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Quantum field theory with a focus on conformal field theory

Abstract

This work begins by delineating the intuitive meaning of a quantum field, which is then made
precise through various mathematical tools. The quantization programs of canonical quantization
and path integral formalism are introduced, and important physical quantities called correlators are
calculated. The focus of the work is thus kept in such a way that the subset of quantum field theo-
ries called conformal field theories (which correlators play an important role in) could conveniently
be brought up. The discussion of this subset, in turn, is kept in such a manner that 2-dimensional
conformal field theories could easily be introduced.

These 2-dimensional theories are then discussed at great length, and such important topics as
primary fields and operator product expansions are broached. Finally, free, massless bosonic and
fermionic fields on an infinite cylinder are presented as examples of 2-dimensional conformal field
theories, and their various aspects are looked upon. The work ends by studying the famousWess-
Zumino-Witten model as an instance of conformal field theories with Lie algebraic symmetry and
showing that the model is indeed a conformal field theory in 2 dimensions via the so-called Sug-
awara construction.
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0
What is a quantum field?

A field, in classical field theory, is a quantity defined at every point of spacetime, some good ex-

amples being the gravitational and the electromagnetic fields. The primary motivation to intro-

duce such a concept has to do with the notion of locality; we want laws of nature that are local.

Loosely speaking, what it means is that “action at a distance,” as seen in the old laws of Newton

and Coulomb, is not allowed. It is well known that the theories of Einstein andMaxwell fix these

laws by introducing fields to mediate the aforementioned “action” in a local manner. Indeed then,

1



introduction of fields does yield theories that are local, something which constitutes a key motiva-

tion to bring fields into quantummechanics and consider a quantum field theory. Before going on

to actually formulate and work with such a theory, however, we need to define what we mean by the

term quantum field, and a good way to do so is to begin by seeing how quantization—promotion of

classical quantities, or degrees of freedom, to operators—fits with fields.

As its name implies right away, a quantum field is simply a classical field quantized, and as might

easily be guessed, a quantum field theory entails simply the quantization of a classical field. Just

as the classical degrees of freedom are promoted to operators in quantummechanics, so are the

field degrees of freedom—or the degrees of freedom of a classical field—promoted to operators in

quantum field theory. A degree of freedom in the latter case corresponds to the value of a classical

field at a point of spacetime, and since spacetime has infinitely many points, a classical field has in-

finitely many degrees of freedom. With all of them promoted to operators, we could say that a field

in quantum field theory, or a quantum field, is an operator-valued function of points in spacetime.

Encapsulating quantization as it applies to classical fields, this simple definition makes clear what a

quantum field means and entails. In addition to bringing locality in, however, what motivations do

we have to concoct such a contraption? It turns out that we have many, but we look at only some of

the most salient ones here. Apart frommotivating the need for quantum fields, they further consoli-

date the definition we gave above.

A major motivation comes from processes that particle numbers change in. Contrary to what

one might think, particles could be pretty ephemeral in terms of existence; that is, they could be

both created and destroyed. Supported by incontrovertible evidence that comes from large particle

colliders (see Fig. 1), this fact makes it absolutely clear that theories lacking a mechanism to deal with

changing numbers of particles are bound to be inadequate. What they need is an entity that affords

the ability to both create and destroy particles at every point of spacetime, and ordinary quantum

mechanics provides us with a major hint as regards this entity, namely that it must accouter every
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spacetime point with an operator resembling the creation/annihilation ones. Seeking to equip each

spacetime point with an operator, however, we note how it is the same as subjecting a classical field

to quantization, which promotes the field values to operators everywhere and gives what we referred

to as a quantum field above. A quantum field could then also be viewed as an entity that has the

capacity to both create and destroy particles at every point of spacetime and adequately describe

processes that particle numbers are not conserved in.

Figure 1: Rich particle production in the Large Hadron Collider (LHC).We need a theory that goes beyond theories with
fixed numbers of particles and encapsulates the fact that particles could be both created and destroyed.

Just to give an example of such a process, we note that when a particle of massm is localized to

distances shorter than λ = ℏ/mc, the uncertainty in its energy is high enough to make parti-

cle/antiparticle pairs pop out of vacuum (see Fig. 2). Known as the Compton wavelength, the dis-

tance ℏ/mc gives the point that the concept of a fixed number of particles completely breaks down

at, and it must be remembered that the new particles entering the picture are of great physical con-

sequence; they exert forces, transfer energy, and do almost anything that a particle could. To encap-

sulate their effects and accurately describe the physics of particles confined to distances smaller than

their respective Compton wavelengths, we need a framework embracing the capacity to both create

and destroy particles, a framework obtained by introducing such things as quantum fields.
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Figure 2: Particle/antiparticle pairs popping into and out of existence in vacuum. Usually taken as being “empty,”
vacuum teems with particle/antiparticle pairs at small scales, where energy uncertainties are high.

A further spur to consider quantum fields and related paraphernalia comes from what is known

as the indistinguishability of elementary particles. Simply put, it refers to the fact that a neutrino

produced in the Large Hadron Collider (LHC) is identical—in every respect conceivable—to a neu-

trino produced in the wake of a supernova billions of light-years away. This observation is just too

remarkable to not warrant a solid explanation. What is it after all that ensures such a great deal of

precision when it comes to creating elementary particles at different points of spacetime? Even if we

posit that the “material” to create elementary particles is the same everywhere, we need some ma-

chinery to ensure the aforementioned precision—to ensure that the same amount of “material” is

used everywhere and in the right proportions. This universal machinery, spanning all of spacetime,

could only come from a quantity defined at every spacetime point, and as we state right at the out-

set, such a quantity is a field. Having been led to consider some field, we reckon that our field needs

to be capable of making particles too, and we thus require that it be an operator field, or, as we have

been calling it, a quantum field. It is hence possible to see a quantum field as an invisible swathe too

that spans all of spacetime and could make particles of the same kind anywhere and anytime.

We see how naturally the indistinguishability of elementary particles and processes involving

particle creation and destruction lead us to consider quantizing a classical field and working with
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a quantum field. There are other motivations to consider quantum fields as well: the problem of

negative energies, bosonic/fermionic statistics, and so on. However, we leave them and their details

for more advanced works (and our subsequent chapters) to cover. With what we have done up till

now, we could say that we have delineated clearly the meaning of a quantum field, thereby attaining

the goal we set for this introductory chapter. In the next chapter, we move to making this meaning

precise via mathematics and showing how quantum fields are obtained from the quantization of

classical ones.
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“Anyone who is not shocked by the quantum theory does

not understand it.”

Neils Bohr

1
From classical to quantum fields2,6

Having seen the intuitive meaning of quantum fields and the motivations we have to study them,

we proceed to making things precise in this chapter. Our approach begins with a brief discussion

of some useful elements of classical field theory, such as Lagrangian densities, equations of motion,

Noether’s theorem, and so on. We then introduce the canonical quantization program, discussing

it in the context of ordinary quantummechanics and generalizing it to the realm of classical fields.

Finally, we give an explicit demonstration of canonical quantization by applying it to the Klein-
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Gordon and Dirac fields. As a freebie toward the end, we discuss what is called the path integral

formalism as a quantization scheme alternate and equivalent to the scheme of canonical quantiza-

tion.

1.1 Classical field theory

As we said in chapter 0, a field in classical field theory is a quantity defined at every point of space-

time. It could, therefore, be written as φ(x), where φ represents the field and x represents the space-

time point that the field takes the value φ(x) at. It should immediately be clear that we are dealing

with infinitely many degrees of freedom here: there is at least one, namely the field value φ(x), for

every point of spacetime, x.

The fundamental quantity governing dynamics in classical field theory is the action S, which is

the time integral of something known as the Lagrangian. Denoted by L, the Lagrangian itself is

taken as being the spatial integral of a Lagrangian density,L, which is a functional of the field φ and

its derivative ∂μφ. We could summarize these relations via

S =
∫

dtL(t) =
∫

dt
∫

d3xL[φ, ∂μφ] =
∫

d4xL[φ, ∂μφ]. (1.1)

SinceL usually depends on several fields and their derivatives, it is better to write it asL[φa, ∂μφa]

in the integrals above, the Latin subscript a being used to label the fields under consideration. How-

ever, all through this work, we drop this Latin subscript and take it as being understood that we

could be dealing with several fields at once.

According to the principle of least action, the evolution of a system of fields from an initial config-

uration to some final one occurs along a configuration space “path” that S is stationary for. What it

means is that a small variation in that “path” does not change S in any significant way. Mathemati-
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cally, we could impose this condition in the following manner:

0 = δS

=

∫
d4x

(
∂L
∂φ

δφ +
∂L

∂
(
∂μφ
)δ (∂μφ))

=

∫
d4x

(
∂L
∂φ

δφ − ∂μ

(
∂L

∂
(
∂μφ
)) δφ + ∂μ

(
∂L

∂
(
∂μφ
)δφ)) . (1.2)

The last term here gives us a surface integral over the boundary of the spacetime region of integra-

tion. Assuming that the initial and final configurations are given, we could say that δφ is zero at

the temporal beginning and end of this region. If we further assume that δφ vanishes at the spa-

tial boundary too, then the surface integral yields nothing but zero. It is easy to factor δφ from the

remaining two terms and note that since the integral has to vanish for arbitrary δφ, the quantity

multiplying δφmust vanish at all points in the region. Thus,

∂μ

(
∂L

∂
(
∂μφ
))− ∂L

∂φ
= 0. (1.3)

This equation is the Euler-Lagrange equation of motion for the field φ, and ifL depends on more

than one field, there is one such equation for each.

In going from the action to the Euler-Lagrange equations, we have presented what is commonly

known as the Lagrangian formulation of classical field theory, or simply as the Lagrangian field

theory. It is good in that all expressions it involves are explicitly Lorentz invariant, something mean-

ing that this formulation is particularly suited to relativistic dynamics. However, since our goal

is to quantize fields, we want a formulation that is suited to the canonical quantization program,

which we introduce later in this chapter. It turns out that such a formulation is what is known as

the Hamiltonian formulation of classical field theory, or simply as theHamiltonian field theory. It

8



begins with a field, φ, and its conjugate momentum field, π, which is defined as

π(t, x) =
∂L
∂φ̇

, (1.4)

and then introduces the so-calledHamiltonian densityH = πφ̇ − L, which could be integrated

over space to obtain theHamiltonian H. Here, we again recall that we could be dealing with more

than one field, and in that case, the first term inH is to be replaced by
∑

a πaφ̇a; however, as we did

before, we choose to drop the Latin index a and take it as being understood that we could be deal-

ing with several fields. It should be noted that we have sacrificed manifest Lorentz invariance here

by singling time out as a special coordinate. In fact, the dynamics of the field φ and its conjugate

momentum field π are governed by

φ̇(t, x) =
∂H
∂π

and

π̇(t, x) = −∂H
∂φ

,

which, unlike the Euler-Lagrange equations, do not look Lorentz invariant at all. Despite this fact,

however, the physics they describe has to be the same as that described by the Lorentz invariant

Euler-Lagrange equations, for if we start with a relativistic theory, our results ought to be Lorentz

invariant even if the intermediate steps are not.

Having presented the Lagrangian and Hamiltonian field theories, we move to the last elements of

classical field theory whose discussion we deem indispensable: symmetries and conservation laws. It

is difficult to overstate the importance of symmetries in classical field theory—especially continuous

ones as we would see—and the same could be said about conservation laws. Whereas a symmetry

could be roughly defined as a transformation that leaves something invariant, a conservation law

stipulates that some quantity does not change with time. What is interesting is that the two are
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intimately linked by a famous theorem known as the Noether theorem, which simply states that to

every continuous symmetry corresponds a conserved quantity (or a conservation law). We begin

our discussion with a simple derivation of Noether’s theorem and then proceed to demonstrating

its use by applying it to one of the simplest instances of continuous symmetries in physics, namely

spacetime translation.

Considering φ(x), we introduce the following continuous transformation.

x′μ = xμ + ωa
∂xμ

∂ωa
;

φ′(x′) = φ(x) + ωa
∂F
∂ωa

. (1.5)

The ωa are infinitesimal parameters controlling the respective changes in xμ andF , whereF is de-

fined in such a way that φ′(x′) = F(φ(x)). It is important to note that the field φ, taken as a

mapping from spacetime to some target spaceM (φ : R4 → M), is affected in two ways: the

functional change φ′ = F(φ) and the argument change x → x′. This way of looking at the

transformation in Eq. (1.5) is called the active point of view (see Fig. 1.1)—in contrast to the passive

point of view, which sees the transformation x → x′ merely as a relabeling of coordinates, or the

observer’s changing perspective.

Figure 1.1: An active transformation (here a rotation). The arrows show a vector field that itself undergoes a rotation
identical to that of the coordinates. In the passive view, the observer rotates—and in the opposite direction.
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It is not surprising that the transformation being considered would transform the action as well,

which depends on φ and ∂μφ after all. Some transformations of this kind, however, could be such

that the transformed action is the same as the untransformed one; that is, the action is left invari-

ant. These transformations comprise a subset of the transformations described by Eq. (1.5) and

are known as symmetries (continuous symmetries to be precise). According to Noether’s theorem,

each of them is associated to a conserved quantity and hence a conservation law. We would use the

variation of the action to derive both. Using S′ to denote the transformed action, we could write

S′ =
∫

d4x
(
1+ ∂μ

(
ωa

∂xμ

∂ωa

))
× L

(
φ + ωa

∂F
∂ωa

,

[
δνμ − ∂μ

(
ωa
(
∂xν

∂ωa

))](
∂νφ + ∂ν

[
ωa
(
∂F
∂ωa

)]))
.

Then, the variation δS = S′ − S contains terms with no derivatives of the ωa, and they sum up to

zero if the ωa are rigid (independent of position). With this thing, δS involves only the first deriva-

tives of the ωa and could be written as

δS = −
∫

d4x jμa∂μωa,

where

jμa =
(

∂L
∂(∂μφ)

∂νφ − δμνL
)

∂xν

∂ωa
− ∂L

∂(∂μφ)
∂F
∂ωa

. (1.6)

Known as the current associated with the transformation in Eq. (1.5), the quantity jμa is of central

importance to Noether’s theorem. Integration by parts turns the expression for δS above into

δS =
∫

d4x ∂μj
μ
aωa.

If the ωa correspond to a symmetry now, then the variation δS above should equal 0 for any ωa,
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something implying that ∂μj
μ
a should equal 0 for all points in the spacetime integration volume.

This very result, expressly,

∂μj
μ
a = 0, (1.7)

is what we refer to as a conservation law, for it requires that a particular quantity stay constant with

time, or, in other words, remain conserved. Also known as the conserved charge, this quantity turns

out to be

Qa =

∫
d3xj0a,

and it happens to be conserved since its time derivative vanishes:

Q̇a =

∫
d3x∂0j0a

= −
∫

d3x∂ijia

= −
∫

jiadσi,

where dσi is a surface element at spatial infinity, so given that jia vanishes sufficiently fast as x → ∞,

which is always assumed to be the case, we could say that Q̇a = 0. Now, since ∂μj
μ
a = 0 emerged

as a consequence of our assuming that the continuous transformation of Eq. (1.5) comprised a sym-

metry, we have shown that to every continuous symmetry corresponds a conservation law and a

conserved quantity. Put simply, we have derived the Noether theorem and could now go about

considering its application to spacetime translation.

If we replace ωa by ωγ in x′μ = xμ + ωa(∂xμ/∂ωa), we obtain x′μ = xμ + ωμ, which indicates

an infinitesimal spacetime translation by the vector ωμ; moreover, supposing that the field itself does

not undergo any change—other than that imparted to it by the active translation of the spacetime

coordinates—we have thatF(φ) = φ, and hence, ∂F/∂ωa = 0. Then, using this fact and that

12



∂xμ/∂ωa = ∂xμ/∂ωγ = δμγ together with Eq. (1.6), we find the current to be

jμγ =
∂L

∂(∂μφ)
∂γφ − δμγL. (1.8)

Calling it Tμ
γ instead (for reasons of convention), we see that it satisfies ∂μT

μ
γ = 0 with the con-

served charge

Pγ =
∫

d3xT0
γ,

which happens to be the four-momentum. That is, translational symmetry in spacetime spells con-

servation of both energy and momentum, and the conserved charge Tμ
γ is known as the energy-

momentum tensor, a quantity which holds central importance as subsequent portions of this work

would show.

The discussion of Noether’s theorem done, we end this section with a brief remark about jμa,

namely that its definition is ambiguous to some extent. The expression in Eq. (1.6) is termed “canon-

ical,” for there are other admissible expressions as well; in fact, we may add to it the divergence of an

antisymmetric tensor without affecting its conservation: jμa → jμa + ∂νB
νμ
a , where Bνμ

a = −Bμνa .

Indeed, ∂μ∂νB
νμ
a = 0 by antisymmetry, so ∂μj

μ
a still equals 0.

1.2 Canonical quantization

This section takes the first step toward the central goal of this chapter—going from classical fields to

the quantum ones—by presenting the scheme, or program, of canonical quantization. It essentially

is a recipe that takes one from the dynamics of classical degrees of freedom to the realm of quantum

theory. In classical mechanics, for example, it asks us to take the generalized coordinates qa and their

conjugate momenta pa (= ∂L/∂q̇a, where L is the Lagrangian of classical mechanics) and promote

them to the operators q̂a and p̂a. Then, it prescribes that we replace the Poisson bracket structure of

13



classical mechanics with the following commutation relations.

[q̂a, q̂b] =
[
p̂a, p̂b

]
= 0;[

q̂a, p̂b
]
= ιδba.

Finally, we are required to put these operators in place of their classical counterparts in the Hamilto-

nian of classical mechanics and work out the spectrum of the (Hamiltonian) operator that results.

For fields, we do the same, but in lieu of qa and pa, we use the fields themselves and their conju-

gate fields, and after promoting them to operators (operator-valued functions of spacetime to be

precise), we define for them what are known as equal-time commutation relations. That is,

[φ̂(t, x), φ̂(t, y)] = [π̂(t, x), π̂(t, y)] = 0;

[φ̂(t, x), π̂(t, y)] = ιδ(3)(x− y). (1.9)

It must be noted here that for more than one kind of field, we would also have to define “interfield”

commutation relations, and as is conventionally the case, we would set them equal to 0; that is, a

nontrivial commutation relation (the second line in Eq. (1.9)) is obtained only from a field and

its corresponding conjugate field. With these relations having been defined, we could proceed to

evaluate the Hamiltonian for our system,

Ĥ =

∫
d4x
(
π̂(x) ˙̂φ(x)− L̂

)
,

and then go about trying to work out what we called its spectrum above.

