

Evolution (BIO 524) Fall 2023

Instructors	Zaigham Shahzad
Room No.	9-316
Office Hours	
Email	zaigham.shahzad@lums.edu.pk
Telephone	Extension: 8354
Secretary/TA	
TA Office Hours	
Course URL (if	
any)	

Course Basics				
Credit Hours	Three (3)			
Lecture(s)	Nbr of Lec(s) Per	Two (2)	Duration	75 minutes
	Week			
Recitation/Lab (per week)	Nbr of Lec(s) Per	none	Duration	
	Week			
Tutorial (per week)	Nbr of Lec(s) Per	none	Duration	
	Week			

Course Distribution		
Core	No	
Elective	Yes	
Open for Student	Biology majors/Anyone interested	
Category		
Close for Student	Others	
Category		

COURSE DESCRIPTION Evolutionary ideas link different fields of biology. This course provides an evolutionary context to understand biology. We will review the history of evolutionary thoughts, the forces of evolution, and the need for an extended evolutionary synthesis theory. We will also study the application of evolutionary studies to medicine and agriculture.

COURSE PRE	EREQUISITE(S)
	Students enrolled in this course are expected to have taken introductory level courses in biology.

COURSE OB	BJECTIVES
	The course aims to:
	 Develop understanding of the major theories and hypotheses that have been proposed to describe the origin of life and the generation of biodiversity. Explain forces driving biological evolution. Illustrate the evidence supporting evolution. Show how evolutionary biology is related to other areas of biology.

Learning Outcomes			
The course will enable students to:			
 Accurately describe the concepts related to evolution, adaptation, and fitness. 			
 Explain the evolution of biological diversity at various levels of organization (gene to ecosystem). 			
 Understand the need of updating Modern Evolutionary Synthesis. 			
 Learn practical skills (constructing phylogenetic trees, calculating selection, finding fitness, quantitative gene etc.). 	tics		
• Work co-operatively as a member of a group to discuss future directions in evolutionary biology.			
Grading Breakup and Policy			
Midterm Examination: 25%			
Class participation and attendance: 5%			
Quiz: 20%			
Assignment(s): 20%			
Final Examination: 30%			

Examination D	Detail
Midterm Exam	Yes/No: Yes Combine/Separate: Combined Duration: 75 Minutes Preferred Date: 8 th week Exam Specifications: Multiple choice, short question answers
Final Exam	Yes/No: Yes Combine/Separate: Combined Duration: 3 hours Exam Specifications: Short question answer

COURSE OVERVIEW				
Weeks	Topics	Recommended Books	Recommended papers	
Week 1	Introduction to the courseHow to study evolution	Book A: chapter 1		
Week 2	 History of evolutionary ideas Darwin's evolutionary theory 	Book A: chapter 2		
Week 3	 Evidence supporting biological evolution Mendelian genetics & DNA as hereditary material 	Book B: chapter 11 Book C: chapter 3		
Week 4	 Modern synthesis of evolution Forces of evolution (Mutation) 	Book A: chapter 5	Mutation bias reflects natural selection in Arabidopsis thaliana. Monroe et al., Nature 602, 101– 105 (2022). https://doi.org/10.1038/s41586- 021-04269-6.	
Week 5	 Forces of evolution (Natural & artificial selection, Genetic drift, & Gene flow) Forces of evolution (Natural & artificial selection, Genetic drift, & Gene flow) 	Book A: chapter 6 Book A: chapter 13 Book A: chapter 4	 Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrate. Hämälä et al., 2018. Evolution. 72(7):1373-1386. The effects of migration and drift on local adaptation to a heterogeneous environment. Blanquart et al., 2012. J. Evol. Biol. 25:1351–1363. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Yeaman et al., 2011. Evolution. 65:2123–2129 	
Week-6	 Forces of evolution (Natural & artificial selection, Genetic drift, & Gene flow) Quiz 	Book A: chapter 6 Book A: chapter 13 Book A: chapter 4	Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrate. Hämälä et al., 2018. Evolution. 72(7):1373- 1386. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Yeaman et al., 2011. Evolution. 65:2123–2129	
Week 7	 History in our genes Evolution in action- quantitative genetics 	Book A: chapter 9 Book A: chapter 7	A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Shahzad et al., Cell. 2016. 167(1):87–98. Cryptic variation in RNA-directed	

			DNA-methylation controls lateral root development when auxin signaling is perturbed. Shahzad et al., Nature Communications. 2020. 11:218.
Week 8	 Mid-term exam The evolution of genome size 	Book D: chapter 1 Book D: chapter 2	Genome size evolution: towards new model systems for old questions. J. Blommaert. The Proceedings of the Royal Society. 2020. https://doi.org/10.1098/rspb.2020. 1441.
Week 9	 Transposable elements Small-scale gene duplications 	Book D: chapter 3 Book D: chapter 5	Ten things you should know about transposable elements. Bourque et al., Genome Biology. 2018. 19, 199. https://doi.org/10.1186/s13059- 018-1577-z.
Week 10	 Large-scale gene duplications Evolutionary fates of gene duplicates 	Book D: chapter 6	The Evolutionary Fate and Consequences of Duplicate Genes. Lynch M. and Conery J.S. Science. 2000. 290: 1151-1155.
Week 11	 Polyploidy in plants and animals Quiz plus assignment 	Book D: chapter 7 Book D: chapter 8	 Plant Polyploidy: Origin, Evolution, and Its Influence on Crop Domestication. Kang et al., Horticultural Plant Journal. 2019. 5(6): 231-239. https://doi.org/10.1016/j.hpj.2019. 11.003. Polyploidy: A Biological Force from Cells to Ecosystems. Fox et al., Trends in Cell Biology. 2020. 30(9): 688-694. https://doi.org/10.1016/j.tcb.2020.
Week 12	 Beyond DNA sequence variation (DNA methylation and histone modifications) Epigenetics and evolution 		 Epigenetic modifications in plants: an evolutionary perspective. Feng S. and Jacobson S.E., Curr Opin Plant Biol. 2011, 14(2):179-86. doi: 10.1016/j.pbi.2010.12.002. Epigenetic inheritance and plant evolution. Miryeganeh M. and Saze H., Population Ecology. 2020. 62(1) doi.org/10.1002/1438- 390X.12018. Epigenetic inheritance mediates phenotypic diversity in natural populations. Shahzad et al., 2022. bioRxiv, https://doi.org/10.1101/2021.03.1

		5.435374.
Week 13	Applications of evolutionary biology in	The great opportunity:
	medicine	Evolutionary applications to
	 Applications of evolutionary biology in 	medicine and public health. Nesse
	agriculture	R.M. and Stearns S.C.,
		Evolutionary Applications. 2008.
		1(1):28-48. doi: 10.1111/j.1752-
		4571.2007.00006.x.
		Evolution in agriculture: the
		application of evolutionary
		approaches to the management of
		biotic interactions in agro-
		ecosystems. Thrall et al.,
		Evolutionary Applications. 2011.
		4(2): 200-15. doi: 10.1111/j.1752-
		 4571.2010.00179.x.
Week 14	 Student presentations 	

Textbook(s)/Supplementary Readings

- A) Evolution: Making sense of life. C. Zimmer and D. Emlen. ISBN: 978-1-936221-55-4.
- B) Concepts of Biology. S. Flower, R Roush, and J. Wise. ISBN-13: 978-1-938168-11-6.
- C) Genetics: A conceptual approach. Benjamin A. Pierce. ISBN-13: 978-1-4292-3250-0.
- D) The Evolution of the Genome. T. Ryan Gregory. ISBN: 0-12-301463-8.