
Fault Management of Business Processes in the
Services Cloud

PhD Thesis

Muhammad Adeel Zahid

2016-03-0053

Advisor: Dr. Basit Shafiq

School of Science and Engineering

Lahore University of Management Sciences

May 15, 2023

FAULT MANAGEMENT OF BUSINESS
PROCESSES IN THE SERVICES CLOUD

by

MUHAMMAD ADEEL ZAHID

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Syed Babar Ali

School of Science and Engineering at the Lahore University of
Management Sciences, Lahore, Pakistan

May 15, 2023

PhD Committee
Dr. Basit Shafiq

Dr. Shafay Shamail
Dr. Jaideep Vaidya
Dr. Naveed Arshad

Dr. Naveed ul Hassan
Dr. Kashif Kifayat

Dedicated to my parents

Lahore University of Management Sciences

School of Science and Engineering

CERTIFICATE

We hereby recommend that the dissertation prepared under our supervision by Muhammad Adeel

Zahid titled, “Fault Management of Business Processes in the Services Cloud” be accepted in

partial fulfillment of the requirements for the degree of Ph.D.

Committee Members

Dr. Basit Shafiq (LUMS)

Dr. Shafay Shamail (LUMS)

Dr. Jaideep Vaidya (Rutgers University)

Dr. Naveed Arshad (LUMS)

Dr. Naveed ul Hassan (LUMS)

Dr. Kashif Kifayat (Air University)

Acknowledgments

This dissertation work is supported by the Higher Education Commission (HEC) and Planning

Commission of Pakistan and LUMS FIF grant.

I would like to express my utmost gratitude to my esteemed advisors Dr. Basit Shafiq and Dr.

Shafay Shamail for their invaluable guidance and support. They have been phenomenal in shaping

the course of this research.

I would also like to thank members of my Ph.D. committee, Dr. Naveed Arshad, Dr. Jaideep

Vaidya, and Dr. Naveed ul Hassan for their insights and suggestions.

Finally, I owe a special debt of gratitude to my mother who has always been a source of strength

for me, to my late father who had always supported and encouraged me, to my brother for making it

possible for me to attend the University, and to my wife and children for being kind and supportive

throughout these years.

List of Publications

Journal

1. Muhammad Adeel Zahid, Basit Shafiq, Jaideep Vaidya, Ayesha Afzal, and Shafay Shamail,

“Collaborative Business Process Fault Resolution in the Services Cloud”. IEEE Transactions

on Services Computing, vol. 16, no. 1, pp. 162-176, 1 Jan.-Feb. 2023.

doi: 10.1109/TSC.2021.3112525.2021.

Conference

1. Muhammad Adeel Zahid, Basit Shafiq, Shafay Shamail, Ayesha Afzal and Jaideep Vaidya,“BP-

DEBUG: A Fault Debugging and Resolution Tool for Business Processes”. IEEE 42nd In-

ternational Conference on Distributed Computing Systems (ICDCS), 2022, pp. 1306-1309.

doi: 10.1109/ICDCS54860.2022.00143.

2. Muhammad Adeel Zahid, Ahmed Akhtar, Basit Shafiq, Shafay Shamail, Ayesha Afzal and

Jaideep Vaidya, “An Integrated Framework for Fault Resolution in Business Processes”.

2022 IEEE International Conference on Web Services (ICWS), pp. 266-275.

doi: 10.1109/ICWS55610.2022.00048.

Abstract

The emergence of cloud and edge computing has enabled rapid development and deployment of

Internet-centered distributed business process applications. Several platforms and tools exist that

enable users to develop distributed business process (BP) applications by composing relevant ser-

vice components in a plug-and-play manner. However, these platforms and tools do not ensure that

the developed BP application is fault-free. BP designers may make errors due to lack of semantic

understanding of these web services, or incorrect and/or incomplete workflow specifications. Such

errors result in faults which may not necessarily be identified at design or development stage and

may only manifest during execution. Therefore, there is a need to develop diagnostic capabilities

for Internet-centered BP development.

The objective of this dissertation is to develop an integrated framework for fault resolution of

Business Processes (BPs) in the services cloud environment. Given a faulty BP and a set of test

cases as input, this integrated framework detects and resolves design-time faults in the BP. The

framework includes a prototype implementation that graphically presents a comprehensive fault

report including the list of faults and their fixes. The BP designer inspects the fixed BP according

to their criteria and accepts or rejects the modifications. The framework aims to empower the BP

designer to detect and resolve faults in BPs. It not only produces the fixes of discovered faults but

also generates the implementation-level code of the fixed BP, which can be readily deployed for

execution.

There are two main underlying approaches and a hybrid approach that perform fault resolution.

The first approach is Efficient Generate-and-Validate (EGV) which is an improvement of basic

generate-and-validate (G&V) automated program repair. EGV generates the candidate fixes by

applying mutations on the faulty BP. It employs fault localization and slicing to keep the number

of candidate fixes manageable. The second approach is Collaborative Fault Resolution (CFR)

which aims to utilize information from existing fault-free BPs that use similar services to resolve

faults in a user-developed BP. CFR is based on association analysis of pairwise transformations

between a faulty BP and existing BPs to identify the smallest possible set of transformations to

resolve the fault(s) in the faulty BP. Finally, we propose a hybrid approach that performs fault

resolution by analyzing a faulty BP in isolation as well as by comparing it with other BPs using

similar services. This hybrid approach results in improved accuracy and broader coverage of fault

types. We also perform an extensive experimental evaluation to compare the effectiveness of the

proposed approach using a dataset of 208 faulty BPs.

8

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Objective . 1

1.2 Research Motivation . 2

1.3 Common Faults in Business Processes . 5

1.3.1 Expression Fault . 5

1.3.2 Branching Fault . 6

1.3.3 Control Flow Fault . 6

1.3.4 Variable Assignment Fault . 6

1.4 Problem Statement . 7

1.5 Methodology . 8

1.6 Contributions . 9

1.7 Outline of Dissertation . 11

2 Related Work 12

2.1 Fault Localization . 12

2.1.1 Static Techniques for Fault Localization 13

2.1.2 Dynamic Fault Localization . 14

2.1.3 Fault Localization in SOA Context . 18

i

2.1.4 Recent Trends in Fault Localization . 19

2.1.5 Summary . 21

2.2 Fault Resolution . 22

2.2.1 Mutation-based Fault Resolution . 22

2.2.2 Pattern-based Fault Resolution . 24

2.2.3 Machine-learning-based Fault Resolution 26

2.2.4 Summary . 29

2.3 Service Composition Testing . 30

2.3.1 Unit Testing . 30

2.3.2 Integration Testing . 33

2.3.3 Regression Testing . 37

2.3.4 Summary . 38

3 An Efficient Generate & Validate Approach for Fault Resolution 40

3.1 Generate and Validate (G&V) . 40

3.2 BP Fault Resolution – Problem Formulation . 45

3.3 Efficient G&V approach (EGV) for fault resolution 48

3.3.1 Fault Localization . 51

3.3.2 BP Slicing . 51

3.3.3 Candidate Fix Generation . 52

3.3.4 Validation of Candidate Fixes . 54

3.4 Experimental Evaluation . 54

3.4.1 Dataset . 54

3.4.2 Results . 55

3.5 Chapter Summary . 56

4 Fault Resolution with Collaborative and Hybrid Approaches 57

4.1 Introduction . 57

4.2 Proposed Approach for Collaborative Fault Resolution 60

ii

4.2.1 Fault Localization . 63

4.2.2 Comparison with Existing BPs . 64

4.2.3 Association Rule Mining on Transformations 66

4.2.4 Computation complexity . 72

4.3 Hybrid Approach for Fault Resolution . 73

4.4 Experimental Evaluation (CFR) . 74

4.4.1 Random Fault Injection . 76

4.4.2 User Developed BPs . 84

4.4.3 Parameter sensitivity . 85

4.5 Experimental Evaluation (Hybrid) . 86

4.5.1 Discussion . 87

4.6 Chapter Summary . 88

5 Prototype Implementation 89

5.1 Introduction . 89

5.2 BP-DEBUG: Architecture and Implementation 90

5.2.1 Specification of the Faulty BP and the Test suite 91

5.2.2 Fault Resolution . 94

5.2.3 Code Generation and BP Deployment . 95

5.3 Related Tools and Research Prototypes . 96

5.4 Chapter Summary . 98

6 Conclusion and Future Work 99

6.1 Research Contributions . 99

6.2 Challenges . 101

6.3 Future Work . 102

6.3.1 Recommendation System . 103

6.3.2 Collaborative Resolution of Configuration Faults 103

6.3.3 Collaborative Fault Resolution in Heterogeneous Environment 103

iii

6.3.4 Privacy-preserving Resolution of BP Faults 104

iv

List of Figures

1.1 Services cloud environment for BP composition. 4

1.2 A sales-order BP from e-commerce domain . 5

1.3 Expression fault introduced in Fig. 1.2 . 5

1.4 Branching fault introduced in Fig. 1.2 . 6

1.5 Control flow fault introduced in Fig. 1.2 . 6

1.6 A simple sales-order BP from e-commerce domain with data flow 7

1.7 A simple sales-order BP from e-commerce domain depicting variable assignment

fault . 8

1.8 High-level architecture of the fault resolution methodology 9

3.1 An incorrect divide function in C++ . 41

3.2 First candidate fix for Listing 3.1 . 41

3.3 Second candidate fix for Listing 3.1 . 42

3.4 Third candidate fix for Listing 3.1 . 42

3.5 Fourth candidate fix for Listing 3.1 . 43

3.1 First candidate fix for BP in Fig. 1.5 . 43

3.2 Second candidate fix for BP in Fig. 1.5 . 44

3.3 Third candidate fix for BP in Fig. 1.5 . 44

3.4 Example of an e-commerce BP graph . 46

3.5 An example BP graph (Gf) from e-commerce sale order processing domain. 47

3.6 Efficient G&V fault resolution approach for BPs. 49

3.7 Slice of faulty BP Gf . 52

v

4.1 Collaborative BP fault resolution approach . 60

4.2 Faulty sales order BP (Gf) and its subgraph (shown in rectangular box) used for

pair-wise comparison . 66

4.3 Subgraphs of existing BPs used for comparison with the faulty BP 66

4.4 SCC graph resulting from association analysis on transformations listed in Table

4.1 . 72

4.5 Comparison between the percentage of BPs fixed vs. number of iterations and the

iteration-wise average time taken for fault resolution per BP 78

4.6 Comparison between the percentage of BPs fixed vs. similarity and service overlap

based on top 3 rules . 79

4.7 Execution time comparison of EGV and CFR. 82

4.8 Execution time comparison of H1, H2, and CFR. 88

5.1 Architectural overview of the BP-DEBUG System 90

5.1 Control flow of the BP of Fig. 1.2 . 91

5.2 Data flow of createOrder service in the BP of Fig. 1.6 92

5.3 Test suite for the BP of Fig. 1.6 . 93

5.4 Visual representation of fops and control flow faults and their fixes in BP-DEBUG . 95

5.5 Identification and representation of data flow faults in BP-DEBUG fault report

interface . 96

vi

List of Tables

1.1 BP-specific fault categories and types . 3

3.1 Candidate fixes for BP graph in Fig. 3.5. 53

3.2 Accuracy of EGV and Basic G&V. 55

4.1 Results of pair-wise graph comparison for the BPs depicted in Fig. 4.2 and Fig. 4.3 67

4.2 Statistics of existing BPs . 76

4.3 α vs. average number of rules . 77

4.4 Accuracy results over synthetic dataset . 78

4.5 Accuracy of EGV and CFR. 81

4.6 Accuracy comparison of CFR with G&V fault repair approach 82

4.7 Evaluation results over user-developed BP dataset 85

4.8 Accuracy of H1, H2 and CFR. 87

vii

Chapter 1

Introduction

1.1 Objective

Our objective, in this dissertation, is to develop an integrated framework for fault resolution of

business processes in the services cloud environment. The proposed framework enables an orga-

nization to debug its business processes in an automated or semi-automated manner. Specifically,

an organization submits its faulty business process along with correctness criteria (usually in the

form of a test suite) and the proposed framework generates the candidate fixes and validates them

against the provided criteria. This relieves the BP designer of manual debugging that involves

significant time and technical understanding of business process constructs, development, and de-

bugging practices. With the proposed fault resolution capability at its disposal, the focus of an

organization can shift from low-level technical details to high-level business objectives.

The proposed framework is developed for novice users with little technical expertise in debug-

ging business processes. In particular, it is suitable for small and medium enterprises that cannot

dedicate sufficient resources to debugging. Additionally, experienced users can also use our system

to accelerate the debugging cycle for their business process development.

The proposed framework, not only, helps organizations fix faults in their business processes but

also generates a fault report with a list of observed faults and corresponding fixes. The framework

is also capable of generating the source code of the fixed business process after it has been reviewed

1

by the BP designer and supports the deployment of the fixed business process on the server.

1.2 Research Motivation

Cloud computing and Internetware software paradigm have enabled rapid development and de-

ployment of Internet-centric distributed applications, including distributed workflows, business

processes, and Web mashups [1]. These applications are developed using computation, data, and

storage services available in the cloud data centers and enterprise networks as well as large num-

bers of IoT and edge computing devices providing diverse sensory and computation services. In-

creasingly, there are new platforms and tools [2, 3, 4, 5] available that can facilitate automated

or semi-automated development of such distributed applications by composing relevant service

components in a plug-and-play manner. These Internetware-based platforms and tools have not

only reduced the time and cost of developing distributed applications but also changed the overall

enterprise application development process.

Amazon Web Services (AWS) [6] and Bizagi [7] are two examples from the industry that

enable the modeling, development, and deployment of distributed applications and Business Pro-

cesses. Could-based services of AWS can help organizations to automate and optimize their pro-

cesses, reduce costs, and improve operational efficiency. One such service is AWS Step Functions,

which is a fully-managed workflow service that enables businesses to coordinate the components

of their applications and microservices using visual workflows. With Step Functions, businesses

can build and run workflows that integrate with AWS services, including AWS Lambda, Amazon

SNS, Amazon SQS, and more. This allows businesses to automate complex workflows, reduce

manual intervention, and improve the speed and reliability of their processes. Similarly, the Bizagi

platform is designed to help businesses automate and optimize their workflows and processes, with

features like drag-and-drop process modeling, process analytics and reporting, process automation,

and integration with other systems and applications. The platform is used by organizations in a

wide range of industries, including financial services, healthcare, manufacturing, and government.

However, BP applications developed using a plug-and-play approach are not guaranteed to be

fault-proof. BP designers may make errors due to a lack of semantic understanding of these web

2

Table 1.1: BP-specific fault categories and types

Fault Cate-

gory

Fault Type Description Equivalent

Mutation

Operator

Variable as-

signment

Variable identifier replacement Replaces a variable identifier by another of the same type,

i.e, servce2.var1 = service1.var1 to servce2.var1 =

service1.var3 or service2.var1 = c

ISV

Expression

Arithmetic operator replacement Replace an arithmetic operator (+,−,×, /,mod) with another of

the same type

EAA

Unary operator removal Removes unary − or + operator from an expression EEU

Relational operator replacement Replaces a relational operator (<,≤, >,≥, ̸=,=) by another of

the same type

ERR

Logical operator replacement Replaces a logical operator (∧,∨) by another of the same type ELL

Path operator replacement Replaces a path operator (/, //) by another of the same type ECC

Numeric constant modification Modifies a numeric constant by incrementing/decrementing its

value by 1 or by adding/removing one digit

ECN

Branching
Branch path removal Deletes an Elseif element from an If activity AIE

Join condition removal Removes the joinCondition attribute from an activity AJC

Control flow

Activity removal Removes an activity AEL

Activities order exchange Exchanges the order of two sequence child activities ASI

Sequential to parallel loop replacement Replaces a sequential loop with a parallel one AFP

Sequence to flow replacement Replace a sequence activity by a flow activity ASF

services, or incorrect and/or incomplete workflow specifications. Such errors result in faults that

may not necessarily be identified at the design or development stage and may only manifest during

execution. Faults in a BP may also occur due to service implementation errors, service failure/u-

navailability, or network failure. This dissertation addresses the problem of detecting and resolving

faults in BPs that result in incorrect or unexpected output due to design-time faults. Other faults

including service implementation faults, network/service failure, and service unavailability are not

considered in this work because they have already been addressed in prior work. For example,

component service implementation errors can be addressed in BP development using unit testing-

based approaches [8, 9]. Similarly, run-time faults in BPs due to service failure/unavailability,

deployment issues, and unexpected network failure have been extensively studied in the literature

for process adaptation [10, 11, 12] and delta debugging [13, 14]. However, no prior work addresses

the problem of design-time faults that occur during the development of business processes.

3

BP design-time faults can be grouped into four broad categories listed in Table 1.1. This cate-

gorization and the underlying fault types within each category are based on the comprehensive set

of mutation operators defined by Estero-Botaro et al. [15] for fault injection in BPEL processes.

Therefore, any design-time fault within a BP can be represented as a combination of these muta-

tion operators. Note that Estero-Botaro et al. [15] identified five different categories of mutation

operators. Out of these five categories, we explicitly cover four while also implicitly covering the

last (which relates to exception and event mutation), since faults related to exception and event

mutation can be considered as special cases of control flow or branching faults.

Figure 1.1: Services cloud environment for BP composition.

In this dissertation, we focus on the detection and resolution of design-time faults in BPs in the

services cloud environment depicted in Fig. 1.1. The cloud environment hosts the services and BPs

belonging to multiple organizations and provides a ground for collaborative BP development and

fault resolution activities. Tools have been proposed [16] that support automatic or semi-automatic

development of BPs by mapping the services of an organization to the BPs of other organizations

available in the cloud. Such cloud-based BP development can induce faults and calls for a fault

resolution framework within the services cloud.

4

1.3 Common Faults in Business Processes

In this section, we will discuss the faults that commonly occur during the development of Business

Processes. Particularly, we present an example from each fault category listed in Table 1.1. Fig.

1.2 depicts a simple, fault-free, sales-order BP from the e-commerce domain in standard BPMN

notation with annotations to show the path conditions of branches.

Figure 1.2: A sales-order BP from e-commerce domain

1.3.1 Expression Fault

Expression faults in BP development can occur when arithmetic or logical operators are incorrectly

swapped with others from the same category. For example, swapping a + with a − or a × in an

expression can result in an expression fault. Similarly, replacing an = with a ̸= or≥ also causes an

expression fault. In Fig. 1.3, such a fault is shown where the path condition of an exclusive service

Figure 1.3: Expression fault introduced in Fig. 1.2

invocation was altered by changing the = operator to ̸=. This forces the BP to take an incorrect

execution path and fail certain test cases.

5

1.3.2 Branching Fault

Branching faults in business process (BP) development can occur due to incorrect join conditions

or the deletion of entire branch paths. An example of such a fault can be seen in Fig. 1.4, which

shows a BP with a branching fault that was caused by the removal of a path from the BP in Fig.

1.2. As a result of this change, the BP is unable to process payments when the selected payment

method is not cash-on-delivery.

Figure 1.4: Branching fault introduced in Fig. 1.2

1.3.3 Control Flow Fault

The control flow faults originate when the order of sequential activities is exchanged, sequential

activities are placed in parallel execution order or a loop with sequential dependency is config-

ured for parallel execution. Fig. 1.5 manifests an example of a control flow fault introduced by

Figure 1.5: Control flow fault introduced in Fig. 1.2

exchanging the order of createOrder and calcSalesTax service operations. This introduces a data

anti-dependence between both services, that is, createOrder service is data-dependent on a later

service, calcSalesTax, in the execution path.

1.3.4 Variable Assignment Fault

This fault is a result of variable identifier replacement. For instance, if a correct variable assignment

a = b is replaced by a = c, this will cause a variable assignment fault. Fig. 1.6 shows the same BP

6

as in Fig. 1.2 but with elaborate detail of control flow and data flow between the various elements

of the BP. The solid edges represent the control flow, dotted edges connect each service operation to

its input and output parameters and dashed edges represent data flow or variable assignments. For

instance, searchProduct service has one input parameter called productName. Input parameters

are connected to the services with an arc from the parameter to the service. searchProduct has

two output parameters namely productId and taxClassId. Output parameters are connected to the

services with an arc from the service to the output parameter. Dashed edges represent the variable

assignment or data flow of the BP.

Figure 1.6: A simple sales-order BP from e-commerce domain with data flow

Fig. 1.7 shows the same BP as in Fig. 1.6 but with a replaced variable assignment shown with

a red arrow. In this example, productId output parameter of searchProduct service is incorrectly

assigned to tax class input parameter of calc sales tax service and taxClassId output of search-

Product is mapped to product code input of createOrder. The swapping of two identifiers results

in the miscalculation of sales tax, leading to incorrect execution and inconsistent state of the BP.

1.4 Problem Statement

In this dissertation, we address the problem of automatic fault resolution in business processes.

The objective is to develop a framework that can automatically locate and resolve faults in BPs in

7

Figure 1.7: A simple sales-order BP from e-commerce domain depicting variable assignment fault

a seamless manner. Specifically, we address the following subproblems in this dissertation.

• Develop a fault resolution approach that given a faulty BP, automatically generates candidate

fixes and applies those candidate fixes to resolve faults. The candidate fixes are generated by

considering the possible mutations of the faulty BP while keeping the number of candidate

fixes to a manageable level. Essentially, we are interested in building on the generate-and-

validate methodology for fault resolution in BPs.

• Develop a collaborative fault resolution approach that given a faulty BP and a set of fault-free

BPs, resolves faults in the faulty BP by exploiting the knowledge of given fault-free BPs.

• Develop a hybrid fault resolution approach that combines both generate-and-validate and

collaborative approaches for fault resolution in BPs.

1.5 Methodology

Fig. 1.8 depicts a high-level view of the proposed methodology. The fault resolution process

starts when the user provides a faulty BP, the test cases, and existing fault-free BPs (only for

collaborative and hybrid fault resolution). After the input, candidate fixes are generated from the

faulty BP and are validated against the set of provided test cases. If a candidate fix passes all the

8

test cases, it is presented to the BP designer. In order to avoid changing the scope and goal of the

original BP, the suggested modifications and the resulting BP are reviewed by the BP designer who

may selectively accept the modifications and/or make additional changes to the BP. Once the BP

designer is satisfied with the changes, the resulting BP is deployed.

Figure 1.8: High-level architecture of the fault resolution methodology

1.6 Contributions

The main contributions of the work presented in this dissertation are summarized below.

1. Efficient G&V (EGV) approach. We propose an efficient fault resolution approach for BPs by

extending the traditional G&V automated program repair methodology. While the proposed

approach leverages mutation-based fault localization to achieve high localization accuracy,

it significantly improves its efficiency by considering a relatively smaller subgraph of the

BP that is obtained through statistical fault localization and predicate-based switching and

slicing. Moreover, we boost the efficiency of fault resolution through static analysis and

conditional generation of mutants. Note that G&V is widely used for automatic repair of

Java and C programs [17, 18, 19, 20] but it has not been adapted for automatic resolution of

faults in BPs encoded in BPMN or BPEL.

2. We formalize the problem of Collaborative Fault Resolution that aims to resolve the faults in

a user-developed BP using information from existing fault-free BPs that use similar services

9

and that are known to be correct. We develop a heuristic approach based on association

analysis over pair-wise transformations to identify likely transformation candidates, which

are then iteratively selected so that the fault(s) in the BP are resolved while reducing the

modifications to the original BP. Our proposed approach significantly improves on the exist-

ing automated program repair approaches since we make use of the knowledge of existing

working BPs instead of just analyzing the faulty BP in isolation. This allows us to cover a

broader range of BP fault categories and also expand the search space to find valid fixes.

3. We perform a comprehensive experimental evaluation over both synthetic and real data. The

synthetic data is created by randomly injecting faults allowing comprehensive testing with

all possible design time faults. The real data comes from a user study that asks real users

to develop BPs as part of a class exercise, thus testing the effectiveness of the approach in

resolving faults introduced by real users. We compare the proposed approach to a baseline

generate-and-validate (G&V) automated program repair methodology. The results show that

our approach can resolve a broader range of faults with high accuracy significantly outper-

forming the baseline.

4. Hybrid Approach. We also propose a hybrid approach combining the proposed EGV ap-

proach that performs fault resolution by analyzing a faulty BP in isolation with a collabo-

rative fault resolution (CFR) approach for improved accuracy. Rather than examining the

faulty BP in isolation, the hybrid approach enables broader coverage of fault types by utiliz-

ing the knowledge of existing BPs that are composed of similar services and are assumed to

be correct.

5. We extend an existing framework for automated BP composition and management in a ser-

vices cloud environment [16] by integrating automated fault resolution capabilities. In ad-

dition, we demonstrate the viability of this integrated framework by developing a prototype

implementation that supports BP composition as well as the automatic resolution of faults.