As a simple implementation of this scheme of quantization, we present its application to one

of the simplest of the systems in all of classical mechanics: an infinitesimal particle of massm that

moves in potentialV(x). Calling the coordinate of the particle x and the conjugate momentum p,

14



we consider the operators x̂ and p̂ and impose the commutation relation [x̂, p̂] = ι. Then, knowing

that the Lagrangian is

L̂ =
p̂2

2m
− V(x̂),

we find the Hamiltonian to be

Ĥ = p̂ ˙̂x− L̂

= p̂
(

p̂
m

)
−
(

p̂2

2m
− V(x̂)

)
=

p̂2

2m
+ V(x̂),

and to make the calculation of the spectrum simpler, we assume thatV(x) is identically equal to 0.

The spectrum, in this case then, turns out to be consisting of all positive reals; that is, any positive

real number gives a possible value for the energy of the particle. To clarify this point further, we

note that withV(x) set equal to 0, the particle is not confined in any manner whatsoever, something

meaning that its state could be the momentum eigenstate
(
1/
√
2π
)
exp(ιpx)with p ∈ R. Then,

since the Hamiltonian is p̂2/2m, we know from ordinary quantummechanics that the energy is

p2/2m, which could be any positive real given that p is arbitrary. This thing completes application

of the canonical quantization program to the system of the point particle. As to its applications to

fields, we present them in the next section.

1.3 Klein-Gordon andDirac fields

Being a (free) scalar field, theKlein-Gordon field (orKG field for short) is the simplest to be studied

both classically and quantummechanically; therefore, it is the first field that we choose to demon-

strate the full application of canonical quantization to. The Lagrangian density governing the KG
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field is

L =
1
2
(∂μφ)2 −

1
2
m2φ2, (1.10)

which we could use to calculate the conjugate field π = ∂L/∂φ̇ = φ̇. Then, going with the

prescription of the canonical quantization program, we promote φ and π to operators and impose

the equal-time commutation relations in Eq. (1.9). Promotion of φ and π to operators renders the

Hamiltonian an operator as well, and we are thus allowed to write

Ĥ =

∫
d3x
(
1
2
π̂2 +

1
2
(∇φ̂)2 +

1
2
m2φ̂2

)
. (1.11)

As the final step of the scheme, we need to calculate the spectrum of the Hamiltonian, but since we

are dealing with infinitely many degrees of freedom—rather than the finitely many seen in the case

of the infinitesimal particle—finding the spectrum is very hard. We thus begin by seeking guidance

from the equation of motion of the KG field written in the Fourier space. The equation of motion

in the position space, also known as the KG equation, could be found by using the Lagrangian den-

sity in Eq. (1.10) in conjunction with the Euler-Lagrange equation, which yields

(∂μ∂μ +m2)φ = 0. (1.12)

Then, expanding (or Fourier transforming) the classical KG field as

φ(t, x) =
∫

d3p
(2π)3

eιp·xφ(t, p)

(with φ(t, p)∗ = φ(t,−p) so that φ(t, x) is real), we find that the KG equation becomes

[
∂2

∂t2
+
(
|p|2 +m2

)]
φ(t, p) = 0,
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which implies that the solution is something of a harmonic oscillator with frequency ωp such that

ωp =
√

|p|2 +m2. Inspired by this observation, we try to write the spectrum of the KG-field

Hamiltonian in terms of the spectrum of a harmonic oscillator, which we are well-acquainted with.

An important part of the calculation of this spectrum involves the creation and annihilation opera-

tors, and for a harmonic oscillator described by the Hamiltonian

ĤSHO =
1
2
p̂2 +

1
2
ω2φ̂2,

they are introduced via

φ̂ =
1√
2ω

(
â+ â†

)
and

p̂ = −ι
√

ω
2

(
â− â†

)
.

with
[
â, â†

]
= 1. Using these very relations and a simple comparison with the Fourier transform of

the classical KG field above, we could write

φ̂(x) =
∫

d3p
(2π)3

1√
2ωp

(
âp + â†−p

)
eιp·x

and

π̂(x) =
∫

d3p
(2π)3

(−ι)
√

ωp
2

(
âp − â†−p

)
eιp·x,

which essentially say that each mode of the field is an independent harmonic oscillator with its own

creation and annihilation operators. We see that if
[
âp, â†p′

]
= (2π)3δ(3)(p − p′), then thesemode
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expansions for φ̂ and π̂ allow the commutation relation [φ̂(x), π̂(x′)] to be worked out correctly:

[
φ̂(x), π̂(x′)

]
=

∫
d3pd3p′

(2π)6
−ι
2

√ωp′
ωp

([
â†−p, âp′

]
−
[
âp, â†−p′

])
eι(p·x+p′·x′)

= ιδ(3)(x− x′).

An important thing to note is that we have started working in the Schrodinger picture here. This

thing is essential since we wrote the mode expansions by way of a comparison with the expres-

sions for the harmonic oscillator, all of which were written in the Schrodinger picture. However,

we could shift to the Heisenberg picture any time once we have found the Hamiltonian in terms

of the creation and annihilation operators, for âp(t) = exp
(
ιĤt
)
âp exp

(
−ιĤt

)
and â†p(t) =

exp
(
ιĤt
)
â†p exp

(
−ιĤt

)
. Using the mode expansions for φ̂ and π̂ in Eq. (1.11), we see that the

Hamiltonian turns out to be

Ĥ =−
∫

d3x
∫

d3pd3p′

(2π)6
eι(p·x+p′·x′)

√ωpωp′
4

(
âp − â†−p

)(
âp′ − â†−p′

)
+

∫
d3x
∫

d3pd3p′

(2π)6
eι(p·x+p′·x′)−p · p′ +m2

4√ωpωp′

(
âp + â†−p

)(
âp′ + â†−p′

)
=

∫
d3p
(2π)3

ωp
(
â†pâp +

1
2
(2π)3δ(3)(0)

)
.

The appearance of δ(3)(0) is to be expected since the second term represents the sum of the zero-

point energies of all modes, and we are dealing with an infinite number of them here. However,

since this infinite energy shift cannot be detected experimentally—all experiments measuring energy

differences only—we could ignore this infinite term in all our calculations.

With the Hamiltonian found, we could show that
[
Ĥ, â†p

]
= ωpâ†p and

[
Ĥ, âp

]
= −ωpâp,

something which allows us to write down the spectrum for the Hamiltonian just as for the har-

monic oscillator. Since âp |0⟩ = 0 for all p, it is taken as the ground state with an energy of 0 after

our dropping the infinite constant term above. All other energy eigenstates could be obtained by
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acting on |0⟩with creation operators. In general, a†pa†q . . . |0⟩ is the eigenstate of Ĥwith energy

ωp + ωq + . . .. This thing completes the implementation of canonical quantization to the KG field,

but at the same time, it presents us with a particularly important conclusion, something which has

to do with the statistics of the states above.

As we stated in section 1.1, the conserved charge corresponding to spacetime translation sym-

metry turns out to be four-momentum, and with the expressions we derived for it and the energy-

momentum tensor, we could find the three-momentum carried by the field:

P = −
∫

d3xπ(x)∇φ(x).

Then, promoting φ and π to operators, using their respective mode expansions, and performing a

calculation similar to the one done in the case of the Hamiltonian, we find that

P̂ =

∫
d3p
(2π)3

pâ†pâp,

which tells us that a†p creates momentum p and (as we saw for the KG equation in the Fourier space)

energy ωp =
√
|p|2 +m2. Likewise, the state a†pa†q . . . |0⟩ could be interpreted as having momen-

tum p + q + . . .. Naturally, one feels inclined to call these excitations particles, for they are discrete

entities obeying the relativistic energy-momentum relation, but it must be realized that a particle

here is an excitation in some momentum eigenstate, not an entity localized in space. We do discuss

how the KG field creates particles in the position space later, but the important thing for now is that

the formalism we have developed allows us to determine the statistics of our momentum eigenstates.

Considering the two-particle state â†pâ†q |0⟩, we see that it is identical to the state â†qâ†p |0⟩, which has

the two particles interchanged. Moreover, a single momentummode could have arbitrarily many

particles (a†pa†p . . . |0⟩). We are thus led to the conclusion that these KG particles obey the Bose-
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Einstein statistics and could hence be reconginzed as bosons. In the wake of this observation, the KG

field itself is referred to as a bosonic field.

Having then learnt the way to (canonically) quantize a field related to bosons, we also note that

there exist particles that do not play by the same rules. Referred to as being fermions, they could

definitely not be related to a field like the KG field. What is needed is a field that gives rise to the

Fermi-Dirac statistics rather than the Bose-Einstein ones, and one such field happens to be the so-

calledDirac field. A field of mathematical entities known as spinors, the Dirac field is governed by

the Lagrangian density

L = ψ̄(ιγμ∂μ −m)ψ, (1.13)

where ψ is a spinor, or a 4 × 1 column vector, the γμ are some 4 × 4 matrices that satisfy {γμ, γν} =

2ημν, and ψ̄ is a row vector defined as ψ†γ0. With these definitions, we see thatL is a scalar, but as to

what motivates such definitions, we leave it out in the interest of covering the essentials of quantiz-

ing the Dirac field through the canonical quantization program.

Starting in the usual way, we useL to calculate the field conjugate to ψ: π = ∂L/∂ψ̇ = ιψ̄γ0 =

ιψ†, where we employed {γμ, γν} = 2ημν and ψ̄ = ψ†γ0 for the last equality. Then, as before,

we promote ψ and ψ† to operators, thereby reaching the point that commutation relations are to

be imposed at. This very point is the one that the canonical quantization of the Dirac field departs

at from that of the KG field. It turns out that in order to have the right scheme for fields related to

fermions, one needs to use anticommutation relations in lieu of the commutation ones, and once

again, we leave the detailed discussion of this point out in the interest of covering the essentials of

the quantization. The anticommutation relations we impose are the following, and like equal-time
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commutation relations, they too are defined for equal times.

{
ψ̂α(t, x), ψ̂β(t, y)

}
=
{
ψ̂†α(t, x), ψ̂

†
β(t, y)

}
= 0;{

ψ̂α(t, x), ψ̂
†
β(t, y)

}
= δαβδ(3)(x− y). (1.14)

Here, α and β represent what are called spinor indices, or the components of the spinors being used

in the anticommutation relations. Once again, promoting ψ and ψ† to operators turns the Hamilto-

nian into an operator as well, and we could write

Ĥ =

∫
d3x
(
π̂(x)φ̂(x)− L̂

)
=

∫
d3x¯̂ψ(−ιγi∂i +m)ψ̂. (1.15)

Just like the KG field, the Dirac field also presents us with infinitely many degrees of freedom, mak-

ing it extremely difficult to determine the spectrum of the Hamiltonian; therefore, we again resort

to some mode expansions to get around this thing:

ψ̂(x) =
∫

d3p
(2π)3

1√
2ωp

eιp·x
2∑
s=1

(
âspus(p) + b̂s†−pv

s(−p)
)

and

ψ̂†(x) =
∫

d3p
(2π)3

1√
2ωp

eιp·x
2∑
s=1

(
b̂spvs†(p) + âs†−pu

s†(−p)
)
,

where â†p and b̂†p are creation operators, âp and b̂p are annihilation operators, and us(p) and vs(p)

are some spinors. Even though we do not put forth the rationale for these mode expansions, we do

notice their resemblance with the mode expansions for the KG field, something which hints at their

having been obtained via a similar procedure. If
{
ârp, â

s†
q

}
= (2π)3δrsδ(3)(p − q) and

{
b̂rp, b̂

s†
q

}
=

(2π)3δrsδ(3)(p− q) now, with all the other anticommutators vanishing, then
{
ψ̂α(x), ψ̂

†
β(y)

}
could
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be worked out correctly:

{
ψ̂α(x), ψ̂

†
β(y)

}
=

∫
d3pd3q
(2π)6

1√
4ωpωq

×
∑
r,s

({
ârp, âs†q

}
urα(p)u

s†
β (q) +

{
b̂r−p, b̂

s†
−q

}
vrα(−p)vs†β (−q)

)
× eι(p·x+q·y)

=

∫
d3p
(2π)3

1
2ωp

eιp·(x−y)

×
[(
γ0ωp − γ · p+m

)
αβ +

(
γ0ωp + γ · p−m

)
αβ

]
γ0

= δαβδ(3)(x− y),

where we used some relations satisfied by the us(p) and the vs(p) for the first and second equalities:∑
s us(p)ūs(p) = γμpμ +m,

∑
s vs(p)v̄s(p) = γμpμ −m, and ur†(p)vs(−p) = vr†(−p)us(p) = 0.

Just as in the case of the KG field, we notice that we are working in the Schrodinger picture here. We

could, however, transition to the Heisenberg picture once we have the Hamiltonian in terms of the

creation and annihilation operators. To obtain such an expression for the Hamiltonian, we use our

mode expansions for ψ and ψ† in conjunction with Eq. (1.15), thereby getting the following:

Ĥ =

∫
d3xψ̂†γ0

(
−ιγi∂i +m

)
ψ̂

=

∫
d3xd3pd3q

(2π)6

√ ωp
4ωq

∑
r,s

(
b̂rqvr†(q) + âr†−qu

r†(−q)
)(

âspus(p)− b̂s†−pv
s(−p)

)
eι(p+q)·x

=

∫
d3p
(2π)3

1
2
∑
r,s

[
âr†p âsp

(
ur†(p)us(p)

)
− b̂rpb̂s†p

(
vr†(p)vs(p)

)
− âr†p b̂†sp

(
ur†(p)vs(−p)

)
+ b̂rpâs−p

(
vr†(p)us(−p)

) ]
=

∫
d3p
(2π)3

ωp
∑
s

(
âs†p âsp − b̂spb̂s†p

)
=

∫
d3p
(2π)3

ωp
∑
s

(
âs†p âsp + b̂s†p b̂sp − (2π)3δ(3)(0)

)
,
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where we used
(
−γipi +m

)
us(p) = γ0p0us(p) and

(
γipi +m

)
vs(p) = −γ0p0vs(p) for the second

equality and ur†(p)us(p) = vr†(p)vs(p) = 2ωpδrs and ur†(p)vs(−p) = vr†(−p)us(p) = 0 for

the penultimate one. Now, since all experiments measure energy differences, the infinite energy shift

−(2π)3δ(3)(0) cannot be detected experimentally, and we could ignore it in all calculations. What

really needs to be noted here is that we did the final step, which involves the use of the anticommu-

tation relation
{
ârp, â

s†
q

}
= (2π)3δrsδ(3)(p − q), explicitly this time. It clearly shows that if we

had a commutation relation instead, then the integrand in the Hamiltonian would end up having

the term−ωpb̂s†p b̂sp, which, in analogy with the particle interpretation we presented in the case of

the KG field, tells us that a particle created by the operator b̂s†p corresponds to the negative energy

−ωp. That is, by creating more and more particles with b̂s†p , we could lower the energy indefinitely,

something which is disturbingly unphysical. This fact explains why canonical quantization applied

to fermionic fields (like the Dirac field) employs anticommutation relations rather than the commu-

tation ones.

With the Hamiltonian in hand, we could easily show that
[
Ĥ, âs†p

]
= ωpâs†p ,

[
Ĥ, âsp

]
= −ωpâsp,[

Ĥ, b̂s†p
]
= ωpb̂s†p , and

[
Ĥ, b̂sp

]
= −ωpb̂sp. Then, if we let |0⟩ be the ground state, that is, âsp |0⟩ =

b̂sp |0⟩ = 0 for all p, we could obtain all the other energy eigenstates by acting on |0⟩with the opera-

tors âs†p and b̂s†p . This thing exhausts the spectrum of the Hamiltonian and completes the application

of the canonical quantization scheme to the Dirac field. As to the statistics of the states obtained in

this case, we could say that they are the Fermi-Dirac statistics. Exchange of two particles yields a neg-

ative sign: |p, r; q, s⟩ = âr†p âs†q |0⟩ = −âs†q âr†p |0⟩ = − |q, s; p, r⟩. Moreover, no two particles could

occupy the same state (also knwon as the Pauli exclusion principle): |p, s; p, s⟩ = − |p, s; p, s⟩ = 0.

One last thing we note is that the canonical quantization of the Dirac field yields two kinds of oper-

ators: the a’s and the b’s. Whereas the former deal with the good old particles, the latter correspond

to what are known as antiparticles, but we leave any further discussion of this specific topic, for we

have attained the goal this section was primarily meant for: demonstrating the application of canon-
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ical quantization to fields.

In addition to describing how fields—both bosonic and fermionic—are to be quantized canoni-

cally, we use this section to make precise a claim we made in chapter 0, namely that a quantum field

is capable of creating particles at any spacetime point. We illustrate this point via the example of the

KG field. Now that we have quantized it, we have obtained a quantum field, φ̂(x), from the classical

KG field, φ(x), and we claim that φ̂(x) is capable of creating a particle in the vacuum at position x.

Explicitly,

φ̂(x) |0⟩ =
∫

d3p
(2π)3

1√
2ωp

(
âp + â†−p

)
eιp·x |0⟩

=

∫
d3p
(2π)3

1
2ωp

eιp·x |−p⟩ =
∫

d3p
(2π)3

1
2ωp

e−ιp·x |p⟩ ,

where we have used that |−p⟩ =
√

2ω−pâ†−p |0⟩ (which comes from the Lorentz invariant nor-

malization of the momentum eigenstates) and ω−p = ωp for the second equality. This expression,

apart from the factor 1/2ωp, is the same as the nonrelativistic expression for the eigenstate |x⟩; in

fact, the extra factor is almost constant for nonrelativistic p. Therefore, we could say that φ̂(x) cre-

ates a particle in the vacuum at position x. This thing becomes further apparent with the following

calculation:

⟨0| φ̂(x) |p⟩ = ⟨0|
∫

d3p
(2π)3

1√
2ωp

(
âp + â†−p

)
eιp·x
√

2ωpâ†p |0⟩ = eιp·x ∝ ⟨x|p⟩ .

1.4 Path integral formalism

Up till now, we have covered only one route to quantization, namely the canonical quantization.

This section aims to present an alternate route known as the path integral formalism. Not only

does it have the advantage of being much simpler, but it also is quite intuitive, for it uses classical

quantities in lieu of quantum ones, something implying that one does not get into the hassle of
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dealing with operators and commutation relations.

