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Abstract

In this thesis, we present results for two problems related to graphs.

Network Immunization Immunizing a subset of nodes in a network - enabling them to identify

and withstand the spread of harmful content - is one of the most effective ways to counter the

spread of malicious content. It has applications in network security, public health policy, and50

social media surveillance. Finding a subset of nodes whose immunization results in the least

vulnerability of the network is a computationally challenging task. In this work, we establish a

relationship between a widely used network vulnerability measure and the combinatorial properties

of networks. Using this relationship and graph summarization techniques, we propose an efficient

approximation algorithm to find a set of nodes to immunize. We provide theoretical justifications55

for the proposed solution and analytical bounds on the runtime of our algorithm. We empirically

demonstrate on various real-world networks that the performance of our algorithm is an order of

magnitude better than the state-of-the-art solution. We also show that in practice the runtime of

our algorithm is significantly lower than that of the best-known solution.

Graph Summarization Massive sizes of real-world graphs, such as social networks and web60

graphs, impose serious challenges to process and perform analytics on them. These issues can be

resolved by working on a small summary of the graph instead. A summary is a compressed version

of the graph that removes several details, yet preserves its essential structure. Generally, some

predefined quality measure of the summary is optimized to bound the approximation error incurred

by working on the summary instead of the whole graph. All known summarization algorithms are65

computationally prohibitive and do not scale to large graphs. In this paper, we present an efficient

randomized algorithm to compute graph summaries with the goal to minimize reconstruction error.

We propose a novel weighted sampling scheme to sample vertices for merging that will result in

the least reconstruction error. We provide analytical bounds on the running time of the algorithm



and prove an approximation guarantee for our score computation. The efficiency of our algorithm70

makes it scalable to very large graphs on which known algorithms cannot be applied. We test

our algorithm on several real-world graphs to empirically demonstrate the quality of summaries

produced and compare to the state-of-the-art algorithms. We use the summaries to answer several

structural queries about the original graph and report their accuracies.
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Chapter 1

Introduction245

In recent years, a massive amount of data is being generated in various fields such as online social

media, e-commerce, the internet, embedded systems and geo-positioning. The well-known sources

of data include social media platforms of Facebook, Twitter and Instagram, online retail stores such

as Amazon and e-Bay, web search engines like Google and Bing, the Internet of Things (IoT) and

sensor devices installed in complicated machines, and Global Positioning System devices which250

record location co-ordinates. The generation rate of data from the above-mentioned sources is

great and it is estimated that 90% of the total generated data is produced in almost the last couple

of years1. This huge amount of data is processed and analyzed to get meaningful insights and make

data-driven decisions that are profitable and efficient. These decisions are mostly related to risk

assessment, cost-cutting and demand prediction.255

A lot of data generated from the above-mentioned sources consists of interactions among par-

ticipating entities. The common examples of pairwise interactions among entities include friend-

ships and connections among users in online social media platforms, pairs of items co-purchased

in retail stores, cross-links among different web pages on the internet, communication and infor-

mation sharing among sensor devices and control machines and the movement of a device from260

one location to another. The interactions among entities are normally represented as graphs [1]. A

graph consists of nodes and edges in which the objects are represented as nodes and an edge be-

1IBM report of 2012 on big data, Forbes 2019
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tween two nodes shows an interaction between the corresponding nodes. Representation of data as

graphs has been successfully used in diverse domains like data mining, medical sciences, operating

systems and road mapping.265

In pairwise interactions, nodes normally exchange information with each other. The nature of

communication and information shared varies depending upon the type of interactions and nodes.

Common examples are sharing of opinions with friends in a social network, the exchange of greet-

ing messages in a human interaction, the delegation of tasks from a server machine to a client

machine in a data center, sharing of news content in an online social network and the transfer of270

sensor values form sensor devices to control units.

However, in information sharing, there is a chance of the spread of malicious information

among the participating nodes. A node can deliberately or unintentionally pass irrelevant or harm-

ful information to others. For example in a human network, a person can be a source of the spread

of a disease, in a data center a compute machine can respond by sending a malfunctioning code that275

can affect the performance of the whole data center, in an online social media network, a user can

start sharing wrong information in the form of fake news and in an Internet of Things ecosystem

some sensor devices can report inappropriate or invalid sensor values.

The spread of irrelevant and malicious content can degrade the usability capacity and perfor-

mance of a given network. In order to protect the network, there is a need of countering the possible280

spread of malicious content in the network. An effective way to safeguard a network against the

spread of malicious content is to empower the nodes. Empowering nodes accounts to giving extra

capabilities to a node such that the node acts as a shield against malicious content. The strength-

ening process may amount to vaccinating people, deploying surveillance systems at junctures and

installing anti-virus software on computers depending on the underlying network. The nodes with285

these added capabilities will be referred to as the immunized nodes and the malicious content, as

the virus. Effectively, when a node is immunized, it will neither get contaminated nor will it pass

the contaminant to other nodes.

In addition to the threat of the spread of malicious content in a graph, the large sizes of massive

graphs pose another challenge in processing and performing analytics on them. For example,290
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popular social media networks consist of billions of nodes and billions of edges [1]. Facebook

graph consists of around 3 billion nodes and has 2 billion active users, Instagram has nearly 1

billion active users, the webgraph consists of links between billions of web pages of the world

wide web and on Twitter, around 500 million tweets are shared daily by its active users. These huge

graphs have a huge storage cost and the conventional methods fail to scale to such large graphs.295

In order to perform analytics on large graphs, one of the practical alternatives is to compress such

large graphs into a summary graph [2,3]. A summary graph is a condensed/compressed version of

the original graph that retains the essential structural properties of the original graph. The summary

graph is small enough to fit in the main memory and the data analytics can be easily performed on

the summary graph. Based on the analytics applied to the summary graph, the structural properties300

of the original graph can be estimated efficiently. However, in constructing a summary graph, it is

essential to build such a summary that is a compressed replica of the original graph and the original

graph can be closely reconstructed from the summary. In addition to this, the queries regarding the

structure of the original graph should be efficiently answered using the summary only.

The rest of the chapter is organized as follows. In the coming two sections, we briefly define305

network immunization and graph summarization problems, respectively. Then, we enlist the re-

search objectives of our work and the challenges related to the two problems. In section 1.5, we

highlight our main contributions and section 1.6 presents the achievements of our work.

