

Lahore University of Management Sciences

EE 3002 - Junior Design Studio - Robotics

Spring 2024

COURSE DESCRIPTION

The primary goal of this course is to equip the students with the analytical and practical tools essential for autonomous robot design. The curriculum covers the foundational aspects of mathematical modeling for mobile robots, encompassing techniques for the analysis and design of autonomous navigation and planning. The learning experience is further enriched by the implementation of multiple algorithms on an actual mobile robot platform, specifically the DJI Robomaster. Lab experiments are built upon the Robot Operating System (ROS), recognized as a standard in both the robotics industry and academia. This approach aims to equip students with a well-rounded skill set, blending theoretical understanding with real-world application, and preparing them for the challenges in the dynamic field of robotics.

Instructors	Hassan Jaleel
Room No.	9-245 A
Office Hours	TBA
Email	hassan.jaleel@lums.edu.pk
Telephone	+92 (42) 3560-8466

Course Basics						
Credit Hours	(2+1)					
Lecture(s)	Lectures per week	2	Duration	50 minutes	Timings and venue	Tu-Th 5:00 – 5:50
Lab	Labs per week	1	Duration	2 hours 50 minutes	Timings and Venue	Friday (3:00 – 5:50) Feedback Control Systems Lab

Course Distribution			
Core	None		
Major Elective	Electrical Engineering, Robotics Minor		
Open for Student Category	All students with Junior standing		
Close for Student Category			

Course Prerequisite(s)/Co-Requisite(s) Pre-requisites: Sophomore year standing Co-requisites: None Recommended: Linear Algebra, Calculus, and basic probability Course will have programming component. Expertise in at least one of the following programming languages will be expected. (Python, MATLAB, C++). Lab assignments will be in Python.

Grading Breakup and Policy Assignments / Quizzes: 10% Midterm Examination: 30% Labs: 40% Course Project: 20 %

Lahore University of Management Sciences

 Examination Detail

 Midterm

 Exam

 Duration: 2 - 3 hours

 Exam

 Exam

 Specifications: Closed book, closed notes, and help-sheets.

Course Learning Outcomes				
EE-3002	The students should be able to:			
CLO1	Perform stability analysis of mobile robots with double integrator dynamics.			
CLO2	Develop mathematical models for robot motion and sensors.			
CLO3	Implement basic path planning and navigation algorithms under deterministic settings.			
CLO4	Design simulations and configure robot platforms in Robot Operating System (ROS) and implement algorithms on a mobile robot platform.			
Relation to	EE Program Outcomes			
EE-567 CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in
CLO1	PLO2-Problem Analysis	Cog 3	Instruction, Assignments	Assignments, midterms, and project
CLO2	PLO3-Design & Development of Solutions	Cog 3	Instruction, Assignments	Assignments, midterms, and project
CLO3	PLO3-Design & Development of Solutions	Cog 3	Lab, Instruction, Assignments	Labs, midterm, and project
CLO4	PLO5-Modern Tool Usage	Psycho 4	Lab, Instruction, Assignments	Labs, and project

	Lecture Plan				
Number of Weeks	Course Module	Topics	Related CLOs & Additional Remarks		
2.0	Mobile Robot Kinematics	 Unicycle model for point robot Differential drive robot PID controller Ackerman steering/Mecanum wheels 	CLO2		
1.0	Behavior Based Robotics	 Go-to-goal Boundary following Bug Algorithms 	CLO2, CLO3, & CLO4		
2.0	Coordinate Transformation	 Rigid body and homogeneous transformations 	CLO1 & CLO2		
2.0	Robot Sensors	 Proximity sensors Wheel encoders IMU Vision based sensors 	CLO2		
		State space modelLinearization	CLO1 & CLO3		

Lahore University of Management Sciences

4.0	Control of Mobile Robots	 LTI stability Linear system analysis Linear System design 	
3.0	Planning Algorithms	 Introduction to motion planning algorithms Exploration algorithms 	CLO3 & CLO4

Note: All the labs will be conducted in Robot Operating Systems (ROS) environments. From Lab 4 onwards, the students will be implementing planning algorithms on DJI Robomaster EP core platform.

Week No.	Lab description	Related CLOs
1 & 2	Introduction to Robot Operating System (ROS).	CLO4
3	Robot navigation using Gazebo environment.	CLO4
4	Introduction to DJI Robomaster EP core platform.	CLO4
5	Boundary following with proximity sensors.	CLO3 & CLO4
6	Autonomous trajectory tracking through real-time odometry data and PID controller.	CLO3 & CLO4
7	Autonomous path planning and navigation in unknown environments with obstacles.	CLO3 & CLO4
8	Object detection and manipulation using vision feedback.	CLO3 & CLO4
9	3D mapping of an environment using depth cameras	CLO4

Textbook(s)/Supplementary Readings			
1.	Introduction to Autonomous Mobile Robots (2 nd Edition) by Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza		
2.	2. Programming Robots with ROS: A Practical Introduction to the Robot Operating System by Morgan Quigley, Brian Gerkey, and		
	Willian D. Smart		
3.	. Principles of Robot Motion (Theory, Algorithms, and Implementation) by Howie Choset et al.		
4.	4. Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox		
Prepared	d by:	Dr. Hassan Jaleel	
Date:		December 2023	