

Plant Physiology (BIO 5112) Spring 2022

Instructors	Khurram Bashir
Room No.	9-431
Office Hours	Wednesday 15:00-16:30
Email	khurram.bashir@lums.edu.pk
Telephone	Extension: 8362
Secretary/TA	TBA
TA Office Hours	NA NA
Course URL (if	
any)	

Course Basics				
Credit Hours	Three (3)			
Lecture(s)	Nbr of Lec(s) Per Week	Two (2)	Duration	75 minutes
Recitation/Lab (per week)	Nbr of Lec(s) Per Week	One (0)	Duration	50 minutes
Tutorial (per week)	Nbr of Lec(s) Per Week	none	Duration	

Course Distribution		
Core	No	
Elective	Yes	
Open for Student	Biology Majors/Anyone interested	
Category		
Close for Student	Others	
Category		

COURSE DESCRIPTION

Plants are essential to humans and animals not only for food but also by maintaining our ecosystem. Understanding the plant physiology is a is an essential component for crop improvement and understanding of eco system. This course would enable students to understand how plants function and what are essential components to maintain/boost crop production.

COURSE PREREQUISITE(S)		
Students enrolled in this course are expected to have taken at least introductory level courses in biology/ molecular		
biology, cell biology or biochemistry		

COURSE OBJECTIVES

The course aims to help student learn the following:

- The general principles of plant growth and how they interact with environment
- Requirements of plants to complete their life cycle
- How plants acquire Carbon and other minerals
- What factors cause stress to plants and how plants respond to these stresses
- How plants maintain their metabolism
- How to improve plant growth/crop production and their nutritional value

Learning Outcomes

After taking this course students should:

- Be able to appreciate and understand how plants growth and maintain their metabolism
- Have a good understanding of key signaling pathways
- The contribution of plants to provide health food
- How to improve plant growth

Grading Breakup and Policy

Midterm Examination: 25%

Quiz: 15%

Assignment(s): 20% Final Examination: 35%

Attendance: 5%

Examination Detail		
Midterm Exam	Yes/No: Yes Combine/Separate: Combined Duration: 75 Minutes Preferred Date: 8th week Exam Specifications: Multiple choice, short questions	
Final Exam	Yes/No: Yes Combine/Separate: Combined Duration: 3 hours Exam Specifications: Short answer questions	

COURSE O	VERVIEW		
Weeks	Topics	Recommended Readings	Tutorial paper
Week 1	Introduction to the coursePlant and Cell Architecture	Book A:2-31	
Week 2	 Essential factors for growth and development Mineral nutrition Macro and Micro Nutrients 	BOOK A 67-86 Book B: 3-5; 6-78	
Week 3	 Water potential Plant transpiration Stomatal closure/opening 	Book A: 85-102	Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants volume 6, pages 744— 749(2020)https://doi.org/10.1038/s41477-020-0684-5
Week 4	 Photosynthesis Photosystems I and II 	Book A: 111-194	Red drop and role of auxiliary pigments in photosynthesis. R. Emerson and E. Rabinowitch Plant Physiol. 35: 477-485. doi:10.1104/pp.35.4.477. 1960
Week 5	PhotosynthesisThe Carbon reactionIts Implications	Book A:199-226	
Week-6	 Glycolysis Citric Acid Cycle Gluconeogenesis Carbon metabolism 	Book A: 309-312 Book A: 315-329	Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Eastmond et al., Nature Communications 2015. 6, 6659. https://doi.org/10.1038/ncomms7659 . 2015
Week 7	 Mitochondrial Electron Transport Mitochondrial interactions with cytoplasm 	Book A: 315-338	Signals from chloroplasts and mitochondria for iron homeostasis regulation. Vigani et al. Trends in Plant Science 18 (6), 305-311. 2013 .
Week 8	 Source sink transport Root to shoot communication 	Book A: 272-298 Book B: 85-133	A small peptide modulates stomatal control via abscisic acid in long-distance signaling Takahashi et al., Nature 556, 235–238 2018.
Week 9	 Plant Growth Regulators Photoperiod and its implications Plant Response to Environmental Stress Water deficiency 	Book A: 546-578; 584-614; 730-736; 757-759;765-770	Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. Bashir et al., F1000Research 8. 2019.
Week 10	 Plant Response to Environmental Stress Mineral Deficiency Micronutrient deficiency/toxicity 	Book A 108-118 Book B: 191-248 Book B: 409-472	The transport of essential micronutrients in rice. Bashir et al., Molecular Breeding 39 (12), 168. 2019

Eanore Oniversity of Management Sciences				
Week 11	 Plant Response to Environmental Stress High temperature stress Vernalization and Low temp stress Common components of Stress response 	Book A: 749-749; 756-778 Customized materials would also be provided.	Redox Homeostasis and Signaling in a Higher-CO ₂ World. Foyer CH and Noctor G. Annual review plant Biology. 71:157-182. DOI:10.1146/annurev-arplant-050718-095955. 2020.	
Week 12	 Methods of plant improvement Plant transformation Molecular tools used for plant improvement 	Book C: Chapter 7	Acetate-mediated novel survival strategy against drought in plants. Kim et al., Nature Plants. 3: 17097. https://doi.org/10.1038/nplants.20 17.97. 2017	
Week 13	 Future prospects Problems and challenges for Plant production New technologies for Plant improvement Medicines for plants 	Customized teaching materials would be provided.		
Week 14	Student presentations	TBA		

Textbook(s)/Supplementary Readings

- (A) Plant Physiology. Lincoln Taiz and Eduardo Zeiger ISBN: 9780878935659
- (B) Marschner's Mineral Nutrition of Higher Plants. Third edition. 2012. ISBN:978-0-12-384905-2 (C): Gene Cloning and DNA Analysis: An Introduction. TA Brown. 7th Edition.