Our approach involves using the canonical quantization to derive the path integration method

for the simple classical system we introduced in section 1.2: a point particle of massmmoving in

potentialV(x). The simple derivation we do later helps us to generalize our method to the context

of fields. With canonical quantization, or promotion of classical degrees of freedom to operators, we

could write the Hamiltonian for the system we wish to consider as

Ĥ =
p̂2

2m
+ V(x̂), (1.16)

where x̂ and p̂, as before, denote the position and momentum operators, respectively, and satisfy

the commutation relation [x̂, p̂] = ι. The primary quantummechanics problem for this system

is the calculation of the amplitude that the particle starts in the state |xi⟩ and ends in the state
∣∣xf〉

after time t, and ordinary quantummechanics does this calculation via the unitary time-evolution

operator Û(t) = exp
(
−ιĤt

)
, which is a solution to the time-dependent Schrodinger equation. In

other words, ordinary quantummechanics computes
〈
xf
∣∣ Û(t) |xi⟩, which could be viewed simply

as the overlap of the time-evolved initial state
(
Û(t) |xi⟩

)
with the final state

(∣∣xf〉). We show how

this overlap could be written as a path integral, but to do so, we need to compute ⟨x| Û(δt) |x′⟩ to

first order in δt, where δt is a small time interval:

⟨x| e−ι(p̂2/2m+V(x̂))δt ∣∣x′〉 = ⟨x| e−ι(p̂2/2m)δte−ιV(x̂)δteO((δt)
2)
∣∣x′〉

≈
∫

dp
2π

⟨x| e−ι(p̂2/2m)δt |p⟩ ⟨p| e−ιV(x̂)δt ∣∣x′〉
=

∫
dp
2π

exp

[
−ιδt

(
p2

2m
− p

(x− x′)
δt

)
+ V(x′)

]
=

√
m

2πιδt
exp

[
ιδt
(
1
2
m
(x− x′)2

δt2
− V(x′)

)]
.

The quantity in the argument of the final exponential—barring the ι—is nothing but the in-
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finitesimal action S(x′, x; δt), which corresponds to the particle’s moving from x′ to x in time δt;

therefore, to first order in δt, we may write

⟨x| Û(δt)
∣∣x′〉 =√ m

2πιδt
exp
(
ιS(x′, x; δt)

)
.

With this result in hand, we could go on to write
〈
xf
∣∣ Û(t) |xi⟩ in a similar manner. All we need to

do is to divide t intoN subintervals, each of duration t/N, insert appropriate completeness rela-

tions, and apply a limiting procedure:

〈
xf
∣∣ Û(t) |xi⟩ = 〈xf∣∣ Û(t/N) . . . Û(t/N)︸ ︷︷ ︸

N terms

|xi⟩

=

∫ N−1∏
j=1

dxj
〈
xf
∣∣ Û(t/N) |xN−1⟩ . . . ⟨x1| Û(t/N) |xi⟩

= lim
N→∞

(
mN
2πιt

)N/2 ∫ N−1∏
j=1

dxj exp(ιS[x])

=

∫ (xf,t)

(xi,0)
[dx] exp(ιS[x]),

(1.17)

where [dx] = limN→∞
∏N−1

j=1

(√
mN/2πιtdxj

)
, S[x] =

∫
dtL(x, ẋ), andL(x, ẋ) = (1/2)mẋ2 −

V(x). The expression in the last line is what we have been referring to as a path integral, and it gives

an alternate way to calculate the amplitude
〈
xf
∣∣ Û(t) |xi⟩, a way which does not entail having to deal

with quantum states, operators, and so on; rather, a classical quantity, the action S[x], is used for

the calculation. The interpretation of Eq. (1.17) is that every possible trajectory going from xi to xf

in time t contributes to the amplitude with a weight equal to the exponential of ι times the corre-

sponding action. The trajectories that action varies the least around (also known as classical trajec-

tories) contribute the most; the others get their contributions more or less canceled due to the huge

variation of action in the vicinity and the weight’s being the oscillating exponential exp (ιS[x]).
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At any rate, summing all contributions in the limit that their number gets infinitely large, or in-

tegrating exp (ιS[x]) over all possible paths going from xi to xf in time t, yields the full amplitude〈
xf
∣∣ Û(t) |xi⟩. We have clearly found a new way to compute the said amplitude, and it not only by-

passes the machinery of ordinary quantummechanics but also allows us to use our knowledge of

classical mechanics to do the calculation. In fact, this new scheme could be used to calculate the

amplitude for the general state
∣∣ψi〉 to evolve into the state ∣∣∣ψf〉 after time t since

〈
ψf
∣∣∣ Û(t) ∣∣ψi〉 = ∫ dxidxjψ∗f (xf)ψi(xi)

〈
xf
∣∣ Û(t) |xi⟩ ,

and we already have the path integral expression for
〈
xf
∣∣ Û(t) |xi⟩. This very thing provides us with

the motivation to see Eq. (1.17) as the starting point for all of quantummechanics. It is completely

equivalent to the Schrodinger equation (in terms of incorporating system dynamics) and allows for

the calculation of the same quantities—albeit in an alternate manner. We have derived it for a time-

independent Hamiltonian, but the result holds for a time-dependent Hamiltonian as well since all

that matters is the infinitesimal amplitude ⟨x| Û(δt) |x′⟩.

With this simple derivation of the path integral formalism done, we state that the path integral

quantization of a bosonic field, φ, is not more difficult conceptually. What we do is simply redefine

the integration measure by dividing the spacetime into infinitesimal intervals and integrating over

φ(t, x) at every x. The probability amplitude for the transition of the configuration φi(ti, x) into

the configuration φf(tf, x)may then be written as

〈
φf(tf, x)

∣∣∣φi(ti, x)
〉
=

∫
[dφ(t, x)] exp(ιS[φ]). (1.18)

A similar path integral could be written for a fermionic field as well, but since doing so requires

introducing objects called Grassmann numbers and related paraphernalia, we defer writing it (or
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something closely related to it to be precise) to a future point in this work. Having introduced clas-

sical fields and the techniques to transition to quantum ones in this chapter, we move to actually

using quantum field theory to calculate physically important quantities in the next. In particular,

we calculate quantities called correlators, which are crucial as far as processes like scattering are con-

cerned. This calculation forms the subject matter of the next chapter primarily, and we do it via

both of the quantization techniques we introduced in this chapter—canonical quantization and

path integration.

Figure 1.2: Path integral formalism. Despite being a little facetious, this analogy captures the spirit of the path integrals
approach. Although all paths contribute, the contributions of the most deviant ones cancel.
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“Since then I never pay attention to anything by ‘experts.’

I calculate everything myself.”

Richard Feynman

2
Correlators5,7

Now that we have erected a mathematical scaffolding to work with quantum fields and quantum

field theory, we could start doing some simple but important calculations. They are simple in that

they involve what are known as free fields only—fields not interacting with themselves or any other

field—and they are important in that they bear physical import of a great consequence. To be pre-

cise, we calculate quantities known as correlators, which, loosely speaking, are like the amplitudes

we discussed in section 1.4 of the previous chapter. They prove quite significant when it comes
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to calculating probabilities, cross sections, and so on for various kinds of scattering processes, an

example being two incoming particles’ getting destroyed to produce two outgoing (or scattered)

particles. We start by delineating the meaning of a correlator and discussing the mathematical pre-

liminaries that allow us to calculate correlators via both Hamiltonian field theory and path integral

formalism. Then, we explicitly do these calculations for the Klein-Gordon and Dirac fields, working

out extremely simple correlators for each of them. Finally, we append a short section detailing the

derivation of the so-calledWick’s theorem through the mathematical techniques we introduce right

in the beginning of this chapter.

2.1 Mathematical preamble

Quantum field theory deals with transition (or scattering) amplitudes between asymptotic states,

also known as free particles, and these amplitudes are given by correlation functions, or correlators.

Given a field, φ, we denote its n-point correlator as ⟨φ̂(x1)φ̂(x2) . . . φ̂(xn)⟩ and define it as

⟨φ̂(x1)φ̂(x2) . . . φ̂(xn)⟩ = ⟨0| T (φ̂(x1)φ̂(x2) . . . φ̂(xn)) |0⟩ , (2.1)

where |0⟩ is the ground state and T is the time ordering operator. This operator puts the factors

following it (which happen to be operators themselves) in a chronological order from right to left;

that is,

T (φ̂(x1)φ̂(x2) . . . φ̂(xn))

= T (φ̂(t1, x1)φ̂(t2, x2) . . . φ̂(tn, xn))

= φ̂(t1, x1)φ̂(t2, x2) . . . φ̂(tn, xn)

= φ̂(x1)φ̂(x2) . . . φ̂(xn)
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if t1 > t2 > . . . > tn. Just looking at the expression in Eq. (2.1) and recalling the mode expansions

covered in section 1.3 tell us how we could go about evaluating a correlator with the Hamiltonian

field theory: simply replace the field operators with their corresponding mode expansions, collect

the nonzero terms after the action of the creation and annihilation operators, and perform appro-

priate integrals. What needs to be considered, however, is that the same correlator could also be

evaluated with the path integral formalism, and we discuss the details of the calculation here. In or-

der to keep the discussion simple, we follow precisely the same sequence as the one we adopted to

first introduce path integrals in chapter 1; that is, we begin by presenting the problem in the context

of a point particle rather than fields.

Keeping the comparisons between the point particle and fields in view, we may write the n-point

correlator for the former as

⟨x̂(t1)x̂(t2) . . . x̂(tn)⟩ = ⟨0| T (x̂(t1)x̂(t2) . . . x̂(tn)) |0⟩ .

This expression could be manipulated and written instead as

⟨0| x̂eιĤ(t2−t1)x̂eιĤ(t3−t2) . . . x̂ |0⟩
⟨0| eιĤ(tn−t1) |0⟩

,

for from ordinary quantummechanics, we know that x̂(t) = exp
(
ιĤt
)
x̂ exp

(
−ιĤt

)
with x̂ being

at time t = 0. Now, if
∣∣ψi〉 and ∣∣∣ψf〉 are two arbitrary states with nonzero projections on |0⟩, then a

ratio of the type ⟨0| Ô1 |0⟩ / ⟨0| Ô2 |0⟩, where Ô1 and Ô2 are generic operators, turns out to be equal

to

lim
Ti,Tf →∞,ε→ 0

〈
ψf
∣∣∣ e−ιTfĤ(1−ιε)Ô1e−ιTiĤ(1−ιε)

∣∣ψi〉〈
ψf
∣∣∣ e−ιTfĤ(1−ιε)Ô2e−ιTiĤ(1−ιε)

∣∣ψi〉 ,
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for if |n⟩ is an energy eigenstate with energy En, then

e−ιTiĤ(1−ιε) ∣∣ψi〉 =∑
n

e−ιTiĤ(1−ιε) |n⟩
〈
n
∣∣ψi〉

=
∑
n

e−ιTiEn(1−ιε) |n⟩
〈
n
∣∣ψi〉

→ e−ιTiE0(1−ιε) |0⟩
〈
0
∣∣ψi〉

if ε → 0 and Ti → ∞. Of course, we assume here that E0 = 0 (we shift Ĥ by an appropriate con-

stant if such is not the case), the ground state is nondegenerate, and there is an energy gap between it

and the first excited state. Then, setting Ô1 equal to

x̂eιĤ(t2−t1)x̂eιĤ(t3−t2) . . . x̂

and Ô2 equal to e−ιĤ(t1−tn)(1−ιε), we obtain

lim
Ti,Tf →∞,ε→ 0

〈
ψf
∣∣∣ e−ιTfĤ(1−ιε)x̂eιĤ(t2−t1)x̂eιĤ(t3−t2) . . . x̂e−ιTiĤ(1−ιε)

∣∣ψi〉〈
ψf
∣∣∣ e−ιĤ(Tf+T1+t1−tn)(1−ιε) ∣∣ψi〉 .

If we insert completeness relations at appropriate places now, replace the time-evolution operators

by path integrals, and do the Ti and Tf limits, we reach

⟨x̂(t1)x̂(t2) . . . x̂(tn)⟩ = lim
ε→ 0

∫ xf
xi [dx(t)]ψ

∗
f (xf)ψi(xi)x(t1) . . . x(tn) exp(ιSε[x(t)])∫ xf

xi [dx(t)]ψ
∗
f (xf)ψi(xi) exp(ιSε[x(t)])

,

where Sε denotes the action obtained by replacing twith t(1 − ιε) and xi and xf are taken at t →

∓∞, respectively. Since the wavefunctions ψi and ψf are arbitrary, we may set both ψi(xi) and
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ψf(xf) equal to 1, thereby getting

⟨x̂(t1)x̂(t2) . . . x̂(tn)⟩ = lim
ε→ 0

∫
[dx(t)]x(t1) . . . x(tn) exp(ιSε[x(t)])∫

[dx(t)] exp(ιSε[x(t)])
. (2.2)

It might seem that evaluating correlators this way is as cumbersome as—if not more than—

evaluating them with Hamiltonian field theory. However, we show why such is not the case. The

expression in Eq. (2.2) could be adapted to the case of fields by simply replacing xwith φ every-

where, and the result obtained thereupon, that is,

⟨φ̂(t1)φ̂(t2) . . . φ̂(tn)⟩ = lim
ε→ 0

∫
[dφ(t)]φ(t1) . . . φ(tn) exp(ιSε[φ(t)])∫

[dφ(t)] exp(ιSε[φ(t)])
,

could then be generated by something known as a generating functional via the technique of func-

tional differentiation. This very technique reduces calculating any correlator to merely taking

derivatives.

A generating functional could be understood as being a path integral with a parameter (also

known as auxiliary “current”) that one could repeatedly differentiate with respect to in order to

get progressively higher correlators. For example, the path integral

Z[J] =
∫
[dφ] exp

(
ιSε[φ] + ι

∫
d4xJ(x)φ(x)

)
(2.3)

could serve as the generating functional for the case at hand. J(x) here is the aforementioned param-

eter. Differentiating with respect to it once is like

δ
δJ(x1)

Z[J] = ι
∫
[dφ]φ(x1) exp

(
ιSε[φ] + ι

∫
d4xJ(x)φ(x)

)
,
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twice is like

δ
δJ(x1)

δ
δJ(x2)

Z[J] = ι2
∫
[dφ]φ(x1)φ(x2) exp

(
ιSε[φ] + ι

∫
d4xJ(x)φ(x)

)
,

and n times is like

δ
δJ(x1)

. . .
δ

δJ(xn)
Z[J] = ιn

∫
[dφ]φ(x1) . . . φ(xn) exp

(
ιSε[φ] + ι

∫
d4xJ(x)φ(x)

)
.

The pattern emerging with these successive derivatives allows us to see that

⟨φ̂(x1)φ̂(x2) . . . φ̂(xn)⟩ = Z[0]−1 1
ι

δ
δJ(x1)

. . .
1
ι

δ
δJ(xn)

Z[J]
∣∣∣∣
J=0

. (2.4)

The implications of this result happen to be quite remarkable, for what it essentially means is that

given the action S[φ], one needs to evaluate the generating functional in Eq. (2.3) only, and then,

any correlator could be worked out using Eq. (2.4).

2.2 Free bosonic field

As stated in section 1.3, the Klein-Gordon (KG) field is the simplest to be studied both classically

and quantummechanically, and it also serves as the prime example of a free bosonic field. It is free in

that its Lagrangian density,

L =
1
2
(∂μφ)2 −

1
2
m2φ2,

does not have terms with powers of φ greater than 2 or terms involving fields beside φ; it is these

terms that correspond to interacting particles and, thus, interacting fields. The bosonic nature

of the field comes from the commutation properties of the creation/annihilation operators used

in its mode expansions, and to calculate its correlators via the Hamiltonian field theory, we refer
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back to these very mode expansions, which we introduced in section 1.3, but write them in the

Heisenberg—rather than the Schrodinger—picture this time:

φ̂(x) =
∫

d3p
(2π)3

1√
2ωp

(
âpe−ιpx + â†peιpx

)∣∣∣
p0=ωp

and

π̂(x) =
∫

d3p
(2π)3

(−ι)
√

ωp
2

(
âpe−ιpx − â†peιpx

)∣∣∣
p0=ωp

.

Then, we could write a 2-point correlator for the KG field as

⟨φ̂(x)φ̂(y)⟩ = ⟨0| T (φ̂(x)φ̂(y)) |0⟩

= θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y− x), (2.5)

where θ stands for the usual Heaviside function and helps put the action of the time ordering opera-

tor into mathematical form. D(x− y), on the other hand, stands for ⟨0| φ̂(x)φ̂(y) |0⟩, which, when

worked out using the mode expansions above, turns out to be equal to

∫
d3p
(2π)3

1
2Ep

e−ιp(x−y)
∣∣∣
p0=Ep

.

Here, we have replaced ωp by Ep since Ep = ℏωp and we set ℏ equal to 1 everywhere. Now, if x0 >

y0, then the correlator required isD(x − y), and if x0 < y0, the correlator isD(y − x). However,

this thing amounts to having two different expressions for same 2-point correlator. Working to find

a single expression, we realize that

DR(x− y) =
∫

d4p
(2π)4

ι
p2 −m2 e

−ιp(x−y)
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could be used with the pole prescription in Fig. 2.1 to evaluate the correlator in both of the cases

above. When x0 > y0, we perform the p0 integral by closing the contour below, and we obtain

D(x − y); when x0 < y0, we do the p0 integral by closing the contour above, thereby obtaining

D(y− x).

Figure 2.1: Pole prescription for the KG‐field 2‐point correlator. When x0 > y0, the contour is closed below; when
x0 < y0, the contour is closed above.

A convenient way to remember this prescription, also known as the Feynman prescription, is to

write

DF(x− y) =
∫

d4p
(2π)4

ι
p2 −m2 + ιε

e−ιp(x−y), (2.6)

for the poles are then given by p0 = ±(Ep − ιε), displaced appropriately below and above the real

axis. Thus, we could finally say that ⟨φ̂(x)φ̂(y)⟩ = DF(x− y), something which amounts to the fact

that we have successfully calculated the 2-point correlator for the KG field (or a free bosonic field)

via the Hamiltonian field theory.

Proceeding to work it out now via the path integral formalism, we begin by introducing the fol-

lowing Fourier and inverse Fourier transforms:

φ̃(k) =
∫

d4xeιkxφ(x)

and

φ(x) =
∫

d4k
(2π)4

e−ιkxφ̃(k).
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Then, using them in S0 = S+
∫
d4xJφ, with S being

∫
d4xL =

∫
d4x
[
1
2
(∂μφ)2 −

1
2
m2φ2

]
,

we obtain

S0 =
1
2

∫
d4k
(2π)4

[
φ̃(k)(k2 −m2)φ̃(−k) + J̃(k)φ̃(−k) + J̃(−k)φ̃(k)

]
.