1.1 Network Immunization Problem

The problem of identifying and immunizing a subset of nodes of a given size in a network, which310

results in the minimal spread of malicious content in the network is known as Network Immu-

nization Problem [4]. In the literature, it is well established that the absolute value of the largest

eigenvalue of the adjacency matrix of a graph, λmax, quantifies the vulnerability (the susceptibil-

ity to an external attack) of the graph [5, 6]. The goal of the network immunization problem is

to select that subset of nodes for immunization which renders the graph least susceptible to virus315

attack. Network immunization problem is an NP-complete problem [5] as network immunization

problem reduces from minimum vertex cover problem. The network immunization problem can

3



be formally stated as follows:

Problem 1. Given an undirected graph G = (V,E), where V and E represent the set of nodes and

edges in G respectively, and an integer k < |V |, find a subset S of k nodes such that immunizing320

nodes in S, renders G the least ‘vulnerable’ to a virus attack over all choices of S.

Immunization

Original Graph Immunized Graph

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Figure 1.1: A toy example of immunization on a graph with 9 nodes and its immunized version is
shown. In this particular case, we have a budget to immunize two nodes and a node set {4, 5} is
selected for immunization. The immunized nodes will neither receive nor pass on the malicious
content to other nodes and the immunization of a subset of nodes is analogous to the removal of
those nodes from the graph.

1.2 Graph Summarization Problem

The problem of compressing a given graph into a summary graph having fewer nodes such that the

original graph can be closely reconstructed from the summary graph is known as Graph Summa-

rization Problem [7]. In literature, the difference between the element-wise entries of the adjacency325

matrices of the original graph and the graph reconstructed from the summary graph is known as

reconstruction error and is used as a goodness measure of the summary [7]. In addition to this,

accuracy in query answers related to the original graph structure based on the summary graph only

is also used as the quality measure of a particular summary. The goal of the graph summarization

problem is to make a summary that retains structural properties and is a close replica of the original330

graph. The graph summarization problem can be formally stated as follows:

Problem 2. Given an undirected graph G = (V,E), where V and E represent the set of nodes

and edges in G and an integer k < |V |, find a summary S for G with k super nodes such that the

reconstruction error of the graph reconstructed using S is minimized.

4



Original Graph Summary Graph

Summarization

2
3 4

5 687

9

1

{3, 4, 5, 6}
{1, 2}

{7, 8, 9}

Figure 1.2: (Left) A graph having 9 vertices and its one of the possible summaries (right) on three
nodes is shown.

1.3 Research Objectives335

In this thesis, we have the following research objectives:

1. For the network immunization problem, we aim to develop a technique to select that subset

of nodes for immunization whose removal results in the maximum reduction in the vulner-

ability, λmax, of the graph. The maximum reduction in λmax will result in the minimum

spread of malicious content in the graph340

2. The technique for network immunization should be scalable and efficient that can be applied

to large graphs having millions of nodes

3. For the graph summarization problem, we aim to build a summary graph of a large graph

such that the original graph can be closely reconstructed from the summary graph. The

summary graph should also be able to accurately answer the queries related to the structure345

of the original graph

4. The last research objective is that the summarization algorithm is scalable and efficient so

that can be applied to large graphs on which the summarization is mostly desired
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1.4 Challenges

As already mentioned, graphs with millions of nodes and billions of edges are common in the350

domain of big data and the large sizes of these graphs pose computational as well as storage

challenges to apply analytics on them. The main challenges of our research problems are listed

below:

1. For a graph having n nodes in which we want to immunize k nodes, the brute force solution

will explore
(
n
k

)
subsets to find the best subset of k nodes which results in maximum reduc-355

tion in λmax. For example, for a graph having 1000 nodes and 10, 000 edges, and if it takes

0.00001 second to compute the reduction in λmax by immunizing a subset of 10 nodes, it

will take ~3 billion years to select the best subset of 10 nodes for immunization. This shows

that finding a subset of k nodes for immunization is a challenging task

2. A common approach of graph summarization is to iteratively merge a pair of nodes in the360

original graph to make a summary graph [7, 8]. Let at an iteration t, for a graph having

n(t) nodes, there are
(
n(t)
2

)
possible choices of pair for merging. Selecting the best pair of

nodes in each iteration that results in a minimum increase in reconstruction error is therefore

a challenging task. Moreover, the computation of error incurred after merging a pair is also

computationally expensive as it amounts to the comparison of each entry of the adjacency365

matrix of the original and reconstructed graph which amounts to O(n2) work

1.5 Our Contribution

Our main contribution to network immunization and graph summarization problems are briefly

described below:

1.5.1 Network Immunization Problem370

Our solution to the network immunization problem is based upon the number of closed walks

passing through each node in the graph. A walk is a sequence of edges in the graph and the
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number of edges in the walk is called the length of the walk. A closed walk is a walk that starts

and ends at the same node. Figure 1.3 shows a walk of length 4 and closed walks of length 4 and

8 in a graph having 8 nodes. Using the facts from linear algebra, we establish that the number of375

closed walks passing through a node correlates with the node’s contribution to the vulnerability

(λmax) of the graph. We define a score function based on the number of closed walks passing

through a node and in our series of work, we consider closed walks of length 4, 6 and 8 for the

selection of nodes for immunization. Let A be the adjacency matrix of the graph and Ap represents

the pth power of A, where p is a positive integer, the entry (i.j) of Ap shows the count of walks of380

length p from node i to node j. Similarly, the diagonal entries of Ap represent the count of closed

walks of length p for respective nodes. Note that the sum of diagonal entries of a matrix, called the

trace of the matrix, is equal to the sum of eigenvalues of the matrix. We use the relation that for

higher values of p, the trace of Ap becomes approximately equal to λmax of Ap [9]. This implies

that minimizing the trace of Ap will result in the reduction of λmax of the graph. We minimize385

the trace of Ap by deleting those nodes from the graph through which the maximum number of

closed walks pass and this results in the reduction of λmax of the graph. We devise three techniques

named Walk-p, p ∈ {4, 6, 8} for the selection and immunization of nodes.

2

3

4

5

6

1

(a) Graph
(b) Walk of length 4

{1,3,4,5,6}
(c) Closed walk of length 4

{1, 3, 4, 2, 1}
(d) Closed walk of length 8
{1, 3, 5, 6, 4, 3, 2, 4, 1}

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

Figure 1.3: (a) A graph having 6 nodes is shown. A walk of length 4 on the graph is represented
through bold edges in (b). Closed walks of length 4 and 8, where starting and ending nodes of the
walks are the same are shown in (c) and (d), respectively.