10

1.7 Outline of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 reviews the related work in the area of

testing, fault localization, and automatic program repair. Chapter 3 presents the Efficient Generate

and Validate (EGV) approach for fault resolution in BPs. Chapter 4 presents the Collaborative

Fault Resolution (CFR) that compares the faulty BP with existing fault-free BPs for the resolution

of faults. It also presents a hybrid approach which is a combination of EGV and CFR. Chapter 5

discusses the implementation of the prototype tool that is developed for fault resolution. Finally,

chapter 6 concludes the dissertation and also discusses the future research directions.

11

Chapter 2

Related Work

This chapter briefly outlines the approaches and tools that either perform fault resolution or that are

helpful in removing faults from a program. Fault resolution problem has been extensively studied

for programs written in C/C++ and Java but this field has gained little attention in the SOA context.

Generally, a fault-repair or fault-resolution approach has three components i) fault discovery, ii)

fix generation, and iii) validation of the generated fixes. Fault localization techniques are used to

identify the approximate vicinity of the faults. Fault localization is an integral part of most fault-

repair techniques and its accuracy impacts the effectiveness of underlying fault-repair schemes. Fix

generation is the process of generating candidate fixes by employing various techniques. Finally,

the validation of candidate fixes is generally performed by running the available test suite. There

are several techniques that can automatically generate the test suite from the input program. We

will discuss the related work in three categories namely, fault localization, fault resolution, and

service composition testing.

2.1 Fault Localization

Fault localization techniques aim to identify positions in a faulty program (a list of statements,

branches, or blocks) that are likely to be responsible for the fault. The goal is to help programmers

in debugging/ patching by focusing on the identified faulty statement(s) and to support automated

12

program repair and recovery [21, 18]. The effectiveness of any fault localization technique is

measured by the accuracy with which it locates the faults. Broadly fault localization techniques

can be categorized as being static or dynamic. Static techniques [22, 23, 24, 25] attempt to locate

the faults by navigating through source code. Static techniques take a backward slice from incorrect

outputs or they involve using a well-defined program model for source code checking. Dynamic

techniques [26, 27, 28, 29], on the other hand, attempt to discover faults by contrasting the runtime

behavior of successful and unsuccessful executions of the programs. The main benefit of dynamic

techniques is that they do not require knowledge of program semantics. Instead, they only require

labeled data for behavioral modeling of the faults. In the following text, we discuss representative

work from both static and dynamic fault localization.

2.1.1 Static Techniques for Fault Localization

Static slicing: Static slicing [30, 31] is among the earliest works on fault localization. The idea of

static slicing is to run the test cases and take a backward slice from the incorrect output(s) of the

failed test case with the goal to reduce the search space to find bugs. Static slice includes all the

statements that can potentially write to the incorrect output. Since static slicing does not use any

execution information, so, it cannot determine the exact statements that actually changed the value

of the incorrect output variable.

Static slicing has been found to be useful in locating the fault but it results in larger slices to

examine for the faults [21]. Slice size can be reduced by either incorporating the run-time infor-

mation with slicing (dynamic slicing) or by computing a dice. Dynamic slicing is discussed in

Section 2.1.2. Dice is simply a set difference of program elements belonging to different slices

[32]. Another challenge with static slicing is resolving the memory equivalence between differ-

ent variables. Such equivalence is common in programs that use pointer variables or in situations

where parameters are passed by reference or passed by pointer. Resolving memory equivalence

is necessary because static slicing mainly depends upon data flow analysis which leads to the in-

correct value of a variable for a particular test case(s). Liang et al. [33] proposed an approach

for resolving memory equivalences for meaningful data-flow analysis in pointer-based programs.

13

Model-based techniques: Model-based techniques [22, 23] are among the static fault localization

techniques that require a well-defined program model for effective fault localization. The availabil-

ity and correctness of the model are critical to the functioning of model-based fault localization. In

fact, the variations of the program from its model are used to detect faults. Techniques have been

proposed [34, 35, 36, 37, 38] to learn the model directly from the faulty program. The learned

model is, then, used to locate faults by comparing the behavioral difference between the model

and the faulty program. Wotawa et al. [38] perform program analysis to build a dependency model

from the source program. The model along with test cases and expected outputs are represented in

first-order predicate logic. Failure in the source program is seen as a violation of the model and re-

sulting conflicts between the source program and model are used to identify program components

responsible for the fault.

A similar technique is presented in [34] that builds models for Java programs. It covers some

features of Java language including methods, classes, conditional statements, and while loops. A

dependency-based model describes the structure of the program whereas the behavior is described

with logic-based languages such as first-order predicate logic. Then, the dependency-based model

can be extended to handle unstructured branches like exceptions, recursion, and jump statements.

Baah et al. [36] use a probabilistic dependency model to explain the behavior of program elements

thus enabling a probabilistic analysis of faulty program elements. One limitation of model-based

techniques is that they cannot be easily decoupled from the programming language of the subject

program because it has to support the language features partially or completely.

2.1.2 Dynamic Fault Localization

Dynamic fault localization techniques have an advantage over static techniques in a way that they

only require a test suite and program traces labeled as successful or failed. Fault localization is

performed by comparing and contrasting the successful and failed traces using a variety of different

methods. Below, we discuss some key approaches for dynamic fault resolution.

Dynamic Slicing: Unlike static slicing, discussed in Section 2.1.1, dynamic slicing [39, 40, 41,

42, 43, 44] incorporates the run time information to include only those statements in the slice/chop

14

that actually affect its value during execution. Wotawa et al. [39] combined dynamic slicing with

model-based analysis for fault localization. Hitting sets are computed that comprise of at least

one statement from each incorrect variable’s slice. The probability or suspiciousness is calculated

based on the number of hitting sets containing a statement. Zhang et al. [45] use the intersection

of backward and forward slices to find the faulty program elements.

One limitation of dynamic slicing is that it cannot capture the execution omission errors. One

solution is to use relevant slicing [46] that combines dynamic slicing with dependency analysis to

localize faults. Relevant slicing, however, tends to include unrelated statements in the slice in the

presence of incorrect dependencies between the statements.

Spectrum-based Techniques: Spectrum-based techniques make use of test case coverage infor-

mation to associate a suspicion value to program entities computed based on statistics of passed

and failed test case runs. The programmer is then expected to examine the statements ranked in

order of suspicion score to locate faults. Set union, set intersection, nearest neighbor queries [47]

and Tarantula [48] are representatives of spectrum-based fault localization.

Set union, set intersection and nearest neighbors consider a faulty program with one failed run

and multiple successful runs. Set union reports the statements to be fault relevant if they appear

in the failed spectrum but do not appear in any of the successful spectra. Set intersection, on the

other hand, considers those statements that appear in the failed spectra but do not appear in the

intersection of successful spectra. The nearest-neighbor approach first finds a successful spectrum

closest to the failed spectrum according to some distance measure. Then, the statements in the

difference set of the closest passed spectrum and failed spectrum are reported as fault relevant.

In all three cases, Renieris and Reiss [47] produce a fault report that is a collection of suspicious

statements for the debugger to examine. Interestingly, the individual statements in the fault report

are not arranged in any order but a usefulness score is assigned to the entire fault report with 1

representing the perfect report and 0 representing the worst report.

On the contrary, Tarantula [48] is a statement-based technique that assigns a suspiciousness

score to each statement based on its hit spectra both in successful and failed executions. The state-

ments are, then, investigated by the debugger in order of suspiciousness score from high to low.

15

The difference between Tarantula and nearest neighbors is that Tarantula uses multiple successful

and failed spectra to assign a score to each statement whereas nearest neighbors only consider one

failed spectrum and one successful spectrum that is closest to the faulty spectrum. A study on the

Siemens suite [49] shows that Tarantula outperforms nearest-neighbors in a number of statements

that must be inspected before the fault is uncovered. Later on, different extensions and variations

of Tarantula have been proposed. For instance, Derboy et al. [50] grouped the statements that

appear in an equal number of failed runs, and the statements within each group are ordered accord-

ing to their suspiciousness score. Tarantula has been used in conjunction with different scoring

functions like Ochiai [51] and ochiai2 [52] similarity coefficients to achieve better results. An

empirical study [53] evaluates the proposed Dstar technique with 31 spectrum-based techniques

that use similarity coefficients to rank the program elements. It is noted that Dstar, in most cases,

outperforms all such techniques including Tarantula [48] and Crosstab [54].

Statistical Techniques: Statistical fault localization works by instrumenting the source program

with special statements called predicates. Predicates are evaluated at runtime and their result can

either be true or false. Mostly, predicates are associated with branches, function return values,

and relational operators between scalar variables. Statistical formulas are used to rank the predi-

cates based on their evaluations of successful and failed executions of the source program. Two

representative techniques in this category are Libit05 [27] and SOBER [28, 29].

Libit05 [27] computes two conditional probabilities for each predicate P , that are, Failure(P)

and Context(P). Failure(P) is the probability of a run being failed given that P evaluates to true and

Context(P) is the probability of failure given that P is executed. The difference, Context(P) −

Failure(P), is then used as a discriminant. Predicates for which the difference is less than or

equal to zero are excluded from the list of suspicious predicates. The remaining predicates, with a

positive difference, are ranked according to a statistical formula.

Unlike LIBIT05, SOBER [28, 29] considers the multiple evaluations of each predicate in each

run. It computes the probability π(P) = n(t)
n(t)+n(f)

where n(t) is the number of times a predicate

evaluates to true and n(f) is a number of time it evaluates to false in a particular execution of

the source program. The idea of SOBER is that, if a predicate is predictive of a fault then its

16

probability distribution must diverge significantly across successful and failed executions of the

source program. The divergence in a probability distribution is used to rank the fault relevance of

each predicate.

SOBER proved to be more effective on Siemens software suite [28] than Libit05 [27] because

it considers a broader spectrum of predicates rather than analyzing its single evaluation. Both for

SOBER and Libit05, statements related to top k predicates are taken as initial fault report to be

examined by the debugger. Libit05 does not provide any mechanism for ranking all the statements

especially if they lie outside the scope of a predicate. For SOBER, if a faulty statement is not

included in the initial fault report, the program dependency graph is traversed using breadth-first

search unless the fault is found or the entire graph is traversed.

Naish et al. [55] conducted a study to evaluate the effectiveness of spectrum-based and predicate-

based approaches and concluded that, in general, predicate-based techniques perform better than

spectrum-based fault localization.

Memory-based Techniques: Every program has a state or context during execution at any partic-

ular point in execution. The context of a program is represented by its memory contents or memory

graph. Memory-based techniques exploit the difference between memory graphs of successful and

failed runs of a program to localize faults. Zeller et al. proposed delta debugging [56, 57] that

replaces the state of a successful run by corresponding variables in the corresponding state of a

failed run to reproduce the fault. A variable is not marked as suspicious if the change does not

produce the exact same fault observed by the failed run. The extension in delta debugging [26]

uses causal analysis to discover the time and location when the root cause of a failure transitions

from one variable to another.

One limitation of delta debugging is its cost. There can be many states in the execution of a

program and it is infeasible to track all the states and incorporate failure-inducing deltas in them.

Gupta et al. [58] used delta debugging to, first, identify failure-inducing inputs. Then, a program

chop at the intersection of an output’s backward slice and failure-inducing input’s forward slice is

reported as suspicious.

Another class of memory-based techniques is predicate switching [45, 59] that forces a program

17

on a different execution path. Predicates are switched either according to their priority or on the

last executed first switched strategy. Zhang et al. [45] switch the predicates to observe their effect

on program output. if a change in predicate causes the failed run to execute successfully then the

predicate is marked as fault-relevant. Li et al. [59] combine predicate switching with dependency

analysis to reduce the size of the fault report.

2.1.3 Fault Localization in SOA Context

Fault localization is more challenging in service-oriented architecture (SOA) than in monoliths

due to its distributed and asynchronous nature. Many component services interact in a predefined

fashion to make a composition that achieves pre-defined business objectives. The component ser-

vices can be developed in-house or can be owned by a third party and they can be geographically

dispersed in different locations. The services interact through the network to contribute to the ob-

jective of the composition. More often than not, the source code and tracing/logging information

of the component services is not available. This, along with the challenges of connecting networks

and asynchrony, makes the debugging and localization of faults harder than the monoliths.

However, most of the fault localization techniques [14, 60, 61, 62, 63, 64] in SOA context

are adapted from the ones proposed for the monoliths. BPELDebugger [60] is one such approach

that brings many spectrum-based techniques to the SOA context. It considers the compositions

(implemented in BPEL) instead of component services. The adapted techniques include set union,

set intersection, and nearest-neighbors [47] and Tarantula [48]. After evaluating different formulas

on the elements of composition, BPELDebugger uses two BPEL-specific guidelines to rank the

suspicious program elements.

Sun et al. proposed BPELswice [61] that is designed specifically for fault localization in BPEL

programs. BPELswice employs predicate switching and backward program slicing to locate the

suspicious faulty code with higher precision. Unlike other fault localization approaches that return

the blocks in BPEL code with possible faulty statements, BPELswice performs program slicing to

reduce the number of statements within the suspicious blocks to help the BP designer in debugging.

Delta debugging [13] is another frequently employed approach for fault localization that can

18

identify deployment and configuration-related faults in addition to general programming errors.

In the context of microservices-based systems, Zhou et al. [14] employed delta debugging to

uncover faults that occur in deployment, environmental configuration, and execution sequences

of microservices. Some recent approaches combine mutation testing [65] and delta-debugging

for accurate fault localization in a more efficient manner. Delta debugging [14] is a state-based

technique and its major limitation is its computation time due to the existence of potentially many

program states. Zhou et al. [63] proposed the parallel version of delta debugging for microservices

to mitigate this overhead.

Some recent studies [62, 66, 67] apply fault localization techniques to address the problem of

root cause localization when performance degradation is observed in microservice systems. The

approaches [66, 67] work by creating a dependency graph between services and by analyzing the

graph for causal inference based on conditional independence. Building of dependency model is

time-consuming, especially in the context of SOA where a microservice system evolves over time.

Ye et al. [62] proposed T-Rank to rank the services in order of suspiciousness. They use spectrum-

based fault localization by considering the latency of component services to complete a request.

The latency information is captured from system traces in a sliding-window fashion and updated

continuously. This makes T-Rank a lightweight and readily applicable approach for microservices.

Recently, Mathur [64] proposed a replay-based debugging framework. Messages routed to the

microservice system are captured in a language-agnostic fashion which are, then, used to reproduce

the anomaly in debug environment running in a different container. The anomaly detector of the

framework captures the latency of component services and resource (CPU, memory, etc.) usage

of the container as time series data. This data is used to track anomalies back to traces so that the

traces can be replayed in debug container to reproduce the anomalies.

2.1.4 Recent Trends in Fault Localization

In recent years, the focus of research on fault localization has shifted towards machine learning

[68, 69], the combination of different techniques [70, 69, 71], and methods for improving existing

techniques [72, 73] by the extra provision of data or by introducing new parameters for existing

19

ranking formulas. For instance, MEPFL [68] is a machine-learning technique for fault localization

and latent error prediction for microservices. Faults are injected into the microservice system

and trace logs from the original program and injected version are used for training the model.

UniVal [69] is a combination of predicate-based statistical and variable-based fault localization

that employs causal analysis and machine learning. The predicate evaluations are converted into

variable values so that a unified approach can be used for causal analysis.

Jia et al. proposed SMFL [70] which is a combination of spectrum-based and mutation-based

fault localization. spectrum-based techniques suffer from assigning the same rank to multiple

statements and mutation-based techniques are notoriously time-consuming. SMFL addresses the

limitations of both approaches. It, first, computes the suspiciousness scores using spectrum-based

techniques, and then, top n suspicious statements are chosen to generate the mutants. Finally, the

mutant that changes the outcome of failed test cases more frequently and of the passed test cases

less frequently is regarded as the most suspicious. To substantiate the study, two spectrum-based

approaches Ochiai and Dstar[74, 53] and two mutation-based approaches Metallaxis and MUSE

[75, 76] were selected and all four combinations were studied. For instance, the DStar-MUSE

combination performs spectrum-based ranking using DStar, and mutants on top n statements are

generated using MUSE.

IsoVar [71] combines statistical and mutation-based fault localization to identify suspicious

variables. First, statistical analysis is performed to capture the execution metrics of variables to

identify the set of suspicious variables. Subtle mutants are, then, generated for these variables on

the byte-code level to observe their impact on program outcome. Those variables are regarded

as fault-relevant that affect the outcome of failed test cases more than the outcome of passed test

cases.

Zhang et al. present page rank fault localization (PRFL) [72] to boost the effectiveness of

existing spectrum-based techniques. The key insight of PRFL is that if a failing test case t1 covers

fewer statements than another failing test case t2, then, t1 makes more contribution than t2 for

the fault localization cause. Thus, PRFL first ranks the test cases using the page rank algorithm

reflecting their contribution. Then, the program spectrum is recomputed based on ranked test cases.

20

Finally, a variety of spectrum-based formulas are applied to the recomputed spectrum for ranking

the statements in order of suspiciousness. A similar study is proposed in [73] that calculates an

importance weight for each program element (statement, method, etc.) and multiplies it with the

score achieved from the spectrum-based formula. Importance weight is simply the ratio of failed

test cases containing the element.

2.1.5 Summary

We have comprehensively covered the related work in fault localization both for monoliths and

in SOA context. Fault localization is a key component of any fault resolution approach because

the faults that are not localized effectively are unlikely to be fixed. Liu et al. [77, 78] observe

that automatic program systems are sensitive to the fault localization noise and their effectiveness

highly correlates with the effectiveness of the underlying fault localization strategy. This calls

for the selection of the best fault localization technique at the forefront of our fault resolution

framework. But, there is no single best technique that outperforms others on all or most of the

benchmarks. Some techniques work better than others on one benchmark and are less effective on

other benchmarks. However, it is clear that static techniques cannot perform better than dynamic

techniques because of their inability to incorporate execution information.

Among the dynamic techniques, machine-learning-based approaches are not feasible in our

context due to the unavailability of training data. Moreover, we need a fault localization approach

that assigns suspiciousness scores to program elements or predicates so that they can be ranked ac-

cordingly before the generation of candidate fixes. Both spectrum-based and statistical techniques

perform this task. However, Wong et al. [21] note that statistical techniques can achieve more ef-

fectiveness than spectrum-based techniques. Consequently, In our work, we make use of statistical

fault localization [28] in both Efficient Generate-and-Validate (EGV) (discussed in Chapter 3) and

Collaborative Fault Resolution (CFR) (discussed in chapter 4). For EGV, we also use predicate

switching and program slicing [61] to further limit the number of suspicious elements.

21

2.2 Fault Resolution

Automatic program repair (APR) involves resolving faults in a program without human interven-

tion. A failure is a behavior of a program that is different from the expected behavior. An error

is a state that leads to a failure, and the fault is the root cause of the error. APR systems contain

mechanisms for differentiating between acceptable and unacceptable behavior, locating faults, and

generating fixes or patches. The behavior of a program is often described with the help of oracles.

An oracle is a term that can refer to a formal model, program specifications, or test suite. These

all define the expected behavior of a program, and any behavior that deviates from the expected

behavior is deemed unacceptable. An oracle can be divided into a fault oracle and a regression

oracle, where the former uncovers the fault, and the latter is used to verify that no new faults have

appeared during the fault resolution process.

Once unacceptable behavior has been identified in a program, the next step is to locate the fault

in order to find a solution. Fault localization is therefore critical to the success of any fault resolu-

tion strategy. If a fault is not localized, it is unlikely to be repaired. Therefore, the effectiveness of

a fault resolution technique is heavily dependent on the fault localization scheme used. Section 2.1

discusses key fault localization techniques from the literature. After faults have been discovered,

the final step is to generate candidate fixes or patches that pass the fault oracle and do not violate

any of the regression oracles. Candidate generation often involves applying mutation operators to

the program, using predefined fault templates, or using machine/deep learning techniques. There

has been significant work on the automated repair of programs written in Java and C/C++, but none

of this work has addressed program repair in Business Process (BP) programs developed through

web service orchestration. In the following text, we discuss some key approaches to program repair

from the literature categorized by their patch generation strategy.

2.2.1 Mutation-based Fault Resolution

Genprog [79, 80, 81] is a genetic-programming-based repair system. It converts the faulty pro-

grams into an Abstract Syntax Tree (AST) representation and uses three repair operators that mu-

tate ASTs: deletion, addition, and replacement. For addition and replacement, the nodes used are

22

taken from elsewhere in the code base. The selection of nodes is based on a technique known as

the redundancy assumption. Genprog has been successfully applied to large-scale C code and has

been shown to fix 55 out of 105 bugs. A similar study [82, 83] defines seven mutation operators

for AST representations of faulty programs. A prototype called Jaff was also developed to handle

a subset of Java constructs and was evaluated on small programs.

Some studies [84, 85, 86] apply mutation operators directly on the faulty programs rather than

its intermediate representation like AST. Common mutation operators include replacing a relational

or arithmetic operator with another of the same type, negating a boolean expression, etc. The

faults are located using spectrum-based techniques. Nica et al. [85] explore mutation space more

comprehensively than [84]. Kern and Esparaza [86], on the other hand, generate a meta-program

that includes all the possible mutants according to a mutation operator. Only the selected mutants

from the meta-program are executed based on the values of meta-variables which are evaluated

using symbolic execution.

SemFix [87] is a program repair tool that uses angelic debugging [88] for fault localization. It

considers the faulty programs that can be fixed by modifying one expression. Angelic debugging

finds plausible candidates which are, in fact, the mutants of the faulty program. The search space

of mutants is reduced by using symbolic execution. Finally, SemFix patches the candidates pro-

duced by angelic debugging through code synthesis. One limitation of SemFix is that its symbolic

execution phase is quite expansive and cannot scale for large programs. To address this limitation,

Angelix [89] significantly optimizes the symbolic execution for large programs.

NOPOL [90] only focuses on repairing the faults in existing conditional statements and patch-

ing missing conditionals. It examines the spectrum of a failed test case to find suitable candidates

for repair. Then, instrumented traces from failing and passing test cases are transformed into Satis-

fiability Modulo Theory (SMT) problem. The result of SMT problem is then converted to generate

a patch for an existing or a missing conditional statement. NOPOL is also used in fixing the infinite

loop problem [91] as they are caused by an incorrect or missing conditional statement.

One widely used methodology for automated program repair is Generate-and-Validate (G&V)

[92, 93, 94, 95, 18, 96, 97]. G&V takes as input a faulty program and a group of passing and

23

failing tests and heuristically searches the program space to generate candidate fixes. The validity

of a candidate fix is then checked by running all available tests. Xu et al. have proposed an effi-

cient G&V approach for repairing Java programs [18]. Their approach employs fault localization

to identify a list of suspicious snapshots, including program states that are indicative of faults.

For each suspicious snapshot, a number of candidate fixes are generated by considering different

program mutations. However, instead of validating each candidate fix for fault resolution, only

selected candidate fixes based on their suspicious score are validated. It is possible that none of the

selected candidate fixes pass all the test cases. The candidate fixes that pass some of the test cases

are used to generate variants of the original program and the entire process of fault localization, fix

generation, and validation (called retrospective fault localization) is repeated on the program vari-

ant. This retrospective fault localization continues until valid fixes are found. Retrospective fault

localization provides an efficient search of the fix space by reusing the outcome of failed fix val-

idation to support mutation-based dynamic analysis without exhaustively validating all candidate

fixes.

2.2.2 Pattern-based Fault Resolution

Pattern-based automatic repair (PAR) [98] employs a template-based patch generation for Java

programs. PAR devises 10 patches after a careful manual inspection of 60, 000 patches written by

developers. Templates aim to target the most common programming faults. For instance, there

is one template that targets the null pointer exception. The template is parameterized by variable

name and places a null check on the variable before it is actually accessed. PAR is empirically

evaluated and reported to outperform GenProg [79].

Relifix [99] takes a template-based approach for patch generation and it considers the regres-

sion bugs, that is, the faults arising from the code changes. Relifix comes with eight repair tem-

plates manually derived from 73 real code regressions. The templates leverage the changes in

previous commits of the source versioning system to suggest repairs. The goal is to keep as much

functionality with the latest version as possible while reconciling code changes among different

commits. The functionality of the latest version is specified by regression tests.

24

Logozzo and Ball [100] propose a repair approach based on static analysis of .NET code.

They consider programs off by one fault. Faults are categorized into different classes and a repair

operator is chosen on the basis of the fault class. Some common fault operators include placement

of precondition, changing the array size, etc. The result of fault operators is also verified by static

analysis. Logozzo and Martel [101] also used static analysis to repair integer arithmetic faults. For

instance, re-ordering of arithmetic operations is performed to ensure that arithmetic overflow does

not occur.