In these calculations, J is the what we referred to as an auxiliary current in section 2.1, and we have

Fourier transformed it just as we Fourier transformed φ. If we now change variables via

χ̃(k) = φ̃(k) +
J̃(k)

k2 −m2 ,

we could rewrite S0 as

S0 =
1
2

∫
d4k
(2π)4

[
− J̃(k)̃J(−k)

k2 −m2 + χ̃(k)(k2 −m2)χ̃(−k)
]
.

Since we want to find the 2-point correlator by way of path integrals this time, we need, as we estab-

lished in section 2.1, a generating functional, and we use the one we gave in Eq. (2.3). It should be

noted that the argument of the exponential—barring the ι—is the same as S0, and we thus use the

expression we found for S0 to get

Z[J] =
∫

[dχ] exp
{
ι
2

∫
d4k
(2π)4

[
− J̃(k)̃J(−k)

k2 −m2 + χ̃(k)(k2 −m2)χ̃(−k)
]}

= exp

(
− ι
2

∫
d4k
(2π)4

J̃(k)̃J(−k)
k2 −m2

)
exp

(
ι
2

∫
[dχ]

∫
d4k
(2π)4

χ̃(k)(k2 −m2)χ̃(−k)
)

= Z[0] exp
(
− ι
2

∫
d4k
(2π)4

J̃(k)̃J(−k)
k2 −m2

)
,

37



where we used the change of variables from φ to χ in the first line and the fact that the exponential

without any J is simply Z[J]with J set equal to 0 in the third line. At this point, we broach that we

used t(1 − ιε) instead of t in section 2.1; doing so has the same effect as replacingm2 withm2 − ιε

everywhere, and hence, we could write our generating functional as

Z[J] = Z[0] exp
(
− ι
2

∫
d4k
(2π)4

J̃(k)̃J(−k)
k2 −m2 + ιε

)
,

which could be further simplified to get to

Z[J] = Z[0] exp
(
ι
2

∫
d4xd4x′J(x)Δ(x− x′)J(x′)

)
. (2.7)

Here, we have used the definition

Δ(x− x′) =
∫

d4k
(2π)4

−e−ιk(x−x′)

k2 −m2 + ιε

and put our generating functional into a rather suggestive form, one which gives the hint that we are

right on the track to finding correlators via path integrals. Then, using Eq. (2.4), we have

⟨φ̂(x1)φ̂(x2)⟩ = Z[0]−1 1
ι

δ
δJ(x1)

1
ι

δ
δJ(x2)

Z[J]
∣∣∣∣
J=0

=
1
ι

δ
δJ(x1)

[(∫
d4x′Δ(x′ − x2)J(x′)

)
Z[J]
]∣∣∣∣

J=0

=
1
ι
Δ(x1 − x2)

=

∫
d4k
(2π)4

ι
k2 −m2 + ιε

e−ιk(x1−x2), (2.8)

which is the same asDF(x1 − x2) except for its having k in place of p. However, this thing is not an

issue since p = ℏk and we set ℏ equal to 1 everywhere. Clearly then, we have been able to calculate
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the 2-point correlator for the KG field both by Hamiltonian field theory and by path integral for-

malism. Particularly important to note is the ease that the latter provides us with; for instance, we

could simply continue differentiation as shown in Eq. (2.8) to obtain higher and higher correlators.

2.3 Free fermionic field

Just as the KG field serves as the archetypal example of a free bosonic field, so does the Dirac field,

as discussed in section 1.3, form the typical example given when it comes to free fermionic fields.

Governed by the Lagrangian density

L = ψ̄(ιγμ∂μ −m)ψ,

the Dirac field is free in that its Lagrangian density is bilinear in ψ and ψ̄ and does not have terms

with fields beside either of the two. The fermionic nature of the field is encapsulated by the anti-

commutation properties of the creation/annihilation operators we introduce in its mode expan-

sions, which we go back to in order to use the Hamiltonian field theory to calculate the correlators.

As presented before (section 1.3), the mode expansions are given by

ψ̂(x) =
∫

d3p
(2π)3

1√
2ωp

2∑
s=1

(
âspus(p)e−ιpx + b̂s†p vs(p)eιpx

)∣∣∣
p0=ωp

and

ψ̂†(x) =
∫

d3p
(2π)3

1√
2ωp

2∑
s=1

(
b̂spvs†(p)eιpx + âs†p us†(p)e−ιpx

)∣∣∣
p0=ωp

.

The only difference is that we have chosen to write them in the Heisenberg picture, instead of the

Schrodinger picture, this time around.
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The 2-point correlator for the field could be defined as

〈
ψ̂(x)¯̂ψ(y)

〉
= ⟨0| T

(
ψ̂(x)¯̂ψ(y)

)
|0⟩

= θ(x0 − y0)S(x− y)− θ(y0 − x0)S̄(y− x), (2.9)

where θ is the Heaviside function, S(x − y) is ⟨0| ψ̂(x)¯̂ψ(y) |0⟩, and S̄(y − x) is ⟨0| ¯̂ψ(y)ψ̂(x) |0⟩.

When worked out using the mode expansions above, ⟨0| ψ̂(x)¯̂ψ(y) |0⟩ and ⟨0| ¯̂ψ(y)ψ̂(x) |0⟩ yield

⟨0| ψ̂(x)¯̂ψ(y) |0⟩ =
∫

d3p
(2π)3

1
2Ep

(γμpμ +m)e−ιp(x−y)
∣∣∣
p0=Ep

and

⟨0| ¯̂ψ(y)ψ̂(x) |0⟩ =
∫

d3p
(2π)3

1
2Ep

(γμpμ −m)eιp(x−y)
∣∣∣
p0=Ep

,

respectively, where we have replaced ωp with Ep everywhere for the same reason as in the last section

and used
∑

s us(p)ūs(p) = γμpμ + m and
∑

s vs(p)v̄s(p) = γμpμ − m. Once again, if x0 > y0,

then the correlator is S(x − y), and if x0 < y0, the correlator is S̄(y − x). What we need, however, is

a single expression for the 2-point correlator at hand, and we note that

SR(x− y) =
∫

d4p
(2π)4

ι
p2 −m2 (γ

μpμ +m)e−ιp(x−y)

could be simplified with the pole prescription in Fig. 2.1 to get the correlator in either of the cases.

When x0 > y0, the p0 integral should be done with the contour closed below to obtain S(x − y);

when x0 < y0, the p0 integral should be done with the contour closed above to obtain S̄(y − x).

Much more convenient, as was the case for the KG field too, is to use the Feynman prescription and

write

SF(x− y) =
∫

d4p
(2π)4

ι
p2 −m2 + ιε

(γμpμ +m)e−ιp(x−y)
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since the poles are then p0 = ±(Ep − ιε), that is, they are displaced appropriately below and above

the real axis as shown in Fig. 2.2.

Figure 2.2: Feynman prescription for 2‐point correlators. When x0 > y0, contour CF is closed below; when x0 < y0,
contour CF is closed above.

Hence, we could finally write
〈
ψ̂(x)¯̂ψ(y)

〉
= SF(x − y), which means that we have successfully

evaluated the 2-point correlator for the Dirac field (or a free fermionic field) via the Hamiltonian

field theory and can now proceed to working it out via the path integral formalism.

However, before subjecting fermionic fields to the machinery of functional differentiation, we

need to ensure that we have something incorporating their anticommutation properties, and we

get this thing from the so-calledGrassmann algebra. It could be defined as a vector space, V , con-

structed from, say, n generators θi that satisfy the antisymmetry product

θiθj + θjθi = 0. (2.10)

A generic element of a Grassmann algebra is hence a first-degree polynomial in the generators θi,

that is,

f(θi) =
n∑

k=0

n∑
i1,...,ik

C(k)
i1,...,ikθi1 . . . θik ,

where the coefficients C(k)
i1,...,ik are defined only if all their indices happen to be different and a stan-

dard ordering is defined on these indices. What these definitions imply is that the dimension of a

Grassmann algebra equals the number of distinct monomials that could be constructed from the

θi, namely 2n. Just as examples, we could consider the generic elements of Grassmann algebras with
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n = 1 and n = 2.
n = 1 → f(θ) = c0 + c1θ;

n = 2 → f(θ1, θ2) = c0 + c1θ1 + c2θ2 + c12θ1θ2.

Clearly, any other terms added to these expressions would either be redundant or be zero as per the

anticommutation properties of the θi.

The θi are often called Grassmann variables, and the elements of the algebra, being polynomi-

als in the θi, are often referred to as functions of Grassmann variables. With functions in hand, we

could proceed to defining differentiation on a Grassmann algebra by treating the θi as ordinary vari-

ables with anticommutation properties appended. A convention must therefore be adopted: the

variable a function is being differentiated with respect to must be brought to the left of every expres-

sion before the derivative is taken. As an example, we could consider the derivatives of f(θ1, θ2), a

function of Grassmann variables which we gave above.

∂

∂θ1
(f(θ1, θ2)) = c1 + c12θ2;

∂

∂θ2
(f(θ1, θ2)) = c2 − c12θ1.

Since functions of Grassmann numbers are at most linear in the θi, the differential operator ∂/∂θi is

nilpotent, that is, (∂/∂θi)2 = 0. In fact, these operators, together with the θi, form what is known

as a Clifford algbera, that is, the following are satisfied.

θiθj + θjθi = 0;

∂

∂θi
∂

∂θj
+

∂

∂θj
∂

∂θi
= 0;

θi
∂

∂θj
+

∂

∂θj
θi = δij. (2.11)

We end our discussion of Grassmann numbers here, for we have established everything we need for
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our primary task: calculating a 2-point correlator for the Dirac field. This time, we take a somewhat

roundabout route that does not precisely use any path integrals with fermionic fields but takes us to

the essential thing that a path integral would lead to, that is, a generating functional. This functional

could then be used with functional differentiation to generate correlators as desired. We go this

indirect way to show that a generating functional for correlators need not always be worked out

directly from the action.

We start with the functional

Z[η, η̄] = ⟨0| T exp

[∫
d4x
(
η̄(x)ψ̂(x) + ¯̂ψ(x)η(x)

)]
|0⟩ ,

where η and η̄ are spinors (just like ψ and ψ̄) that play the same role as that played by an auxiliary

current. An important thing to note is that the functions η and η̄ are Grassmann-valued, and we

take them as anticommuting with ψ and ψ̄ as well. We would also assume that functional derivative

operators involving η and η̄ comprise a Clifford algebra with η, η̄, ψ, and ψ̄. It is easy to see how

functional differentiation could be used to generate the correlator
〈
ψ̂(x1)¯̂ψ(x2)

〉
in the following

way: 〈
ψ̂(x1)¯̂ψ(x2)

〉
= Z[0, 0]−1 δ

δη̄(x2)
δ

δη(x1)
Z[η, η̄]

∣∣∣∣
η=0,η̄=0

.

If we now begin with

δZ
δη̄(x)

= ⟨0| T
(
ψ̂(x)e

∫
d4y

(
η̄(y)ψ̂(y)+¯̂ψ(y)η(y)

))
|0⟩

and apply ιγμ∂μ −m to both sides, we end up with

(ιγμ∂μ −m)
δZ

δη̄(x)
= ιη(x)Z,
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which could be shown to be satisfied by

Z[η, η̄] = Z[0, 0] exp
(∫

d4xd4yη̄(x)SF(x− y)η(y)
)

(2.12)

since (ιγμ∂μ −m)SF(x− y) = ιδ(4)(x− y). Then,

⟨0| T
(
ψ̂(x1)¯̂ψ(x2)

)
|0⟩ = Z[0, 0]−1 δ

δη̄(x2)
δ

δη(x1)
Z[η, η̄]

∣∣∣∣
η=0,η̄=0

= −Z[0, 0]−1 δ
δη̄(x2)

(∫
d4x′η̄(x′)SF(x′ − x1)

)
Z[η, η̄]

∣∣∣∣
η=0,η̄=0

= SF(x1 − x2)

=

∫
d4p
(2π)4

ι
p2 −m2 + ιε

(γμpμ +m)e−ιp(x1−x2). (2.13)

Seeing that this result is precisely the same as the one obtained from the Hamiltonian field theory,

we could say that we have been successful in finding the 2-point correlator for the Dirac field via the

path integral formalism too. Again, we notice the ease that path integrals afford: simply continuing

to differentiate Eq. (2.12) allows us to find progressively higher correlators.

2.4 Wick’s theorem

This section is devoted to simply further demonstrating the facility that the technique of functional

differentiation accouters us with. It does so by showing how naturally the famousWick’s theorem

could be seen in terms of functional derivatives.

What Wick’s theorem actually does is that it connects the operation of time ordering with the

operation of normal ordering, which is represented by the so-called normal ordering operatorN .

This operator arranges the factors following it (which themselves happen to be operators and field

operators to be precise) in such a way that all the creation operators are brought to the left of all
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the annihilation operators. The wayWick’s theorem connects T andN could best be shown by an

example. For the field φ, let us define φ1 to be equal to φ(x1), φ2 to be equal to φ(x2), and so on up

to φn. According toWick’s theorem then,

T (φ1φ2 . . . φn) = N (φ1φ2 . . . φn) +N (All possible terms withWick contractions), (2.14)

where aWick contraction refers to the replacement of a pair of fields with the corresponding 2-point

correlator. To nail this point even more, we consider

T (φ1φ2φ3φ4) =N (φ1φ2φ3φ4) +N (φ1φ2φ3φ4) +N (φ1φ2φ3φ4) +N (φ1φ2φ3φ4)

+N (φ1φ2φ3φ4) +N (φ1φ2φ3φ4) +N (φ1φ2φ3φ4) + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4.

Each of the lines connecting the fields represents a Wick contraction, meaning that the fields in-

volved would be replaced by their correlator. With the description of Wick’s theorem done, we now

go to show how we make functional derivatives enter the picture. Beginning by considering

exp

(∫
1
2
Gδδ
)
(φ(1) . . . φ(N)),

where φ(i) stands for φ(xi) and ∫
1
2
Gδδ

stands for ∫
x,y

1
2
G(x, y)

δ
δφ(x)

δ
δφ(y)

withG(x, y) representing a general 2-point correlator for the field φ, we could do the following
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calculation: ∫
1
2
Gδδφ(1)φ(2) =

1
2

(∫
x
G(x, 1)

δ
δφ(x)

φ(2)

+

∫
x
G(x, 2)

δ
δφ(x)

φ(1)
)

= G(1, 2).

It clearly shows that application of
∫
(1/2)Gδδ replaces the two fields with their correlator. Making

the calculation a little general then, we see that

∫
1
2
Gδδφ(1)φ(2) . . . φ(N) =

∑
i<j

G(i, j)φ(1) . . . φ(i− 1)φ(i+ 1) . . .

φ(j− 1)φ(j+ 1) . . . φ(N).

As is evident, applying a single power of
∫
(1/2)Gδδ to a collection of fields gives all possible forms

of that collection with a single Wick contraction. This thing motivates us to see the application of

the second term in the expansion of exp
[∫

(1/2)Gδδ
]
to a particular set of fields:

1
2!

∫
1
2
Gδδ

∫
1
2
Gδδφ(1)φ(2)φ(3)φ(4) = G(1, 2)G(3, 4) + G(1, 3)G(2, 4)

+ G(1, 4)G(2, 3).

Clearly, applying two powers of
∫
(1/2)Gδδ as they appear in the expansion of exp

[∫
(1/2)Gδδ

]
to

a collection of fields yields all possible forms of that collection with twoWick contractions. In fact,

comparing the result just obtained with the concrete example we gave for Wick’s theorem shows

that we have all possible terms with twoWick contractions.
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Continuing this very way, we obtain the result

exp

(∫
1
2
Gδδ
)
φ(1) . . . φ(N) = φ(1) . . . φ(N)

+
∑

Terms with 1Wick contraction

+
∑

Terms with 2Wick contractions

+ . . . , (2.15)

which essentially says that in order to apply Wick’s theorem to a time ordered set of fields, subject

that set to an application by exp
[∫

(1/2)Gδδ
]
and normal order the result. What is of particular

interest here is that one gets all possible contractions automatically and does not have to think as

to which ones are left. We may, in fact, refer to this description of Wick’s theorem as a particularly

neat derivation of it. It is the technique of functional differentiation that does the trick here, and it

is this very technique that makes path integrals so useful when it comes to using them to calculate

correlators.

This chapter was primarily devoted to the calculation of free bosonic and fermionic correlators

via both Hamiltonian field theory and path integral formalism. It is true that working correlators

out is important from the standpoint of physical interest, but we had another reason, which we have

not brought up as yet, to study them in detail. As of next chapter, the work enters the discussion

of conformal field theories, which are quantum field theories that correlators play a particularly im-

portant role in, so much so that it is possible in some cases to completely define such theories solely

on the basis of symmetry properties of the correlators and without reference to any Lagrangians or

actions. With this slight motivation for what is up next, we end this chapter on correlators, looking

forward to the discussion on the subset of quantum field theories called conformal field theories.
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“Symmetry is what we see at a glance.”

Blaise Pascal

3
Conformal field theory1,2

Beginning with a general discussion of the meaning of a quantum field (chapter 0), this work moved

to detailing some quantization techniques (chapter 1), which essentially are procedures taking one

from the world of classical fields to the realm of quantum ones. Thereafter, it proceeded to using

quantum fields to calculate physically important quantities known as correlators (chapter 2), and

the calculations were done for both bosonic and fermionic fields. As from now, the work shifts

from studying quantum field theories in general to poring over a particular subset of them that
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quantities like correlators form an extremely important part of—so much so that it is sometimes

possible to completely define and solve such theories through the symmetry properties of their cor-

relators only. This subset consists of theories called conformal field theories, or CFTs for short, and

their defining feature is that they show some sort of invariance under what are known as conformal

transformations.

The first goal of the current chapter is to discuss these very transformations and the kind of sym-

metry group they form. It then presents these transformations in the context of both classical and

quantum fields. Finally, it includes a detailed consideration of 2-dimensional CFTs, which are par-

ticularly interesting due to the many constraints they come with.

3.1 The conformal group

Denoting by gμν the metric of a spacetime of dimension d, we could define a conformal transforma-

tion of the coordinates as an invertible mapping, x → x′, that leaves the metric invariant up to some

positive scale Λ:

g′μν(x′) = Λ(x)gμν(x). (3.1)

Put in some simpler terms, a conformal transformation is equivalent at every point of spacetime to

a rotation and a dilation. In an even more simplified manner, conformal transformations could be

called the transformations that preserve angles. Manifestly forming a group, the set of conformal

transformations definitely has the Poincare group as a subgroup, for this latter group corresponds to

the special case Λ = 1.