Walk-4

In our first approach of Walk-4, we select nodes for immunization based on the number of closed390

walks of length 4 passing through them. We derive an expression that estimates the number of

walks of length 4 passing through each node and use this count as a score of nodes. We devise an
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approximate algorithm that iteratively selects a set S of k nodes for immunization. We compare our

technique with the approach in which the maximum degree node is immunized in each iteration and

the state-of-the-art approach, NETSHIELD [5]. Experimental results show that Walk-4 achieves395

significant quality gain (up to 20% more reduction in the vulnerability of the graph) over the

competitor approaches.

Walk-6

We devise a score function that selects nodes for immunization based on the closed walks of length

6. The score function quantifies the contribution of nodes in λmax of the graph. Moreover, we400

derive a closed-form formula to compute the number of walks of length 6 passing through a node.

Note that for large graphs, computing the number of walks of length 6 passing through each node

is also a computationally expensive task. To make our approach scalable and efficient, we give an

approximate method that closely estimates the number of walks of length 6 passing through a node.

To evaluate the goodness of our technique, we evaluate our solution on several real-world graphs.405

Results show that our approach maximally reduces the virus spread and λmax of the immunized

graph. Moreover, our algorithm is scalable on large graphs and has a lower runtime based on the

used approximation parameters.

Walk-8

We extend the score function based on the number of closed walks of length 8 for sets of nodes410

that quantify the importance of sets to reduce the graph vulnerability. This score function is mono-

tonically non-decreasing and sub-modular which enables to greedily construct a set with improved

approximation quality. We derive a closed-form formula to compute the number of walks of length

8 passing through a node that may be of independent interest. We also give an approximate method

that closely estimates the number of walks of length 8 passing through a node. We evaluate the415

quality of our solution on several real-world graphs. We show that our approximate method is a

close estimate of the exact solution. Results show that our approach maximally reduces the virus

spread (the fraction of infected nodes) and the vulnerability (the largest eigenvalue) of the immu-
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nized graph. Moreover, our algorithm is scalable on large graphs and has a lower runtime based on

the approximation parameters used. Comparisons also demonstrate that our approach outperforms420

the state-of-the-art methods both in terms of quality and runtime.

number of closed walks of length p
starting and ending at node i

A =

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

aii aij...

· · ·

...

· · ·

· · · · · ·

· · · · · ·

...
Ap =

z11

z21

zn1

z12

z22

zn2

z1n

z2n

znn

zii zij...

· · ·

...

· · ·

· · · · · ·

· · · · · ·

...

Figure 1.4: (left) Adjacency matrix A is shown in which an entry aij = 1 if there is an edge
between node i and j else aij = 0. (Right) An entry zij in Ap represents the number of walks of
length p from node i to j. Similarly, zii in Ap is the count of closed walks of length p starting and
ending at node i.

1.5.2 Graph Summarization

In graph summarization, the goal is to construct a summary graph such that the original graph can

be closely reconstructed using the summary graph. We aim to minimize the reconstruction error

(the element-wise difference between the adjacency matrices of the original and reconstructed425

graph). We devise a solution that iteratively builds the summary graph in an agglomerative fashion.

In each iteration, we merge that pair of nodes from a logarithmic-sized sample of nodes such that

there is a minimum increase in the reconstruction error. For each pair of nodes in the sample, we

define a score that quantifies the error introduced by merging that pair. The score is efficiently

approximated using a closed-form expression to compute the error introduced after merging the430

pair and by storing extra information at nodes. Moreover, each node is assigned a weight that

estimates the contribution of the node in the score of pairs of nodes containing it. The logarithmic-

sized sample of nodes for merging is selected based on node weights and is of better quality (based

on reconstruction error and accuracy in query answers) as compared to a random sample of linear
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size. Based on the above-mentioned steps, our algorithm builds a summary efficiently that is of435

better quality as compared to the competitor techniques, GRASS [7] and S2L [10]. Using our

solution, the original graph can be reconstructed from the summary graph with minimum error and

the queries related to graph structure can be accurately answered using the summary graph only.

1.6 Our Achievements

The main achievements of our work are briefly listed as follows:440

1. Our proposed solution of network immunization is of better quality as compared to the state-

of-the-art solution, NETSHIELD [5]. We evaluate the quality of our method based on two

measures. First, we report the eigen drop percentage which shows the reduction in the vul-

nerability λmax of the immunized graph. We achieve upto 30% higher eigen drop percentage

as compared to the competitor method. Secondly, we report the rate of infection spread in445

a graph immunized by our approach and the state-of-the-art method. Results show that the

graph immunized by our method has up to 20% fewer infected nodes as compared to that of

the competitor method. A higher eigendrop percentage justifies the minimum spread of the

virus in the immunized graph

2. Our method of network immunization is more efficient than the competitor method, NET-450

SHIELD. We compare the runtime (in seconds) of both the methods which shows that our

approach is fast as compared to the competitor method and achieves high eigendrop in rela-

tively less time

3. Our approach to make summary graph of a given graph is of better quality as compared to

the competitor methods, GRASS [7] and S2L [10]. We measure the quality of the summary455

graph based on reconstruction error and error in the accuracy of query answers related to

graph structure based on the summary only

4. Our summarization algorithm is more scalable and efficient as compared to GRASS, which

only works for moderate graphs with a few hundred nodes and can not be applied to large
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graphs on which our method takes a few hundred seconds to compute the summary460

1.7 Thesis Organization

The thesis is organized as follows. In chapter 2, we give background and literature of two problems:

network immunization and graph summarization. In chapter 3, we describe our initial work on the

network immunization problem in which we solved the problem by incorporating the closed walks

of length 4. In chapter 4, the problem of network immunization is discussed with reference to465

walks of length 6 and the approximate method to count those walks. We give our final contribution

to the immunization problem by extending our approach to walks of length 8 in chapter 5. After

that, in chapter 6 we describe our contribution to the graph summarization problem and we give

the conclusion and our future work in chapter 7.
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Chapter 2470

Background and Literature Review

In this chapter, we describe the related work of the two problems mentioned in Chapter 1. First,

we discuss the background of network immunization problem, then we discuss the related work of

graph summarization problem.