Gao et al. [102] employs static analysis to discover and fix memory leaks in C programs. The

suggested repair is the inclusion of a deallocation statement at the appropriate place in the faulty

program. DeepFix [103] combines static analysis with deep learning to repair common compile

time errors of C programs. Muntean et al. [104] incorporate static analysis for discovering buffer

overflow which is, then, repaired using parameterized templates.

Liu et al. [77] present an extensive assessment of fix patterns for APR, including an investiga-

tion of their diversity, repair performance, and sensitivity to fault localization noise. The authors

implement an APR system called TBar that uses a curated set of fix patterns and evaluate it on

the Defects4J benchmark. They find that TBar achieves a new record level of repair performance,

with 74/101 bugs fixed correctly and 43/81 bugs fixed plausibly with realistic fault localization

output. They also find that most bugs are fixed by a single fix pattern, but some patterns are more

effective at repairing certain types of bugs. Finally, they find that fix patterns are sensitive to fault

localization noise, with certain patterns being more robust than others. Liu et al., in another article

[78], argue that the performance of APR systems can be impacted by the accuracy of the FL step,

which can either boost or degrade the performance of the APR system. Therefore, the number of

bugs fixed is a misleading metric for reporting the effectiveness of program repair systems because

unlocalized faults are unlikely to be fixed.

FixMiner [105] focuses solely on the patch generation process rather than considering auto-

mated program repair as a whole. The fix patterns are mined from thousands of atomic changes

and patches from existing open-source repositories. The code is represented using Rich Edit Script

at three levels: abstract syntax tree, edit action trees, and code context trees. All three represen-

25

tations are used in different phases of clustering to group similar and actionable changes that can

be readily applied and used by any patch generation system. Quantitatively, FixMiner is evaluated

by integrating it to PAR [98], and the resulting automatic repair system is called PARFixMiner.

PARFixMiner showed promising effectiveness on Defects4J benchmark system by producing 81%

correct patches.

2.2.3 Machine-learning-based Fault Resolution

Chen et al. [19] propose using sequence-to-sequence learning, a branch of statistical machine

learning, for APR in a language-agnostic, generic manner. They propose a program repair ap-

proach called SEQUENCER that uses sequence-to-sequence learning to repair real bugs in Java

programs. SEQUENCER is trained on a dataset of one-line commits and uses a specific network

architecture to address the challenges of using sequence-to-sequence learning on code, such as

handling dependencies and strict language rules. The authors evaluate SEQUENCER on a number

of benchmark programs and show that it is able to repair a wide range of bugs with a high degree

of reliability. Overall, the authors argue that using sequence-to-sequence learning for APR has the

potential to provide a foundation for connecting program repair and machine learning, allowing the

program repair community to benefit from training with more complete bug datasets and continued

improvements to machine learning algorithms and libraries. They also suggest that this approach

could lead to the development of more advanced APR techniques that are able to handle larger and

more complex repairs.

CoCoNuT [106] addresses the limitation of existing G&V techniques that have limited search

spaces and require extensive customization to work across programming languages. Neural Ma-

chine Translation (NMT) is a deep learning approach that uses neural networks to generate likely

sequences of tokens given an input sequence and has been applied to natural language translation

tasks. NMT has the potential to be used in APR as a way to translate buggy code into correct code,

but there are challenges to applying it to this task, such as representing context and handling large

search spaces. CoCoNuT proposes a context-aware NMT architecture with separate encoders for

buggy lines and context and a new decoding strategy that uses a sliding window to handle large

26

search spaces and improve the efficiency of the model. Convolutional Neural Network (CNN) is

used to capture the hierarchical features from the code and ensemble learning is used to combine

multiple trained models with tuned hyper-parameters. The proposed approach is evaluated on a

dataset of real-world Java bugs and is shown to generate more correct patches than a baseline

G&V technique.

DLFix [107] addresses the limitations of NMT-based approaches for program repair. Specifi-

cally, NMT-based techniques are unable to encode knowledge about what parts of the buggy code

have changed. Additionally, the use of a sequence-based representation for source code is not suit-

able for capturing code structures, and it lacks consideration for the context surrounding the fixing

locations. To address these limitations, DLFix proposes a graph-based representation for source

code and a graph neural network (GNN)-based approach to APR. The proposed network consists

of a tree-based RNN layer that captures the code context and its dependencies. The weighted out-

put of this layer is subsequently used to produce bug-fixing transformations. DLFix is evaluated on

a dataset of real-world Java bugs and is shown to outperform NMT-based approaches and most of

the template-based approaches in terms of the number of correct patches generated and the quality

of the patches.

CURE [108] is another NMT-based approach for program repair. Prior to learning the trans-

lation task, it trains a Programming Language (PL) model on a fairly large code base to learn the

programmer-like coding style. This process helps understand the strict syntax of source code, a

property that is not observed in human languages and, thus, is alien to neural machine translation.

Based upon the PL model, CURE employs a code-aware strategy and subword tokenization for

patch generation resulting in a significantly smaller search space than contemporary NMT-based

repair systems. CURE is evaluated on Defects4J and QuixBugs and has outperformed all the ex-

isting fault repair approaches.

Namavar et al. [109] assess the effect of different code representations in Deep Learning (DL)

based program repair systems. Essentially, the learning process requires the source code to be

transformed into vectors. Prior to this transformation, the code can be expressed with a variety

of representations including AST and tokens. Different DL-based approaches use different repre-

27

sentations and, thus, their effect was unknown. Namavar et al. [109] fill this gap by conducting a

study that switches the code representations of existing DL-based techniques and reports its effect

in general and with respect to fault categories. The study concludes that no single representation

is best for all categories.

CACHE [110] is a deep learning-based approach for assessing the correctness of patches.

CACHE is context-aware, that is, it takes into account not only the changed statements in a patch

but also the other correlated statements within the same method. CACHE is also aware of the pro-

gram structure, using Abstract Syntax Trees (ASTs) to represent the code for embeddings. CACHE

was evaluated on two patch datasets, one containing 1,183 patches and the other containing 50,794

patches. The results showed that CACHE outperformed previous representation learning tech-

niques and other patch correctness assessment techniques in terms of F1 score and precision. An

ablation study also demonstrated that the context information and program structures significantly

contribute to CACHE’s performance. It is claimed to be the first approach that incorporates context

information in the embedding of code changes.

Tian et al. [111] propose a novel heuristic that suggests a relationship between patches and their

failing test cases, and use this heuristic to develop an approach called BATS (Behavior Against

Failing Test Specification) for predicting patch correctness. BATS works by statically checking

the similarity of generated patches against past correct patches that correspond to failing test cases

that are similar to the failing tests of the bug being fixed. The authors validate the heuristic by per-

forming hierarchical clustering based on the embeddings of test cases and patches in the Defects4J

dataset and then evaluate BATS by applying it to a large dataset of patches generated by 32 APR

(Automatic Program Repair) tools or extracted from defects benchmarks. The results show that

BATS has an AUC (Area Under Curve) of approximately 0.56 to 0.72 and a recall of approximately

56% to 84% in identifying correct patches. BATS is also found to be complementary to other ap-

proaches, such as a recently supervised learning classifier and PATCH-SIM [112], in improving

the recall for detecting correct patches.

Yang et al. [113] discuss the importance of reliable evaluation in automated program repair

(APR) and propose a systematic approach for understanding and discovering biases in APR eval-

28

uation. The authors conduct a systematic literature review to identify known biases in APR evalu-

ation and build a taxonomy to categorize these biases. As a result, they identify 17 known biases

and uncover a new bias related to the usage of patch validation strategies. To validate this new

bias, they develop an executable framework called APRConfig and use it to evaluate three patch

validation strategies with four APR techniques on three bug datasets. The authors’ systematic ex-

ploration and the APRConfig framework provide insights and infrastructure for understanding and

mitigating biases in APR evaluation.

SeAPR (Self-Boosted Automated Program Repair) [114] is a technique for leveraging patch

execution information during automated program repair (APR) to directly boost existing APR

techniques on the fly. SeAPR promotes the ranking of patches that are similar to high-quality

patches that have been executed and degrades the ranking of patches that are similar to low-quality

patches. The patch similarities are based on the modified elements in the patches. The authors

evaluate SeAPR on 13 state-of-the-art APR systems and investigate the impact of various con-

figurations on its performance. They also evaluate SeAPR’s performance using historical patch

execution information from other APR tools. The results show that SeAPR can substantially speed

up APR techniques by up to 79% with minimal overhead, has stable performance with differ-

ent patch priority formulas and patch execution matrices, and can effectively use historical patch

execution information from other APR tools.

2.2.4 Summary

Fault resolution is a complex task that involves fault identification (localization) followed by the

generation of its fixes and then, the verification of generated fixes. We have comprehensively

covered the state-of-the-art fault resolution (aka automatic program repair or APR) approaches for

monoliths from the literature. However, no fault resolution system has been proposed that fixes

design time composition faults in the Business Processes. The proposed fault resolution framework

is a unique and novel endeavor in this regard.

Fault resolution systems generally vary in the way they generate candidate fixes for the in-

correct program. In our framework, we propose two approaches; EGV (discussed in chapter 3)

29

and CFR (discussed in chapter 4). EGV is a mutation-based approach that builds upon the basic

Generate-and-Validate (G&V) approach by considering the mutation operators specific to the BPs.

CFR, on the other hand, is a data-mining-based approach that mines the fix patterns automatically

from existing fault-free BPs.

2.3 Service Composition Testing

In this section, we discuss the existing work in the area of testing web service compositions. The

work in this area can be broadly categorized into unit testing, integration testing, and regression

testing. We discuss work related to each of them in separate subsections.

2.3.1 Unit Testing

Unit testing is a technique of testing software systems where a program is decomposed into smaller

modules or functions. Each module or function is then tested independently of the rest of the

program [115]. There has been much work on unit testing the individual web services [9, 116, 8,

117, 118] but most of this work assumes the presence of expected outputs that can be used to verify

the results of generated test cases.

Bartolini et al. [8] address the testing of web services, which is a critical issue for the IT

industry. The study recommends that at least 25% of the effort spent on an SOA project should

be dedicated to testing, as web services must offer strict guarantees of reliability and security.

There are several industrial testing tools available, such as soapUI, PushToTest, and SOATest.

The research proposes a framework for the turn-key generation of web service test suites, which

combines the coverage of web service operations with well-established strategies for data-driven

test input generation. The prototype is obtained by integrating two existing software, soapUI

and TAXI, and named WS-TAXI. The original idea of WS-TAXI is the inclusion of a systematic

strategy for test generation based on basic principles of the testing discipline, such as equivalence

partitioning, boundary analysis, and combinatorial testing.

In [9], Chang-ai et al. present a framework for testing individual web services in the absence

30

of oracles (expected correct outputs of a test case). The approach exploits metamorphic relations

between services to generate metamorphic test cases and verify their correctness. This provides

an effective mechanism for testing external web services without source code access. The frame-

work comprises four components namely Test Case Generator (TCG), Executor, Evaluator, and

Configuration. TCG parses the web service WSDL and is responsible for the generation of test

cases given Metamorphic Relations (MRs). Test cases are generated randomly or fetched from the

previous test executions. TCG can generate the test cases both in batch mode or one-by-one mode

depending upon the option chosen in the Configuration component. The executor executes the test

cases generated by TCG via SOAP messages and intercepts the output. The evaluator, on the other

hand, compares the output intercepted by Executor and the output conforming to the MR. If the

outputs do not match then the fault is perceived.

Hong et al. [119] proposed an approach for collaborative testing of web services. The frame-

work consists of special T-services, General Testers, Test Brokers, a UDDI registry, and ontology

management. T-services are basically mock services for actual services called F-services with

additional functionality. For instance, T-services support the formal description of semantics, con-

figuration, internal design, and the information of underlying software and hardware platforms. To

support the internal behavior of an F-service, T-service can even consist of the actual code for the

tests like code coverage. Furthermore, a T-service is equivalent to an F-service in functionality but

different in its real-world impact. For instance, F-services that do not maintain an internal state

can also act as T-services and there is no need for specific T-services for such F-services. General

Testers are also the services but they are not related to any actual service. They, rather, are testing

tools that can plan and generate test cases and check testing results. Test Brokers are the com-

ponents that take testing requests from the user, decompose them into sub-activities and find the

appropriate General Testers for carrying out those sub-tasks. The broker also monitors the perfor-

mance of involved T-services for optimization and replacement. A registry is a place where all the

service descriptions reside so that they can be discovered and invoked at run-time. This supports

the testing on the fly when services are bound dynamically. Finally, the ontology manager provides

the vocabulary for passing information among different parts of the framework.

31

Barros et al. [120] present a systematic approach for static analysis of API specifications in

order to improve modularity and address the complexity of APIs. The approach is based on the

concept of business entity and applies interface analysis methods and techniques to elicit knowl-

edge of business entities and their attributes, derive the temporal order of calling operations across

multiple business entities, and learn and extract various ways of invoking a service via APIs. It is

implemented and applied to a group of widely-deployed services for validation. The research aims

to identify key aspects of both the structure and behavior of APIs to help users understand complex

interfaces and facilitate efficient and effective service integration.

RESTest [121] is an open-source automated testing framework for RESTful web APIs. RESTest

utilizes a model-based approach, making it easy to integrate with different test case generators and

testing frameworks. The framework’s key feature is its support for the specification and automated

analysis of inter-parameter dependencies using the IDL tool suite. This allows for constraint solv-

ing to be used as part of the test generation process, which is known as constraint-based testing.

This approach enables better coverage of the program under test by systematically generating valid

and invalid input combinations and using novel output assertions. RESTest was evaluated by test-

ing 9 operations on 6 commercial APIs, including Tumblr, GitHub, and YouTube. The results

showed that RESTest’s constraint-based testing was able to generate 100% valid test cases in mil-

liseconds, and detected more failures than random testing.

RESTTESTGEN [122] is another approach for automatically generating test cases for REST

APIs. The approach is based on defining the interface for interacting with a REST API, which

includes the list of available operations, and the format of input/output data for requests and re-

sponses. The authors propose the Operation Dependency Graph as a way to model data depen-

dencies among operations, which can be inferred from the REST API interface and updated when

generating test cases. RESTTESTGEN aims to test REST APIs from two perspectives: nominal

execution scenarios, which test the system using input data as documented in the interface, and

error execution scenarios, which exploit input data that violate the interface to expose implemen-

tation defects and unhandled exceptional flows. The approach was evaluated through an extensive

study involving 87 real REST APIs and was able to reveal a significant number of implementation

32

defects.

ARTE [123] is an automated method for extracting realistic test data for web APIs from knowl-

edge bases like DBpedia. The approach uses natural language processing, search-based, and

knowledge extraction techniques to automatically search for realistic test inputs using the API

parameters specification. ARTE has been integrated into RESTest, an open-source testing frame-

work for RESTful APIs, which fully automates the test case generation process. Evaluation results

on 140 operations from 48 real-world web APIs showed that ARTE can efficiently generate re-

alistic test inputs for 64.9% of the target parameters, outperforming the current state-of-the-art

approach SAIGEN (31.8%). Additionally, ARTE supported the generation of over twice as many

valid API calls (57.3%) as random generation (20%) and SAIGEN (26%), leading to higher fail-

ure detection capabilities and uncovering several real-world bugs. These results demonstrate the

potential of ARTE to enhance existing web API testing tools and achieve an unprecedented level

of automation.

2.3.2 Integration Testing

Integration testing is used to verify the combined functionality of components after their integra-

tion. Integration testing can test not only services but messages their interactions and the overall

composition as well [124]. There is a whole body of work attributed to integration testing in SOA

environment [125, 126, 127, 128, 129].

Chang-ai et al. [130] presented a novel testing framework that generates automated test cases

given a service composition in WS-BPEL. The WS-BPEL composition of a process is first con-

verted to a graph model called WS-BPEL Graph Model (BGM) by recursively applying predefined

mapping rules. BGM is, in turn, used to generate test scenarios where a scenario corresponds to

the execution path of a business process. Test scenarios are generated by applying different rules to

different node types in BGM. For instance, in the presence of a fork, condition, or loop the BGM

is broken into two segments where the first part corresponds to the relevant fork condition or loop

and the second part corresponds to the rest of the process from join, merge or cycle onward to the

end node. In the end, both segments are combined to produce the test scenario.

33

Subsequently, test cases are generated for the scenarios produced in the previous step. For each

program path or scenario, a path condition is generated which is actually the conjunction of in-

put constraints for that particular scenario. Moreover, test scenarios are driven by automatically

generated test data. A constraint-based technique is used for test data generation by analyzing the

input and output requirements of WS-BPEL composite services. Test data is generated for each

scenario and the set of test data for all scenarios is called the test suite. Finally, a prototype has

been developed for the automatic execution of the test cases and the effectiveness of the framework

[130] is validated using an empirical study.

Leal et al. [131] argue that orchestrations can present challenges in ensuring that the intended

application is working as expected. Testing is often used as a strategy to mitigate these chal-

lenges and validate the system, but the unpredictability of third-party services updates and their

possible unavailability, as well as the ever-changing application requirements and quick cycles of

application deployment, can create problems for the use of runtime testing on Service-Oriented Ar-

chitecture (SOA) applications. They propose using Model-Driven Engineering (MDE) to address

these problems by applying it to a test framework or process. MDE simplifies the management and

development of complex systems by using model abstractions and techniques such as model trans-

formation and model generation, which can be used to improve the interoperability of distributed

systems.

The work in [132] presents a method for generating test cases for composite web services im-

plemented in WS-BPEL by utilizing a static call graph. The approach focuses on cases where

there is a calling sub-process between WS-BPEL files, and the generated test cases comply with

test paths based on branch coverage. There are similar approaches [133, 134] that use path con-

ditions and static call graphs to generate test cases for WS-BPEL compositions. However, these

approaches do not consider calling sub-processes in their test generation mechanism.

SAMBA framework [135] is a self-adaptive, model-based online testing framework for runtime

functional and regression testing of orchestration-based SOA (Service-Oriented Architecture) ap-

plications. SAMBA aims to detect defects introduced by the dynamic and evolutionary behavior of

SOA applications by performing testing at runtime, applying both functional and regression test-

34

ing, and using automatic test case generation from a model of the SOA application. The technique

of self-adaptation is used to overcome the unpredictability of evolution in SOA. The effectiveness

of the framework was evaluated in an experimental campaign using three different test objectives

on three different orchestration-based SOA applications.

EvoMaster [136] is a tool that implements a novel approach for automatically generating inte-

gration tests for RESTful web services. The technique aims to maximize code coverage and find

faults using HTTP return statuses. It is designed for testing RESTful services in isolation, which

is the typical type of testing done by engineers during development. The authors use an evolu-

tionary algorithm called the Many Independent Objectives (MIO) algorithm and aim to improve

performance by exploiting typical characteristics of RESTful APIs. They also propose a method

to automatically analyze and export white-box information of web services to improve test data

generation. The authors present an empirical study on 5 open-source RESTful web services and

show that their technique was able to automatically find 80 real faults.

Zhang et al. [137] propose a novel approach to enhance the automated generation of systems

tests for RESTful web services using search-based methods. An evolutionary algorithm, MIO,

is employed to generate tests to maximize code coverage and fault finding. The MIO algorithm

is inspired by the (1+1) evolutionary algorithm. The approach is designed according to REST

constraints on the handling of HTTP resources. The paper presents a set of effective templates

to structure test actions on one resource, a sampling strategy for the selection of test cases, and

specialized mutation operators to improve performance. The approach was implemented as an

extension of an existing test case generation tool, EvoMaster [136]. The results of an empirical

study show that the proposed approach can significantly improve the performance of test generation

by up to 42% on systems that use independent or clearly connected resources.

Hammal et al. [138] proposed a formal method for verification of Business Processes imple-

mented in WS-BPEL and OWL-S. Orchestrations are converted into corresponding automata using

rules directed by the respective language constructs. The goal is to extract and merge the single

allowed orderings of exchanged messages of these services into a global observable behavioral

model in order to analyze it and unveil any errors. The authors proposed a technique for com-

35

patibility checking of the orchestration of composite web services, which can contribute to the

automation of useful tasks in service-oriented architectures. The methodology is also augmented

by adding a step for consistency checking of the orchestration against external properties depicted

by a WS-CDL choreography. The methodology aims to perform consistency checks between the

choreography and its implementation, which is the composition of behavioral interfaces of coop-

erating (basic or composite) services and checks whether each of these services conforms to the

contract.

Arcuri et al. [139] extend search-based software testing by incorporating SQL heuristics to

generate more effective test data for web and enterprise applications that interact with external

systems, such as SQL databases. The goal is to intercept every SELECT query made by the

system under test (SUT) and optimize the WHERE clauses of these queries to return non-empty

sets of data. This heuristic is integrated with bytecode heuristics to guide the search and generate

the right sequence of inputs on the SUT. However, populating the database with data that enables

interesting application behavior might not be simple and the approach also enables the insertion of

SQL data directly from the test cases, which introduces new research challenges. The technique is

implemented as an extension of EvoMaster [136].

De Jager and De Gouw [140] propose tool-supported approaches for formal verification and

test case generation of Straight-Through Processes (STPs). An STP is a subset of BPEL and is

specifically designed for short-lived processes. STPs are commonly used to automatically process

a large number of requests without human intervention. Both approaches are based on grammar,

one for static verification through parsing and another for automatic test-case generation using

Prolog. The tool suite supports both protocol and data-oriented properties of STP event traces and

is validated and compared to existing approaches in an industrial case study with the Dutch Tax

and Customs Administration.

Leal et al. [141] focus on service orchestrations and discuss the challenges and limitations of

the validation process especially the variety in Model-Based Testing (MBT) tools and diversity

in web services and their descriptions. In order to overcome these challenges, Leal et al. ad-

vocate for the use of Model-Driven Engineering (MDE) techniques of model transformation and

36

artifact generation to improve the runtime MBT process on SOA applications. The study presents

two metamodels, three transformations to guarantee interoperability with different orchestration

languages and testing tools, and a running implementation based on an existing framework. The

proposed approach was evaluated in a case study with orchestrations expressed in two different

languages.

2.3.3 Regression Testing

Regression testing is used to ensure the quality of software when parts of the software evolve

[142]. Test suites are re-executed to assure the correctness of evolved software. One concern

in the context of regression testing is that the entire suite may be infeasible to execute due to

constraints on testing resources. Therefore test cases are prioritized to gain as much coverage as

possible. There is a whole body of work in regression testing [143, 144, 145, 146, 147] and test

case prioritization in the context of web services composition. None of them, however, consider

the case of a web service being evolved during the execution of the test cycle.

In [148], Lijun et al. proposed a preemptive approach to addressing the challenges of regression

testing in a dynamically changing SOA environment, that is, when external services evolve within

a test session. The preemptive regression testing (PRT) [148] preempts the current testing session

and creates a new sub-session if a change is detected. Upon completion of the sub-session, the

preempted session is resumed.

The preemption is made according to fix, reschedule, and fix-reschedule strategies. Mainly,

fix strategy identifies the missing coverage that has been covered in the previous execution of the

tests. Reschedule strategy, on the contrary, finds the new items that are covered but were missing

in the previous execution. Test prioritization is then adjusted accordingly. Fix-reschedule is a

hybrid approach that first runs fix strategy followed by the rescheduling strategy. The approach

also compares existing prioritization schemes from the literature and proposes some new schemes

for the execution of test strategies. The work [148] also conducted an empirical study to prove the

effectiveness of the proposed technique.

Ji et al. [149] proposed an approach for test case selection in regression testing of BPEL

37

composite services. The approach addresses the issues of data flow testing criteria and the impact

of three types of changes (Process Change, Binding Change, and Interface Change) on data flow.

It uses a two-level model (XCFG and WSDM) to model the behavior of the BPEL process and

the interface information of composite service and partner services, respectively. Change impact

analysis is used to identify affected definition-use pairs by comparing the two-level models of

the baseline and evolved versions. The approach generates testing paths to cover the affected

definition-use pairs, selecting test cases based on path condition analysis.

Godefroid et al. [150] introduce regression testing for REST APIs. The technique considers

two types of regressions: those in the API specification, and those in the service itself. The study

uses differential testing to detect these regressions by comparing the behavior of different versions

of client-service pairs and identifying differences. Several technical challenges are also addressed,

such as how to compare the outputs of a cloud service that contains non-determinism, and how to

handle out-of-order or newly appearing requests when updating the specification. The study then

presents a historical analysis of 17 versions of Microsoft Azure networking APIs to evaluate the

effectiveness of the differential regression testing technique, and it was able to detect 5 regressions

in the official specifications and 9 regressions in the services themselves.

Chen et al. [151] evaluate the effectiveness of the PageRank algorithm in prioritizing test cases

for microservices-based systems. The proposed approach is called TCP-SR and ranks services

based on API gateway logs and uses these rankings to calculate the weights of test cases. These

weights can then be used to order test cases using single-objective and multi-objective strategies.