We begin our study of conformal transformations by working out the constraints that Eq. (3.1)

puts on an infinitesimal transformation of coordinates, xμ → x′μ = xμ + εμ(x). To first order, the
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change in the metric is given by

g′μν = gμν − (∂μεν + ∂νεμ),

which, when seen jointly with Eq. (3.1), requires that

∂μεν + ∂νεμ = f(x)gμν.

f(x) here could be found in terms of the εμ(x) by tracing both sides, a fact which allows us to rewrite

the equation above as

∂μεν + ∂νεμ =
2
d
(∂ρερ)gμν. (3.2)

This relation does comprise constraint for the infinitesimal εμ(x), but to determine the explicit form

of conformal transformations in d dimensions, we need some further constraints as well, one of

which could be derived from subjecting Eq. (3.2) to application by ∂ρ, permuting indices to get

three equations, and taking a certain linear combination (subtracting one of the equations from the

sum of the other two):

2∂μ∂νερ =
2
d
(gμρ∂ν + gνρ∂μ − gμν∂ρ)(∂λελ). (3.3)

Another constraint could be obtained by contracting this one with gμν and applying□ = ∂μ∂
μ to

both sides:

(2− d)∂μ∂ν(∂ρερ) = gμν□(∂ρερ).

It could be written in a more compact form, which is the form that we actually use, by contracting

with gμν once again:

(d− 1)□(∂ρερ) = 0. (3.4)
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Eqs. (3.2), (3.3), and (3.4) thus put constraints on the infinitesimal εμ(x), and we could see what

those constraints are for different possible d. First, when d = 1, there are no constraints on εμ(x),

meaning that any smooth transformation in 1 dimension is conformal. We leave the case d = 2 for a

later discussion. The case d ≥ 3 then becomes our focus for now.

When d ≥ 3, Eq. (3.4) implies that□(∂ρερ) = 0. Since□ = ∂μ∂
μ, we could say that ∂ρερ is at

most linear in the coordinates. This thing, in turn, tells us about εμ’s being at most quadratic in the

coordinates, thereby allowing us to write

εμ = aμ + bμνxν + cμνρxνxρ, (3.5)

with cμνρ = cμρν and
∣∣aμ∣∣, ∣∣bμν∣∣, ∣∣cμνρ∣∣ ≪ 1. Now, since the constraint equations hold for all space-

time points, we may consider each power of the coordinates independently. The constant term aμ

is not constrained by any of the constraint equations, and it represents an infinitesimal translation.

When the term linear in xμ, that is, bμνxν, is put in Eq. (3.2), we obtain

bμν + bνμ =
2
d
bλλnμν,

which implies that bμν is the sum of an antisymmetric part and a pure trace:

bμν = αημν +mμν,

wheremμν = −mνμ. Whereas the pure trace results in an infinitesimal dilation, the antisymmetric

part effects an infinitesimal rotation. The term in Eq. (3.5) that remains to be investigated is the

quadratic term, and when we substitute it in Eq. (3.3), we get

cμνρ = ημρbν + ημνbρ − ηνρbμ
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with bμ = (1/d)cσσμ, and the corresponding transformation is given by

x′μ = xμ + 2(bρxρ)xμ − bμx2,

which is referred to as a special conformal transformation, or SCT for short. Finite transformations

corresponding to the infinitesimal transformations just discussed are given in the following list:

Translation → x′μ = xμ + aμ

Dilation → x′μ = αxμ

Rotation → x′μ = Mμ
νxν

SCT → x′μ =
xμ − bμx2

1− 2bρxρ + b2x2
(3.6)

The first three exponentiations are familiar from the usual symmetry transformations in classical

mechanics, but the last one is not. Its validity, however, could be seen from the fact that its infinites-

imal version, which could be obtained by expanding the denominator for small bμ, is precisely the

one given above. The factor scaling the metric for an SCT is

Λ(x) = (1− 2bρxρ + b2x2)2,

and we also note that a finite SCT could be rewritten as

x′μ

x′2
=

xμ

x2
− bμ.

What this set of relations says is that a finite SCT could be viewed as inversion of xμ followed by the

translation bμ, which, in turn, is followed by yet another inversion (see Fig. 3.1).
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Figure 3.1: Special conformal transformation (SCT). An inversion is followed by the translation bμ, which is followed by
yet another inversion.

It is common to refer to a transformation via its generator,Ga, which is defined by the following

infinitesimal transformation at the same point:

φ′(x)− φ(x) = −ιωaGaφ(x). (3.7)

The ωa are the same parameters that were introduced in Eq. (1.5) of chapter 1. In fact, we could use

Eq. (1.5) to do the following calculation:

φ′(x′) = φ(x) + ωa
∂F
∂ωa

(x)

= φ(x′)− ωa
∂xμ

∂ωa
∂μφ(x′) + ωa

∂F
∂ωa

(x′).

Comparing this result with Eq. (3.7) allows us to write

ιGaφ =
∂xμ

∂ωa
∂μφ − ∂F

∂ωa
. (3.8)

53



Now, if we assume for the moment that the fields themselves are not affected by any of the infinites-

imal transformations (that is,F(φ) = φ), then the generators for these transformations, found via

Eq. (3.8), turn out to be the following:

Translation → Pμ = −ι∂μ

Dilation → D = −ιxμ∂μ

Rotation → Lμν = ι(xμ∂ν − xν∂μ)

SCT → Kμ = −ι(2xμxν∂ν − x2∂μ) (3.9)

Satisfying the following commutation relations, these generators define what is known as a confor-

mal algebra.

[D,Pμ] = ιPμ;

[D,Kμ] = −ιKμ;

[Kμ,Pν] = 2ι(gμνD− Lμν);

[Kρ,Lμν] = ι(gρμKν − gρνKμ);

[Pρ,Lμν] = ι(gρμPν − gρνPμ);

[Lμν,Lρσ] = ι(gνρLμσ + gμσLνρ − gμρLνσ − gνσLμρ). (3.10)

It behooves us at this point to distinguish the conformal algebra formed by the generators above

from the conformal group formed by the finite transformations in Eq. (3.6). Whereas the conformal

group is the group comprised of globally defined, invertible, and finite conformal transformations,

the conformal algebra is the Lie algebra corresponding to the conformal group.

To simplify the commutation relations above, we define the generators Jμν = Lμν, J−1,μ =

(1/2)(Pμ − Kμ), J−1,0 = D, and J0,μ = (1/2)(Pμ + Kμ), where Jab = −Jba and a, b ∈
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{−1, 0, 1, . . . , d− 1}. They satisfy the commutation relations of the Lie algebra SO(d+ 1, 1):

[Jab, Jcd] = ι(gadJbc + gbcJad − gacJbd − gbdJac).

Therefore, the conformal group in d spacetime dimensions is isomorphic to the group SO(d+ 1, 1),

having d (from Pμ) + 1 (fromD) + d(d − 1)/2 (from Lμν) + d (fromKμ) = (d + 1)(d + 2)/2

generators.

3.2 Conformal symmetry in classical field theory

In the classical regime, a field theory is said to have conformal symmetry if its action is invariant

under conformal transformations, and a discussion of conformal symmetry in this regime entails

studying how conformal transformations go about affecting fields. Essentially, for an infinitesimal

conformal transformation parameterized by ωg, we seek a representation, Tg, such that a field, φ,

transforms as

φ′(0) = (1− ιωgTg)φ(0).

The generator Tg must then be added to the spacetime part given in Eq. (3.9) to obtain the full

generator of symmetry as given in Eq. (3.8). The trick we use is to consider a subgroup of the full

conformal group that leaves the origin (x = 0) fixed, that is, the subgroup generated by rotations, di-

lations, and SCTs. Finding a representation of this subgroup at the origin, we use the commutation

relations in Eq. (3.10) to translate the generators of the representation to other points in spacetime

and get the full conformal group there.

For instance, using Δ̃, Sμν, and κμ to denote the respective values of the generatorsD, Lμν, andKμ

at the origin, we know that they must form a representation of the reduced conformal algebra that
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satisfies the following:

[Δ̃, Sμν] = 0;

[Δ̃, κμ] = −ικμ;

[κν, κμ] = 0;

[κρ, Sμν] = ι(ηρμκν − ηρνκμ);

[Sμν, Sρσ] = ι(ηνρSμσ + ημσSνρ − ημρSνσ − ηνσSμρ).

Now, we translate these generators using the translation operator, the commutation relations in

Eq. (3.10), and the famous Baker-Campbell-Hausdorff formula:

eιx
ρPρDe−ιxρPρ = D+ xνPν,

eιx
ρPρLμνe−ιxρPρ = Sμν − xμPν + xνPμ,

and

eιx
ρPρKμe−ιxρPρ = Kμ + 2xμD− 2xνLμν + 2xμ(xνPν)− x2Pμ.

These translated generators tell us how the field would be affected at points of spacetime different

from the origin, for we get some new transformation rules, that is,

Dφ(x) = (−ιxν∂ν + Δ̃)φ(x),

Lμνφ(x) = ι(xμ∂ν − xν∂μ)φ(x) + Sμνφ(x),

and

Kμφ(x) = (κμ + 2xμΔ̃ − 2xνSμν − 2ιxμxν∂ν + ιx2∂μ)φ(x).
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Now, if we require that φ belong to an irreducible representation of the Lorentz group, then accord-

ing to Schur’s lemma, a generator commuting with all the Sμν must be a multiple of the identity,

and with the commutation relations for Δ̃, Sμν, and κμ, we could conclude that it is Δ̃ that should

be proportional to the identity. The commutation relations also show that in this particular case, all

the κμ vanish. Setting Δ̃ equal to−ιΔ then, where Δ is what is known as the conformal dimension of

the field, we could show the result (a result which we leave the proof of) that a (spinless, or Sμν = 0)

field, φ, transforms under a conformal tranformation, x → x′, as

φ′(x′) =
∣∣∣∣∂x′∂x

∣∣∣∣−Δ/d
φ(x), (3.11)

where |∂x′/∂x| is the Jacobian. A field transforming in this way, as we discuss in detail later too,

is called a quasi-primary field. Having explicit forms of the generators and the way they act on the

field φ in this case, we could go on to construct an action that is invariant under the transformations

that the generators effect, namely the conformal transformations.

3.3 Conformal symmetry in quantum field theory

To discuss conformal symmetry in the quantum regime, we look at the consequences it has for 2-

and 3-point correlators of quasi-primary fields. We start by considering the 2-point correlator

〈
φ1(x1)φ2(x2)

〉
= lim

ε→ 0

1
Z

∫
[dφ]φ1(x1)φ2(x2) exp(ιSε[φ]),

where φ1 and φ2 are quasi-primary fields, φ stands for the set of all the fields in the theory, Z rep-

resents the denominator of the expression in Eq. (2.2) but for the case of fields, and the action S[φ]

is assumed to be invariant under conformal transformations. We would also assume conformal in-

variance of the integration measure. Then, under a conformal transformation, the correlator must
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transform as 〈
φ1(x1)φ2(x2)

〉
=

∣∣∣∣∂x′∂x

∣∣∣∣Δ1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣Δ2/d

x=x2

〈
φ1(x

′
1)φ2(x

′
2)
〉
,

and specializing to a dilation, x → x′ = λx, we see that

〈
φ1(x1)φ2(x2)

〉
= λΔ1λΔ2

〈
φ1(λx1)φ2(λx2)

〉
since the Jacobian for the dilation in a d dimensional spacetime is λd. Rotational and translational

symmetries require that 〈
φ1(x1)φ2(x2)

〉
= f(|x1 − x2|)

with f(x) = λΔ1+Δ2f(λx) to incorporate the symmetry under dilations. This thing prompts us to

write 〈
φ1(x1)φ2(x2)

〉
=

C12

|x1 − x2|Δ1+Δ2
,

where C12 is a constant. Symmetry under SCTs still remains to be used. We note that for an SCT,

∣∣∣∣∂x′∂x

∣∣∣∣ = 1
(1− 2bρxρ + b2x2)d

and the distance
∣∣xi − xj

∣∣ transforms as

∣∣∣x′i − x′j
∣∣∣ = ∣∣xi − xj

∣∣
(1− 2bρx

ρ
i + b2x2i )1/2(1− 2bρx

ρ
j + b2x2j )1/2

.

Then, keeping the expression obtained for
〈
φ1(x1)φ2(x2)

〉
above in sight, we conclude that under

an SCT,
C12

|x1 − x2|Δ1+Δ2
=

C12

γΔ1
1 γΔ2

2

(γ1γ2)
Δ1+Δ2

|x1 − x2|Δ1+Δ2
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with

γi = 1− 2bρx
ρ
i + b2x2i ,

a constraint which is identically satisfied only if Δ1 = Δ2. In other words, only if two quasi-primary

have the same conformal dimension are they correlated, that is,

⟨φ1(x1)φ2(x2)⟩ =


C12/|x1 − x2|2Δ1 , Δ1 = Δ2,

0, Δ1 ̸= Δ2.

(3.12)

We could perform a similar analysis for a 3-point correlator as well, but we quote the result we get

without giving the details:

〈
φ1(x1)φ2(x2)φ3(x3)

〉
=

C123

xΔ1+Δ2−Δ3
12 xΔ2+Δ3−Δ1

23 xΔ3+Δ1−Δ2
13

,

where C123 is a constant. The important thing to note here is that we can easily work out the struc-

ture of different correlators using arguments based on conformal symmetries solely, or without

referring to any Lagrangians and actions, a testimony to the ease that CFTs could afford.

3.4 Conformal field theory in d = 2 dimensions

The formulation of CFTs in 2 dimensions has developed to a particularly mature state over the last

30 years, impacting both physics and mathematics along the way. Therefore, they could be consid-

ered prototypical examples of a valuable interplay between the two disciplines.

Even though 2-dimensional CFTs are examples of quantum field theories, they are different from

the ordinary QFTs in 4 dimensions, for they could be defined and solved in an abstract way via op-

erator algebras and their representation theory. What makes this thing possible is that the algebra

of infinitesimal conformal transformations in 2 dimensions is infinite-dimensional and thus highly
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constraining. We begin our study of 2-dimensional CFTs by going back to Eq. (3.2) and seeing that

when d = 2, it implies the following.

∂0ε0 = ∂1ε1;

∂0ε1 = −∂1ε0. (3.13)

As might be evident, we are working with the Euclidean metric in flat space here, but we would

soon address the case of the Minkowski metric as well. What is important to note though is the fact

that Eq. (3.13) has the well-known Cauchy-Riemann equations, which prompt us to view ε0 and

ε1 as the real and imaginary parts, respectively, of a holomorphic function defined on some open set

and introduce complex variables via the following relations:

z = x0 + ιx1; z̄ = x0 − ιx1

ε = ε0 + ιε1; ε̄ = ε0 − ιε1

∂z =
1
2
(∂0 − ι∂1); ∂z̄ =

1
2
(∂0 + ι∂1) (3.14)

An important question that pops up regards the status of z and z̄: whether they should be treated

as being independent. The proper approach to doing the coordinate transformation above is to first

extend the range of the coordinates x0 and x1 to incorporate the whole complex plane. The coordi-

nate transformation given then is simply a change of variables, and z̄ is not the complex conjugate

of z; instead, it is an independent coordinate. What must be remembered at the end of the day,

however, is that physical space is the 2-dimensional subset of this extension, and it is defined by the

identification of z̄with z∗.

Since ε(z) is holomorphic, f(z) = z + ε(z) too is holomorphic, and we could view f(z) as effect-

ing the infinitesimal conformal transformation z → f(z); similarly, since ε̄(z̄) is antiholomorphic,
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f̄(z̄) = z̄+ ε̄(z̄) too is antiholomorphic, and we could view f̄(z̄) as effecting the infinitesimal confor-

mal transformation z̄ → f̄(z̄). As a result of these transformations, the metric transforms as

ds2 = (dx0)2 + (dx1)2 = dzdz̄ → ∂f
∂z

∂ f̄
∂z̄

dzdz̄,

which allows us to see (∂f/∂z)(∂ f̄/∂z̄) = |∂f/∂z|2 as the scaling factor in Eq. (3.1) and tells us that

the transformation z → f(z), z̄ → f̄(z̄) is indeed conformal. We have done our analysis for 2-

dimensional Euclidean space only, but even if we had worked with 2-dimensional Minkowski space,

our results would have been the same. In the latter case, the so-called light cone coordinates are used:

u = −t+x and v = t+x, where t denotes time and x denotes space. In these coordinates, the metric

is ds2 (= −dt2 + dx2) = dudv, and it transforms as

ds2 = dudv → ∂f
∂u

∂g
∂v

dudv

under the infinitesimal conformal transformation u → f(u), v → g(v); that is, it transforms

in the same way as the metric expressed in terms of dz and dz̄ transforms under an infinitesimal

conformal transformation. The algebra of infinitesimal conformal transformations is thus again

infinite-dimensional.

We now know that for an infinitesimal conformal transformation in two dimensions, ε(z) has

to be holomorphic on some open set. We could, however, assume that in general, it is a meromor-

phic function that has some isolated singularities outside this open set. Same could be expected of

ε̄(z̄), and then, an infinitesimal conformal transformation in two dimensions could be written via
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Laurent expansions around z = 0 and z̄ = 0 in the following manner.

z′ = z+ ε(z) = z+
∑
n∈Z

εn(−zn+1);

z̄′ = z̄+ ε̄(z̄) = z̄+
∑
n∈Z

ε̄n(−z̄n+1).

The generators corresponding to the transformation for a particular n are

ln = −zn+1∂z

and

l̄n = −z̄n+1∂z̄,

and since n ∈ Z, the total number of independent infinitesimal conformal transformations is

infinite. We have thus verified a fact that we set forth right at the outset, namely that the algebra of

infinitesimal conformal transformations in 2 dimensions is infinite-dimensional. This fact is specific

to CFTs in 2 dimensions and, as we would see, has significant consequences.

To determine the algebra just mentioned, we would work out the commutation relations involv-

ing the generators ln and l̄n.

[lm, ln] = zm+1∂z(zn+1∂z)− zn+1∂z(zm+1∂z)

= (n+ 1)zm+n+1∂z − (m+ 1)zm+n+1∂z

= −(m− n)zm+n+1∂z

= (m− n)lm+n;

[̄lm, l̄n] = (m− n)̄lm+n;

[lm, l̄n] = 0. (3.15)
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The respective sets of the generators ln and l̄n together define what is known as theWitt algebra, the

conformal algebra of the generators that bring about infinitesimal conformal transformations in 2

dimensions. The most important observation here remains that this algebra is infinite-dimensional.