2.1 Network Immunization475

Information spread in networks is widely studied in epidemiology, sociology and information sci-

ences. In the literature, there are two main models of information spread [11] across the graphs

which are i) independent cascade and ii) linear threshold model. In the independent cascade

model, each node u gets exactly one chance to propagate the information to its neighbors. The

node u can pass the information to its neighbor with a given probability p. In the linear threshold480

model, each node has some activation probability and a node will pass information to its neigh-

bors if its activation probability is greater than a given threshold value. Researchers are usually

interested in estimating the extent to which a contagion will affect the population, predicting the

timeline of infection and methods for containing or limiting the effect. The spreading process is

studied on a network: agents are represented by nodes and the potential spread of information485

between a pair of agents is modeled by the presence of an edge between the corresponding pair

of nodes. Information spread has also been discussed in the context of structural virality [12],
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which is the average distance between all pairs of nodes in a diffusion tree T. They have also dis-

cussed two modes of information spread. In the broadcast spread, one node spreads information

to a large number of the population while in viral propagation, a hierarchy of nodes progressively490

shares information with a small subset of nodes. In the literature, there are three common virus

spread models [13]: i) Susceptible-Infected (SI) model in which a susceptible node can be infected

from a virus with some defined probability. Once a node becomes infected, it can not recover and

will remain infected afterwards. ii) Susceptible-Infected-Susceptible (SIS) model assumes that a

healthy node can receive the infection. However, after some time the infected node can cure from495

the infection with some probability and will again become susceptible. iii) Susceptible-Infected-

Recovered (SIR) model in which a susceptible node can be infected by virus. However, after some

time the infected node can be recovered from the infection. A node, once recovered, will neither

get infection again nor transmit the infection.

Popular models assume the knowledge of an infection rate β (the rate at which an individ-500

ual/agent accepts content from its neighbors) and a rate of recovery δ (the rate at which an in-

dividual/agent loses content) [6]. A relation between the spread rate of the virus and the largest

eigenvalue of adjacency matrix A of the graph, λmax(A), was established in [6, 14]. The higher

the largest eigenvalue, the more vulnerable the graph is. In fact, the largest value shows the con-

nectivity among the graph. A higher eigenvalue shows that a graph is more connected as shown in505

Figure 2.1.

Path graph, P6, λmax = 1.8 Star graph, S6, λmax = 2.23 Wheel graph, W6, λmax = 3.34 Complete graph, K6, λmax = 5

Figure 2.1: Various types of graphs with an equal number of nodes are shown in which the line
graph with the minimum number of edges (connectivity) has the minimum largest eigenvalue
(λmax = 1.8) and the complete graph has the maximum largest eigenvalue (λmax = 5). This
shows that the vulnerability of a graph increases with the number of edges (connectivity) in the
graph.
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It has been established that λmax has been bounded by the average degree of nodes, degavg, in

the graph and the maximum degree of a node, ∆, in the graph.

degavg ≤ λmax ≤ ∆

However, deleting the maximum degree nodes in a graph may not result in the maximum

reduction in λmax of the adjacency matrix of the graph. For example in the graph shown in Figure510

2.2, the maximum reduction in λmax is achieved by removing node f and not by node n having the

maximum degree.
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Graph G, λmax = 2.30 G \ {n}, λmax = 2.23 G \ {f}, λmax = 2.00

Figure 2.2: A graph G has λmax = 2.30. G\{n}, the resulting graph after the removal of maximum
degree node n from G, has λmax = 2.23 while the removal of node f results in λmax = 2.00. This
shows that the removal of the maximum degree node from a graph does not always result in the
maximum reduction in the vulnerability (λmax) of the graph.

Moreover, there are also other centrality-based measures that are utilized in the literature to

quantify the vulnerability of the graph or the role of a particular node in infection spread. Degree

centrality, closeness centrality and betweenness centrality are some of these measures but these515

centrality-based measures have not been proven to be very accurate [5].

In particular, [6] assumes discrete time and at each time stamp, a node u can receive infection

from its infected neighbor i with probability β. Moreover, at each time stamp, i can recover with

probability δ. The model shows that an epidemic dies out in sub-linear time with respect to the size

of the population following a stochastic model if β/δ < 1/λmax(A). The model also shows that the520

epidemic threshold τ , state beyond which infection becomes endemic, is 1/λmax(A). The model
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works for various types of graphs including Erdos-Reyni, homogeneous and power-law graphs.

The relation of graph structure and the spread of disease is studied in [14] which considers vari-

ous graph topologies including complete, star and Erdos-Reyni graphs. Similarly, an exponential

lower bound on expected die-out time or time for full network recovery (i.e. ≥ ecN where c is525

a constant dependent on the infection rate and N is the size of population) is also known when

β > δ/λmax(A) [15, 16]. Recent works of [17–19] established a similar relation of infection and

recovery rates with λmax for infection spread or die-out while approximating the stochastic model

by a deterministic one.

Various studies have proposed preemptive methods to control virus spread and avoid a potential530

outbreak of contagion. These methods remove a subset of nodes or edges from the graph, so

the remaining graph has the lowest λmax. This problem has been shown to be NP-COMPLETE

in [5,20]. NETSHIELD is a greedy approach to iteratively select a subset of nodes for immunization

[5]. NETSHIELD addresses three problems related to network immunization, The paper considers

λmax as the vulnerability of the graph. Secondly, the paper defines a shield value for a subset535

of nodes that quantifies the benefit achieved in terms of reduction in λmax after immunizing the

subset of nodes. Thirdly, the greedy algorithm selects nodes for immunization based in the values

eigenvector corresponding to λmax of the graph. The greedy method also caters that the immunized

nodes are well-spread in the graph. The paper also proposes an improved version, NETSHIELD+,

that selects nodes for immunization in batches.540

A combinatorial trace method is adopted in [21–23] to select a subset of nodes whose removal

will result in the maximum reduction in the λmax. The trace of a large power of an adjacency

matrix, Ap, is closely related to the λmax(A) (also known as the spectral radius of the graph) [24].

Trace of Ap, on the other hand, is just the count of the number of closed walks of length p in the

graph. Approximation algorithms are given in [21,23] to select nodes for removal to eliminate the545

most number of closed walks of length 4 from the graph. Approximation of the number of closed

walks of length 6 containing a node using a randomly constructed summary of a graph is given

in [22]. In this paper, we extend this work by considering walks of length 8 that leads to improved

quality. We note that more sophisticated techniques for graph summarization [7, 10, 25, 26] and

15



membrane computation [27–29] could be utilized to improve this work.550

Edge removal techniques are also devised to minimize graph vulnerability. Methods for select-

ing edges whose removal will reduce λmax the most are devised in [30, 31]. In [30] virus spread

is modeled by the dynamical system and the transition function which defines the interaction of a

node with its neighbors and the state of each node (healthy or infected) in order to reduce λmax.