To evaluate the effectiveness of TCP-SR, an empirical study was conducted using four microser-

vice systems. The results indicate that TCP-SR has a much higher fault detection rate compared to

the random prioritization technique and performed similarly to the prioritization technique based

on WS-BPEL, but with a much lower cost in terms of prioritization time.

2.3.4 Summary

Testing is the most common mechanism for verifying the correctness of the generated candidate

fixes. A test suite is a collection of test cases that, generally, define the correctness of a program.

38

So, the fundamental characteristic of a test suite is that the correct programs must pass all the test

cases in the test suite and the faulty programs must fail at least one test case in the test suite. This

characteristic calls for a comprehensive test suite. But, on the other hand, larger test suites force the

fault resolution approach to spend much of the time in the verification of the generated candidate

fixes and adversely impact its efficiency.

We also use a test suite for the verification in both EGV (discussed in chapter 3) and CFR

(discussed in chapter 4). In both approaches, we define the correctness of a BP based on its

ability to pass all the test cases in the test suite. Similarly, the existing fault-free BPs in CFR are

fault-free because they pass all the test cases. So, the test suite has a central importance in the

verification process of the generated candidate fixes and significant impact on the efficiency of the

fault resolution approach. However, we leave the choice of test suite to the user and they provide

the test cases along with the faulty BP to the fault resolution approach. The user can decide to

manually craft the test cases or choose any of the test case generation schemes discussed in this

section.

39

Chapter 3

An Efficient Generate & Validate Approach

for Fault Resolution

This chapter presents the Efficient Generate-and-Validate (EGV) approach for fault resolution in

BPs. The proposed approach is an improvement of the basic Generate-and-Validate (G&V) ap-

proach. So, first, we revisit the methodology of basic G&V for fixing faults in software followed

by a detailed presentation of EGV. We also introduce the formalism and notations used to explain

EGV in this chapter and collaborative and hybrid fault resolutions in chapter 4.

3.1 Generate and Validate (G&V)

G&V is an automated program repair technique that uses a faulty program and a set of passing

and failing test cases as input to generate candidate fixes by heuristically searching the program

space. The generated fix candidates are validated by running all available test cases [18, 17]. G&V

requires a fault localization mechanism for identifying suspected code blocks in a faulty program.

Once the suspicious code block is identified, it is followed by the generation of candidate fixes and

their validation.

Generation: In this step, a repair tool generates a set of candidate patches or fixes for the bug.

These candidates are typically generated using mutation-based, pattern-based, or machine-learning-

40

based techniques as discussed in Section 2.2.

Validation: In this step, the repair tool tests each of the candidate fixes to determine whether they

actually fix the bug. This is typically done using an oracle that can be in the form of a formal

model or a test suite. If a test suite is chosen as an oracle, all the test cases can be executed to

verify the correctness of the generated fix, or test cases can be prioritized using regression testing

as discussed in Section 2.3.3. Below we present the working of basic G&V in C++ and in the

domain of Business Processes.

G&V in C++

Listing 3.1 shows a divide function that takes two integer parameters a and b and returns the result

of their division as an integer.

Listing 3.1: An incorrect divide function in C++

1 int divide(int a, int b) {

2 return a / b;

3 }

There are two bugs in Listing 3.1. The first one is that the program attempts to divide by zero

whenever a 0 is assigned to parameter b when calling the function. Division by zero is not allowed

and will cause the program to crash at line 2. The second bug is that this piece of code assumes

that the result of an integer division will always be an integer. This will result in a loss of value

when the result of division is not an integer but a real number.

Listing 3.2: First candidate fix for Listing 3.1

1 int divide(int a, int b) {

2 return a + b;

3 }

41

Listing 3.3: Second candidate fix for Listing 3.1

1 int divide(int a, int b) {

2 return a * b;

3 }

Listings 3.2 and 3.3 show two candidate fixes typically generated using mutation-based candidate

generation by replacing the arithmetic operator / with + and ∗ respectively on line 2. Obviously,

both candidate fixes are incorrect and do not fix the bug. They, instead, cause the already passing

test cases to fail.

Listing 3.4: Third candidate fix for Listing 3.1

1 int divide(int a, int b) {

2 if (b == 0) {

3 return 0;

4 }

5 return a / b;

6 }

Listing 3.4 presents a fix that is closer to the real solution. It checks for the value of parameter b

and if it is zero, zero is returned from the function instead of performing the division. This prevents

the program from crashing program path. This fix, however, does not save the loss of value that

can occur whenever the result of integer division is not an integer, that is when we call the divide

function with a = 3 and b = 2. The role of the test suite (or any oracle in general) is fundamental in

determining the correctness of a program and the generated candidate fixes. For instance, if there

is no test case in the test suite that results in a floating point outcome of the division, the candidate

fix of Listing 3.4 will be marked as a correct fix to the divide function.

42

Listing 3.5: Fourth candidate fix for Listing 3.1

1 double divide(int a, int b) {

2 if (b == 0) {

3 return 0.0;

4 }

5 return (double) a / b;

6 }

Listing 3.5, on the other hand, not only caters to the division-by-zero problem but prevents the

loss of value when the result of integer division is not an integer. This is achieved by changing

the return type of the divide function and returning a double value instead of an int. The candidate

fixes in Listings 3.4 and 3.5 are hard to generate using mutation-based fix generation. They contain

more sophisticated changes in the source program like the addition of a conditional path for check-

ing division-by-zero problems. These candidate fixes are generally generated by pattern-based or

machine-learning-based techniques that inspect a large amount of code and find fault/bug patterns

and their corresponding fixes.

G&V in Business Processes

Fig. 1.5 represents a faulty BP with control flow fault by exchanging the order of createOrder

and calc sales tax service. Although there are many candidate fixes that can be generated by

G&V approach, we will only focus on three representative candidates obtained by order exchange

mutation.

Figure 3.1: First candidate fix for BP in Fig. 1.5

43

Figure 3.2: Second candidate fix for BP in Fig. 1.5

Fig. 3.1 proposes a candidate fix by replacing the order of searchProduct and verifyEmail

service operations. Although the proposed candidate fix does not induce new faults in the BP yet it

fails to address the existing fault in BP which is a data anti-dependence between createOrder and

calc sales tax service operations.

Fig. 3.2 is an interesting candidate fix in the sense that it places createOrder and calc sales tax

in parallel execution order. This partially fixes the fault and causes the BP to execute successfully

only when the result of calc sales tax is available before making a request to createOrder service.

Figure 3.3: Third candidate fix for BP in Fig. 1.5

Fig. 3.3 shows a candidate fix that places createOrder after calc sales tax in a sequential

execution flow. The suggested change causes the createOrder service to execute only when the

result of calc sales tax service is available, thus, removing the data anti-dependence between the

two services.

The basic G&V approach has high computation overhead because it generates candidate fixes

in a brute-force manner by considering all possible mutations of elements in suspected regions.

We improve the efficiency of G&V by applying only a small selective set of candidate fixes instead

of brute force application of all fixes. The proposed approach called efficient G&V (EGV) lever-

ages mutation-based fault localization in combination with program slicing to improve localization

44

accuracy and considers a minimal set of suspicious code blocks for generating candidate fixes.

3.2 BP Fault Resolution – Problem Formulation

Definition 1. Business Process: A business process BP is denoted by a typed Graph G =

(L, T, V, E, E , vstart, vend, vuser) where:

• L is the universal set of labels.

• T = {Service Operation, Xor Split, Xor Join, And Split, And Join, Attribute} is a set of types for

each v ∈ V . The type is accessible through the operator v.type.

• V ⊆ L × T is the set of vertices. Each vertex has a label assigned from L and a type assigned

from T .

• E ⊆ V × V is the set of edges in G.

• E = {Boolean Expression, true, false}, for each edge.

• The vertex vstart corresponds to the start activity of the BP.

• The vertex vend corresponds to the terminal activity of the BP.

• The vertex vuser denotes a user and it is connected to all those attribute vertices whose value are

provided by the user.

Fig. 3.4 shows a simple e-commerce BP graph. Each vertex in this graph is annotated with its

label. In addition to vstart, vend, and vuser, there are three types of vertices in this e-commerce BP

graph: i) service operations represented as shaded gray boxes (e.g., createOrder, completeOrder,

etc.); ii) attributes corresponding to input/output parameters of service operations represented as

white rectangular boxes (e.g., cart id, orderId, etc.); and iv) XOR splits and joins represented as a

diamond with X.

The edges in the typed BP graph depicted in Fig. 3.4 are characterized as: i) control flow edges

represented as solid arrows (e.g., the edge from createOrder to xor split); and ii) dataflow edges.

45

Figure 3.4: Example of an e-commerce BP graph

There are two types of dataflow edges. The first type, represented as an arrow with a dotted line, is

drawn between a service operation and its input or output attribute (e.g., the edge from createOrder

service operation to its output attribute orderId) or between input attribute ord id and its service

operation creditCardPayment. The second type of dataflow edge is represented as an arrow with

a dashed line that originates from the output attribute of a service operation and terminates at the

input attribute of another service operation. These edges model the variable assignments (e.g., the

edge from orderId to o id where orderId is the output attribute of createOrder service operation

and its value is assigned to o id, which is the input attribute of service operation CODPayment).

Illustrative Example of a Faulty BP: Fig. 3.5 shows a small BP graph representing a faulty

version of an elementary BP from the e-commerce domain. Shaded gray boxes represent activities

46

Figure 3.5: An example BP graph (Gf) from e-commerce sale order processing domain.

corresponding to the invocation of web service operations e.g., searchProduct, verifyEmail, etc.

White rectangular boxes represent the input and output attributes of the service operations e.g.,

productId, taxClassId, etc. Control flow edges in the BP are denoted by solid arrows. Arrows with

dotted lines denote dataflow edges that link each service operation with its input/output attributes.

Arrows with dashed lines model the variable assignment which is essentially a dataflow from

the output of one service operation to the input of another service operation (e.g., the edge from

productId to product code where productId is produced by searchProduct and it is assigned to

product code, which represents an input attribute of the createOrder service operation).

Faulty BP: Given a set of test cases specified for a BP, we consider the BP as a faulty BP, if it

fails one or more of the test cases. The BP graph Gf , shown in Fig. 3.5, is a faulty BP where the

edge from ship charges to sales tax and the edge from tax amount to shipping (marked with

×) correspond to the incorrect variable assignments.

For fault resolution, we need to discover fixes (mutations) that can remove the faults and allow

for the correct execution of the faulty BP. The BP fault resolution problem addressed in this work

is formally stated below.

Definition 2. BP Fault Resolution Problem: Given a faulty BP, Gf , and a set of test cases,

T = {t1, . . . , tm}, compute a minimal set of candidate fixes, C = {Gc1, Gc2, . . . , Gck}, that when

applied to Gf produces a BP that successfully passes all the test cases in T .

47

Note that we do not address the test case generation problem for BPs in this dissertation. We

assume that the test cases are either provided by the user or existing test case generation techniques

[116, 9, 152, 136, 153] can be applied for this purpose as discussed in Chapter 2.

3.3 Efficient G&V approach (EGV) for fault resolution

For fault detection and resolution, we propose an integrated approach that builds on the generate-

and-validate (G&V) methodology and improves its efficiency by generating a small set of candidate

fixes for BP repair. Fig. 3.6 shows the main steps of the proposed EGV approach. EGV takes as

input a faulty BP graph (Gf) and a set of test cases and attempts to resolve faults in Gf . There

are four key steps that are executed repeatedly until all faults are resolved (as per the execution on

the test suite). First, the test cases are executed to check the correctness of the given BP, Gf . If

it results in an unexpected/incorrect output, fault localization is performed (discussed in Section

3.3.1) to identify the location(s) where faults are observed in the faulty BP. These locations are

referred to as fault observation points (fop), which may not necessarily correspond to the actual

source of the fault in the BP. The source of the actual fault might be present at a location prior to

fop.

Specifically, we perform statistical fault localization [29] to identify fop. For a given fop,

we perform program slicing [61] to obtain suspicious code blocks. These suspicious code blocks

are referred to as BP slices. We use the BP slices that lie between the starting vertex (vstartf) of

Gf and the given fop for generating candidate fixes. Fault localization and BP slicing help us

keep the generated number of candidate fixes manageable but still relevant. Once the BP slices are

identified, we apply the different mutation operators and their combinations to obtain mutants of

Gf which are called candidate fixes. Then, for the given fop, we run the test cases against each

candidate fix to check if the faults are resolved without introducing any new faults. For executing

test cases, first, the BP code is generated and deployed. If a candidate fix removes all the faults

then our approach terminates and returns the candidate fix that passes all the test cases. In case

the faults up to the given fop are fixed, but the execution of test cases results in faults at a later

point in the BP, we repeat the entire process to identify subsequent fop and candidate fixes. This

48

Figure 3.6: Efficient G&V fault resolution approach for BPs.

process is repeated in an iterative manner until all the faults are resolved or all the candidate fixes

are exhausted.

Algorithm 3.1 outlines the steps required to fix a faulty BP. Lines 1 and 2 find the fop and

BP slice respectively using statistical fault localization and BP slicing as discussed in Sections

3.3.1 and 3.3.2. Next the relevant BP slices between the starting vertex (vstartf) of Gf and the

fop is extracted for generating candidate fixes (Lines 3 – 10). Candidate fixes are generated by

successively applying mutation operators and their combinations on the input BP Gf . For each

candidate fix, Gc is validated to check if it passes the failed test cases up to the computed fop

49

ALGORITHM 3.1: EGV FaultResolution
Input: Gf = (Vf , Ef , Ef , vstartf , vendf , vuserf) - faulty BP

Input: T - Set of test cases

Output: Gc - Corrected BP

1: fop← localize fault(Gf)

2: slice← get process slice(Gf , fop)

3: S ← ϕ

4: for each vertex v ∈ slice do

5: if distance(v, vstartf) ≤ distance(fop, vstartf) then

6: S ← S ∪ v

7: for each edge (u, v) ∈ slice do

8: if distance(u, vstartf) ≤ distance(fop, vstartf) or distance(v, vstartf) ≤ distance(fop, vstartf)

then

9: S ← S ∪ (u, v)

10: C ← generate candidate fixes(S)

11: for each Gc ∈ C do

12: Apply each test case t ∈ T on Gc

13: if Gc fixes faults up to fop then

14: if Gc passes all the test cases for the entire BP then

15: return Gc

16: else

17: return EGV FaultResolution(Gc, T)

18: return NULL

(Line 13). If any such Gc is found, it is tested against all the test cases for the entire BP (Line 14).

If it passes all these test cases, then all the faults with respect to the given test cases have been

removed. The resulting BP is returned to the user (Line 15). Otherwise, we recursively call the

EGV fault resolution procedure (Line 17) until all the faults are fixed or the entire space of mutants

is exhausted. We provide a detailed description of each component of Fig. 4.1 below.

50

3.3.1 Fault Localization

Fault localization aims to locate and isolate faulty software components or bugs to determine the

likely causes of errors or software failures [154, 21]. For fault localization in a BP, we employ

a statistical analysis-based debugging approach [29]. This approach considers predicate evalua-

tion against program elements in correct as well as incorrect program executions. A predicate is

assumed to be fault-relevant if the pattern of evaluation in an incorrect run significantly deviates

from the correct ones. Predicates are ranked in order of their computed fault-relevance scores.

In the context of BPs, we establish predicates for each of the branching conditions as well as for

each service invocation, their execution status, and their impact on the test case result. Each pred-

icate is assigned a fault-relevance score depending upon its execution status in passing and failing

runs of a BP for the given test suite. The location having the highest fault-relevance predicate score

is chosen as a fault observation point (fop) for the subsequent steps in our approach. For instance,

in Fig. 3.5, the createOrder service fails with an exception due to incorrect mapping of sales tax

and shipping input attributes. This failure results in a high predicate score for createOrder than

any other BP element and it is selected as an fop for BP slicing and candidate fix generation.

3.3.2 BP Slicing

Once the fop is identified, we employ program slicing to identify suspicious code blocks (BP

slices). For this, we employ the BPELSwice approach by Sun et. al [61]. BPELSwice uses

predicate switching and program slicing to obtain BP slices from BPEL programs. Specifically,

it switches the conditional statements and verifies the modified BP against the test cases. If all

test cases are passed then it takes the backward slice from the conditional statement and takes the

elements of the BP that write to the variables used in the conditional statement. If the predicate

switching does not result in the passing of all the test cases, BPELSwice takes the backward slice

from the incorrect/ unexpected BP outputs.

For instance, in Fig. 3.5 the BP fails on invocation of createOrder service operation due to

incorrect inputs and produces unexpected output. Hence, the BP slice will contain the edges and

vertices of the BP graph that are connected to createOrder in the control flow and the service

51

operations and their attributes that provide input to createOrder. Fig. 3.7 depicts the slice of

BP shown in the illustrative example (Fig. 3.5). Fig. 3.7 does not include verifyEmail and

verifyAddress service operations because they do not provide any input to createOrder service

directly or indirectly nor are they adjacent to it in the control flow. Furthermore, the slice also does

not contain the input attributes of searchProduct service operation because all of its inputs are

provided by the user and hence by the test cases that are assumed to be valid. After the slice has

been identified, we select the part of the slice that lies before fop. In this example, the whole slice

will be selected because all elements of the slice occur before createOrder which is the fop in

this case.

Figure 3.7: Slice of faulty BP Gf .

3.3.3 Candidate Fix Generation

After identifying the filtered slice before fop, we generate candidate fixes by applying different

mutation operators shown in Table 1.1. We only apply semantically meaningful mutation operators

for generating candidate fixes. This also reduces the number of candidate fixes. Specifically, we

do not change the order of data-independent services in the control flow for generating candidate

52

fixes. Moreover, we do not use ECN operator because it generates a large number of candidate

fixes. Furthermore, we do not consider path or activity removal operators (AIE,AEL) because

they may change BP scope.

Table 3.1: Candidate fixes for BP graph in Fig. 3.5.

Candidate

Fix

Mutations

m1

(productId, pid)−, (taxClassId, tax class)−

(productId, tax class)+, (taxClassId, pid)+

m2

(productId, product code)−, (taxClassId, tax class)−

(productId, tax class)+, (taxClassId, product code)+

m3

(taxClassId, tax class)−, (ship class, ship cat)−

(taxClassId, ship cat)+, (ship class, tax class)+

m4

(productId, product code)−, (ship class, ship cat)−

(productId, ship cat)+, (ship class, product code)+

m5

(productId, pid)−, (ship class, ship cat)−

(productId, ship cat)+, (ship class, pid)+

m6

(ship charges, sales tax)−, (tax amount, shipping)−

(ship charges, shipping)+, (tax amount, sales tax)+

In the slice shown in Fig. 3.7 there are no conditional statements and expressions. Additionally,

the order of service operations will not be changed because no service operation depends upon

data produced by a service operation that appears later in the control flow. Therefore, the only

applicable mutation operator is ISV , which is equivalent to replacing the data flow edges between

pairs of attribute-type vertices having the same data type. Table 3.1 shows the generated candidate

fixes. In candidate fix m1, pid = productId mapping is replaced with pid = taxClassId and

tax class = taxClassId mapping is replaced with tax class = productId. Note that m6 is

the candidate fix that actually resolves the fault by removing incorrect mapping with the correct

mapping of shipping and sales tax attributes. During the generation of candidate fixes, sales tax

or shipping is not mapped to any of productId, taxClassId or ship cat because they belong to

53

different data types.

3.3.4 Validation of Candidate Fixes

Finally, we translate each candidate fix into executable BP code and deploy it for testing. The

entire test suite is executed against each candidate fix to check that the resulting BP is fault-free

with respect to the given test suite. If such a fix is found, the fault-free BP after the application of

the candidate fix is returned to the user. If a candidate fix passes some, but not all, of the test cases

that originally failed, we use that candidate fix for further discovery and repair of faults (Algorithm

4.1, Line 17).

3.4 Experimental Evaluation

We have performed extensive experiments to evaluate the performance of the proposed EGV fault

resolution approach.

3.4.1 Dataset

For evaluation, we used a random fault injection technique to generate faulty BPs from a fault-free

BP. we started with a correct BP from the insurance domain. The selected BP was composed of

26 Web service operations with 3 branches and 2 parallel structures. To generate faulty BPs, we

applied random combinations of the mutation operators listed in Table 1.1. This resulted in 208

faulty BPs that were used for validation. The number of mutation operators applied to generate

a faulty BP varied between 1 and 4 with a mean of 2.24 and a standard deviation of 0.81. Faults

from each fault category and their random combinations were tested.

We created a suite of test cases based on the expected output covering all branching paths of

the correct BP. Now, a BP is considered as correct if it passes all the test cases in the suite. We

applied fault localization on each faulty BP to determine their fop(s). The number of fop(s) varied

between 1 and 4 for the generated faulty BPs.

54

After the identification of fop, candidate fixes are generated by selectively applying different

mutation operators in the BP fragment around the fop. This produces candidate fixes which are,

then, evaluated by executing the entire test suite.

3.4.2 Results

For comparison of EGV with basic G&V, we performed experiments on 40 BPs as shown in Table

3.2. Basic G&V outperforms EGV with 0.9 accuracy as opposed to 0.65 of EGV. But the higher

accuracy is achieved at the cost of generating a lot more candidate fixes. Basic G&V, on average,

validates 4139 candidate fixes for each faulty BP whereas EGV only uses 10 candidate fixes. The

accuracy of EGV is quite low (0.42) for variable assignment fault types compared to G&V with

an accuracy of 0.84. The accuracy of both EGV and G&V is almost the same for other fault types,

though EGV uses a much smaller number of candidate fixes.

Table 3.2: Accuracy of EGV and Basic G&V.

Category No. of BPs
Accuracy Candidate Fixes

G&V EGV G&V EGV

Variable assign-

ment faults

24 0.83 0.42 2192 6

Expression 5 1 1 464 29.6

Control Flow

excluding Ele-

ment removal

11 1 1 9351 6

Overall 40 0.9 0.65 4139.47 10

We will present more results for EGV and compare them with collaborative fault resolution

(CFR) and hybrid approaches in chapter 4.

55

3.5 Chapter Summary

In this chapter, we proposed Efficient G&V (EGV) approach for fault resolution in Business Pro-

cesses. EGV significantly outperforms basic G&V in the number of generated candidate fixes.

However, the accuracy of EGV is much lower than basic G&V. Additionally, there are types of

faults that cannot be resolved using EGV or by any approach based on basic G&V. We will address

this problem in chapter 4 by using an existing repository of similar BPs for fault resolution.

56

Chapter 4

Fault Resolution with Collaborative and

Hybrid Approaches

In this chapter, we will present a collaborative fault resolution approach for BPs that exploits the

knowledge of existing fault-free BPs to fix a faulty process. Later in the chapter, we will present

a hybrid approach for fault resolution that combines collaborative fault resolution with Efficient

Generate and Validate (EGV) approach.

4.1 Introduction

As discussed in Section 1.2 and illustrated in Fig. 1.1, a cloud-based environment offers a wide

range of resources for developing and deploying web services and business processes interactively.

The cloud’s resources are not limited to computational services; they also include software com-

ponents that can be exposed to users and configured for reuse. Afzal et al. [2] utilized existing

business processes hosted on the cloud to implement their approach for automatically composing

structured and knowledge-driven business processes. In this dissertation, we aim to take advantage

of these existing business processes to go one step further and use the knowledge they provide to

identify and resolve faults in faulty business processes. Essentially, we can consider the business

processes and services hosted on the cloud and serving user requests as fault-free. Their structure

57

can serve as a reference not only for composing new business processes but also for identifying

and fixing faults in faulty business processes.

In the services cloud environment of Fig. 1.1, we refer to a BP composed by a BP designer that

contains fault(s) as faulty BP. A faulty BP may include web services that are also used in the BPs

of other users. We refer to these other users’ BPs that have one or more services common with the

faulty BP as existing BPs and they are considered to be fault-free. CFR exploits the knowledge

of existing BPs with common services to detect and resolve faults in a faulty BP. This is the

unique and novel aspect of the CFR as compared to the existing BP fault detection and debugging

approaches, such as [60, 130, 14, 61, 18] that examine the faulty BP in isolation. Therefore,

we refer to our proposed approach as a collaborative fault resolution approach. Essentially, CFR

performs a pairwise comparison of a faulty BP with related BPs of other users to identify their

structural and semantic differences with the faulty BP. All of the pair-wise differences are then

holistically analyzed to compute BP transformation rules that modify the faulty BP by adding

and/or removing some of its structural components. Such modifications may resolve the fault but

change the BP workflow to such an extent that it does not meet its original requirements or goal.

Therefore, our objective is to find a set of modifications such that: (i) these modifications, when

applied, remove the fault in the BP; and (ii) the set of modifications is as small as possible, to

reduce the likelihood that the goal and output of the BP changes.