3.4.1 The conformal group—d = 2

Focusing on the part of the Witt algebra that is formed by the ln, we see that these generators are not

defined everywhere onC; z = 0, for instance, is a point of ambiguity for l−2. Also, to determine

the conformal group, it turns out to be necessary to work not onC but onC ∪ {∞}. z = ∞ then

becomes another point of ambiguity.

For z = 0, we easily observe that the ln = −zn+1∂z are nonsingular at z = 0 only if n ≥ −1. In

order to investigate z = ∞, however, we first need to do a change of variable via z = −1/w, which

gives

ln = −
(
− 1
w

)n−1
∂w,

and then let w approach 0. Upon doing so, we discover that the ln = −(−1/w)n−1∂w are nonsin-

gular at w = 0 (or z = ∞) only if n ≤ 1. Putting these results together, we could conclude that

globally defined conformal transformations, or those comprising the conformal group, are gener-

ated by l−1, l0, and l1. This conclusion is what allows us to determine the conformal group when

d = 2.

l−1, right from the definition l−1 = −∂z, could be seen as being the generator of translations:

z → z + b. As to l0, it equals−z∂z and generates transformations of the kind z → az, where

a ∈ C. These transformations could easily be identified as being rotations and dilations. Finally,

l1, which is−z2∂z, generates SCTs, which could be, as explained before (see Fig. 3.1), viewed as

translations of w = −1/z. In fact, cl1z = −cz2 could be obtained from z → z/(cz + 1) (which

is equivalent to w → w − c) by expansion for small c. Collecting all the observations, we could say
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that l−1, l0, and l1 generate transformations of the form

z → az+ b
cz+ d

, (3.16)

where a, b, c, d ∈ C. This form represents the famousMobius transformations, and for them to be

invertible, ad − bc ̸= 0. With this final constraint imposed, we may conclude that the conformal

group forC ∪ {∞} is isomorphic to the Mobius group.

Before ending this section, however, we present a little appendage, which is related to the Witt

algebra and would prove useful later. TheWitt algebra admits something known as a central exten-

sion, which could be described as being an extension of its commutation relations. In general, the

central extension ð̃ = ð ⊕ C of the Lie algebra ð byC is characterized by the following commuta-

tion relations:

[x̃, ỹ]ð̃ = [x, y]ð + cp(x, y),

[x̃, c]ð̃ = 0,

and [
c, c′
]
ð̃ = 0,

where x̃, ỹ ∈ ð̃, x, y ∈ ð, and c, c′ ∈ C. Also, p : ð × ð → C here is bilinear. In our applying this

extension to theWitt algebra, we would denote the ln in the extended algebra by the Ln and write

their commutation relations as

[Lm,Ln] = (m− n)Lm+n + cp(m, n). (3.17)

It goes without saying that the same could be done for the l̄n too. In order to determine the precise

form of p(m, n), we begin by noticing that p(m, n) = −p(n,m)must be true to respect the anti-
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symmetry of the Lie bracket. Also, it is always possible to make p(1,−1) and p(n, 0) vanish by the

redefinitions

L′
0 = L0 +

cp(1,−1)
2

and

L′
n = Ln +

cp(n, 0)
n

,

where the second one holds for n ̸= 0. In fact, working some commutators out using the new

operators shows that p(1,−1) and p(n, 0) indeed vanish:

[
L′
1,L′

−1
]
= 2L0 + cp(1,−1) = 2L′

0,

and [
L′
n,L′

0
]
= nLn + cp(n, 0) = nL′

n.

Then, we simplify a particular Jacobi identity:

0 = [[Lm,Ln] ,L0] + [[Ln,L0] ,Lm] + [[L0,Lm] ,Ln]

= (m− n)cp(m+ n, 0) + ncp(n,m)−mcp(m, n),

= (m+ n)p(m, n),

which tells us that p(m, n) = 0 if n ̸= −m. Hence, the only nonvanishing central extensions

are given by p(n,−n) for |n| ≥ 2. Finally, we evaluate another Jacobi identity, which leads us to a
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recursion relation for p(n,−n):

0 = [[L−n+1,Ln] ,L−1] + [[Ln,L−1] ,L−n+1] + [[L−1,L−n+1] ,Ln]

=
n+ 1
n− 2

p(n− 1,−n+ 1)

=
1
2

n+ 1

3


=

1
12
(n+ 1)n(n− 1),

where we introduced the normalization p(2,−2) = 1/2 in the penultimate step. Having found

the explicit form for p(m, n), we could summarize whatever we have said about the central extension

by saying that the central extension of the Witt algebra is called theVirasoro algebra and could be

written as

[Lm,Ln] = (m− n)Lm+n +
c
12
(m3 −m)δm+n,0. (3.18)

c here is what is known as the central charge.

3.4.2 Primary fields

This section is meant to introduce some important concepts as regards 2-dimensional CFTs. First,

we recall that in our scheme of things, z and z̄ are independent variables, something which our hav-

ing two commuting sets of operators in the Witt algebra (namely, the ln and the l̄n) also attests to.

What this thing implies for our fields is that

φ(x0, x1) → φ(z, z̄).
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However, as we said earlier, for physical space, we would have to identify z̄with z∗. Fields depending

only on z are called chiral, and those depending only on z̄ are called antichiral. Terms holomorphic

and antiholomorphic are also respectively used to differentiate them from each other.

Extremely important here is to introduce the notions of conformal dimensions and primary

fields too. A field transforming as

φ(z, z̄) → φ′(z′, z̄′) =
(
∂f
∂z

)h(∂ f̄
∂z̄

)h̄

φ
(
f(z), f̄(z̄)

)
(3.19)

under the conformal transformation z → f(z), z̄ → f̄(z̄) is referred to as a primary fieldwith con-

formal dimensions (h, h̄). If Eq. (3.19) holds for the Mobius transformations only, then φ is referred

to as a quasi-primary field. It is also important to note that not all fields in 2-dimensional CFTs

are primary or quasi-primary; those that are not are known as secondary fields. We do an important

calculation for primary fields here, for it would help us establish some important ideas in the next

section as well.

If we perform the conformal transformation z → f(z) = z + ε(z), z̄ → f̄(z̄) = z̄ + ε̄(z̄) (with

|ε(z)|, |̄ε(z̄)| ≪ 1), then up to first order in ε(z) and ε̄(z̄), we have

(
∂f
∂z

)h
= 1+ h∂zε(z) +O(ε2),

(
∂ f̄
∂z̄

)h̄

= 1+ h̄∂z̄ε̄(z̄) +O(̄ε2),

and

φ(z+ ε(z), z̄+ ε̄(z̄)) = φ(z, z̄) + ε(z)∂zφ(z, z̄) + ε̄(z̄)∂z̄φ(z, z̄) +O(ε2, ε̄2).
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Using these results in Eq. (3.19) and sticking to first order, we find that

φ(z, z̄) → φ(z, z̄) + (h∂zε+ ε∂z + h̄∂z̄ε̄+ ε̄∂z̄)φ(z, z̄). (3.20)

This result would later be used to bring up the important notion of operator product expansion.

For now, it is instructive to investigate another result—which we state without proof—and its im-

portant consequences: the energy-momentum tensor Tμν of a 2-dimensional CFT is traceless, that

is,

Tμ
μ = 0 (3.21)

for 2-dimensional CFTs. We begin exploring the implications of this thing by using Eq. (3.14) to go

from the real to the complex coordinates, thereby obtaining

Tzz =
1
4
(T00 − 2ιT10 − T11),

Tz̄̄z =
1
4
(T00 + 2ιT10 − T11),

and

Tz̄z = Tz̄z =
1
4
(T00 + T11) =

1
4
Tμ
μ = 0.

Using the tracelessness condition in the first two relations as well, we find that Tzz = (1/2)(T00 −

ιT10) and Tz̄̄z = (1/2)(T00 + ιT10). Using these relations with the fact that ∂μTμν = 0 then gives

∂z̄Tzz =
1
4
(∂0 + ι∂1)(T00 − ιT10)

=
1
4
(∂0T00 + ∂1T10 + ι∂1T00 − ι∂0T10)

=
1
4
(∂0T00 + ∂1T10 − ι∂1T11 − ι∂0T01)

= 0
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and
∂zTz̄̄z =

1
4
(∂0 − ι∂1)(T00 + ιT10)

=
1
4
(∂0T00 + ∂1T10 − ι∂1T00 + ι∂0T10)

=
1
4
(∂0T00 + ∂1T10 + ι∂1T11 + ι∂0T01)

= 0.

Clearly, we have established that ∂z̄Tzz = 0 and ∂zTz̄̄z = 0, meaning that the only nonzero compo-

nents of the energy-momentum tensor are a chiral field and an antichiral field: Tzz(z, z̄) = T(z) and

Tz̄̄z = T̄(z̄), respectively.

3.4.3 Radial quantization andOPE

We have been doing 2-dimensional CFTs with the Euclidean metric, using x0 to denote time and x1

to denote space. What is often done in such theories is that space is compactified on a circle of radius

R, which is mostly set equal to 1. In other words, x1 is identified with x1 + 2πR = x1 + 2π. The

CFT obtained as a result then is defined on a cylinder of infinite length, and we could define a single

coordinate, w, to describe points on it.

w = x0 + ιx1; w ∼ w+ 2πι.

The identification w ∼ w + 2πι follows from the compactification done above. Having defined the

theory in this manner, we move from our cylinder to the complex plane through the mapping

z = ew = ex
0+ιx1 , (3.22)

69



which allows us to use the complex coordinate z in lieu of w (see Fig. 3.2). A time translation on the

cylinder, x0 → x0 + a, gets mapped to a dilation of the kind z → exp(a)z, and a space translation

on the cylinder, x1 → x1 + b, gets mapped to a rotation of the kind z → exp(ιb)z.

Figure 3.2: Mapping the infinite cylinder to the complex plane. x0 becomes yoked to dilations, and x1 gets tethered to
rotations.

If we now consider a primary field φ(z, z̄)with conformal dimensions (h, h̄) that we can perform

a Laurent expansion for about z0 = z̄0 = 0, then the expansion turns out to be

φ(z, z̄) =
∑

n,m̄∈Z
z−n−hz̄−m̄−h̄φn,m̄, (3.23)

where the factors of h and h̄ could be explained by Eq. (3.19) and the mapping given in Eq. (3.22).

The so-called radial quantization of the field is achieved by promoting the Laurent modes φn,m̄

to operators. One could then notice that the mapping in Eq. (3.22) maps the infinite past on the

cylinder, x0 = −∞, to z = z̄ = 0, a fact which allows us to define an asymptotic in-state as

|φ⟩ = lim
z,̄z→ 0

φ̂(z, z̄) |0⟩ ,
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but in order for this state to be a “well-behaved” one, all singularities at z = z̄ = 0 should be

avoided. Therefore, we require that φ̂n,m̄ |0⟩ = 0 for n > −h or m̄ > −h̄. This requirement, with

the mode expansion in Eq. (3.23), gives

|φ⟩ = φ̂−h,−h̄ |0⟩ . (3.24)

Having defined this in-state, we could define an asymptotic out-state as well. To do so, however, we

need to establish for φ̂(z, z̄) the notion of Hermitian conjugation first. It must be remembered

that the Euclidean coordinates are obtained from theMinkowski ones through the introduction of

complex time, t → ιt, so the action of Hermitian conjugation on the Euclidean time x0 is nontrivial,

for x0 → −x0. For z = exp
(
x0 + ιx1

)
then, Hermitian conjugation amounts to z → 1/z̄. We

thus define the Hermitian conjugate of φ̂(z, z̄) as

φ̂†(z, z̄) = z̄−2hz−2h̄φ̂
(
1
z̄
,
1
z

)
,

and a Laurent expansion for it gives

∑
n,m̄∈Z

z̄n−hzm̄−h̄φ̂n,m̄.

Comparing this expansion with the Hermitian conjugate of the one in Eq. (3.23), we obtain

(
φ̂n,m̄

)†
= φ̂−n,−m̄. (3.25)

Finally, we could define an asymptotic out-state as

⟨φ| = lim
z,̄z→ 0

⟨0| φ̂†(z, z̄),
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but if want to avoid all singularities at z = z̄ = 0, we need to require that ⟨0| φ̂n,m̄ = 0 for n < h

or m̄ < h̄. This requirement then, with the mode expansion for the Hermitian conjugate of φ̂(z, z̄),

gives

⟨φ| = ⟨0| φ̂h,h̄. (3.26)

Now, as we discussed in the context of Noether’s theorem in section 1.1, field theories with con-

tinuous symmetries happen to have conserved charges. For a field theory in Euclidean coordinates,

x0 and x1, the conserved charge may be written as

Q =

∫
dx1j0,

where j0 is what we earlier referred to as a current. It is well-known that a conserved charge serves as

the generator of transformations for various quantities, and for some random quantity A, this fact

may roughly be written as

δÂ =
[
Q̂, Â

]
with the commutation relation evaluated at equal times. We must also note here that the integral for

conserved charge above too was evaluated at some particular time, something implying that x0 was

a constant for that integral. Seen in the light of the coordinate change given in Eq. (3.22), this thing

translates to the facts that |z| is a constant for that integral and that it should become a contour

integral after the coordinate change. Following the convention that contour integrals are always

worked out in a counterclockwise manner, we could say that the most natural generalization of the

conserved charge integral for complex coordinates is

Q =
1
2πι

∮
C
(dzT(z)ε(z) + dz̄T̄(z̄)̄ε(z̄)) , (3.27)
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where we have used Tμνεν in place of the current that one gets under conformal symmetries. As

might easily be noted, we have started considering z̄ and ε̄(z̄) as well, but it must be remembered

that doing so is necessary for full generality, something requiring us to assume that x0 and x1 are not

always real; for physical space, however, as said before, we would have to restrict x0 and x1 to real

values only.

In view of the commutation relation we wrote, we could now use Eq. (3.27) to write the infinites-

imal change generated in the field φ by the conserved chargeQ:

δε,̄εφ̂(w, w̄) =
1
2πι

∮
C
dz
[
T̂(z)ε(z), φ̂(w, w̄)

]
+

1
2πι

∮
C
dz̄
[
¯̂T(z̄)̄ε(z̄), φ̂(w, w̄)

]
. (3.28)

This very relation is what brings us to the notion of radial ordering, for we do encounter an order-

ing ambiguity in the equation above: we have to decide whether w and w̄ are inside the contour C

since |w| and |w̄| give a measure of time and δÂ =
[
Q̂, Â

]
is evaluated at equal times. As might

be remembered from chapter 2, the ordering of operators in correlators is set by the time ordering

operator. The order of operators in Eq. (3.28) would be set in precisely the same way, but since the

change to complex coordinates linked time translations to dilations, time ordering would be imple-

mented through what was just called radial ordering. We define the radial ordering of two operators,

Â(z) and B̂(w), in the following way:

R
(
Â(z)B̂(w)

)
=


Â(z)B̂(w), |z| > |w|,

B̂(w)Â(z), |w| > |z|.
(3.29)

With this definition, we know that the correct way to interpret the commutators in Eq. (3.28) is
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given by ∮
dz
[
Â(z), B̂(w)

]
=

∮
|z|>|w|

dzÂ(z)B̂(w)−
∮
|z|<|w|

dzB̂(w)Â(z)

=

∮
C(w)

dzR
(
Â(z)B̂(w)

)
,

which allows us to rewrite Eq. (3.28) as

δε,̄εφ̂(w, w̄) =
1
2πι

∮
C(w)

dzε(z)R
(
T̂(z)φ̂(w, w̄)

)
+ Antichiral.

However, we did calculate the infinitesimal change in the field φ in Eq. (3.20), and to get that very

expression from the contour integrals we have now, we realize that we must have

R
(
T̂(z)φ̂(w, w̄)

)
=

h
(z− w)2

φ̂(w, w̄) +
1

z− w
∂wφ̂(w, w̄) + . . .

and

R
(
¯̂T(z̄)φ̂(w, w̄)

)
=

h̄
(z̄− w̄)2

φ̂(w, w̄) +
1

z̄− w̄
∂w̄φ̂(w, w̄) + . . . ,

where . . . represent nonsingular terms. Just eyeballing the insertion of these “expansions” into the

expression we found for the infinitesimal change shows that they are correct, and we go on to call

them operator product expansions, orOPEs for short, which define an algebraic product structure

on quantum fields. Since the OPEs above specifically correspond to the infinitesimal change in a

primary field with conformal dimensions (h, h̄), we could use them to actually redefine such a field,

the new definition being the following: a primary field with conformal dimensions (h, h̄) is one that

has the OPEs given above with the energy-momentum tensor.

We could also go about calculating the OPE of the chiral part of the energy-momentum tensor

with itself:

R
(
T̂(z)T̂(w)

)
=

c/2
(z− w)4

+
2T̂(w)
(z− w)2

+
∂wT̂(w)
z− w

+ . . . ,

74



where c is what we referred to as the central charge while discussing the Virasoro algebra in sec-

tion 3.4.1. This OPE could be shown to be the correct one via some calculations, which begin by

Laurent expanding the chiral part of the energy-momentum tensor in the following way.

T̂(z) =
∑
n∈Z

z−n−2L̂n; L̂n =
1
2πι

∮
dzzn+1T̂(z).

If we use this expansion in Eq. (3.27) with the particular conformal transformation ε(z) = −εnzn+1,

we get

Qn =

∮
dz
2πι

T̂(z)(−εnzn+1) = −εn
∑
m∈Z

∮
dz
2πι

L̂mzn−m−1 = −εnL̂n,

which clearly shows that the Laurent modes L̂n of T̂(z) could be identified with the generators of

infinitesimal conformal transformations. They should, as a result, satisfy the Virasoro algebra we

introduced in section 3.4.1. Using the expression for them in terms of the chiral part of the energy-

momentum tensor (see above), we could go about evaluating
[
L̂m, L̂n

]
:

[
L̂m, L̂n

]
=

∮
C(0)

dw
2πι

wn+1
∮
C(w)

dz
2πι

zm+1R
(
T̂(z)T̂(w)

)
=

∮
C(0)

dw
2πι

wn+1
∮
C(w)

dz
2πι

zm+1

(
c/2

(z− w)4
+

2T̂(w)
(z− w)2

+
∂wT̂(w)
z− w

)

=

∮
C(0)

dw
2πι

wn+1
[
c(m+ 1)m(m− 1)wm−2

2(3!)
+ 2(m+ 1)wmT̂(w) + wm+1∂wT̂(w)

]
= (m− n)L̂m+n +

c
12
(
m3 −m

)
δm,−n,

where we employed integration by parts to deal with the last term in the penultimate line. Since the

Ln clearly satisfy the Virasoro algebra, the OPE of T(z)with itself that we gave above is right. The

calculation essentially shows that the singular part of this OPE is equivalent to the Virasoro algebra

formed by the Ln.
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Before closing this section off, we offer one more particularly important result, namely that[
L̂m, φ̂n

]
= [(h − 1)m − n]φ̂m+n. This result could easily be worked out by going along the

lines of the calculation above:

[
L̂m, φ̂n

]
=

∮
C(0)

dw
2πι

wn+h−1
∮
C(w)

dz
2πι

zm+1R
(
T̂(z)φ̂(w)

)
=

∮
C(0)

dw
2πι

wn+h−1
∮
C(w)

dz
2πι

zm+1
(

h
(z− w)2

φ̂(w) +
1

z− w
∂wφ̂(w)

)
=

∮
C(0)

dw
2πι

wn+h−1 [h(m+ 1)wmφ̂(w) + wm+1∂wφ̂(w)
]

= [(h− 1)m− n]φ̂m+n.