Two edge manipulation techniques, NetMelt and NetGel have been devised in [31]. NetMelt aims555

to contain the information spread by selecting edges whose removal results in the maximum re-

duction in λmax. The edges for deletion are selected based in the score computed from the left and

right eigenvectors corresponding to the λmax of the original graph. On the other hand, NetGel rec-

ommends the addition of new edges in the graph which will result in maximum gain in information

dissemination across the graph.560

In another line of work, non-preemptive techniques are devised in [4, 32, 33] to immunize

select nodes after the virus spread has started and the healthy and infected nodes are known. In

this setting, methods are evaluated by save ratio (SR): the ratio of the number of affected nodes in

a graph when k nodes are immunized to the number of infected nodes in case of no immunization.

A reverse engineering technique is used to identify the nodes in a graph where the virus spread565

is initiated [34]. A related problem is to decontaminate the graph by deploying cleaning agents at

certain nodes that travel along edges. Monotonicity is assumed in [35–38] that a node cleaned by

the agent will not get affected again. Non-monotonic strategies are given in [39].

Some other problems related to graph immunization include the influence maximization [40],

the filter placement [41] and the critical node detection problem (CNDP) [42–44]. In the influence570

maximization problem, the goal is to find a subset of nodes whose activation will lead to the max-

imal spread of information across the graph. The filter placement problem deals with minimizing

the multiplicity of information flowing across the network. In CNDP, the goal is to identify nodes

whose removal results in maximum graph fragmentation.
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2.2 Graph Summarization575

Graph summarization and compression have been studied for a wide array of problems and have

applications in diverse domains [2, 45, 46]. It is widely used in clustering, classification, commu-

nity detection, outlier identification, network immunization, etc. In literature, there are two main

types of graph summarization methods: lossless and lossy. In lossless graph summarization, the

original graph is exactly reconstructed form the summary graph and there is no loss of information580

in the graph reconstructed from the summary. The exact reconstruction is done by storing extra

information, known as edge corrections, along with the summary graph [47]. Edge corrections

are used to insert missing edges or delete the extra edges in the reconstruction of the graph from

the summary graph. The edges that need to be added after reconstructing the graph are termed as

positive edge corrections and the edges that need to be deleted after reconstructing the graph from585

the summary are called negative edge corrections.A scalable summarization approach summarizes

sets of similar nodes that are found using locality sensitive hashing [8]. In lossless graph summa-

rization, the goal is to create such a summary such that minimum information should be stored as

edge corrections.

a) Original Graph b) Summary Graph c) Reconstructed Graph

+ve Edge Corrections = {(2,3),(2,4)}
−ve Edge Corrections = {(1,7),(1,8),(2,8),(4,5)}

Reconstruction
{3, 4, 5}

{1, 2}

{7, 8, 9}

Lossless
Summarization

2
3 4

576

8

12
3 4

576

8

1

Figure 2.3: a) A graph on 9 vertices and b) its lossless summary are shown. In lossless summa-
rization, edge corrections are stored along with the summary graph such that the original can be
exactly reconstructed form the summary graph. c) The reconstructed graph which is same as the
original graph is also shown.

In lossy graph summarization, there is no guarantee of exact reconstruction of the original graph590

from the summary graph [8, 47]. In lossy summarization, some details of the original graph are

compromised and resultantly, some error is introduced in the reconstructed version of the graph.
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Reconstruction error [7], cut-norm error [10] and error in query answering are some of the widely

used quality measures of a lossy summary. Reconstruction error is the norm of the error matrix

(difference between the adjacency matrices of the original and the reconstructed version of the595

graph) [7]. Cut-norm error is defined as the maximum absolute difference between the sum of

the weights of the edges between any two sets of vertices [10]. Similarly, accuracy in answers to

various types of graph queries indicates the quality of the summary. For partitioning nodes into

supernodes, an agglomerative approach is used in [7] that greedily merges pairs of nodes to min-

imize the l1-reconstruction error. This approach is very simple and achieves great summarization600

quality, but it does not scale to large graphs. Even after subsampling [7], the approach scales only

to graphs of order of a few thousand. An efficient algorithm that uses a weighted sampling scheme

was proposed in [48] that can be applied to large-scale graphs.

a) Original Graph b) Summary Graph c) Reconstructed Graph

Reconstruction
{3, 4, 5}

{1, 2}

{7, 8, 9}

Lossy
Summarization

2
3 4

576

8

12
3 4

576

8

1

Figure 2.4: a) A graph having 9 vertices and b) its lossy summary are shown. In lossy summa-
rization, some details of the original graph are compromised and some error is introduced in the
reconstructed version of the graph as shown in c).

Note that various types of graphs exist in different domains. Summarization on different types

of graphs is applied to get useful results. In attributed graphs, nodes have certain associated at-605

tributes (properties) [49]. The lossless summarization of attributed graphs is described in [50],

which identifies the sets of nodes having similar neighborhood and attribute values for merging.

Locality sensitive hashing is used to select nodes having similar neighborhood and attribute values.

Moreover, to construct a summary with approximate homogeneous neighborhood information and

attribute values using an entropy model is described in [51]. In addition to this, the summariza-610

tion of attributed graphs based on a selected set of attributes is described in [52]. The work also

presents an operation to allow users to drill down to a larger summary for more details and roll up
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to a concise summary with fewer details. Another line of work for attributed graphs finds a com-

pact subgraph of the desired number of nodes having query attribute values [53]. A survey [46]

discusses various summarization techniques for attributed graphs.615

Weighted graphs have weights on nodes or edges. Compression of edge weighted graphs using

locality sensitive hashing while preserving the edge weights is described [54]. Furthermore, com-

pression of node and edge weighted graphs is described such that the weights on the path between

two nodes in the summary graph should be similar to that in the original graph [55]. The paper

also aims to preserve more information related to nodes with high weights. Another closely related620

area is of influence graph in which nodes have influence over other nodes. The influence graph

summarization takes into account the influence of nodes on other nodes in the summary graph [56].

Dynamic graphs, where nodes or edges evolve over time, are also prevalent these days. An

approach discusses the summarization of a dynamic graph based on connectivity and communica-

tion among nodes [57]. The work creates summaries of the dynamic graph over a sliding window625

of fixed size. MoSSo, a lossless approach, incrementally updates the summary in response to the

deletions or additions of edges [58]. A summarization framework that captures the dynamic nature

of dynamic graphs is described in [59].