The proposed approach assumes the following:

1. All of the existing BPs considered for resolving faults in a given user BP are fault-free. Note

that we consider a BP as fault-free if it passes all the relevant test cases. Moreover, we have

complete knowledge of all the existing BPs in terms of their control flow and data flow.

2. There is no syntactic or semantic heterogeneity among the functionally similar web service

operations across BPs. For example, if two or more e-commerce BPs require computation of

sales tax, then either they use the same web service operation or the corresponding web service

operations have the same name, attributes, preconditions, and post-conditions.

These assumptions are quite natural. Specifically in a service cloud environment for BP devel-

opment and deployment, the cloud service provider hosts and manages BPs of different organiza-

58

tions and has complete knowledge of such BPs [2]. Moreover, BPs running in a production envi-

ronment for a sufficiently long time are likely to be correct and fault-free. Also, if heterogeneity

exists between operation and/or attribute names across BPs, we can employ the existing attribute-

based matching approaches [2, 155, 156] to resolve differences in operation/attribute names before

continuing with the fault resolution approach.

We say that a BP is a structurally valid BP if all the service operation vertices, control flow

vertices (e.g., XOR join/split, parallel join split), and attribute vertices have valid predecessors and

successors. This is formally stated in the following definition.

Definition 3. Structurally valid BP: A BP, G = (L, T, V, E, E , vstart, vend, vuser), is structurally

valid, if and only if:

• ∀v ∈ V−{vstart, vuser} and v.type ̸= Attribute, ∃u ∈ V− {vend, vuser} such that (u, v) ∈ E

and u.type ̸= Attribute

• ∀v ∈ V−{vend, vuser} and v.type ̸= Attribute, ∃w ∈ V− {vstart, vuser} such that (v, w) ∈ E

and w.type ̸= Attribute

• ∀v ∈ V−{vuser} and v.type = Attribute, ∃u ∈ V− {vstart, vend} such that (u, v) ∈ E and

(u ∈ {vuser} or u.type ∈ {Service Operation, attribute})

We now formally specify the collaborative fault resolution problem. Note that given a set of

test cases for a BP, we only denote the BP as a faulty BP if it fails one or more of the test cases.

Then, given a faulty BP and a set of correct BPs, the collaborative fault resolution problem aims

to determine a set of transformations that, when applied to the faulty BP, remove the fault(s) and

enable its correct execution with respect to the given set of test cases.

Definition 4. Collaborative Fault Resolution Problem:

Given

• a set of BPs, B = {G1, G2, ...Gn} where each Gi corresponds to some existing BP that is

assumed to be fault-free,

59

• a faulty BP, Gf

• a set of test cases, T = {t1, . . . tm}

Compute the minimal set of transformation operations τF = {τ1, . . . τk} that, when applied to Gf ,

result in a BP that successfully executes all the test cases in T .

4.2 Proposed Approach for Collaborative Fault Resolution

Figure 4.1: Collaborative BP fault resolution approach

60

Collaborative Fault Resolution (CFR) exploits the knowledge of existing BPs for the identifi-

cation and resolution of faults in a faulty BP. Fig. 4.1 shows the different steps of the proposed

approach. There are four main steps that are executed repeatedly until all faults are resolved (as

per the execution on the test suite). If faults are detected, in the first step, fault localization is

performed (discussed in Section 4.2.1) to identify one or more locations in the BP where the fault

is observed. We refer to each of these locations as a fault observation point (fop). Note that an

fop may not necessarily correspond to the source of the fault in the BP. The actual fault might lie

at any location prior to the fault observation point. In the second step (discussed in Section 4.2.2),

we perform a pairwise comparison of a faulty BP with existing BPs of other users to identify their

structural and semantic differences with the faulty BP. In step 3, all of the pair-wise differences

are holistically analyzed to compute BP transformation rules that modify the faulty BP by adding

and/or removing some of its structural components. Our objective is to select the set of transforma-

tions that resolve the fault with minimal changes in the faulty BP. For this purpose, we develop a

heuristic-based approach (discussed in Section 4.2.3) that employs association analysis over all the

transformations to filter out unnecessary transformations. These transformations are then applied

to the faulty BP. In step 4, the resulting BP is deployed so that the test cases can be re-executed to

identify if faults remain.

Algorithm 4.1 outlines the steps of the proposed fault resolution approach. This algorithm is

invoked for each fop. This algorithm tries to resolve the fault by iteratively expanding the search

region considered backward from the given fop. Let Sf denote the subgraph of the faulty BP

graph corresponding to the current search region. Sf is compared with the subgraphs of existing

BPs that include a certain minimum degree of overlapping services with Sf . This comparison

is performed in a pair-wise manner and computes the structural differences between Sf and the

subgraph Si of each existing BP that meets the overlapping service criterion. These differences

essentially correspond to all the elements present in Sf but not in Si and vice versa. Essentially,

the pair-wise differences between Sf and Si can be used to transform the subgraph Sf of the faulty

BP to the subgraph Si of an existing BP. Therefore, we refer to these structural differences as

transformations.

61

ALGORITHM 4.1: Fault Resolution
Input: Gf = (Lf , Tf , Vf , Ef , Ef , vstartf , vendf , vuserf) - faulty BP

Input: fop - fault observation point returned by fault localization procedure

Input: B = {G1, G2, . . . Gn} - existing BPs

Input: α0 - initial distance threshold

Input: δ - step size to increase the distance threshold

Output: Gc - Corrected BP that passes all the test cases

1: α← α0

2: T ← Φ

3: while α ≤ distance(vstartf , fop) do

4: Sf ← subgraphIncorrect(Gf , fop, α)

5: for each Gi ∈ B do

6: Si ← subgraphCorrect(Gi, Sf)

7: Ti ← GraphComparison(Sf , Si)

8: T ← T ∪ Ti
9: tRuleQ← association analysis(T , conf, sup)

10: while tRuleQ ̸= ϕ do

11: r ← dequeue(tRuleQ)

12: Gc ← applyTranformations(r,Gf)

13: if Gc exhibits no more faults in testing upto the given fop then

14: return Gc

15: α← α+ δ

16: return NULL

Depending on the size of the subgraph Sf , the entire faulty BP may be transformed into some

existing BP. Since we assume that all existing BPs are correct and fault-free, transforming the

faulty BP to any of the existing BP would remove the faults. However, this may change the scope

or domain of the BP, for example, an e-commerce sales BP may get transformed into an insurance

BP. Therefore, we need to identify a minimal set of transformations that removes the fault without

changing the scope/domain of the faulty BP. As discussed above, we use an association analysis-

62

based approach that generates a set of transformation rules with changes that are common across

multiple existing BPs. If the existing BPs are not limited to a single domain then considering

the commonality of the transformation rule between a certain minimum number of BPs would

decrease the likelihood of entirely changing the domain/scope of the BP since the transformed

structure occurs across multiple different domains/scopes.

CFR may generate multiple transformation rules. We apply these transformation rules itera-

tively and run the test cases after each iteration to check if the resulting process passes all the test

cases. In case the fault is not removed, we expand the search region and repeat. This process is

depicted in Figure 4.1, and described below.

4.2.1 Fault Localization

Fault localization is the process of locating and isolating bugs or faulty software components to

determine the likely causes of software failures or errors [154, 21]. For localizing faults in a BP,

we use the statistical debugging technique of Liu et al. [29]. This technique considers predicate

evaluation in both correct and incorrect executions of the software and considers a predicate to

be fault-relevant if the evaluation pattern in the incorrect execution significantly diverges from the

correct one. Each predicate is assigned a fault-relevance score and is ranked based on this score.

For fault localization in BPs, we define predicates characterizing service invocation, successful

execution, or service failures for each service in the BP as well as for each branching condition.

We evaluate the fault relevance score of each of these predicates using the execution logs of test

cases. The location in the BP corresponding to the predicate with the highest fault relevance score

is considered as fault observation point (fop).

In order to efficiently locate and resolve the fault, we limit our search to the subgraph Sf ,

which includes the services and interconnections that precede the fop and it is parameterized by

the distance threshold α.

Given a faulty BP, Gf = (Lf , Tf , Vf , Ef , Ef , vstartf , vendf , vuserf) and a fault observation point

fop, the subgraph Sf = (VSf , ESf) is computed as:

• VSf = {v ∈ Vf |distance(v, fop) ≤ α ∧ distance(vstartf , v) < distance(vstartf , fop)} , and

63

• ESf = {(u, v)|u, v ∈ VSf and (u, v) ∈ Ef}

4.2.2 Comparison with Existing BPs

We compare the subgraph Sf of the faulty BP with all the subgraphs of existing BPs that include

a certain minimum number of overlapping services with Sf . Let γ denote the threshold for the

minimum number of overlapping services between Sf and an existing BP. For an existing BP

Gi = (Vi, Si), its subgraph Si is computed for comparison by considering the set of the common

vertices between Gi and Sf . Let Ui denote this set, i.e., Ui = {u|u ∈ Vi ∩ VSf}. Gi will be

considered for comparison if |Ui| ≥ γ.

Suppose umin, umax ∈ Ui are nodes that are at a minimum and maximum distance from the

starting node of the BP Gi, respectively. Then Si = (VSi, ESi) can be computed as:

• VSi = {v|v ∈ Ui ∨ distance(v, umax) ≤ distance(umin, umax)}, and

• ESi = {(u, v)|u, v ∈ VSi and (u, v) ∈ Ei}.

We perform a pair-wise comparison between the subgraph Sf of the faulty BP and the relevant

subgraph Si of each of the existing BP. The steps for this pair-wise comparison between Sf and Si

are given in Algorithm 4.2. Specifically, this algorithm computes the difference between Sf and Si

in terms of the vertices, edges, and edge expressions. All those vertices and edges that are present

in Sf but not in Si are returned as sets V r
i and Er

i , respectively. Similarly, all those vertices and

edges that are present in Si but not in Sf are returned as set V a
i and Ea

i , respectively. Note that an

edge (u, v) that is present in both Si and Sf , but the corresponding edge expressions are different

in Si and Sf is considered as a non-matching edge. This edge is placed in both Er
i and Ea

i . In

the Er
i it is associated with the edge expression of Sf , and in the Ea

i it is associated with the edge

expression of Si.

As an example, consider a fragment of a faulty sales order BP Gf shown in the rectangular box

of Figure 4.2. Gf contains two faulty data flow edges that are marked with ×. Specifically, the

value of tax amount is incorrectly assigned to shipping and the value of ship charges is incorrectly

assigned to sales tax. The subgraph Sf of this faulty BP that needs to be compared with existing

64

ALGORITHM 4.2: Graph Comparison
Input: Sf = (Vsf , Esf) - subgraph of faulty BP

Input: Si = (Vsi , Esi) - subgraph of correct BP

Output: Ti - the set of transformations required to convert Sf to Si

1: V r
i ← ∅, V a

i ← ∅, Er
i ← ∅, Ea

i ← ∅

2: for ∀v ∈ Vsf do

3: if v /∈ Vsi then

4: V r
i ← V r

i ∪ v

5: for ∀v ∈ Vsi do

6: if v /∈ Vsf then

7: V a
i ← V a

i ∪ v

8: for ∀(u, v) ∈ Esf do

9: if ((u, v) /∈ Esi) or (edge expressions of (u, v) in Esf and Esi do not match) then

10: Er
i ← Er

i ∪ (u, v)

11: for ∀(u, v) ∈ Esi do

12: if ((u, v) /∈ Esf) or (edge expressions of (u, v) in Esf and Esi do not match) then

13: Ea
i ← Ea

i ∪ (u, v)

14: Ti ← V r
i ∪ V a

i ∪ Er
i ∪ Ea

i

15: return Ti

BPs is depicted in the rectangular box in Fig. 4.2. This subgraph is compared with relevant sub-

graphs of three existing BPs that have at least two overlapping services with Sf as shown in the

rectangular boxes in Figs. 4.3(a), 4.3(b), and 4.3(c). The results of this comparison are shown in

Table 4.1. Each row in this table corresponds to a transformation operation. For example, the trans-

formation t6 : (tax amount, shipping)− implies that the variable assignment from tax amount to

shipping needs to be removed from the faulty BP if it is to be transformed into BPs of G1, G2, or

G3. Similarly, the transformation t8 : (tax amount, sales tax)+ needs to be added.

65

Figure 4.2: Faulty sales order BP (Gf) and its subgraph (shown in rectangular box) used for pair-

wise comparison

(a) Subgraph S1 of BP G1 (b) Subgraph S2 of BP G2 (c) Subgraph S3 of BP G3

Figure 4.3: Subgraphs of existing BPs used for comparison with the faulty BP

4.2.3 Association Rule Mining on Transformations

As discussed above, graph comparison yields transformations between faulty BP Gf and existing

BPs Gis. Since all the Gis are assumed to be correct, some of these transformations essentially

correspond to the actual fault and its resolution. In other words, applying all the transformations

within Ti changes the faulty BP Gf to Gi, thus fixing the fault but the scope and domain of the

resulting BP may change as discussed in the introduction of Section 4.2.

The correct BPs may form groups based on their structural differences with respect to the

faulty BP and therefore they have common or overlapping transformation sets. The differences

66

Table 4.1: Results of pair-wise graph comparison for the BPs depicted in Fig. 4.2 and Fig. 4.3

Symbol Transformation BP Graphs

t1 calc dsicount+ G1

t2 (User, coupon code)+ G1

t3 (andJoin, createOrder)− G1, G3

t4 (calc discount, createOrder)+ G1

t5 (calc sales tax, calc discount)+ G1

t6 (tax amount, shipping)− G1, G2, G3

t7 (ship charges, sales tax)− G1, G2, G3

t8 (tax amount, sales tax)+ G1, G2, G3

t9 (ship charges, shipping)+ G2

t10 calc shipping− G1, G3

t11 (andSplit, calc shipping)− G1, G3

t12 (calc shipping, andJoin)− G1, G3

t13 (andSplit, calc sales tax)− G1, G3

t14 (calc sales tax, andJoin)− G1, G3

t15 (calc sales tax, createOrder)+ G3

t16 (User, shipping)+ G1, G3

t17 andSplit− G1, G3

t18 andJoin− G1, G3

across these groups may range from the domains of the underlying BPs (characterized by the use

of domain-specific web services not present in the faulty BP) to variations in the ordering of com-

mon web services. Our objective is to select the set of transformations that resolves the fault with

minimal changes in the faulty BP. Note that we do not explicitly know the groups beforehand.

However, if we can automatically identify the relationships/associations between sets of transfor-

mations, it may be possible to identify the groups and use this information to select a minimal

set of transformations that can resolve the fault. Towards this, we first define the fault covering

transformation set.

Definition 5. Fault covering transformation set. With respect to a given fop in a faulty BP

(Gf), a fault covering transformation set (FC) is a minimal set of transformations that resolves all

faults in Gf up to the given fop. In other words, after applying all the transformations in the set

FC to Gf , the resulting BP passes all the test cases that validate conditions up to the given fop.

CFR employs association rule mining to first identify the relationship/associations between

67

the transformations across different groups of BPs with respect to the faulty BP. The resulting

association rules are then used to systematically discover a minimal set of transformations that

contains the fault-covering transformation set.

An association rule is an implication of the form X =⇒ Y , where X and Y are disjoint

sets. In our context, if the faulty BP differs with some group of BPs in terms of the transforma-

tions in the antecedent set X , then the faulty BP also differs with the same group in terms of the

transformations in the consequent set Y .

The following theorem establishes an important result for identifying the fault covering trans-

formation set based on the implication relationship between the transformation sets in association

rules.

Theorem 1. Given a faulty (but structurally valid) BP Gf and a set of correct and structurally valid

BPs Gi, if X =⇒ Y is an association rule with 100% confidence, but Y =⇒ X is not, then for

any fault covering transformation set FC of Gf , if X ∪ Y contains FC then X cannot contain FC ,

i.e., FC ⊆ X ∪ Y =⇒ FC ̸⊆ X .

Proof: As discussed in the Introduction, we consider faults of types branching faults, data flow

faults (variable assignment), control flow faults, and expression faults, listed in Table 1.1. The

faulty BP, Gf , may include any of these fault types or their combination.

Since the faulty BP, Gf is structurally valid (i.e., all service operation vertices, control flow

vertices, and attribute vertices in Gf have valid predecessors and successors – Definition 3), the

fault is manifested in one or more vertices or edges in Gf . This implies that the edges or vertices

corresponding to the fault are present in Gf , but absent in any correct BP. Note that the absence

of a vertex or edge in Gf , which is present in some correct BP Gi, may also correspond to a fault.

However, the transformation to add such vertex or edge in Gf in order to fix the fault requires

removing at least one edge from Gf because it is structurally valid. For example, if the vertex to

be added corresponds to some service operation or control flow element, a control flow edge needs

to be removed from Gf and new edge(s) from/to appropriate predecessor/successor vertices need

to be added in Gf . Similarly, if the vertex to be added is of the type attribute, some data flow edge

needs to be removed from Gf and new data flow edges need to be added to keep the resulting BP

68

structurally valid. Also, if a fault corresponds to some control flow or data flow edge that is present

in Gi but not in Gf , the addition of such edge requires the removal of some other edge from Gf

for the same reason.

Based on the above discussion and following the graph comparison algorithm (Algorithm 4.2),

we can deduce that:

⋂
i

(V r
i ∪ Er

i) ̸= ϕ (4.1)

Where, V r
i and Er

i denote the set of vertices and edges that are present in Gf but not in Gi,

respectively.

Equation (4.1) implies that the intersection of all Tis will not be a null set, i.e.,

⋂
i

(V r
i ∪ Er

i) ⊆
⋂
i

Ti ̸= ϕ (4.2)

Since all the Gis are correct, we can prove that any minimal fault covering set FC contains all

the transformations that are common across all Tis, i.e.,

⋂
i

Ti ⊆ FC (4.3)

For any association rule X =⇒ Y with 100% confidence, Y =⇒ X does not also hold with

100% confidence ⇐⇒ there is some correct BP Gj such that Y ⊆ Tj and X ̸⊆ Tj .

Based on this and the fact that FC ⊆ X ∪ Y , we can show that:

⋂
i

Ti ∩ Y ̸= ϕ (4.4)

and

⋂
i

Ti ∩ Y ⊆ FC (4.5)

and

Considering (4.3), (4.4), (4.5) and given that FC ⊆ X ∪Y and X ∩Y = ϕ, we can deduce that

FC ̸⊆ X . □

69

Based on the above theorem, if we have identified two transformation sets X and Y such that

applying all the transformations in those sets to a faulty BP removes its fault and an association

relationship exists between X and Y , then in order to find the minimal transformation set that

contains FC , we should start with the transformation set Y first. If applying transformations in Y

does not remove the fault, then we should consider the transformation sets X and Y jointly, but

not X separately.

One simple approach that can be developed to detect and fix faults is to find all the association

rules considering the faulty BP and correct BPs and then go through the appropriate X and Y that

jointly contain the fault covering transformation set and result in minimal transformations to the

faulty BP. However, we may need to analyze a large number of association rules given the expo-

nential number of rules that can be generated from a given itemset. CFR discovers and searches

the association rules for the fault-covering transformation set in a systematic and efficient manner.

The specific steps of CFR are listed in Algorithm 4.3: Association Analysis. As shown in this algo-

rithm, we use apriori algorithm (line 2) to find association rules of length 2, i.e., both antecedent

and consequent are single items in the discovered rules. The reason that we start with rules of

length 2 is to reduce the number of association rules. From the resulting set of association rules,

we generate a directed graph Gar = (Var, Ear), where a vertex in Var is either a consequent or an

antecedent of some association rule (line 3). The edges in Gar represent the antecedent→ conse-

quent relationship. Next, we find all strongly connected components in Gar. A strongly connected

component (SCC) in the graph Gar essentially represents a non-trivial maximal length antecedent

or consequent of some valid association rule that can be computed with the given transformation

dataset and support/confidence thresholds. Fig. 4.4 shows a graph with 5 SCCs. This graph is

generated using the transformations listed in Table 4.1 and running association rules with mini-

mum support = 33% and confidence = 100%. The edge between the SCCs in the graph represents

a non-trivial maximal length association rule. For example in Fig. 4.4 the edge from the SCC C3

to SCC C1 represent the association rule C3 : {t9} =⇒ C1 : {t6, t7, t8}.

The SCC can be categorized as the source, sink, or internal. For example in Figure 4.4, C3, C4,

and C5 are source SCCs, C1 is sink SCC, and C2 is internal SCC. From this SCC graph, we find the

70

ALGORITHM 4.3: Association Analysis
Input: T =

⋃
Ti, where Ti is the set of transformations required to convert Sf to Si

Input: Specified Confidence conf and Support sup for Association Analysis

Output: tRuleQ - list of transformation rules sorted in path length order

1: Create a binary matrix M|T |×n where Mki = 1 if tk ∈ Ti, and Mki = 0 otherwise

2: rules← Apriori(M, sup, conf, length = 2)

3: Construct the directed graph Gar = (Var, Ear) where vertices in Var correspond to sets of

transformations that are either a consequent or antecedent for some rule, and edges in Ear represent the

antecedent −→ consequent relationship.

4: Find all strongly connected components in the graph Gar

5: tRuleQ← ϕ

6: for all components SCCi that are not connected to any other component SCCj do

7: tlist← the set of all transformations in SCCi

8: tRuleQ← tRuleQ ∪ tlist

9: for each source component SCCsrc do

10: for each sink component SCCsnk do

11: if a path exists from SCCsrc to SCCsnk then

12: Find the longest path l from SCCsrc to SCCsnk

13: tlist← the set of all transformations in l

14: tRuleQ← tRuleQ ∪ tlist

15: Sort tRuleQ by ascending order of length

16: return tRuleQ

longest path between each source and sink SCC pairs (lines 6 - 14). In case the SCC is both source

and sink (i.e., not connected to any other SCC), the path includes only that SCC. The reason for

considering the longest path is to encompass all the association rules that can be computed with

the given transformation dataset and support/confidence thresholds.

As discussed above, we search for the fault covering transformation set in each of these paths.

For example, for the path C4 =⇒ C2 =⇒ C1 in Fig. 4.4, we first look for the fault covering

set in the sink SCC C1 by applying all the transformations in C1 to the faulty BP. If the fault is not

71

Figure 4.4: SCC graph resulting from association analysis on transformations listed in Table 4.1

resolved, we add C2 to this search and finally C4. To keep the number of structural changes to the

faulty BP to a minimum, we sort all these paths in the ascending order of length (i.e., number of

transformations and path length) and preferentially apply the smaller length transformations to the

faulty BP (line 15 of Algorithm 4.3 and lines 10 - 14 of Algorithm 4.1).

The path (C4 =⇒ C2 =⇒ C1) in Fig. 4.4 transforms the subgraph of faulty BP Sf

into the subgraph S3 of existing BP G3 depicted in Fig. 4.3(c). The second path (C5 =⇒

C2 =⇒ C1) resolves the faults by transforming Sf to S1 depicted in Fig. 4.3(a). The last

path (C3 =⇒ C1) applies minimum transformations by removing two incorrect edges {t6 :

(tax amount, shipping)−, t7 : (ship charges, sales tax)−} and adding two replacement edges

{t8 : (tax amount, sales tax)+, t9 : (ship charges, shipping)+} to convert Sf into S2 depicted

in Fig. 4.3(b), thus resolving Gf with minimal changes.

4.2.4 Computation complexity

Graph Comparison (Algorithm 4.2). This algorithm compares the faulty BP graph and an existing

BP graph to compute the transformation set. Therefore, its complexity is linear in the size of the

input graphs, i.e., O(|V |+ |E|).

Association Analysis (Algorithm 4.3). On line 2 of this algorithm, Apriori association rule

mining is called to compute association rules of length 2. These association rules are computed

72

over T =
⋃
Ti, where |Ti| = O(|V | + |E|). Therefore, |T | = O(n(|V | + |E|)), where n is

the number of existing BPs used for comparison. Let m = n(|V | + |E|). We can have a max-

imum of 2 ×
(
m
2

)
= m(m − 1) rules of length 2. In line 3 graph Gar = (Var, Ear) is con-

structed from the resulting association rules, where |Var| ≤ m and |Ear| ≤ m(m − 1). On line

4, we compute strongly connected components (SCCs) in Gar with a computational complexity of

O(|Var| + |Ear|) = O(m2). In the worst case the number of strongly connected components in

Gar is m. Let GSCC = (VSCC , ESCC) denote the SCC graph of Gar. In lines 9-14, the longest

path from each SCCsrc to SCCsnk pair is computed. Since GSCC is a directed acyclic graph,

the computation complexity of finding the longest path between any SCCsrc to SCCsnk pair

is O(|VSCC | + |ESCC |) = O(m2). Therefore, the computation complexity of Algorithm 4.3 is

O(m2) = O(n2(|V |+ |E|)2).

