reach out and speak to the instructor. If you are a victim, it is strongly encouraged to reach out to the Office of Accessibility and Inclusion at <u>oai@lums.edu.pk</u> or the sexual harassment inquiry committee at <u>harassment@lums.edu.pk</u> for any queries, clarifications, or advice. You may choose to file an informal or a formal complaint to put an end to offending behaviour. You can find more details regarding the LUMS sexual harassment policy at: <u>https://mgshss.lums.edu.pk/lums-harassment-policy</u>. To file a complaint, please write to <u>harassment@lums.edu.pk</u>. In addition to LUMS resources, SSE's Council on Belonging and Equity is committed to devising ways to provide a safe, inclusive and respectful learning environment for students, faculty and staff. To seek counsel related to any issue, please feel free to approach either a member of the council or email at <u>cbe.sse@lums.edu.pk</u>.