Compression of web graphs is used to improve the performance of search engines [2, 45]. The

web graphs are compressed efficiently by exploiting the link structure of the web [3]. Permuting the630

nodes in a web graph such that similar nodes are placed together produces improved compression

results [60]. Parallel methods are also devised to summarize massive web graphs spread across

multiple machines [61].

Summarization of graph streams such that to approximately answer the queries on the graph

stream is discussed in [62]. The real-time summarization of massive graph streams is done using635

the count-min sketch approach to preserve the structural information of the graph [63].

Several methods have been proposed to summarize graphs, where some features of graphs

are used as building blocks (vocabulary), and the graph is then represented using the vocabulary.

VoG (Vocabulary-based summarization of graphs) summarizes graphs based on the substructures

like cliques, chains, stars, and bipartite cores [64]. Graph compression based on communities640
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identified on the basis of central nodes and hubs is studied in [65]. A comprehensive survey

compares different graph summarization techniques [66].
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Chapter 3

Foundations for network immunization

problem645

3.1 Introduction

Graphs or networks are used to model many practical scenarios involving pairwise interactions

between entities. The entities could be humans, computers, mobile devices, power components,

etc. while interactions can be face-to-face meetings, email and SMS communication and various

kind of flows e.g. electric current in a power infrastructure network or fluid in pipelines. Many of650

the practical networks are very large with millions of nodes and edges.

Every interaction in such large networks can not be monitored and there is a possibility of

undesired and potentially harmful communication taking place among entities in networks. Such

undesired spread could be intentional or un-intentional entailing various degrees of harm. The

unintentional spread of flu-virus, for instance, may be life-threatening and may cause an epidemic.655

A rumor, on the other hand, may well be originated intentionally and its effect might be limited to

a particular segment of a network. An effective way to safeguard a network against the spread of

malicious content is to empower the nodes. The strengthening process may amount to vaccinating

people, deploying surveillance systems at junctures and installing anti-virus software on computers

depending on the underlying network. The nodes with these added capabilities will be referred660

21



to as the immunized nodes and the malicious content, as the virus. Effectively, when a node is

immunized, it will neither get contaminated nor will it pass the contaminant to other nodes.

There is a cost associated with immunization, hence it is not feasible to immunize all nodes

in large networks. The problem to select a subset of nodes (not exceeding a given budget) for

immunization that will maximally hinder the virus spread is called the Network Immunization665

Problem and is abstractly formulated in [5] as follows:

Problem 3. Given an undirected graph G = (V,E), |V | = n and an integer k < n, find a subset

S of k nodes such that immunizing nodes in S, renders G the least ‘vulnerable’ to a virus attack

over all choices of S.

This requires a quantitative measure for the vulnerability of the graph. As in the literature670

[5, 21, 22, 67], we use the largest eigenvalue of the adjacency matrix of the graph to quantify the

graph vulnerability. The objective in Problem 6, therefore becomes that of immunizing a fixed-

sized subset so as the remaining graph has the minimum largest eigenvalue. More precisely,

Problem 4. Given an undirected graph G = (V,E), |V | = n and an integer k < n, find a subset

S of k nodes such that the largest eigenvalue of the adjacency matrix of G − S (the matrix after675

removing the rows and columns corresponding to S) is minimum over all choices of S.

A score function was proposed in [21, 22], for a subset of nodes based on the number of small

length closed walks a node is contained in. The number of fixed length closed walks containing

a node co-relates with the node’s contribution towards the largest eigenvalue of the adjacency

matrix of the graph. However, while the longer walks provide a better approximation, only shorter680

walks were considered due to time complexity. In our series of work, we propose randomized

approximation approaches based on the number of closed walk passing through a node to immunize

graphs. The contribution of our work can be summarized as follows:

• We give the score function based on the number of closed walks of length p ∈ {4, 6, 8} for

sets of nodes that quantify the importance of sets to reduce the graph vulnerability. This685

score function is monotonically non-decreasing and sub-modular that enables employing

greedily constructing a set with improved approximation quality
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• We derive closed-form formulae to compute the number of walks of length p ∈ {4, 6, 8}
passing through a node which may be of independent interest. Note that computation of

count of closed walks is a computationally expensive task, so, we also give an approximate690

method that closely estimates the number of walks of length 6 and 8 passing through a node

• We evaluate the quality of our solution on several real-world graphs. We show that our

approximate method is a close estimate of the exact solution. Results show that our ap-

proaches maximally reduces the virus spread and the vulnerability (the largest eigenvalue)

of the immunized graph. Moreover, our algorithm is scalable to large graphs and has a lower695

runtime based on the approximation parameters used. Comparisons also demonstrate that

our approach outperforms the state-of-the-art methods both in terms of quality and runtime

3.2 Preliminaries

In this section, we formulate the immunization problem. Given a simple graph G = (V,E), the

goal is to select a subset S of k nodes such that removing S from the graph maximally reduces the700

largest eigenvalue of the remaining graph denoted by λmax(A|−S). Since λmax can be computed in

O(|E|), the optimal subset of nodes can be found by iterating through each of the
(
n
k

)
subsets. The

overall runtime of this brute force algorithm is O(
(
n
k

)
· |E|) rendering it computationally infeasible

even for moderately large graphs.

Indeed, it turns out that Problem 4 is NP-HARD. A reduction from Minimum Vertex Cover705

Problem is as follows: if there exists a set S with |S| = k such that λmax(A|−S) = 0, then S is

a vertex cover of the graph. It follows from the below implication of famous Perron-Frobenius

theorem:

Fact 1. Deleting an edge from a simple connected graph G strictly decreases the largest eigenvalue

of the corresponding adjacency matrix [68].710

Also, if there is a vertex cover S of the graph such that |S| = k, then deleting S will result in

an empty graph which has eigenvalue zero.
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Although Problem 4 is NP-HARD, its objective function is monotone and sub-modular. The

greedy algorithm (GREEDY-1) guarantees (1 + 1/e)-approximation (e is the base of the natural

logarithm) to Problem 4 by Theorem 1.715

Theorem 1. [69] Let f be a non-negative, monotone and submodular function, f : 2Ω → R.

Suppose A is an algorithm, that chooses a k elements set S by adding an element u at each step

such that u = argmax
x∈Ω\S

f(S ∪ {x}). Then A is (1 + 1/e)-approximate algorithm.