Fault Resolution (Algorithm 4.1). The algorithm calls Algorithm 4.2 n times and Algorithm 4.3

once in each iteration of the search region parameterized by α. The search region is incrementally

expanded until the faulty BP is fixed or the entire faulty BP is covered. Therefore, the overall

computation complexity of the fault resolution algorithm for a fixed search region is O(n2(|V | +

|E|)2).

4.3 Hybrid Approach for Fault Resolution

The EGV approach for fault localization examines a BP in isolation therefore it lacks the capability

to identify any control flow and branching faults that occur due to any activity/element removal in

the BP e.g., a missing service operation or a branch path in an XOR block. CFR is a collaborative

fault resolution (CFR) approach [157] that is capable of resolving such faults.

CFR relies on a set of existing BPs that are composed of similar services and are assumed to be

correct. The knowledge of these BPs is utilized to discover and fix faults in a faulty BP. However,

CFR requires certain minimum overlapping services between the faulty BP and existing BPs for

providing accurate results. Rather than examining the faulty BP in isolation (as EGV does), we

propose a hybrid of EGV and CFR approaches that allow for broader coverage of fault types by

leveraging knowledge from existing BPs.

73

The hybrid approach combines both EGV and CFR in an interleaved fashion. We consider two

versions of the hybrid approach:

H1: EGV is executed first to resolve faults for a given fop. If EGV fails, only then CFR is

invoked for that fop. This interleaved execution continues until either the BP is fixed or

there are no more candidate fixes to apply.

H2: CFR is executed first to resolve faults for a given fop. If CFR fails, only then EGV is

executed for that fop. Similar to H1, H2 is executed in an interleaved manner.

Algorithm 4.4 outlines the hybrid fault resolution approach, H1. The inputs to this algorithm are

a faulty BP graph, Gf , a set of test cases, T , and the set of existing BPs, B. H1 first calls fault

localization to find the fop (Line 1). Next, a subgraph of Gf from vstartf to fop is extracted for

generating candidate fixes (Line 2). EGV is called on this subgraph for the resolution of faults up

to the fop (Line 3). If a candidate fix (Gc) is found for the subgraph S, it is combined with the

remaining part of Gf after the fop (Line 5). If Gc not only fixes the fault up to the given fop but

also of the entire BP then the resulting BP is returned to the user as a fault-free BP Lines (6 – 8).

Otherwise, if the candidate fix partially fixes the fault (i.e., it passes some, but not all, of the test

cases that originally failed), we use that candidate fix for further discovery and repair of faults by

recursively calling H1 (Line 10). In case no partial fix is found, we call CFR for collaborative fault

resolution (Line 12). Similar to the steps given in lines 4 – 10, we repeat these steps for CFR in

lines 11 – 19. We recursively call H1 fault resolution procedure until all the faults are fixed or the

entire space of candidate fixes is exhausted. The algorithm of hybrid fault resolution approach H2

is similar to Algorithm 4.4 except that it invokes CFR first followed by EGV.

4.4 Experimental Evaluation (CFR)

We have performed an extensive experimental evaluation of CFR. Two independent strategies were

followed to evaluate the performance of our approach. In the first case, we randomly injected

faults (of different types) into a correct BP and then employed our approach to resolving the faults

injected. In the other case, we asked actual users to develop BPs using a BP composition tool. We

74

ALGORITHM 4.4: Hybrid H1

Input: Gf = (Vf , Ef , Ef , vstartf , vendf , vuserf) - Faulty BP

Input: T - Set of test cases

Input: B = {G1, G2, . . . Gn} - Set of existing BPs

Output: Gc - Corrected BP

1: fop← localize fault(Gf)

2: S ← subgraph till fop(Gf , fop)

3: Gc← EGV FaultResolution(S, T)

4: if Gc ̸= NULL then

5: Gc← combine graph(Gf , S,Gc)

6: Apply each test case t ∈ T on Gc

7: if Gc passes all the test cases then

8: return Gc

9: else

10: return Hybrid H1(Gc, T)

11: else

12: Gc← CFR(S, T,B)

13: if Gc ̸= NULL then

14: Gc← combine graph(Gf , S,Gc)

15: Apply each test case t ∈ T on Gc

16: if Gc passes all the test cases then

17: return Gc

18: else

19: return Hybrid H1(Gc, T)

20: else

21: return NULL

then examined only the BPs that were faulty and tried to resolve the faults using our approach.

As such, the first case can be considered equivalent to evaluation with synthetic data, while the

second can be considered equivalent to evaluation with real data. In both cases, a repository of 48

75

existing BPs was used (24 BPs from flight reservation and 12 each from insurance and e-commerce

sales domains). All these BPs are derived from available open-source insurance systems (e.g.,

OpenUnderWriter, Open Insurance, etc.), enterprise resource planning (ERP) systems (e.g., Odoo,

Apache OFBiz, inoERP, and Tryton, etc.), and online flight reservation systems (e.g., Pakistan

International Airline, Qatar Airways, and Emirates Airline, etc.). We generated the BPs from the

execution logs of the installed ERP and insurance systems or from the reference documentation.

For flight reservation systems, we created the BPs from the workflow structure derived from the

websites. A similar BP dataset collection methodology was used in our prior work and is described

in detail in [2]. Table 4.2 shows the detailed statistics of the developed BPs.

Table 4.2: Statistics of existing BPs

Domain No. of BPs Avg. no. of ser-

vices

Avg. no. of

branches

E-commerce 12 25.66 2.91

Insurance 12 26.00 3.00

Flight Reservation 24 22.00 3.00

Total 48 23.91 2.97

The experiments were performed on an Intel Xeon server machine with 24 2.3 GHz cores

running Ubuntu Linux 16.04 with an overall memory of 256 GB. Note, however, no parallelization

was used (i.e., only one core was used and no significant amount of memory was used).

4.4.1 Random Fault Injection

As mentioned above, in this case, we started with a correct BP from the insurance domain (not in-

cluded in the existing BP repository). The selected BP was composed of 26 Web service operations

with 3 branches and 2 parallel structures. To generate faulty BPs, we applied random combinations

of the mutation operators listed in Table 1.1. This resulted in 208 faulty BPs that were used for

validation. The number of mutation operators applied to generate a faulty BP varied between 1

76

Table 4.3: α vs. average number of rules

α # of rules α # of rules α # of rules

2 88.95 7 1828.50 12 4881.55

3 186.54 8 2562.11 13 6365.96

4 362.34 9 2965.20 14 10593.71

5 596.85 10 3666.97 15 13878.29

6 843.72 11 3760.26 16 15499.64

and 4 with a mean of 2.24 and a standard deviation of 0.81. Faults from each fault category and

their random combinations were tested.

We created a suite of test cases based on the expected output covering all branching paths of

the correct BP. Now, a BP is considered as correct if it passes all the test cases in the suite. We

applied fault localization on each faulty BP to determine their fop(s). The number of fop(s) varied

between 1 and 4 for the faulty BPs.

After determining the fops, we ran Algorithm 4.1 on each faulty BP. The average number of

rules returned by the algorithm depends upon the value of α. The average number of rules for

different values of α are given in Table 4.3. We considered those rules that produce structurally

valid BP after their application to the faulty BPs. We sorted these rules in ascending order of their

size and applied them one by one to the faulty BP. After the application of each rule, we tested the

resulting BP using the test suite created earlier. If the resulting BP passed all the test cases, we

marked it as correct and stopped. Note that a rule may resolve a fault specific to the given fop,

but there could be more faults that are manifested later during BP execution. Therefore, in our

experimental evaluation, we clipped the BP up to the given fop and run the relevant test cases to

check if the BP is fixed with respect to the given fop. Only after all fop-specific test cases are

passed, we run the complete suite of test cases to look for any further faults. If any of the test

cases failed, we reinvoked the fault localization procedure to find a new fop and repeat the entire

process. The number of transformations varied from 2 to 32 with a mean of 10.95 and a standard

deviation of 6.07.

77

Table 4.4 shows the fop-wise distribution of the faulty BPs along with the accuracy of the

proposed fault resolution approach. As the results show, we were able to fix faults in 73.83% of

all the BPs. Note that the accuracy decreases as the number of fops increases. This is due to the

fact that the faults corresponding to fops that are further apart are likely to be independent of one

another.

Table 4.4: Accuracy results over synthetic dataset

No. of fops Total Fixed Failed Accuracy

1 46 39 7 0.85

2 119 87 32 0.73

3 24 17 7 0.71

4 19 10 9 0.53

Total 208 153 55 0.74

(a) Percentage of BPs fixed vs. number of iterations (b) Average time taken to fix a BP vs. number of iterations

Figure 4.5: Comparison between the percentage of BPs fixed vs. number of iterations and the

iteration-wise average time taken for fault resolution per BP

In terms of the computation time overhead associated with the proposed fault resolution ap-

proach, Fig. 4.5(a) shows the percentage of BPs fixed vs. the number of iterations. Overall, 65%

of the total BPs were fixed in 7 or fewer iterations. The BPs with 1 fop were all fixed in 11 or fewer

iterations. The BPs with 2 fops took at most 14 iterations to complete. However, BPs with 3 and

78

(a) Percentage of fixed BPs vs. similarity (b) Percentage of fixed BPs vs. service overlap

Figure 4.6: Comparison between the percentage of BPs fixed vs. similarity and service overlap

based on top 3 rules

4 fops took more iterations with a maximum of 26 and 32 iterations, respectively. The increase in

the number of iterations with the corresponding increase in the number of fops is due to the fact

that we resolve the faults incrementally as explained above.

Fig. 4.5(b) shows the iteration-wise average time for fault resolution per BP. As depicted in

this figure, the average time taken to fix a BP increases linearly in the iteration intervals [1 - 5], [6

- 10], and [10 - 15]. Moreover, the slope of this linear trend also increases across these iteration

intervals. The reason is that in each iteration, α is increased which expands the search region in

the faulty BP, therefore the computation time of association mining rules increases. Based on Fig.

4.5(a) and Fig. 4.5(b), the faults of the 50% of the total 153 BPs (that were fixed) were resolved

in 3 or fewer iterations. Therefore, the median average time taken to resolve faults in a BP is 166

seconds. We also evaluated the impact of structural similarity and service overlap between the

faulty BP and correct BPs on fault resolution. Both similarity and service overlap was computed

w.r.t. the correct BPs that were part of the top 3 rules obtained after applying the association rule

mining step of Section 4.2.3. Let M ⊆ B denote the set of correct BPs that are part of top 3

rules. As discussed above, Ti denotes the set of transformations required to convert a faulty BP,

Gf = (Vf , Ef) into an existing BP Gi = (Vi, Ei). The structural similarity between a faulty BP and

BPs in M can be computed as the average of the number of transformations required to transform

79

Gf to Gi, normalized for each Gi:

Similarity = 1−

(
1

|M |
∑
Gi∈M

|Ti|
max(|Ef |+ |Vf |, |Ei|+ |Vi|)

)
(4.6)

Similarly, the service overlap can be computed as the average of the number of common ser-

vices between the faulty BP Gf and each Gi ∈M , normalized for each Gi:

Overlap =
1

|M |
∑
Gi∈M

|Vf ∩ Vi|
max(|Vf |, |Vi|)

(4.7)

As per these definitions, it is highly unlikely to have a high service overlap but low similarity.

Fig. 4.6(a) and Fig. 4.6(b) show the number of BPs fixed vs. similarity and service overlap,

respectively. 68% of all the BPs were fixed at an average similarity of 0.43 or less. Moreover, less

than 10% of the BPs were fixed when the service overlap was less than 0.62. From these results,

we can infer that the likelihood of resolving faults in a BP increases when the service overlap is

0.7 or more and similarity is 0.43 or more.

Comparison with EGV

For comparison of EGV with CFR, we performed experiments on 112 BPs out of 208 that do not

contain faults related to branch removal (AIE), activity removal (AEL), or constant modification

(ECN). EGV is not designed for resolving fault types in which one or more BP elements are

removed. Table 4.5 shows the accuracy results of EGV in comparison to CFR approach.

The results show that EGV has a higher accuracy than CFR on BPs with 1 and 2 fops and lower

accuracy with 3 and 4 fops. Overall, EGV has an accuracy of 0.83 while CFR has an accuracy of

0.76. Apart from the gain in accuracy, EGV has the advantage of being able to resolve the faults

without relying on existing BPs that have overlapping services with respect to the faulty BP.

Fig. 4.7 shows that EGV takes less time than CFR for resolving faults in BPs with 3 or less

fops while CFR performs slightly better with 4 fops. This is because the number of mutants

increases significantly with the increase in fops. Additionally, the time taken by CFR to resolve

faults decreases from 2 to 3 and 4 fops. This reduction can be attributed to the decrease in the

number of candidate fixes for BPs with 3 and 4 fops, as illustrated in Table 4.5. This decrease

80

occurs because we exclude candidate fixes that do not result in structurally valid BPs. Moreover,

for this experiment, we excluded BPs containing faults related to activity removal, branch removal,

and constant modification. Consequently, we were left with only 10 and 9 BPs with 3 and 4

fops, respectively, for this experiment. It is worth noting that the accuracy of CFR drops for

BPs with 4 fops, indicating that only BPs containing simpler faults were fixed. As a result, CFR

exhibited a significantly lower average time for resolving faults in BPs with 4 fops. Whereas, the

time reduction from 2 to 3 fops is not as significant and solely results from the lower number of

structurally valid candidate fixes.

Although EGV outperforms CFR in terms of computation time with comparable accuracy yet

CFR provides a broader fault coverage. For example, CFR can resolve faults belonging to branches

and activity removal. These faults cannot be resolved by the basic G&V and EGV. However, CFR

requires a repository of existing BPs.

Table 4.5: Accuracy of EGV and CFR.

fops No. of BPs
Accuracy Candidate Fixes

EGV CFR EGV CFR

1 30 0.93 0.90 7.39 13.32

2 63 0.85 0.71 11.59 35.46

3 10 0.7 0.8 24.85 32.57

4 9 0.44 0.67 19.25 29.5

Overall 112 0.83 0.76 11.65 28.32

Comparison with basic G&V

We would also like to establish the effectiveness of our CFR with respect to an existing baseline.

However, there is no existing solution for BP fault resolution that we can directly compare with.

Therefore, we compare the proposed collaborative BP fault resolution approach with the Generate-

and-Validate (G&V) automated program repair methodology. G&V takes as input a faulty program

and a group of passing and failing tests and heuristically searches the program space to generate

81

Figure 4.7: Execution time comparison of EGV and CFR.

Table 4.6: Accuracy comparison of CFR with G&V fault repair approach

Fault Category No. of BPs
G&V with BPELswice CFR

Accuracy Avg. no. of candidate

fixes applied for fault

resolution

Accuracy Avg. no. of rules

(candidate fixes)

applied for fault

resolution

Variable assignment faults 24 20/24=0.83 2192 12/24=0.5 57

Expression faults 5 5/5 = 1.0 464 5/5 = 1.0 5

Control flow faults (excl. element removal) 11 11/11=1.0 9351 9/11=0.81 16

Control flow faults (incl. element removal) 24 - - 11/24=0.45 41

Branching faults (incl. element removal) 3 - - 3/3 = 1.0 9

Multiple faults in different categories 141 - - 113/141=0.8 38

candidate fixes. The validity of the candidate fixes is then checked by running all available tests

[18]. G&V employs fault localization to identify suspicious code blocks that may contain the fault.

The candidate fixes are generated by considering different mutations of the statements within the

82

suspicious code blocks. Currently, there is no implementation of G&V automated program repair

for BPEL programs, although there are several implementations available for Java and C Programs

[18].

For comparison, we implemented the G&V automated program repair approach for BPEL

programs by employing BPELswice fault localization technique [61] to identify suspicious BPEL

statements. For generating the candidate fixes, we applied the mutation operators (listed in Table

1.1) to the suspicious statements.

As mentioned in [61], BPELswice is not designed for faults caused by the removal of activi-

ties/elements. Therefore, we consider only those fault categories that are relevant to BPELswice.

This comparison is shown in the first three rows of Table 4.6. For variable assignment and control

flow fault categories (excluding activity/element removal), G&V achieves higher accuracy than

CFR. For expression faults both G&V and CFR resolve all the faults. However, the average num-

ber of candidate fixes applied for G&V is orders of magnitude higher than the average number of

rules (candidate fixes) applied by CFR for all three categories. This clearly shows the efficiency of

CFR over G&V.

Note that the higher accuracy of baseline (G&V) is expected since the faulty BPS are created

by applying mutation operators on a correct BP. For instance, if the suspicious code block includes

all the BPEL statements then we can exhaustively generate all mutants of the faulty BP and at least

one of these mutants will be correct. Therefore, the baseline approach would be able to resolve the

fault by exhaustively searching all possible mutants of the faulty BP with a very high computation

time overhead. On the other hand, CFR resolves faults by applying very few transformation rules

(candidate fixes).

The last three rows of Table 4.6 show the accuracy results of CFR for those fault categories that

cannot be resolved by G&V + BPELswice. These include control flow and branching faults caused

by activity/element removal as well as a combination of multiple faults from different categories.

CFR achieves high accuracy in resolving branching and multiple faults. Overall, out of the 208

faulty BPs, CFR was able to fix 153 BPs resulting in an accuracy of 0.73.

These results clearly show that CFR is highly efficient and effective with respect to the number

83

of transformation rules (candidate fixes) applied for resolving BP faults. Moreover, it provides a

broader coverage of fault categories as compared to the baseline. However, we note that the accu-

racy of CFR w.r.t. variable assignment faults and control flow faults (caused by activity removal)

is low as compared to other fault categories. Variable assignment faults are typically manifested at

multiple locations in the BP. For example, an incorrect variable assignment in an assignment block

can result in subsequent incorrect variable assignments. Control flow faults are difficult to detect

and resolve due to the varying control flow structure of activities in existing BPs. For example,

one BP may compose independent activities in a sequence, while another may compose them in a

parallel flow, thus, we may not find sufficient BPs in the repository for comparison.

4.4.2 User Developed BPs

For this evaluation, we applied CFR on BPs that were developed by actual users. These users

were students of a graduate class (Service-oriented Computing, CS-585), who developed BPEL

processes using the ASSEMBLE tool [2] as part of their class assignment.

These BPs were related to e-commerce sales, insurance sales, and flight reservations. We

selected those BPs that did not execute correctly. The users were not aware that their developed

BPs would be used for the evaluation of the fault resolution approach. Thus, there was no additional

incentive to either increase or decrease the number of faults in any way beyond the normal goal of

developing a correct BP. Overall, there were 4 e-commerce sales BPs, 5 insurance sales BPs, and 6

flight reservation BPs that were used for the evaluation. We were able to fix 12 out of the 15 BPs.

Table 4.7 lists all user-developed BPs, with the type of faults that were made by the users and the

results of CFR.

Note that the accuracy of our approach is higher for user-developed BPs as compared to random

fault-injected BPs. The reason is that user-developed BPs typically have a smaller number of faults

because of the users’ understanding of the BP and the underlying service semantics, as well as the

extensive debugging that they perform.

84

Table 4.7: Evaluation results over user-developed BP dataset

No. fops Status Domain Fault Types Time (sec.) Iterations Overlap Similarity

1 1 Resolved Insurance Relational operator replacement 68.30 1 0.63 0.25

2 1 Resolved Insurance Relational operator replacement, Variable

identifier replacement

66.24 1 0.63 0.25

3 1 Resolved Insurance Variable identifier replacement, Activity or-

der exchange

232.89 4 0.85 0.82

4 2 Failed Insurance Variable identifier replacement, Activity or-

der exchange

804.45 13 N/A N/A

5 2 Failed Insurance Variable identifier replacement, Activity or-

der exchange

869.39 12 N/A N/A

6 2 Resolved Flight Reserva-

tion

Relational operator replacement, Path oper-

ator replacement, Variable identifier replace-

ment

86.25 2 0.91 0.84

7 2 Resolved Flight Reserva-

tion

Path operator replacement, Numeric con-

stant modification, Variable identifier re-

placement

83.91 2 0.91 0.84

8 2 Resolved Flight Reserva-

tion

Logical operator replacement, Path operator

replacement

88.76 2 0.87 0.76

9 2 Resolved Flight Reserva-

tion

Relational operator replacement, Branch

path removal

330.96 6 0.79 0.63

10 1 Resolved Flight Reserva-

tion

Branch path removal 332.08 6 0.79 0.63

11 1 Resolved Flight Reserva-

tion

Path operator replacement, Numeric con-

stant modification

112.98 2 0.91 0.86

12 2 Resolved Ecommerce Relational operator replacement, Variable

identifier replacement

209.46 2 0.54 0.02

13 1 Resolved Ecommerce Numeric constant modification 237.16 4 0.82 0.66

14 1 Resolved Ecommerce Branch path removal, Variable identifier re-

placement

44.22 1 0.53 0.31

15 1 Failed Ecommerce Relational operator replacement, Variable

identifier replacement

936.88 15 N/A N/A

4.4.3 Parameter sensitivity

We now discuss the key parameters that affect the performance of CFR in terms of accuracy and

fault resolution time. There are three key parameters: i) α that determines the size of the faulty BP

subgraph for pair-wise comparison with existing BPs; ii) similarity between faulty BP and existing

BPs; iii) service overlap between faulty BP and existing BPs.

85

As shown in Table 4.3, increasing α results in an increase in the number of rules as well as

the number of transformations encoded in the rules, thus increasing the computation time. A large

α value may result in a comparison of the faulty BP with unrelated BPs, which also results in

the generation of transformation rules that may change the goal and scope of the original BP. On

the other hand, a small α value may result in too small of a search region for fault resolution.

Therefore, it is important to start with a small value of α and incrementally increase it until the

fault is resolved as per the satisfaction of the BP designer.

The accuracy of CFR depends on the structural similarity and service overlap between the

faulty BP and some minimum number of BPs in the repository of existing BPs. Higher the simi-

larity and degree of service overlap, the more likely it is to correctly resolve the faults in a given

BP as depicted in Fig. 4.6. The BP designer can compute the similarity and service overlap values

for a given faulty BP, and if these values meet the threshold values only then the fault resolution

approach is applied. These threshold values need to be determined beforehand considering the

available BP repository. As shown in Table 4.2, we considered a repository of 48 existing BPs

from 3 different domains. Our experimental evaluation results show that if the similarity and ser-

vice overlap of the faulty BP with at least 25 percent of existing BPs in the repository is above 0.4

and 0.7 respectively, then the likelihood of fault resolution increases significantly.

4.5 Experimental Evaluation (Hybrid)

The hybrid approach combines both EGV and CFR in an interleaved fashion. As discussed in

Section 4.3, we consider two versions of the hybrid approach, H1, and H2.

Table 4.8 shows the accuracy results of both H1 and H2 in comparison with CFR. As expected,

both H1 and H2 have similar accuracy because both of them use the same underlying approaches

but in a different order. Fig. 4.8 compares the execution time taken by CFR, H1 and H2. Overall,

CFR performs slightly better than H1 and much better than H2 which takes almost twice as much

time as CFR. However, H1 is more time-efficient for BPs with 1 or 2 fops, whereas, both H2 and

CFR perform better than H1 for BPs with 3 and 4 fops. This is due to the fact the BPs with a

higher number of fops have complex faults that cannot be resolved in isolation as done by EGV.

86

Table 4.8: Accuracy of H1, H2 and CFR.

fops No. of Bps
Accuracy Fix Candidates

H1 H2 CFR H1 H2 CFR

1 46 0.83 0.83 0.85 9 31 9

2 119 0.79 0.79 0.73 22 51 21

3 24 0.71 0.71 0.71 33 50 35

4 19 0.74 0.74 0.53 78 90 66

Overall 208 0.78 0.78 0.74 25 50 22

In the presence of such complex faults, CFR and H2 (executing CFR first) perform better with

respect to execution time because of the higher fault coverage of CFR.

4.5.1 Discussion

EGV outperforms CFR in terms of computation time with comparable accuracy but CFR provides a

broader fault coverage as discussed in Section 4.3. For example, CFR can resolve faults belonging

to branches and activity removal. These faults cannot be resolved by the basic G&V and EGV.

However, CFR requires a repository of existing BPs.

If such a repository exists, EGV can be combined with CFR to get the best of both worlds.

This is exactly what the hybrid approach is designed to achieve. Both hybrid approaches H1

and H2 have similar accuracy across all fops as depicted in Table 4.8. The accuracy of CFR is

slightly higher than the hybrid approach (both H1 and H2) for one fop but is taken over by the

hybrid approach as the number of fops increases. Consequently, the hybrid approach is preferred

over CFR for better accuracy especially when a higher number of fops are expected. In terms of

performance, H1 is a better candidate for BPs with 1 or 2 fops. However, for BPs with a higher

number of fops H2 performs better than H1.