3.4.4 Normal ordering

The idea of normal ordering was first introduced in the context of Wick’s theorem in section 2.4

and was described as an operation that brings all the creation operators to the left of all the an-

nihilation operators. In this section, we revisit this operation but discuss it in the context of 2-

dimensional CFTs.

Before we bring up the operation itself, however, we need to establish what the creation and the

annihilation operators are for the case at hand. Recalling the discussion of the asymptotic in- and

out-states in section 3.4.3, we note that

φ̂n,m̄ |0⟩ = 0

for n > −h and m̄ > −h̄. This thing clearly tells us that all φ̂n,m̄ with n > −h or m̄ > −h̄

could be interpreted as annihilation operators. The rest would be the creation ones, and they could

be required to create states with positive energy only. In summary, we could say that for a chiral

primary field, φ, with the conformal dimension h, φ̂n with n > −h are the annihilation operators,
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and φ̂n with n ≤ −h are the creation operators.

To proceed to the discussion of normal ordering now, we state a result without proof that we go

on to simply verify: the nonsingular part of an OPE naturally gives rise to normal ordered products,

a fact which could be expressed in the following manner:

R(φ̂(z)χ̂(w)) = Singular+
∞∑
n=0

(z− w)n

n!
N (χ̂∂nφ̂)(w). (3.30)

We verify this result in what follows for the case n = 0. In this case, we could easily use Eq. (3.30)

and properties of contour integration to obtain the normal ordered product of two operators:

N (χ̂φ̂)(w) =
∮
C(w)

dz
2πι

R(φ̂(z)χ̂(w))
z− w

.

However, we could also have simply Laurent expandedN (χ̂φ̂) as usual, that is,

N (χ̂φ̂)n =
∮
C(0)

dw
2πι

wn+hφ+hχ−1N (χ̂φ̂)(w),

where hφ and hχ are the respective conformal dimensions of φ̂ and χ̂. Inserting in this result the

expression we found forN (χ̂φ̂)(w) gives

N (χ̂φ̂)n =
∮
C(0)

dw
2πι

wn+hφ+hχ−1
∮
C(w)

dz
2πι

R(φ̂(z)χ̂(w))
z− w

=

∮
C(0)

dw
2πι

wn+hφ+hχ−1

(∮
|z|>|w|

φ̂(z)χ̂(w)
z− w

−
∮
|z|<|w|

χ̂(w)φ̂(z)
z− w

)
.

Now, we separately evaluate the first integral in the parentheses, using in place of φ̂(z) and χ̂(w)
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their respective Laurent expansions.

∮
|z|>|w|

dz
2πι

1
z− w

∑
r,s

z−r−hφw−s−hχ φ̂rχ̂s

=

∮
|z|>|w|

dz
2πι

1
z
∑
p≥0

(w
z

)p∑
r,s

z−r−hφw−s−hχ φ̂rχ̂s

=

∮
|z|>|w|

dz
2πι

∑
p≥0

∑
r,s

z−r−hφ−p−1w−s−hχ+pφ̂rχ̂s,

where we used 1/(z − w) = (1/z)(1/(1 − w/z)) and the geometric series in the second line. Then,

knowing that only the z−1 term contributes in the contour integration, we see that the integral over

z sets r equal to−hφ − p. When combined with the contour integral over w, this result produces the

expression ∮
dw
2πι

∑
p≥0

∑
s
w−s−hχ+p+n+hφ+hχ−1φ̂−hφ−pχ̂s

=
∑
p≥0

φ̂−hφ−pχ̂hφ+n+p

=
∑

k≤−hφ
φ̂kχ̂n−k.

As to the integral over w, we again know that only the w−1 term contributes. Therefore, to get rid

of this integral, we set s equal to p + n + hφ in the second line. Introduction of the variable k then

produces the third line. The second term in parentheses in the final expression on the previous page

could be subjected to a similar analysis and turned into
∑

k>−hφ χ̂n−kφ̂k. A complete, simplified

expression forN (χ̂φ̂)n could thus be written as

N (χ̂φ̂)n =
∑

k>−hφ
χ̂n−kφ̂k +

∑
k≤−hφ

φ̂kχ̂n−k. (3.31)

As might be evident, the φ̂k in the first sum are annihilation operators and are on the right whereas
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the φ̂k in the second sum are creation operators and are on the left. Clearly then, the nonsingular

part of an OPE contains normal ordered products.

3.4.5 Free bosonic field

Up till now, we have studied the generic structure of 2-dimensional CFTs and discussed some im-

portant aspects of them (algebras, primary fields, OPEs, and so on) without bringing in any La-

grangians and actions. The tools we have developed so far are particularly powerful for studying

CFTs, and as we have mentioned every now and again, they are in some cases sufficient for a com-

plete description of the dynamics. However, to make some contact with the usual approach to do-

ing quantum field theories, we would, in this section and the next, consider examples of CFTs given

in terms of Lagrangians and actions and discuss some of their properties and aspects in terms of the

CFT jargon introduced in this chapter.

The example to be discussed in this section is that of a free massless scalar field, which happens

to be a free bosonic field, defined on the infinite cylinder of section 3.4.4. The action for this field

could be written in the following manner:

S =
1

4πκ

∫
dx0dx1

√
|h|hμν∂μX∂νX

=
1

4πκ

∫
dx0dx1

[
(∂x0X)

2 + (∂x1X)
2
]
, (3.32)

where h = det hμν with

hμν =

1 0

0 1


and κ is some normalization constant. The similarity between this action and the Klein-Gordon

field’s (Eq. (1.10)) is quite striking; the only differences are that the scalar field here is defined on an

infinite cylinder and that there is no mass term. The absence of a mass term indicates that nothing
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in the theory sets a scale, and hence, the theory is conformally invariant.

Before beginning our detailed study of this action, we follow the procedure of the previous sec-

tion and map our cylinder to the complex plane via the mapping given in Eq. (3.22). The change of

coordinates that doing so effects allows us to rewrite the action as

S =
1

4πκ

∫
dzdz̄

√
|g|gαβ∂αX∂βX

=
1

2πκ

∫
dzdz̄∂zX∂z̄X, (3.33)

where g = det gμν with

gμν =

 0 1/2zz̄

1/2zz̄ 0

 .

Then, varying this action with respect to the field X yields

0 = δS

=
1

2πκ

∫
dzdz̄(δ(∂zX)∂z̄X+ ∂zXδ(∂z̄Z))

=
1

2πκ

∫
dzdz̄(∂z(δX∂z̄X)− δX∂z∂z̄X+ ∂z̄(∂zXδX)− ∂z̄∂zXδX)

= − 1
2πκ

∫
dzdz̄δX(∂z∂z̄X),

which, required to hold for all δX, gives the following equation of motion:

∂z∂z̄X = 0. (3.34)

From this equation of motion, we can infer that

J(z) = ι∂zX

80



is a chiral field and that

J̄(z̄) = ι∂z̄X

is an antichiral field. J(z) and J̄(z̄) are quantities of particularly great significance, and their impor-

tance would become manifest as we discuss the Wess-Zumino-Witten (WZW) models in the next

chapter, but for now, we say simply that their respective conformal dimensions could be worked out

from the action if we assume that the field X is a primary field with vanishing conformal dimensions,

something which, in light of Eq. (3.19), could mathematically be written as

X′(w, w̄) = X(z, z̄).

We do the following calculation:

S =
1

2πκ

∫
dwdw̄∂wX′(w, w̄)∂w̄X′(w, w̄)

=
1

2πκ

∫
dw
dz

dz
dw̄
dz̄

dz̄
dz
dw

∂zX(z, z̄)
dz̄
dw̄

∂z̄X(z, z̄)

=
1

2πκ

∫
dzdz̄∂zX(z, z̄)∂z̄X(z, z̄).

Not only does this calculation show that the action is invariant if X has vanishing conformal di-

mensions, but it also quite manifestly establishes that J(z) and J̄(z̄) (which respectively appear as

∂zX(z, z̄) and ∂z̄X(z, z̄) in the action here) have conformal dimensions given by (1, 0) and (0, 1),

respectively.

Another important calculation could be done with the action, namely the calculation of the

energy-momentum tensor, Tαβ. Two results would be used, which we state without proof:

Tαβ = 4πκγ
1√
|g|

∂S
∂gαβ

,
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and

δ
√
|g| = − 1

2

√
|g|gαβδgαβ.

Varying the action using them, we find that Tzz = γ∂zX∂zX, Tz̄z = Tz̄z = 0, and Tz̄̄z = γ∂z̄X∂z̄X.

It must, however, be remembered that for a quantum theory, the ground-state expectation value of

an energy-momentum tensor should be finite. Therefore, Tαβ is written as a normal ordered expres-

sion:

T(z) = γN
(
∂zX̂∂zX̂

)
(z) = γN (̂ĵj)(z). (3.35)

Of course, we have given the result for the chiral part only. Each of the j’s represents the chiral field

J(z).

3.4.6 Free fermionic field

The example to be discussed in this section is that of a free fermionic field in a 2-dimensional space,

which we take as being the Minkowski space. The action of this field could be written as

S =
1

4πκ

∫
dx0dx1

√
|h|(−ι)Ψ̄γα∂αΨ, (3.36)

where h = det hμν with

hμν =

1 0

0 −1


and κ is a normalization constant. Similar to what we dealt with in section 1.3, Ψ is a spinor, but it is

a 2 × 1 column vector this time—rather than being 4 × 1. The γα, likewise, are matrices satisfying

the Clifford algebra, but they are 2 × 2 this time around—rather than being 4 × 4. Also, there are

only two of them now. If we see Eq. (3.36) closely, we notice that the action is almost the same as

the one we wrote for the Dirac field (Eq. (1.13)), which is also a free fermionic field. The only major
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difference is that we do not have any mass term now, an attestation to the fact that we are dealing

with a CFT.

Several representations of the γμ are possible, but we choose the following.

γ0 =

0 1

1 0

 ; γ1 =

 0 1

−1 0

 .

Its choice has to do with the fact that under this representation, the components, ψ and ψ̄, of the

spinor Ψ are real. We then perform theWick rotation x1 → ιx1, which effects the derivative trans-

formation ∂1 → −ι∂1. Essentially, this rotation is tantamount to making another choice for the

matrices γα, namely

γ0 =

0 1

1 0


and

γ1 =

0 −ι

ι 0

 ,

and we see that it also introduces an additional factor of ι in the action, which comes from dx1. We

begin simplifying the action then, observing that Ψ̄ = Ψ†γ0 and

γ0γμ∂μ

= γ0
(
γ0∂0 + γ1∂1

)
=

∂0 + ι∂1 0

0 ∂0 − ι∂1


= 2

∂z̄ 0

0 ∂z

 .
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In the last step, we have again employed the change of variables in Eq. (3.14). This change allows us

to write our spinor as

Ψ =

ψ(z, z̄)
ψ̄(z, z̄)

 ,

where ψ(z, z̄) and ψ̄(z, z̄) are still real fields. Using all this discussion, we could finally simplify the

action as

S =
1

4πκ

∫
dzdz̄

√
|g|2Ψ†

∂z̄ 0

0 ∂z

Ψ

=
1

4πκ

∫
dzdz̄(ψ∂z̄ψ + ψ̄∂zψ̄). (3.37)

As to the metric, we used what we obtained from hμν after the coordinate change, namely

gμν =

 0 1/2

1/2 0

 .

Now, to do a CFT analysis, we could begin by varying the action with respect to ψ:

0 = δψS

=
1

4πκ

∫
d2z(δψ∂z̄ψ + ψ∂z̄(δψ))

=
1

4πκ

∫
d2z(δψ∂z̄ψ + ∂z̄(ψδψ)− (∂z̄ψ)δψ)

=
1

2πκ

∫
d2zδψ∂z̄ψ.

Since the variation in action has to be 0 for all δψ, we have

∂z̄ψ = 0. (3.38)
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A similar variation of the action with respect to ψ̄ gives

∂zψ̄ = 0 (3.39)

What these equations indicate is that J(z) = ψ is a chiral field whereas J̄(z̄) = ψ̄ is an antichiral field.

Next, we use the action to show that if J(z) and J̄(z̄) are primary fields with conformal dimensions

(1/2, 0) and (0, 1/2), respectively, then the action is invariant under conformal transformations:

S =
1

4πκ

∫
dwdw̄

(
ψ′(w, w̄)∂w̄ψ′(w, w̄) + ψ̄′(w, w̄)∂wψ̄′(w, w̄)

)
=

1
4πκ

∫
dz
dw

dw
dz̄
dw̄

dw̄

[(
dz
dw

)1/2
ψ(z, z̄)

dz̄
dw̄

∂z̄

(
dz
dw

)1/2
ψ(z, z̄)

+

(
dz̄
dw̄

)1/2
ψ̄(z, z̄)

dz
dw

∂z

(
dz̄
dw̄

)1/2
]

=
1

4πκ

∫
dzdz̄(ψ(z, z̄)∂z̄ψ(z, z̄) + ψ̄(z, z̄)∂zψ̄(z, z̄)).

Clearly then, the action is invariant under conformal transformations if ψ and ψ̄ are primary fields

whose conformal dimensions are (1/2, 0) and (0, 1/2), respectively.

As in the example of the free bosonic field, we say that another important calculation involving

the action is the calculation of the energy-momentum tensor, Tμν. For fermionic theories, the way

Tμν is defined differs from the way it is defined for bosonic theories, and we would have to introduce

more structure before we could write its explicit form in the context of fermions. Therefore, we take

a roundabout route and calculate it via an equivalent but different way:

Tμν = 8πκγ

(
−gμνL+

∑
i

∂L
∂(∂μφi)

∂νφi

)
, (3.40)

where γ is a normalization constant, gμν is the metric we found for complex coordinates, and the φi
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stand for the fermionic fields. The energy-momentum tensor found via this equation is not sym-

metric in general, but it could be made symmetric with the equations of motion. For instance, we

find that Tzz = γψ∂ψ, Tz̄z = −γψ̄∂zψ̄, Tz̄z = −γψ∂z̄ψ, and Tz̄̄z = γψ̄∂z̄ψ̄; whereas Tμν is not

symmetric so far, it could easily be made symmetric with the observation that ψ and ψ̄ are chiral and

antichiral fields, respectively, since this observation makes both Tz̄z and Tz̄z equal to 0.

We thus have obtained all the nonvanishing components of the energy-momentum tensor for

our fermionic field. Using normal ordering as we did earlier and stating the result for the chiral part

only, we could write

T(z) = γN
(
ψ̂∂zψ̂

)
. (3.41)
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“You enter a completely new world where things aren’t at

all what you’re used to.”

EdwardWitten

4
Wess-Zumino-Witten models2,3,4

Marking the ultimate culmination of this work, this final chapter uses whatever we have covered up

till now (about quantum fields in general and CFTs in particular) to first discuss the famousWess-

Zumino-Witten models and then show that they comprise CFTs in 2 dimensions. In doing so, it

goes through the so-called Sugawara construction of the energy-momentum tensor.

The general scheme of things starts with a short discourse on nonlinear sigma models and iden-

tifies what prevents them from being CFTs. Then, EdwardWitten’s contribution to the action of
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a nonlinear sigma model is addressed, and it is shown that the term he introduces does hint at the

fact that the model has turned into a CFT. The current algebra of the newmodel is then presented

as pointing toward an in-built Sugawara construction, and this observation is verified together with

the fact that the Wess-Zumino-Witten model is indeed a CFT.

4.1 Nonlinear sigma models

We begin our discussion with the nonlinear sigma model, whose action could be written as

S0 =
1

4λ2

∫
dzdz̄Tr(∂μg−1∂μg). (4.1)

λ here is a dimensionless coupling constant, and g could be viewed as a map from the Riemann

sphere to the Lie algebraG, that is, g : S2 → G. The trace here represents an invariant product

for the relevant Lie algebra, and it is normalized such thatTr
(
TaTb) = (1/2)δab for any two gen-

erators of the Lie algebra, Ta and Tb. That this action does not give a CFT could be seen by some

comparisons with the examples of the free bosonic and fermionic fields that we covered in chapter 3.

Varying the action, for instance, we see the following:

0 = δS0

=
1

2λ2

∫
dzdz̄Tr[(−g−1δgg−1∂μg+ g−1δ(∂μg))g−1∂μg]

=
1

2λ2

∫
dzdz̄Tr(∂μ(g−1δg)g−1∂μg)

= − 1
2λ2

∫
dzdz̄Tr(g−1δg∂μ(g−1∂μg)),

where we used the cyclic invariance of the trace in the second step and integration by parts in the

third. Since we want the variation of the action to be 0 for all δg, we could say that the equation of
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motion is

∂μ(g−1∂μg) = 0. (4.2)

What this equation says is that Jμ = g−1∂μg is conserved. If we try, however, to construct the chiral

and antichiral J’s as we did in sections 3.4.5 and 3.4.6, we see that we badly fail. If, for instance, J̃z =

g−1∂zg and J̃̄z = g−1∂z̄g, we find that

∂z̃ J̄z + ∂z̄̃Jz = 0,

but it is particularly easy to check that neither of these terms is necessarily equal to 0 on its own. In

fact, their being equal to 0 simultaneously leads to an inconsistency in that ∂z(g−1∂z̄g) = 0 requires

∂z∂z̄g = ∂z̄gg−1∂zg.

Then, since the partial derivatives on the left-hand side could conveniently be interchanged, we may

write that

∂z̄gg−1∂zg = ∂zgg−1∂z̄g.