Algorithm 1 : GREEDY-1 (G,k)

S ← ∅
while |S| < k do

v ← argmin
x∈V \S

(λ1(A−{S∪{x}}))

S ← S ∪ {v}
return S

We refer to the achieved benefit after immunizing subset S as eigendrop and is defined as

λmax(A)− λmax(A|−S). A score, termed as shield-value, is assigned to each subset S ⊂ V , which720

quantifies the approximated eigendrop achieved after removing S. Frequently used symbols in the

paper are listed in Table 3.1.

Table 3.1: List of Symbols

Symbol Definition & Description
A Adjacency matrix of the graph G
G|−S Subgraph after removing node set S from the graph G
A|−S Adjacency matrix of the graph G|−S

λi(A) ith largest eigen value of matrix A on the basis of magnitude
λmax(A) The largest eigen value of matrix A i.e. λmax(A) = λ1(A)
∆λ(S) λmax(A)− λmax(A|−S); eigendrop achieved by immunizing node set S
Ap pth power of (adjacency) matrix A
CWp(v,G) The set of p-length closed walks in G containing v
CWp(S,G) The set of p-length closed walks in G containing at least one vertex from S
Wp(v,G) Number of p-length closed walks in G containing v
Wp(S,G) Number of p-length closed walks in G containing at least one vertex from S
dG(v) Degree of node v in graph G

24



3.3 Proposed shield value

In this section, we quantify the importance of a subset of nodes for immunization. We first derive a

score for each set of size k that closely measures the value of the objective function of Problem 4.725

We prove that this score function is monotonically increasing and submodular. Using Theorem 1,

we can greedily build up the set S by iteratively selecting nodes that are contained in the maximum

number of closed walks of length p.

Let A be an n × n matrix; the following two fundamental results from algebraic graph theory

[9, 70, 71] relate the eigen spectrum and the trace of A.730

Fact 2.

trace(A) =
n∑

i=1

A(i, i) =
n∑

i=1

λi(A)

Fact 3.

trace(Ap) =
n∑

i=1

λi(A
p) =

n∑
i=1

(λi(A))
p

From the theory of vector norms [9] and Fact 3 we know that

lim
p→∞
p even

(trace(Ap))1/p = lim
p→∞
p even

(
n∑

i=1

λi(A)
p

)1/p

= lim
p→∞

(
n∑

i=1

|λi(A)|p
)1/p

= max
i
{λi(A)} = λmax(A)

Using the above relation we establish that for the immunization problem, we want to find a

subset S of nodes in graph G which, when removed, minimizes trace((A|−S)
p). Next, we derive

a combinatorial form of this objective function.

As described in Table 3.1, for a vertex v ∈ V (G), CWp(v,G) is the set of all closed walks

of length p in the graph G containing v at least once and Wp(v,G) = |CWp(v,G)|. Similarly,735

CWp(S,G) denotes the set of closed walks of length p in G containing at least one vertex from S

and correspondinglyWp(S,G) = |CWp(S,G)|. We use the following combinatorial definition of

trace.
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Fact 4. [70] Given a graph G = (V,E) with adjacency matrix A,

Wp(V,G) = trace(Ap)

From Fact 4 and definition of trace (Fact 2), we get that

Wp(V,G) =Wp(V \ S,G|−S) +Wp(S,G) (3.1)

This is true because any walk in G either contains some vertex in S or it does not contain any740

vertex in S. The former type of walks are counted exactly once in the termWp(S,G), while the

first term counts closed walks of the latter type. Equation (3.1) can be equivalently rewritten as

trace(Ap) =trace((A|−S)
p) +Wp(S,G)

=⇒ trace((A|−S)
p) = trace(Ap)−Wp(S,G)

Thus for a fixed graph G (since trace(Ap) is constant) minimizing trace((A|−S)
p) is equivalent to

maximizing Wp(S,G). This implies that the set S with the largest value of Wp(S,G) will yield

the maximum eigendrop. Intuitively, we need to identify nodes contained in many closed walks745

of length p (nodes with high Wp(v,G)). We define the following shield value of a set S, that in

addition to maximizingWp(S,G), attempts to select those nodes which are far from each other i.e.

having A(u, v) = 0 in order to maximize the number of distinct closed walks going through nodes

in a set S.

scorep(S) = γ
∑
v∈S
Wp(v,G)2 −

∑
u,v∈S

Wp(v,G)A(u, v)Wp(u,G), (3.2)

where γ is a positive constant. Hence Problem 4 can be rephrased as follows.750

Problem 5. Let G = (V,E) be an undirected graph on n nodes and let k be an integer k < n, find

a subset of nodes S ⊂ V , with |S| = k such that scorep(S) is the maximum over all k-subsets of

V .

For fixed p, given Wp(v,G),∀v ∈ V , scorep(S) can be evaluated in time O(k2) . Selecting

a set with maximum scorep(S) takes O(
(
n
k

)
k2) time which clearly is computationally prohibitive.755

26



Furthermore, note that for this we need to have the values ofWp(v,G) pre-computed, which is not

straight-forward.

We show that the objective function of Problem 5 is monotone and sub-modular. Given

Wp(v,G), by Theorem 1, the greedy strategy for building up the set will yield (1−1/e)-approximation

of the optimal subset.760

Theorem 2. For p ≥ 1, scorep(S) is monotonically non-decreasing.

Proof. We prove that for any X ⊂ Y ⊆ V , scorep(X) ≤ scorep(Y ). Let E,F ⊂ V (G) and

x ∈ V (G) such that F = E ∪ {x}. Consider

scorep(F )− scorep(E)

=γ
∑
v∈F

Wp(v)
2 −

∑
u,v∈F

Wp(v)A(u, v)Wp(u)− γ
∑
v∈E

Wp(v)
2

+
∑
u,v∈E

Wp(v)A(u, v)Wp(u)

=γWp(x)
2 −

∑
v∈E

Wp(v)A(x, v)Wp(x) =Wp(x)[γWp(x)−
∑
v∈E

Wp(v)A(u, v)] ≥ 0

Since γ > 0, for γ ≥ kmaxv∈V (G){Wp(v)}, the last inequality is satisfied. Hence, scorep(S)

function is monotonically non-decreasing.

Theorem 3. For p ≥ 1, scorep(S) is submodular.