87

Figure 4.8: Execution time comparison of H1, H2, and CFR.

4.6 Chapter Summary

In this chapter, we have formalized the problem of collaborative fault resolution (CFR) which

utilizes information from existing correct BPs that use similar services to resolve the faults in a

user-developed BP. We present an approach based on association analysis to identify and iteratively

select modifications to resolve the fault(s) in the user-developed BP. Additionally, we have also

presented a hybrid approach by combining CFR and EGV in sequential order. The hybrid approach

achieves superior accuracy and broader coverage of faults. Chapter 5 presents the implementation

details of our prototype tool that enables a user to submit their BPs for fault resolution.

88

Chapter 5

Prototype Implementation

This chapter presents an overview of the BP-DEBUG prototype that exposes the fault resolution

capability using Efficient Generate and Validate (EGV), Collaborative Fault Resolution (CFR) and

Hybrid approaches.

5.1 Introduction

We have implemented a prototype, called BP-DEBUG, for fault resolution of business processes in

a cloud-based environment. The prototype implements our Efficient Generate-and-Validate (EGV)

presented in chapter 3 and, Collaborative Fault Management (CFR) and Hybrid approaches pre-

sented in chapter 4 to locate and fix faults in the faulty BP. The prototype is implemented as a

web-based application that allows users to specify a particular fault resolution strategy. Users can

choose to apply more than one approach for the given faulty BP. If BP-DEBUG is able to fix faults,

it depicts the fixed BP on the web-based interface and a fault report by highlighting the differences

between the submitted faulty BP and the fixed BP. BP-DEBUG is implemented as an enhance-

ment to BP-Com [16] and is thus capable of generating BPEL source code of the fixed BP for

deployment.

BP-DEBUG provides the following functionalities for BP fault resolution:

1. Specification of the faulty BP with its control flow, data flow, and corresponding test suite

89

2. Resolution of faults using the approach of user’s choice

3. Executable code generation of the fixed BP for deployment

Intended Users: BP-DEBUG tool is developed for novice users with little technical expertise in

debugging the BPs. In particular, it is suitable for small and medium enterprises that cannot dedi-

cate sufficient resources to debugging. Additionally, experienced users can also use our system to

speed up the debugging cycle for their BPs.

5.2 BP-DEBUG: Architecture and Implementation

Fig. 5.1 depicts a high-level architectural overview of the BP-DEBUG system. The fault resolution

process starts when the user specifies the faulty BP with the associated test suite. After the input,

BP-DEBUG performs fault resolution and generates the candidate fixes that are validated against

the test suite. If faults are resolved, the fixed BP is presented to the user on the web-based interface,

along with the corresponding fault report.

Figure 5.1: Architectural overview of the BP-DEBUG System

90

The BP designer can optionally make some changes to the fixed BP and proceed with code

generation and deployment. Below, we discuss some of the key functions of the BP-DEBUG

prototype.

5.2.1 Specification of the Faulty BP and the Test suite

The BP designer initiates the fault resolution process on BP-DEBUG by providing a faulty BP with

its complete data flow control flow and the associated test suite. The control flow of the BP shown

in Fig. 1.2 is shown in Listing 5.1.

Listing 5.1: Control flow of the BP of Fig. 1.2

1 #ss

2 searchProduct

3 #se

4 #ts

5 createInvoice

6 #te

7 #rs

8 searchProduct#verifyEmail

9 verifyEmail#calcSalesTax

10 calcSalesTax#createOrder

11 createOrder#xors_x1

12 xors_x1#processCODPayment

13 xors_x1#chargeCreditCard

14 processCODPayment#xore_x1

15 chargeCreditCard#xore_x1

16 xore_x1#createInvoice

17 #re

In Listing 5.1, Lines 1-6 specify the starting and ending vertices of the BP in its control flow graph.

91

In this example, searchProduct is specified as a starting vertex and createInvoice is specified as the

ending vertex. Lines 7-17 specify the BP graph as an edge list. For instance, Line 7 specifies

that there is an edge between searchProduct service operation and verifyEmail service operation.

Similarly, Line 11 specifies that creatOrder service precedes the beginning of xor node in the

control flow.

Figure 5.2: Data flow of createOrder service in the BP of Fig. 1.6

Fig. 5.2 shows the portion of the data flow corresponding to createOrder service operation. The

Operation tag specifies that createOrder is an invoke element or the service operation followed by

its URL. The input and output tags contain the service’s input and output attributes, respectively.

Additionally, attribute tags within the input also specify data sources of input attributes. For in-

stance, the value of product code parameter is provided productId, which is an output parameter

of createOrder service. Similarly, quantity parameter takes its value directly from the user at exe-

cution time.

The test suite is also specified in XML format. Fig. 5.3 depicts one sample test case from

the test suite. The TestCase tag represents a complete test case with specifications of input and

output parameters. Input parameters are specified with their data types and values to be used for

the execution of the containing test case. For instance, the values of cvc and payMethod parame-

ters are 123 and CREDIT CARD respectively. The output parameters are associated with expected

values and assertions. Expected values can either be fixed or must conform to the given regular

expression. The assertions can take the form of an output parameter being null or not null. For

92

Figure 5.3: Test suite for the BP of Fig. 1.6

instance, the total amnt output parameter has to be verified using an exact value match against the

provided value. ord no, invoiceId and trans no must be non-null and conform to the specified reg-

ular expression. exp date parameter must be null for this particular test case because it is produced

by processCODPayment which will not be executed in the execution path due to the specification

of credit card as a payment method.

Although the control flow, the data flow, and the test cases are specified in a custom format, the

user does not have to worry about the generation of these documents if they used BP-Com [16] for

93

the development of the BP. The control flow and data flow files are part of the downloaded BP from

BP-Com and can be forwarded to the BP-DEBUG system without any modification. Furthermore,

the test case specifications are optional for sales-order, insurance, and flight reservation BPs. A set

of predefined test cases are used for verification if the user does not provide the test suite.

5.2.2 Fault Resolution

The fault resolution process starts after the faulty BP and the test suite is specified. The faults are

resolved using the fault resolution scheme of the user’s choice. The user can choose to repair the

BP using Efficient Generate-and-Validate (EGV), Collaborative Fault Resolution (CFR), or Hybrid

fault resolution scheme. The detail of these approaches has already been discussed in chapter 3

and 4. BP-DEBUG tool generates the candidate fixes according to the chosen approach and all

the candidate fixes are validated against the test suite. If a candidate fix passes all the test cases,

it is presented to the BP designer with the original faulty BP and the set of transformations that

were required for the fixes. If a candidate fix does not completely fix the fault but passes some

test cases failed by the original faulty BP, it is passed back to the fault localization component

for identification of the remaining faults as well as for discovering new faults that were caused by

applying the transformations. The process continues until the faulty BP is fixed or the entire search

space is exhausted.

Fig. 5.4 and Fig. 5.5 depict two distinct faulty BPs from insurance domain and their relevant

fixes on the user interface of our tool. The BP designer can navigate to different service operations

both in fixed BP and faulty BP. Fig. 5.4 shows fop and control flow faults in its close vicinity. The

fault shown in Fig. 5.4 is caused by composing two services in parallel that are data dependent.

The corresponding fragment of the fixed BP composes the dependent services in a sequence for

resolving the fault.

Fig. 5.5 shows incorrect mappings in the faulty BP for the attributes of ValidateCardNum-

ber service operation. In this service operation, CardNumber attribute is incorrectly mapped to

CardType attribute and vice versa. The corresponding fragment of the fixed BP depicts the fix of

this fault. In addition to faults, the BP designer is also presented with a list of fops, the number

94

Figure 5.4: Visual representation of fops and control flow faults and their fixes in BP-DEBUG

of candidate fixes in each iteration, as well as the approach-related parameters like support and

confidence in case CFR is chosen for resolving faults.

5.2.3 Code Generation and BP Deployment

The user can continue with the fixed BP from the previous stage and investigate its data flow and

control flow. The tool is integrated with the authoring and refinement component of our existing

BP composition and management tool (BP-Com) [16] to enable the user to optionally modify the

fixed BP before proceeding with code generation. Finally, code generation component of BP-

Com can be used to generate the executable BPEL code for the fixed BP. The generated code can

be deployed within the BP designer’s organization, at their site, or in the cloud on Apache ODE

(Orchestration Director Engine) server, Kubernetes, or any server supporting BPEL specifications

and interactions with the partner links.

95

Figure 5.5: Identification and representation of data flow faults in BP-DEBUG fault report interface

5.3 Related Tools and Research Prototypes

Most of the existing tools for debugging and automated program repair are designed for Java and

C/C++ programs. There is a lack of tools providing debugging and fault resolution support for BPs

developed through web service orchestration. Below we discuss some of the related tools.

Web service testing: Significant work has been done on the testing of web services and several

open-source and commercial tools are available to support unit testing of web services. Some ex-

amples are Apache JMeter, SoapSonar, SoapUI, and Storm tools. All these tools support skeleton

code generation for invocation and testing of web service operations. WS-TAXI [8] is a web ser-

vice testing tool that, given the WSDL definition of a web service, automatically generates test

cases using a combination of coverage information and data-driven approaches. For coverage in-

formation, it uses SoapUI [158]. While these tools are designed for testing individual web services

in isolation, there are some frameworks supporting integration testing. Integration testing can not

96

only test the individual web services but also their interactions, messages, and overall composi-

tion [124]. Notable work on integration testing for service composition includes [125, 127, 130].

Tarhini et al. [125] proposed an automatic test generation, execution, and validation approach

from WSDL descriptions of service compositions. Huang et al. proposed an integration testing

approach [127] that supports simulating unavailable component services to allow for continuous

integration testing from the early phases of development, especially when some components are

not available. Sun et al. [130] presented a framework for test case and test data generation given a

service composition in BPEL. Since our tool requires a set of test cases as input, any of the existing

test case generation approaches can be utilized for the purpose.

Fault localization and resolution: Fault localization is one of the key requirements for any au-

tomated tool for program repair & recovery. Several fault localization approaches and tools exist

for traditional C/C++ and Java programs [18] with very few tools for BPs. BPELSwice [61] is a

fault localization technique that performs predicate switching and program slicing to identify the

BP fragments that are likely to contain faults. BPELDebugger [60] provides a framework with a

set of BPEL-specific guidelines to localize faults. It allows using many fault localization formu-

lae to rank the suspicious program fragments. In our implementation, we use the statistical fault

localization technique [29] for identifying fault observation points. The existing tools for fault

resolution and recovery in BPs such as WS-TAXI [8], VieDame [159], and BPEL Debugger [60]

mainly consider faults that are related to service implementation, failure of services, deployment

problems or issues related to network and communication. Our tool focuses on the detection and

resolution of faults that are introduced in the BP at design time.

There is notable work on the automated resolution of faults in traditional programs written in

C/C++ and Java [18, 94]. However, the proposed approaches are not designed to address fault

resolution in BPs that are developed by composing web services. Xu et al. [18] have proposed

a Generate-and-Validate (G&V) based approach that heuristically explores the search space of a

faulty program to generate candidate fixes given a set of test cases. These candidate fixes are

validated in a feedback loop to repair program faults in an efficient manner. However, this approach

is implemented for Java programs and needs to be adapted for BPs.

97

5.4 Chapter Summary

In this chapter, we presented the BP-DEBUG prototype tool, which is a web-based implementation

of our approach for fault resolution in the services cloud environment. The tool enables a user to

upload a faulty BP with a set of test cases for the resolution of faults. BP-DEBUG employs Collab-

orative Fault Resolution (CFR), Efficient Generate-and-Validate (EGV), or Hybrid fault resolution

approach based upon the user’s choice. In the end, the BP designer is furnished with a fault report

including the detected faults and their fixes in a graphical manner. The BP designer can make

further modifications to the BP and proceed with code generation and deployment of the fixed BP.

98

Chapter 6

Conclusion and Future Work

This chapter concludes the dissertation by summarizing contributions and presenting future re-

search directions.

6.1 Research Contributions

In this dissertation, we have presented two approaches for fault resolution of Business Processes

(BPs) in the services cloud environment. The first approach, Efficient Generate, and Validate

(EGV) fixes faults by generating the candidate fixes with the application of mutation operators

defined for BPs. The second approach is Collaborative Fault Resolution (CFR) which fixes faults

using the knowledge of existing correct BPs in the cloud. Then, we combine EGV and CFR in a

hybrid approach and measure their effectiveness in resolving faults. All the approaches allow the

user to fix faults in their BPs by providing a faulty BP with the corresponding test suite. Below we

provide a summary of specific contributions in this dissertation:

1. Efficient G&V (EGV) approach. EGV presents an effective solution for resolving faults

in Business Processes (BPs) by expanding upon the established G&V automated program

repair methodology. To increase efficiency, our approach leverages statistical fault local-

ization and predicate-based switching and slicing to analyze a smaller subgraph of the BP.

Additionally, we enhance the efficiency of fault resolution through static analysis and con-

99

ditional mutant generation. These heuristics significantly reduce the number of mutants that

need to be examined for fixing faults with reasonable accuracy. It also proved more accurate

and efficient than Collaborative Fault Resolution on a subset of faulty BPs. However, EGV,

by design, cannot generate fixes for certain kinds of faults. For instance, the fix cannot be

generated when a branch path or an activity is removed from a BP. This issue is inherent in

mutation-based fault resolution schemes. To address this challenge, the generation process

of candidate fixes must be replaced with pattern or learning-based techniques.

2. We formalize the problem of Collaborative Fault Resolution, which involves resolving faults

in a faulty BP by utilizing information of existing, fault-free BPs that use similar services.

To achieve this, we have developed a heuristic approach that utilizes association analysis

to identify potential transformations that are iteratively applied to address the fault(s) in the

BP while minimizing changes to the original BP. This approach represents a significant im-

provement over current automated program repair methods, as it draws upon the knowledge

of functional BPs rather than solely examining the problematic BP in isolation. CFR is a

huge improvement over the basic G&V approach in the number of generated fix candidates.

It is also capable of targeting more fault categories than EGV because it searches the fixes

from existing fault-free BPs. However, the complete availability of existing BPs may not

always be possible and the existing BPs may also include heterogeneous web services. It

would be interesting to study this approach by relaxing the homogeneity assumption under

a privacy-preserving environment.

3. Experimental Evaluation. In order to assess the effectiveness of our approach, we conducted

a comprehensive experimental evaluation using both synthetic and real data. Synthetic data

was generated by randomly introducing faults, allowing for comprehensive testing of all

possible design time faults. Real data was obtained from a user study in which participants

developed BPs as part of a class exercise, thereby testing the effectiveness of our approach

in resolving faults introduced by actual users. We compared our approach to a baseline

Generate-and-Validate (G&V) automated program repair methodology. The results of our

evaluation demonstrate that our approach can successfully resolve a wider range of faults

100

with high accuracy, outperforming the baseline methodology by a significant margin.

4. Hybrid Approach. We propose a hybrid approach that combines Efficient G&V (EGV) and

collaborative fault resolution (CFR) techniques to improve accuracy. In the hybrid approach,

both CFR and EGV are reinforcing each other. For instance, if a faulty BP is fixable by

either of the approaches, it will be fixed by the hybrid approach. Consequently, it has higher

accuracy than CFR with comparable running time, especially in the case of H1 (H1 invokes

EGV before CFR).

5. We enhance an established framework for automated BP composition and management in

a services cloud environment [16] by incorporating automated fault resolution capabilities.

Furthermore, we validate the potential of this integrated framework by creating a prototype

implementation that facilitates BP composition and automates the resolution of faults.

6.2 Challenges

This dissertation presents a framework for fault resolution in Business Processes. The framework

includes two approaches for fault resolution including EGV and CFR. EGV builds atop basic G&V

and uses fault localization to identify the suspected program elements which are further filtered by

predicate switching and program slicing. After that, the elements in the faulty region are explored

efficiently for generating the candidate fixes. These fixes are validated against the test suite to

verify their correctness. Although EGV improves the efficiency of basic G&V in the number of

generated candidate fixes, it cannot fix certain types of faults. For instance, it cannot recover the

removed activities and paths from a BP because the fix for such faults is not available in the search

space of the faulty BP.

CFR, on the contrary, does not depend upon mutations to fix the faulty BP but it mines the

candidate fixes from a set of existing fault-free BPs. Like EGV, CFR starts the fault resolution

process with fault localization. Afterward, it selects a region around the fault observation point and

compares it with similar regions of the existing BPs. The differences between the faulty and the

existing BPs are analyzed using association rule mining to discover recurring candidate fixes across

101

different existing BPs. Again, the test suite is used to verify the correctness of generated candidate

fixes. Although CFR achieves higher accuracy than EGV, it mandates the complete availability of

existing fault-free and homogeneous BPs. Both heterogeneity and privacy are detrimental to the

functioning of CFR. We also combined CFR and EGV to develop a hybrid approach that combines

the strengths and challenges of both approaches.

Fault resolution approaches proposed in this dissertation consider the functional faults that

occur during the development of a BP orchestration with no regard to deployment and configuration

faults which are commonplace especially when BPs and web services are hosted on distributed

cloud instances. It would be interesting to study how the existing approaches like [63] can be

integrated into our framework for handling development, deployment, and configuration faults.

The integration is expected to be straightforward for the simple scenarios where a BP contains

only faults of one type, that is, it either contains development fault(s) or configuration fault(s).

However, in a complex setup where the BP is failing due to a combination of faults would require

a more sophisticated solution.

We have also created a prototype implementation that allows a user to provide a faulty BP

and test cases for resolving faults. The prototype is integrated with the proposed fault resolution

approaches and fixes the faulty BP using the approach of the user’s choice. Although, it is quite

helpful for users in their debugging efforts however a more user-friendly approach can be taken

by providing the recommendations when the BP is still under development. Such a system would

require the adaptation of proposed approaches to handle partially built BPs. The adaptation is

required at all three levels including fault localization, generation of candidate fixes, and their

verification.

6.3 Future Work

The work presented in this dissertation provides several directions for future research in the area

of BP development and fault resolution. Below we present the future directions of our work.

102

6.3.1 Recommendation System

One natural extension of our research is a recommendation system that aids a BP designer during

the development of a BP. The intended recommendation system is meant to monitor the subject

BP in the development phase and informs the BP designer of the potential faults. For instance, the

system can be integrated into a BP development tool like BP-Com [16] and can provide meaningful

insights to the BP designer. This recommendation system can investigate the resulting BP and

informs the user of potential faults and generate fixes.

The main challenge in realizing such a recommendation system lies in the ability to execute an

under-development BP for fault identification, localization, and candidate fix generation.

6.3.2 Collaborative Resolution of Configuration Faults

Delta Debugging [63] is designed to discover the configuration faults on different copies of the

same service hosted on different cloud instances. It applies a series of deltas (small changes) to the

configurations of a working service instance to discover the minimal set of transitions that cause

the failure.

CFR can be modified to automatically detect and fix configuration faults. Specifically, given

a failed service instance and multiple passing instances of the same service, we can compute the

pairwise differences among their configurations and discover faults by subsequently applying as-

sociation mining to compute fault-covering transformations.

6.3.3 Collaborative Fault Resolution in Heterogeneous Environment

One assumption that we took with Collaborative Fault Resolution (CFR) is homogeneity. That is,

we assume that there is no heterogeneity among the web services used for the composition of BPs.

This assumption, however, limits the number of existing fault-free BPs that can be leveraged for

fault resolution. One logical extension to our work on CFR could be to relax this assumption and

consider fault-free BPs composed using heterogeneous services.

The problem is to identify services that potentially use different nomenclature for their at-

103

tributes and services but essentially provide the same functionality. The problem of heterogeneity

can be addressed by adapting the probabilistic schema matching approach of ASSEMBLE [2].

ASSEMBLE uses attribute, structural, and semantic-based matching between different services

for resolving heterogeneity between the service pairs.

6.3.4 Privacy-preserving Resolution of BP Faults

In CFR, we also assumed that we have complete information of the existing BPs hosted on the

cloud and can be used for pairwise comparison and association rule mining without any privacy

concerns from the organizations that own the BPs. One possible extension to our work could be

to relax this assumption and implement CFR in a privacy-preserving environment. Specifically,

we want to compute the pair-wise differences between the faulty BP and existing BPs when the

owners of existing BPs choose to share only partial information about their BPs.

The privacy concerns can be addressed using secure multi-party computing that allows a public

function to be computed while keeping the individual inputs of the participants private. However,

the application of secure multi-party computing is more challenging in our scenario because we

need pair-wise differences between the faulty BP and each of the existing BPs. Given the faulty

BP and its difference from one of the existing BP, the complete existing BP can be reconstructed

hence violating privacy.

104

Bibliography

[1] G. Huang, X. Liu, Y. Ma, X. Lu, Y. Zhang, and Y. Xiong, “Programming situational mo-

bile web applications with cloud-mobile convergence: An internetware-oriented approach,”

IEEE Transactions on Services Computing, vol. 12, no. 1, pp. 6–19, 2016.

[2] A. Afzal, B. Shafiq, S. Shamail, A. Elahraf, J. Vaidya, and N. R. Adam, “Assemble: At-

tribute, structure and semantics based service mapping approach for collaborative business

process development,” IEEE Transactions on Services Computing, vol. 14, no. 2, pp. 371–

385, 2021.

[3] A. Kurniawan, Learning AWS IoT: Effectively manage connected devices on the AWS cloud

using services such as AWS Greengrass, AWS button, predictive analytics and machine

learning. Packt Publishing Ltd, 2018.

[4] F. Brito e Abreu, J. Cardoso, J. Oliveira, C. Serrão, A. M. Pinto, F. Araujo, R. P. Paiva,

J. Correia, and A. Lopes, “Taverna workflow management system.” https://taverna.

incubator.apache.org/, 2021 (accessed July 25, 2021).

[5] J. Kranjc, R. Orač, V. Podpečan, N. Lavrač, and M. Robnik-Šikonja, “Clowdflows: Online

workflows for distributed big data mining,” Future Generation Computer Systems, vol. 68,

pp. 38–58, 2017.

[6] “Amazon web services (aws) - cloud computing services.” https://aws.amazon.

com/. (Accessed on 05/21/2019).

105

[7] “Bizagi - low-code automation leader.” https://www.bizagi.com/en. (Accessed on

04/29/2023).

[8] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Ws-taxi: A wsdl-based testing tool

for web services,” in 2009 International Conference on Software Testing Verification and

Validation, pp. 326–335, IEEE, 2009.

[9] C.-a. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen, “A metamorphic relation-based

approach to testing web services without oracles,” International Journal of Web Services

Research (IJWSR), vol. 9, no. 1, pp. 51–73, 2012.

[10] H. Wang, X. Chen, Q. Wu, Q. Yu, X. Hu, Z. Zheng, and A. Bouguettaya, “Integrating

reinforcement learning with multi-agent techniques for adaptive service composition,” ACM

Transactions on Autonomous and Adaptive Systems (TAAS), vol. 12, no. 2, p. 8, 2017.

[11] W. Song and H.-A. Jacobsen, “Static and dynamic process change,” IEEE Transactions on

Services Computing, vol. 11, no. 1, pp. 215–231, 2016.

[12] L. Baresi and S. Guinea, “Self-supervising BPEL processes,” IEEE Transactions on Soft-

ware Engineering, vol. 37, no. 2, pp. 247–263, 2011.

[13] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Delta debugging microservice

systems with parallel optimization,” IEEE Transactions on Services Computing, pp. 1–1,

2019.

[14] X. Zhou, X. Peng, T. Xie, J. Sun, W. Li, C. Ji, and D. Ding, “Delta debugging microser-

vice systems,” in 2018 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pp. 802–807, IEEE, 2018.

[15] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo, “Mutation operators for WS-

BPEL 2.0,” in 21th International Conference on Software & Systems Engineering and their

Applications, 2008.

106

[16] A. Afzal, M. A. Zahid, A. Akhtar, B. Shafiq, S. Shamail, A. Elahraf, J. Vaidya, and N. Adam,

“BP-Com: A service mapping tool for rapid development of business processes,” in 2020

IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pp. 1235–

1238, IEEE, 2020.

[17] L. Chen, Y. Pei, M. Pan, T. Zhang, Q. Wang, and C. A. Furia, “Program repair with repeated

learning,” IEEE Transactions on Software Engineering, pp. 1–1, 2022.

[18] T. Xu, L. Chen, Y. Pei, T. Zhang, M. Pan, and C. A. Furia, “Restore: Retrospective fault

localization enhancing automated program repair,” IEEE Transactions on Software Engi-

neering, 2020.

[19] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus,

“Sequencer: Sequence-to-sequence learning for end-to-end program repair,” IEEE Transac-

tions on Software Engineering, vol. 47, no. 9, pp. 1943–1959, 2019.