This statement is an equality of the form abc = cba, which is not expected to hold in general for

non-Abelian algebras. The correct choice for the J’s is given by Jz = ∂zgg−1 and J̄z = g−1∂z̄g, and if

∂z̄Jz is equal to 0, ∂z J̄z’s being equal to 0 is implied necessarily:

∂z(g−1∂z̄g) = g−1∂z̄(∂zgg−1)g. (4.3)

However, neither of these J’s is either chiral or antichiral in the nonlinear sigma model, and this

thing hints at the fact that unlike the free bosonic and fermionic theories discussed in chapter 3, the

nonlinear sigma model is not a CFT.
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4.2 Wess-Zumino-Witten models

In order to turn the nonlinear sigma model into a CFT, EdwardWitten suggested the addition of

the term

Γ =
−ι
24π

∫
d3yεαβγTr

(
g̃−1∂αg̃g̃−1∂βg̃g̃−1∂γg̃

)
(4.4)

to the action in Eq. (4.1). Γ is defined on a 3-dimensional region, and g̃ represents the extension of g

from the Riemann sphere into this region. Since this extension is not unique, there is an ambiguity

in the definition of Γ. This ambiguity is quantifiable, but we would leave its discussion here, for it is

not germane to the task at hand; we just make the comment that the ambiguity is defined modulo

2πι.

The action we consider now is then S = S0 + kΓ, where S0 is given by Eq. (4.1) and k is just some

coupling constant. Whereas S is a valid action classically for any value of k, quantum theory restricts

the values that k is allowed to take. Since the ambiguity in Γ is defined modulo 2πι, path integrals in

complex time, ∫
[dφ] exp(−S0) exp(−kΓ),

would be well-defined only if k ∈ Z. Even though Γ is a 3-dimensional integral, variation in it due to

g → g+ δg is a 2-dimensional one, for the variation could be written as a total derivative:

∫
d3yεαβγ∂γ(. . .) =

∫
dzdz̄εαβ(. . .).

The final result of the variation is

δΓ =
ι
8π

∫
d2xεμνTr(g−1∂g∂μ(g−1∂νg)), (4.5)

and the equation of motion obtained from the variation of the full action S (in complex coordi-
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nates) is (
1+

λ2k
4π

)
∂z
(
g−1∂z̄g

)
+

(
1− λ2k

4π

)
∂z̄
(
g−1∂zg

)
= 0. (4.6)

Now, if λ2 is set equal to 4π/k, the equation of motion becomes ∂z(g−1∂z̄g) = 0, which tells us

that J̄z = g−1∂z̄g is antichiral. In view of Eq. (4.3), it also tells us that ∂zgg−1 is chiral. On the other

hand, if λ2 is set equal to−4π/k, then the equation of motion turns into ∂z̄(g−1∂zg) = 0, meaning

that Jz = g−1∂zg is chiral and, in the light of Eq. (4.3), J̄z = ∂z̄gg−1 is antichiral. The former choice

for λ2 defines theWess-Zumino-Witten (WZW )model, whose complete action could be written as

S =
k
16π

∫
dzdz̄Tr(∂μg−1∂μg) + kΓ. (4.7)

This choice, however, is irrelevant; what is important is fact that ∂z J̄z and ∂z̄Jz are now separately

0. This very thing hints at that the WZWmodel is a 2-dimensional CFT, and we go on verify this

hunch of ours in the subsequent sections.

4.3 Current algebras

This section is meant to introduce the notions of currents and current algebras in 2-dimensional

CFTs. Beginning by expounding what we mean by currents, we proceed to presenting a couple of

ways to reach the kind of algebra they form. All these concepts would prove particularly useful in

the subsequent section, for they would help us establish that a WZWmodel is a 2-dimensional CFT.

A chiral primary field, J(z), with a conformal dimension of 1 is referred to as a current, and a

similar definition holds for an antichiral field as well. If a theory hasN such fields, we could, as per

our discussion in the previous chapter, Laurent expand each of them like

Ji(z) =
∑
n∈Z

z−n−1Jin
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and determine the algebra that the Laurent modes Jin would satisfy. Doing so requires us to resort to

the general expression for the commutation relation of two chiral primary fields and use a conformal

dimension of 1 for each. Some simplifications too are required, but we leave all these things for now

in the interest of covering what is essential and simply quote the result:

[
Jam, Jbn

]
= ι
∑
c

fabc Jcm+n + kmδabδm+n,0. (4.8)

The algebra thus obtained is a generalization of a Lie algebra and happens to be infinite-dimensional

(just like the Witt and the Virasoro algebras). Known as the so-calledKac-Moody algebra, this al-

gebra could also be arrived at via an approach that uses OPEs. As shown in section 3.4.1, OPEs are

closely related to commutation relations and, hence, to algebras. We could go about determining

the OPE of some current in a 2-dimensional CFT with another current in the theory through argu-

ments about the OPE’s possible structure.

Starting with the holomorphic current J(z) ∼ ∂zgg−1 in a WZWmodel, for instance, we could

use dimensional analysis to see that it has conformal dimension 1. Thus, when writing the OPE in

the form

Ja(z)Jb(w) ∼
∑
p

Xp(w)
(z− w)p

,

we realize that the holomorphic field Xp(w) should have conformal dimension 2 − p. Unitarity

also puts constraints on the possible form of the OPE; for example, it stipulates that there be no

operators with negative conformal dimensions. The highest allowed pole order for our OPE thus

is 2. A field with conformal dimension 0 being proportional to identity and a field with conformal

dimension 1 being a current itself, we could finally go on to say that our OPE has the form

R
(
Ja(z)Jb(w)

)
∼ κab

(z− w)2
+

ιfabc Jc(w)
z− w

,
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where κab and fabc are some constants and we have dropped the nonsingular terms for now. Sym-

metry under the exchange of the currents and the associativity of the OPEs tell us that κab = κba

and that the fabc are the structure constants of a Lie algebra. We could choose a basis for the relevant

Lie algebra such that κab = kδab, and we identify this kwith the level of a WZWmodel. A refined

expression for the OPE at hand could hence be written as

R
(
Ja(z)Jb(w)

)
∼ kδab

(z− w)2
+

ιfabc Jc(w)
z− w

, (4.9)

where we have dropped the nonsingular terms again. Since this current OPE is closely related to

the corresponding current algebra, it is sometimes referred to as the current algebra itself. In fact, it

could be used to work out the related current algebra. Laurent expanding the currents as

Ja(z) =
∑
n∈Z

Janz−n−1,

extracting the modes with contour integration as

Jan =
∮

dzznJa(z),

and putting their expressions into a commutator yield

[
Jam, Jbn

]
=

∮
C(0)

dw
2πι

∮
C(w)

dz
2πι

zmwnR
(
Ja(z)Jb(w)

)
=

∮
C(0)

dw
2πι

∮
C(w)

dz
2πι

zmwn

(
kδab

(z− w)2
+

ιfabc Jc(z)
z− w

)

=

∮
C(0)

dw
2πι

(
kmδabwm+n−1 + ιfabc Jc(z)wm+n

)
= kmδabδm+n,0 + ιfabc Jcm+n.

93



Clearly then, the currents of the WZWmodel too satisfy the Kac-Moody algebra, which we dis-

cussed above. The modes withm = n = 0 satisfy a Lie alegbra; the extra term kmδabδm+n,0 rep-

resents a central extension of kind that Witt algebra was shown to admit. The fact that the currents

of the WZWmodel could be seen as the so-calledKac-Moody currentswould turn out to be of great

significance in the next section and would help us prove that this model is a CFT.

4.4 Sugawara construction

In chapter 3, we saw that 2-dimensional CFTs are characterized by the Virasoro algebra, which was

the central extension of the Witt algebra and was generated by the energy-momentum tensor. If we

now consider some other algebras characteristic of a 2-dimensional CFT, then they would have to

be compatible with the Virasoro algebra. This fact implies the existence of an inherent definition

of the energy-momentum tensor. Looking at the current algebras, for instance, we should find that

this inherent definition is such that each current has conformal dimension 1 with respect to the

chiral part of the energy-momentum tensor. In fact, the energy-momentum tensor itself should

satisfy the Virasoro algebra, something which, in light of the discussion in section 3.4.2, implies that

R
(
T̂(z)T̂(w)

)
=

c/2
(z− w)4

+
2T̂(w)
(z− w)2

+
∂wT̂(w)
z− w

+ . . . .

Put a little differently, if a theory is conformal, then its energy-momentum tensor should yield the

OPE above.

Guided by the example of the free bosonic field in section 3.4.5, we investigate the following

ansatz for the chiral part, T(z), of the energy-momentum tensor of a CFT:

T(z) = γ
dim ð∑
a=1

N (JaJa) (z), (4.10)
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where ð represents the relavant Lie algebra. If we now require that each of the Ja be a primary field

of conformal dimension 1, we could use the normal ordering result in Eq. (3.31) to write our ansatz

in terms of the Laurent modes of the energy-momentum tensor:

Lm = γ
dim ð∑
a=1

∑
l≤−1

Jal J
a
m−l +

∑
l>−1

Jam−lJ
a
l

 .

Recalling another important result from the previous chapter, namely the one at the end of sec-

tion 3.4.3, we would do some calculations that would help us fix γ.

[Lm, Jan] = γ
∑
b

∑
l≤−1

[
Jbl J

b
m−l, J

a
n

]
+
∑
l>−1

[
Jbm−lJ

b
l , J

a
n

]
= −2γnkjam+n + γ

∑
bc

ιfbac
∑
l≤−1

(
Jbl J

c
m+n−l + Jcl+nJ

b
m−l

)
+ γ

∑
bc

ιfbac
∑
l>−1

(
Jcm+n−lJ

b
l + Jbm−lJ

c
l+n

)
,

where we assumed that the current Laurent modes satisfy the Kac-Moody algebra. Now, since fbac =

−fcab, we could further simply the final expression we got in the following manner:

[Lm, Jan] = −2γnkJam+n − γ
∑
bc

ιfbac
n−1∑
l=0

[
Jbl , J

c
m+n−l

]
= −2γnkJam+n − γ

∑
bc

ιfbac
n−1∑
l=0

∑
d

ιfbcdJ
d
m+n

= −2γnkJam+n + γn
∑
bcd

fbac fbcdJ
d
m+n.

We know that the structure constants satisfy
∑

bc fbac fbcd = −2Cðδab, where Cð is the dual Coxeter
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number of the Lie algebra ð, so

[Lm, Jan] = −2γn (k+ Cð) Jam+n.

Finally, knowing that each of the Ja has conformal dimension 1 and comparing the final result above

with the aforementioned result from section 3.4.3, we find that γ−1 = 2(k+ Cð) and, hence, that

T(z) =
1

2(k+ Cð)

dim ð∑
a=1

N (JaJa) (z). (4.11)

What we have now is the so-called Sugawara constructed energy-momentum tensor of a CFT in

2 dimensions, and its construction is what is known as the Sugawara construction. It is this very

construction that we would use to show that the a WZWmodel comprises a 2-dimensional CFT;

however, before going down that route, we state without proof that the central charge of a CFT

characterized by Kac-Moody currents with respect to the Sugawara constructed energy-momentum

tensor is

c =
kdim ð
k+ Cð

, (4.12)

a result which we would use to further corroborate our conclusion that the WZWmodel describes a

2-dimensional CFT.

We begin with an observation we made in the previous section, namely that the currents of a

WZWmodel satisfy the Kac-Moody algebra. Based on our discussion in this section then, we could

easily say that such models have an in-built Sugawara construction. We just need to show that such

is indeed the case. Beginning by identifying the energy-momentum tensor of the model, we see that

it gives

T(z) = γN (JaJa) (z),
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where normal ordering, as expressed in Eq. (3.30), could be thought of as the nonsingular part of

the OPE yielded by the J’s. This nonsingular part could quite conveniently be extracted via contour

integration in the following manner:

N (JaJa)(z) =
1
2πι

∮
C(z)

dw
w− z

Ja(w)Ja(z).

With this result, we could go and calculate the OPE of Ja(z)with T(w). We are interested only in

the singular part of this OPE, which we denote by a line like the one we used for Wick contractions:

Ja(z)T(w) =
γ
2πι

∮
C(w)

dx
x− w

Ja(z)
(
Jb(x)Jb(w)

)
=

γ
2πι

∮
C(w)

dx
x− w

((
Ja(z)Jb(x)

)
Jb(w) + Jb(x)

(
Ja(z)Jb(w)

))

=
γ
2πι

∮
C(w)

dx
x− w

[(
kδab

(z− x)2
+

ιfabc Jc(x)
z− x

)
Jb(w)

+ Jb(x)

(
kδab

(z− w)2
+

ιfabc Jc(w)
z− w

)]
.

Now, we need to calculate the remaining JJOPEs. Simplifying the final expression we just obtained,

we observe that since the structure constants are totally antisymmetric and the Kronecker delta is
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symmetric, the second order poles in the OPEs do not contribute, so

Ja(z)T(w) =
γ
2πι

∮
C(w)

dx
x− w

[
kδabJb(w)
(z− x)2

+
kδabJb(x)
(z− w)2

+
ιfabc
z− x

(
ιfcbdJ

d(w)
x− w

+N (JcJb)(w)

)

+
ιfabc
x− w

(
ιfbcdJ

d(w)
x− w

+N (JcJb)(w)

)]

= γ

(
2kδabJb(w)
(w− z)2

−
fabc fcbdJ

d(w)
(w− z)2

)
,

where we obtained the last line by noticing that the normal ordered terms vanish after integration:

they cancel due to the antisymmetry in b and c. Finally, we recall the definition of the dual Coxeter

number—fabc fbcd = 2Cðδad—thereby obtaining

T(z)Ja(w) = Ja(z)T(w)

= 2γ(k+ Cð)
Ja(z)

(w− z)2

= 2γ(k+ Cð)

(
Ja(w)

(z− w)2
+

∂wJa(w)
z− w

)
.

In order for Ja(w) to have a conformal dimension of 1, we need to set γ the way we did before:

γ−1 = 2(k + Cð). Once γ has been fixed this way, we get what should indeed be the OPE of a

primary field of conformal dimension 1 with the chiral part of the energy momentum tensor:

T(z)Ja(w) =
Ja(w)

(z− w)2
+

∂wJa(w)
z− w

+ . . . ,

where . . . represent the nonsingular terms.

What now needs to be shown is that the OPER(T(z)T(w)) is such that it satisfies the Virasoro

algebra. This thing would establish that the WZWmodels indeed are CFTs. We are particularly
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interested in seeing what the central charge turns out to be as well, for its value would further cor-

roborate what we stated earlier: the WZWmodel has an in-built Sugawara construction.

T(z)T(w) =
1

4πι(k+ Cð)

∮
dx

x− w
((T(z)Ja(x))Ja(w) + Ja(x)(T(z)Ja(w)))

=
1

4πι(k+ Cð)

∮
dx

x− w

(
kdim ð

(z− x)2(x− w)2
− 2kdim ð

(z− x)(x− w)3

+
k dim ð

(x− w)2(z− w)2
+

2kdim ð
(z− w)(x− w)3

)

+
1

4πι(k+ Cð)

∮
dx

x− w

(
N (JaJa)(w)
(z− x)2

+
N (∂wJaJa)(w)

z− x

+
N (JaJa)(w)
(z− w)2

+
N (Ja∂wJa)(w)

z− w

)

=
(3− 2+ 0+ 0)kdim ð
2(k+ Cð)(z− w)4

+
2T(w)
(z− w)2

+
∂wT(w)
z− w

=
kdim ð

2(k+ Cð)(z− w)4
+

2T(w)
(z− w)2

+
∂wT(w)
z− w

,

which is definitely the OPE we were looking for. Not only does it show that the energy-momentum

tensor satisfies the Virasoro algebra, but it also demonstrates that the central charge is kdim ð/(k +

Cð), which indicates that the energy-momentum tensor in a WZWmodel is Sugawara constructed.
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5
Conclusion

Now that we have attained all the goals that set out in the work to accomplish, we would briefly

summarize them here one by one.

In chapter 0, not only did we discuss what a quantum field means, but we also established our

motivations for considering such a contraption. Bringing locality in was definitely one, but we saw

that classical fields could already do so pretty well. Consequently, we resorted to describing quan-

tum fields as entities that span all of spacetime and equip us with the ability to create and destroy
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particles at any point therein. We also viewed quantum fields as explaining the indistinguishability

of particles in the universe. Of course, if a single entity is defined everywhere, it must be capable of

creating particles of the same constitution at all places.

Proceeding to make these ideas precise in chapter 1, we established a quantum field as the quan-

tized version of a classical field through two major schemes of quantization: canonical quantization

and path integral formalism. To demonstrate the former concretely, we showed its full application

to the Klein-Gordon (KG) and Dirac fields. Toward the end of the chapter then, when we intro-

duced the path integral formalism, it became easier to see the greater facility it affords in comparison

with the program of canonical quantization. For one thing, path integrals use classical quantities,

which are easier to deal with than operators, states, etc., to compute quantum amplitudes.

With the mathematics of quantum field theory in hand, we used chapter 2 to compute some

physically important quantities. We chose to calculate correlators, for they would later help us tran-

sition into the realm of conformal field theory, the quantum field theory that this work was sup-

posed to be particularly focused on. Calculating 2-point correlators for the KG and Dirac fields via

both canonical quantization and path integral formalism, we were again able to see the greater ease

that path integrals come with.

Then, in chapter 3, we started doing conformal field theory, discussing conformal symmteries in

the context of both classical and quantum field theories. Doing so allowed us to observe how easy

conformal symmetries render the calculation of quantities like correlators. Then, having investi-

gated the relatively simple cases of conformal field theories in d = 1 and d ≥ 3 dimensions, we

began considering the exceedingly rich case of d = 2 dimensions and presenting a detailed discourse

on such important topics as primary fields and operator product expansions. Finally, as concrete

examples of conformal field theories in 2 dimensions, we presented the free, massless bosonic and

fermionic fields on an infinite cylinder. Not only did these examples help us see the use of the con-

formal field theory jargon we had been developing in the context of some applications, but they also
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allowed us to get well-versed with the way conformal field theory techniques had to be applied.

Finally, in chapter 4, we began using our conformal field theory knowledge to discuss the famous

Wess-Zumino-Witten (WZW) models. Considering the potential of a nonlinear sigma model to be

a conformal field theory, we identified a problem with it and saw how it was fixed by a contribution

of EdwardWitten’s. The newmodel, which is known as the WZWmodel, did seem to be a confor-

mal field theory, but we still went on to verify this thing by checking the model’s compatibility with

the Virasoro algebra through the so-called Sugawara construction. Like our scrutiny of the cases of

free, massless bosonic and fermionic fields, this exercise demonstrated the application of some pretty

important conformal field theory techniques, such as the ways to look for compatibility between

various algebras, methods involved in dealing with importanr operator product expansions, and so

on.
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