[20] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware patch generation for

better automated program repair,” in 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE), pp. 1–11, IEEE, 2018.

[21] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault localiza-

tion,” IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707–740, 2016.

[22] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model checking. MIT

press, 2018.

[23] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking programs,” Auto-

mated software engineering, vol. 10, no. 2, pp. 203–232, 2003.

[24] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill, “Cmc: A pragmatic

approach to model checking real code,” ACM SIGOPS Operating Systems Review, vol. 36,

no. SI, pp. 75–88, 2002.

107

[25] F. Tip and T. Dinesh, “A slicing-based approach for locating type errors,” ACM Transactions

on Software Engineering and Methodology (TOSEM), vol. 10, no. 1, pp. 5–55, 2001.

[26] H. Cleve and A. Zeller, “Locating causes of program failures,” in Proceedings of the 27th

international conference on Software engineering, pp. 342–351, ACM, 2005.

[27] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical bug

isolation,” Acm Sigplan Notices, vol. 40, no. 6, pp. 15–26, 2005.

[28] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical model-based bug lo-

calization,” in ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 286–295, ACM,

2005.

[29] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging: A hypothe-

sis testing-based approach,” IEEE Transactions on software engineering, vol. 32, no. 10,

pp. 831–848, 2006.

[30] M. D. Weiser, Program slices: formal, psychological, and practical investigations of an

automatic program abstraction method. University of Michigan, 1979.

[31] M. Weiser, “Program slicing,” IEEE Transactions on software engineering, no. 4, pp. 352–

357, 1984.

[32] R. Lyle, “Automatic program bug location by program slicing,” in Proceedings 2nd interna-

tional conference on computers and applications, pp. 877–883, 1987.

[33] D. Liang and M. J. Harrold, “Equivalence analysis and its application in improving the ef-

ficiency of program slicing,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 11, no. 3, pp. 347–383, 2002.

[34] C. Mateis, M. Stumptner, and F. Wotawa, “Modeling java programs for diagnosis,” in ECAI,

pp. 171–175, 2000.

108

[35] R. Abreu and A. J. Van Gemund, “A low-cost approximate minimal hitting set algorithm

and its application to model-based diagnosis,” in Eighth Symposium on Abstraction, Refor-

mulation, and Approximation, 2009.

[36] G. K. Baah, A. Podgurski, and M. J. Harrold, “The probabilistic program dependence graph

and its application to fault diagnosis,” in Proceedings of the 2008 international symposium

on Software testing and analysis, pp. 189–200, 2008.

[37] W. Mayer, R. Abreu, M. Stumptner, A. J. Van Gemund, et al., “Prioritising model-based

debugging diagnostic reports,” in Proceedings of the 19th International Workshop on Prin-

ciples of Diagnosis, pp. 127–134, Citeseer, 2008.

[38] F. Wotawa, J. Weber, M. Nica, and R. Ceballos, “On the complexity of program debugging

using constraints for modeling the program’s syntax and semantics,” in Conference of the

Spanish Association for Artificial Intelligence, pp. 22–31, Springer, 2009.

[39] F. Wotawa, “Fault localization based on dynamic slicing and hitting-set computation,” in

2010 10th International Conference on Quality Software, pp. 161–170, IEEE, 2010.

[40] Z. A. Al-Khanjari, M. R. Woodward, H. A. Ramadhan, and N. S. Kutti, “The efficiency of

critical slicing in fault localization,” Software Quality Journal, vol. 13, no. 2, pp. 129–153,

2005.

[41] M. A. Alipour and A. Groce, “Extended program invariants: applications in testing and fault

localization,” in Proceedings of the Ninth International Workshop on Dynamic Analysis,

pp. 7–11, 2012.

[42] X. Ju, S. Jiang, X. Chen, X. Wang, Y. Zhang, and H. Cao, “Hsfal: Effective fault localization

using hybrid spectrum of full slices and execution slices,” Journal of Systems and Software,

vol. 90, pp. 3–17, 2014.

[43] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical fault localization,”

Journal of Systems and Software, vol. 89, pp. 51–62, 2014.

109

[44] Y. Wang, H. Patil, C. Pereira, G. Lueck, R. Gupta, and I. Neamtiu, “Drdebug: Deterministic

replay based cyclic debugging with dynamic slicing,” in Proceedings of annual IEEE/ACM

international symposium on code generation and optimization, pp. 98–108, 2014.

[45] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated predicate switching,”

in Proceedings of the 28th international conference on Software engineering, pp. 272–281,

2006.

[46] T. Gyimóthy, A. Beszédes, and I. Forgács, “An efficient relevant slicing method for debug-

ging,” ACM SIGSOFT Software Engineering Notes, vol. 24, no. 6, pp. 303–321, 1999.

[47] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor queries,” in 18th

IEEE International Conference on Automated Software Engineering, 2003. Proceedings.,

pp. 30–39, IEEE, 2003.

[48] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault localization,” in in

Proceedings of ICSE 2001 Workshop on Software Visualization, Citeseer, 2001.

[49] J. Jones and M. Harrold, “Empirical evaluation of the Tarantula automatic fault-localization

technique,” in Proceedings of the 20th IEEE/ACM International Conference on Automated

software Engineering, ASE 2005, pp. 273–282, 01 2005.

[50] V. Debroy, W. E. Wong, X. Xu, and B. Choi, “A grouping-based strategy to improve the

effectiveness of fault localization techniques,” in 2010 10th International Conference on

Quality Software, pp. 13–22, IEEE, 2010.

[51] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of similarity coefficients for

software fault localization,” in 2006 12th Pacific Rim International Symposium on Depend-

able Computing (PRDC’06), pp. 39–46, IEEE, 2006.

[52] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based software diagno-

sis,” ACM Transactions on software engineering and methodology (TOSEM), vol. 20, no. 3,

pp. 1–32, 2011.

110

[53] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for effective software fault

localization,” IEEE Transactions on Reliability, vol. 63, no. 1, pp. 290–308, 2013.

[54] W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localization: A crosstab-based

statistical approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-

cations and Reviews), vol. 42, no. 3, pp. 378–396, 2011.

[55] L. Naish, H. J. Lee, and K. Ramamohanarao, “Statements versus predicates in spectral bug

localization,” in 2010 Asia Pacific Software Engineering Conference, pp. 375–384, IEEE,

2010.

[56] A. Zeller, “Isolating cause-effect chains from computer programs,” ACM SIGSOFT Software

Engineering Notes, vol. 27, no. 6, pp. 1–10, 2002.

[57] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE

Transactions on Software Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[58] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty code using failure-inducing

chops,” in Proceedings of the 20th IEEE/ACM international Conference on Automated soft-

ware engineering, pp. 263–272, 2005.

[59] F. Li, W. Huo, C. Chen, L. Zhong, X. Feng, and Z. Li, “Effective fault localization based

on minimum debugging frontier set,” in Proceedings of the 2013 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), pp. 1–10, IEEE, 2013.

[60] C.-a. Sun, Y. M. Zhai, Y. Shang, and Z. Zhang, “Bpeldebugger: An effective bpel-specific

fault localization framework,” Information and Software Technology, vol. 55, no. 12,

pp. 2140–2153, 2013.

[61] C.-a. Sun, Y. Ran, C. Zheng, H. Liu, D. Towey, and X. Zhang, “Fault localisation for WS-

BPEL programs based on predicate switching and program slicing,” Journal of Systems and

Software, vol. 135, pp. 191–204, 2018.

111

[62] Z. Ye, P. Chen, and G. Yu, “T-rank: A lightweight spectrum based fault localization ap-

proach for microservice systems,” in 2021 IEEE/ACM 21st International Symposium on

Cluster, Cloud and Internet Computing (CCGrid), pp. 416–425, IEEE, 2021.

[63] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Delta debugging microservice

systems with parallel optimization,” IEEE Transactions on Services Computing, 2019.

[64] M. Mathur, Leveraging Distributed Tracing and Container Cloning for Replay Debugging

of Microservices. University of California, Los Angeles, 2020.

[65] F. Schwander, R. Gopinath, and A. Zeller, “Inducing subtle mutations with program repair,”

in 2021 IEEE International Conference on Software Testing, Verification and Validation

Workshops (ICSTW), pp. 25–34, IEEE, 2021.

[66] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues with causal graphs

in micro-service environments,” in International Conference on Service-Oriented Comput-

ing, pp. 3–20, Springer, 2018.

[67] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap: Diagnose your

microservice-based web applications automatically,” in Proceedings of The Web Conference

2020, pp. 246–258, 2020.

[68] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “Latent error pre-

diction and fault localization for microservice applications by learning from system trace

logs,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering, pp. 683–694,

2019.

[69] Y. Küçük, T. A. Henderson, and A. Podgurski, “Improving fault localization by integrating

value and predicate based causal inference techniques,” in 2021 IEEE/ACM 43rd Interna-

tional Conference on Software Engineering (ICSE), pp. 649–660, IEEE, 2021.

112

[70] M. Jia, Z. Cui, Y. Wu, R. Xie, and X. Liu, “Smfl integrating spectrum and mutation for

fault localization,” in 2019 6th International Conference on Dependable Systems and Their

Applications (DSA), pp. 511–512, IEEE, 2020.

[71] M. Wen, Z. Xie, K. Luo, X. Chen, Y. Yang, and H. Jin, “Effective isolation of fault-

correlated variables via statistical and mutation analysis,” IEEE Transactions on Software

Engineering, 2022.

[72] M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid, “An empirical study

of boosting spectrum-based fault localization via pagerank,” IEEE Transactions on Software

Engineering, vol. 47, no. 6, pp. 1089–1113, 2019.

[73] Q. I. Sarhan and Á. Beszédes, “Effective spectrum based fault localization using contextual

based importance weight,” in International Conference on the Quality of Information and

Communications Technology, pp. 93–107, Springer, 2022.

[74] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-based

fault localization,” in Testing: Academic and industrial conference practice and research

techniques-MUTATION (TAICPART-MUTATION 2007), pp. 89–98, IEEE, 2007.

[75] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault localization,” Software

Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[76] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating faulty programs for

fault localization,” in 2014 IEEE Seventh International Conference on Software Testing,

Verification and Validation, pp. 153–162, IEEE, 2014.

[77] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting template-based auto-

mated program repair,” in Proceedings of the 28th ACM SIGSOFT International Symposium

on Software Testing and Analysis, pp. 31–42, 2019.

[78] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon, “You cannot fix

what you cannot find! an investigation of fault localization bias in benchmarking automated

113

program repair systems,” in 2019 12th IEEE conference on software testing, validation and

verification (ICST), pp. 102–113, IEEE, 2019.

[79] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic programming approach to

automated software repair,” in Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pp. 947–954, 2009.

[80] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches using

genetic programming,” in 2009 IEEE 31st International Conference on Software Engineer-

ing, pp. 364–374, IEEE, 2009.

[81] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic program repair with evo-

lutionary computation,” Communications of the ACM, vol. 53, no. 5, pp. 109–116, 2010.

[82] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic software bug fixing,”

in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computa-

tional Intelligence), pp. 162–168, IEEE, 2008.

[83] A. Arcuri, “Evolutionary repair of faulty software,” Applied soft computing, vol. 11, no. 4,

pp. 3494–3514, 2011.

[84] V. Debroy and W. E. Wong, “Using mutation to automatically suggest fixes for faulty pro-

grams,” in 2010 Third International Conference on Software Testing, Verification and Vali-

dation, pp. 65–74, IEEE, 2010.

[85] M. Nica, S. Nica, and F. Wotawa, “On the use of mutations and testing for debugging,”

Software: practice and experience, vol. 43, no. 9, pp. 1121–1142, 2013.

[86] C. Kern and J. Esparza, “Automatic error correction of java programs,” in International

Workshop on Formal Methods for Industrial Critical Systems, pp. 67–81, Springer, 2010.

[87] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program repair via

semantic analysis,” in 2013 35th International Conference on Software Engineering (ICSE),

pp. 772–781, IEEE, 2013.

114

[88] S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic debugging,” in Proceedings of

the 33rd International Conference on Software Engineering, pp. 121–130, 2011.

[89] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch syn-

thesis via symbolic analysis,” in Proceedings of the 38th international conference on soft-

ware engineering, pp. 691–701, 2016.

[90] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus, “Automatic repair of buggy if condi-

tions and missing preconditions with smt,” in Proceedings of the 6th international workshop

on constraints in software testing, verification, and analysis, pp. 30–39, 2014.

[91] S. R. L. Marcote and M. Monperrus, “Automatic repair of infinite loops,” arXiv preprint

arXiv:1504.05078, 2015.

[92] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence for adaptive pro-

gram repair: Models and first results,” in 2013 28th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pp. 356–366, IEEE, 2013.

[93] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without the contracts,”

in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering

(ASE), pp. 637–647, IEEE, 2017.

[94] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program repair with on-

demand candidate generation,” in Proceedings of the 40th International Conference on Soft-

ware Engineering, pp. 12–23, 2018.

[95] M. Martinez and M. Monperrus, “Astor: Exploring the design space of generate-and-

validate program repair beyond GenProg,” Journal of Systems and Software, vol. 151,

pp. 65–80, 2019.

[96] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu, J. Klein, X. Mao, and

Y. L. Traon, “On the efficiency of test suite based program repair: A systematic assessment

115

of 16 automated repair systems for java programs,” in Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, pp. 615–627, 2020.

[97] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A comprehensive study of automatic

program repair on the quixbugs benchmark,” Journal of Systems and Software, vol. 171,

p. 110825, 2021.

[98] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from human-

written patches,” in 2013 35th International Conference on Software Engineering (ICSE),

pp. 802–811, IEEE, 2013.

[99] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software regressions,” in 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 471–

482, IEEE, 2015.

[100] F. Logozzo and T. Ball, “Modular and verified automatic program repair,” ACM SIGPLAN

Notices, vol. 47, no. 10, pp. 133–146, 2012.

[101] F. Logozzo and M. Martel, “Automatic repair of overflowing expressions with abstract in-

terpretation,” arXiv preprint arXiv:1309.5148, 2013.

[102] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie, and H. Mei, “Safe memory-

leak fixing for c programs,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 1, pp. 459–470, IEEE, 2015.

[103] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c language errors

by deep learning,” in Thirty-First AAAI conference on artificial intelligence, 2017.

[104] P. Muntean, V. Kommanapalli, A. Ibing, and C. Eckert, “Automated generation of buffer

overflow quick fixes using symbolic execution and smt,” in International Conference on

Computer Safety, Reliability, and Security, pp. 441–456, Springer, 2014.

116

[105] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus, and Y. Le Traon,

“Fixminer: Mining relevant fix patterns for automated program repair,” Empirical Software

Engineering, vol. 25, no. 3, pp. 1980–2024, 2020.

[106] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut: combining context-

aware neural translation models using ensemble for program repair,” in Proceedings of the

29th ACM SIGSOFT international symposium on software testing and analysis, pp. 101–

114, 2020.

[107] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation learning for

automated program repair,” in Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering, pp. 602–614, 2020.

[108] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine translation for au-

tomatic program repair,” in 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), pp. 1161–1173, IEEE, 2021.

[109] M. Namavar, N. Nashid, and A. Mesbah, “A controlled experiment of different code rep-

resentations for learning-based program repair,” Empirical Software Engineering, vol. 27,

no. 7, pp. 1–39, 2022.

[110] B. Lin, S. Wang, M. Wen, and X. Mao, “Context-aware code change embedding for better

patch correctness assessment,” ACM Transactions on Software Engineering and Methodol-

ogy (TOSEM), vol. 31, no. 3, pp. 1–29, 2022.

[111] H. Tian, Y. Li, W. Pian, A. K. Kabore, K. Liu, A. Habib, J. Klein, and T. F. Bissyandé, “Pre-

dicting patch correctness based on the similarity of failing test cases,” ACM Transactions on

Software Engineering and Methodology, 2022.

[112] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch correctness in

test-based program repair,” in Proceedings of the 40th international conference on software

engineering, pp. 789–799, 2018.

117

[113] D. Yang, Y. Lei, X. Mao, Y. Qi, and X. Yi, “Seeing the whole elephant: Systematically

understanding and uncovering evaluation biases in automated program repair,” ACM Trans-

actions on Software Engineering and Methodology, 2022.

[114] S. Benton, Y. Xie, L. Lu, M. Zhang, X. Li, and L. Zhang, “Towards boosting patch execution

on-the-fly,” in Proceedings of the 44th International Conference on Software Engineering,

pp. 2165–2176, 2022.

[115] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” ACM SIG-

SOFT Software Engineering Notes, vol. 30, no. 5, pp. 263–272, 2005.

[116] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening soa testing,” in Pro-

ceedings of the the 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering, pp. 161–170,

ACM, 2009.

[117] X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, “Ontology-based test modeling and partition testing

of web services,” in 2008 IEEE International Conference on Web Services, pp. 465–472,

IEEE, 2008.

[118] C. Lenz, J. Chimiak-Opoka, and R. Breu, “Model driven testing of soa-based software,”

in Proceedings of the Workshop on Software Engineering Methods for Service-Oriented

Architecture (SEMSOA2007), pp. 99–110, Citeseer, 2007.

[119] H. Zhu and Y. Zhang, “Collaborative testing of web services,” IEEE Transactions on Ser-

vices Computing, vol. 5, no. 1, pp. 116–130, 2012.

[120] A. Barros, C. Ouyang, and F. Wei, “Static analysis for improved modularity of procedural

web application programming interfaces,” IEEE Access, vol. 8, pp. 128182–128199, 2020.

[121] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Restest: Black-box constraint-based

testing of restful web apis,” in International Conference on Service-Oriented Computing,

pp. 459–475, Springer, 2020.

118

[122] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: automated black-box testing of

restful apis,” in 2020 IEEE 13th International Conference on Software Testing, Validation

and Verification (ICST), pp. 142–152, IEEE, 2020.

[123] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-Cortes, “Arte: Au-

tomated generation of realistic test inputs for web apis,” IEEE Transactions on Software

Engineering, vol. 49, no. 1, pp. 348–363, 2022.

[124] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verification in service-oriented archi-

tecture: a survey,” Software Testing, Verification and Reliability, vol. 23, no. 4, pp. 261–313,

2013.

[125] A. Tarhini, H. Fouchal, and N. Mansour, “A simple approach for testing web service

based applications,” in International Workshop on Innovative Internet Community Systems,

pp. 134–146, Springer, 2005.

[126] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software quality

and reducing risk. Pearson Education, 2007.

[127] H. Y. Huang, H. H. Liu, Z. J. Li, and J. Zhu, “Surrogate: A simulation apparatus for contin-

uous integration testing in service oriented architecture,” in 2008 IEEE International Con-

ference on Services Computing, vol. 2, pp. 223–230, IEEE, 2008.

[128] H. Liu, Z. Li, J. Zhu, H. Tan, and H. Huang, “A unified test framework for continuous inte-

gration testing of soa solutions,” in 2009 IEEE International Conference on Web Services,

pp. 880–887, IEEE, 2009.

[129] L. Peyton, B. Stepien, and P. Seguin, “Integration testing of composite applications,” in Pro-

ceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS

2008), pp. 96–96, IEEE, 2008.

[130] C.-a. Sun, Y. Zhao, L. Pan, H. Liu, and T. Y. Chen, “Automated testing of ws-bpel service

compositions: a scenario-oriented approach,” IEEE Transactions on Services Computing,

vol. 11, no. 4, pp. 616–629, 2015.

119

[131] L. Leal, L. Montecchi, A. Ceccarelli, and E. Martins, “Exploiting mde for platform-

independent testing of service orchestrations,” in 2019 15th European Dependable Com-

puting Conference (EDCC), pp. 149–152, IEEE, 2019.

[132] W. Bousanoh and T. Suwannasart, “Test case generation for ws-bpel from a static call

graph,” in Journal of Physics: Conference Series, vol. 1195, p. 012004, IOP Publishing,

2019.

[133] P. Nakngern and T. Suwannasart, “A design of ws-bpel test case generation tool based on

path conditions,” in International MultiConference of Engineers and Computer Scientists,

2017.

[134] E. Shamsoddin-Motlagh, “Automatic test case generation for orchestration languages at ser-

vice oriented architecture,” International Journal of Computer Applications, vol. 80, no. 7,

2013.

[135] L. Leal, A. Ceccarelli, and E. Martins, “The samba approach for self-adaptive model-based

online testing of services orchestrations,” in 2019 IEEE 43rd Annual Computer Software

and Applications Conference (COMPSAC), vol. 1, pp. 495–500, IEEE, 2019.

[136] A. Arcuri, “RESTful API automated test case generation with EvoMaster,” ACM Transac-

tions on Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp. 1–37, 2019.

[137] M. Zhang, B. Marculescu, and A. Arcuri, “Resource-based test case generation for rest-

ful web services,” in Proceedings of the genetic and evolutionary computation conference,

pp. 1426–1434, 2019.

[138] Y. Hammal, K. S. Mansour, A. Abdelli, and L. Mokdad, “Formal techniques for consistency

checking of orchestrations of semantic web services,” Journal of Computational Science,

vol. 44, p. 101165, 2020.

[139] A. Arcuri and J. P. Galeotti, “Handling sql databases in automated system test generation,”

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 29, no. 4,

pp. 1–31, 2020.

120

[140] E. de Jager and S. de Gouw, “Hybrid analysis of bpel models with grammars.,” in SOFSEM

(Doctoral Student Research Forum), pp. 73–84, 2020.

[141] L. Leal, L. Montecchi, A. Ceccarelli, and E. Martins, “Using metamodels to improve model-

based testing of service orchestrations,” in 2020 IEEE 25th Pacific Rim International Sym-

posium on Dependable Computing (PRDC), pp. 130–139, IEEE, 2020.

[142] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for regression

testing,” IEEE Transactions on software engineering, vol. 27, no. 10, pp. 929–948, 2001.

[143] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu, “Test case prioritization for web service re-

gression testing,” in 2010 Fifth IEEE International Symposium on Service Oriented System

Engineering, pp. 173–178, IEEE, 2010.

[144] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun, “Quota-constrained test-case prioritization for

regression testing of service-centric systems,” in 2008 IEEE International Conference on

Software Maintenance, pp. 257–266, IEEE, 2008.

[145] L. Mei, W. K. Chan, T. Tse, and R. G. Merkel, “Xml-manipulating test case prioritization for

xml-manipulating services,” Journal of Systems and Software, vol. 84, no. 4, pp. 603–619,

2011.

[146] C. D. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritization for audit testing of

evolving web services using information retrieval techniques,” in 2011 IEEE International

Conference on Web Services, pp. 636–643, IEEE, 2011.

[147] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a

survey,” Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[148] L. Mei, W. K. Chan, T. Tse, B. Jiang, and K. Zhai, “Preemptive regression testingof

workflow-based web services,” IEEE Transactions on Services Computing, vol. 8, no. 5,

pp. 740–754, 2014.

121

[149] S. Ji, B. Li, and P. Zhang, “Test case selection for all-uses criterion-based regression testing

of composite service,” IEEE Access, vol. 7, pp. 174438–174464, 2019.

[150] P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential regression testing for rest apis,”

in Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing

and Analysis, pp. 312–323, 2020.

[151] L. Chen, J. Wu, H. Yang, and K. Zhang, “Does pagerank apply to service ranking in mi-

croservice regression testing?,” Software Quality Journal, vol. 30, no. 3, pp. 757–779, 2022.

[152] C.-a. Sun, M. Li, J. Jia, and J. Han, “Constraint-based model-driven testing of web services

for behavior conformance,” in International Conference on Service-Oriented Computing,

pp. 543–559, Springer, 2018.

[153] N. Gupta, V. Yadav, and M. Singh, “Automated regression test case generation for web

application: A survey,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–25, 2018.

[154] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical study of fault lo-

calization families and their combinations,” IEEE Transactions on Software Engineering,

2019.

[155] E. Rahm, “Towards large-scale schema and ontology matching,” in Schema matching and

mapping, pp. 3–27, Springer, 2011.

[156] R. Shraga, A. Gal, and H. Roitman, “Adnev: Cross-domain schema matching using deep

similarity matrix adjustment and evaluation,” Proceedings of the VLDB Endowment, vol. 13,

no. 9, pp. 1401–1415, 2020.

[157] M. A. Zahid, B. Shafiq, J. Vaidya, A. Afzal, and S. Shamail, “Collaborative business process

fault resolution in the services cloud,” IEEE Transactions on Services Computing, pp. 1–1,

2021.

[158] “The world’s most popular api testing tool — soapui.” https://www.soapui.org/.

(Accessed on 11/18/2021).

122

[159] O. Moser, F. Rosenberg, and S. Dustdar, “Viedame-flexible and robust bpel processes

through monitoring and adaptation,” in Companion of the 30th International Conference

on Software Engineering, pp. 917–918, ACM, 2008.

123