Proof. For any subsets X, Y , with X ⊂ Y ⊆ V and a subset Z ⊂ V such that Z∩Y = ∅, we have

scorep(X∪Z)−scorep(X) is at least as large as scorep(Y ∪Z)−scorep(Y ). Let I, J,K ⊂ V (G)
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with I ⊂ J . We have

scorep(I ∪K)− scorep(I)− scorep(J ∪K) + scorep(J)

=
(
γ
∑

v∈I∪K

Wp(v)
2 −

∑
u,v∈I∪K

Wp(v)A(u, v)Wp(u)− γ
∑
v∈I

Wp(v)
2

+
∑
u,v∈I

Wp(v)A(u, v)Wp(u)
)
−
(
γ
∑

v∈J∪K

Wp(v)
2 −

∑
u,v∈J∪K

Wp(v)A(u, v)Wp(u)

− γ
∑
v∈J

Wp(v)
2 +

∑
u,v∈J

Wp(v)A(u, v)Wp(u)
)

=
(
γ
∑
v∈K

Wp(v)
2 −

∑
u,v∈K

Wp(v)A(u, v)Wp(u)− 2
∑

u∈K,v∈I

Wp(v)A(u, v)Wp(u)
)

−
(
γ
∑
v∈K

Wp(v)
2 −

∑
u,v∈K

Wp(v)A(u, v)Wp(u)− 2
∑

u∈K,v∈J

Wp(v)A(u, v)Wp(u)
)

=2
∑

u∈K,v∈J

Wp(v)A(u, v)Wp(u)− 2
∑

u∈K,v∈I

Wp(v)A(u, v)Wp(u)

=2
∑

u∈K,v∈J\I

Wp(v)A(u, v)Wp(u) ≥ 0

765

In the coming chapters, we compute scorep(S) based on the closed walks of length p ∈
{4, 6, 8}. We note that computing count of closed walks for larger values of p ∈ {6, 8} is a

computationally expensive. To address this challenge, we also give an approximate method based

on hypergraph to estimate the number of closed walks of length 6 and 8. We also give experimental

results on real world graphs for each of the proposed approach.770
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Chapter 4

Spectral Methods for Immunization of

Large Networks

In this chapter, we give solution to network immunization problem (Problem 4 mentioned in Chap-

ter 3) based on the number of closed walks of length 4,W4(v,G) passing through node v in graph775

G. First, in Section 4.1, we give a closed form expression to compute W4(v,G). Then, we de-

vise an algorithm to select nodes for immunization in Section 4.2. Experimental evaluation of the

goodness of our solution is presented in Section 4.3. In the end, we give a brief summary of our

approach and findings.

4.1 Computation ofW4(v,G)780

For a graph G = (V,E), a walk Wl of length l in G is a sequence of nodes v0, v1, . . . , vl such that

for 0 ≤ i ≤ l − 1 (vi, vi+1) ∈ E. We say that Wl is a walk from v0 to vl. If v0 = vl, then cWl is

called a closed walk. We compute score of a node v based on closed walks of length 4 represented

asW4(v,G).

First, we give a closed form expression forW4(v,G) in terms of degrees and codegrees. For785

a given graph G, NG(x) = {y ∈ V : A(x, y) = 1} and dG(x) = |NG(x)|. Define NG(x, y) =

{z ∈ V : A(x, z) = 1 ∧ A(y, z) = 1} to be the common neighborhood of x and y in G. Let
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dG(x, y) = |NG(x, y)|, note that NG(x, x) = NG(x) and dG(x, x) = dG(x). When G is clear in

the context, we refer to NG(x, y) as N(x, y) and similarly to dG(x, y) as d(x, y).

Lemma 4. For any node v ∈ V ,

W4(v,G) = 2d(v)2 + 4
∑

u∈V,u̸=v

d(u, v)2.

Proof. A closed walk W : (v, x, u, y, v) of length 4 can be interpreted as the concatenation of two790

walks of length 2 with the same endpoints u and v. The number of walks of length 2 with the

endpoints u, v is A2(u, v). We want to count the closed walks of length 4 that contain a fixed node

v at least once. Note that v can occur at most twice in a closed walk of length 4. In a closed walk

of length 4, there are 4 positions for vertices (since the first and last node is the same, we consider

it one position).795

First, we count the closed walks of length 4 that contain v exactly in one position. Call the

set of closed walks of length 4 with v at ith position as C4(v, i). This gives the total number of

closed walks of length 4 with the appearance of v exactly once as
∑4

i=1 |C4(v, i)|. Any closed

walk in C4(v, 1) is of the form (v, a, b, c, v), where a, b, c are nodes in V . Number of these walks

is
∑

b̸=v A
2(v, b)2. Clearly (c, v, a, b, c) represents any closed walk in C4(v, 2). Note that for a800

fixed a, b and c, (c, v, a, b, c) is one position clockwise rotation of closed walk (v, a, b, c, v). This

implies that corresponding to every closed walk in C4(v, 1) there is a closed walk in C4(v, 2) and

vice versa. Hence the number of walks in C4(v, 2) is also
∑

b ̸=v A
2(v, b)2. Similarly, we get that

the number of walks in C4(v, 3) and C4(v, 4) is also the same.

So, we have
4∑

i=1

|C4(v, i)| = 4
∑
u̸=v

A2(u, v)2

Second, we consider closed walks in which v appears twice. Now its possible in two ways: 1)805

v appears in 1st and 3rd position as (v, a, v, c, v) or 2) v takes 2nd and 4th position as (a, v, c, v, a).

Clearly, there are 2A2(v, v)2 such walks.
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This gives the total number of closed walks of length 4 containing a node v as

W4(v,G) = 2A2(v, v)2 + 4
∑
u̸=v

A2(u, v)2

which is the same as required.

We incorporate the above formula in the following algorithm. For a given node v,

scoreG(v) = 4
∑

u∈V,u̸=v

d(u, v)2 + 2d(v)2

then
∑

u̸=v d(u, v)
2 can be computed by taking the characteristic vector χv of N(v) (a bit vector

of length n where the χv[i] = 1 ↔ (v, vi) ∈ E). Then for each node u ∈ V \ {v}, we go through810

each neighbor x of u in its adjacency list and check if χv[x] = 1 to increment d(v, u).

It takes O(m) time to compute the scoreG(x) for a node x, to get the node with maximum

score it takes O(nm) time. Note that after removing k nodes (for constant k) the graph still has

O(m) edges. Now we give an efficient approximation to scoreG(x) that not only can be computed

in linear time but also can be updated after removing a node y in time proportional to d(x).815

We have 
∑
u̸=v

d(u, v)

n


2

≤


∑
u̸=v

d(u, v)2

n

 ≤
(
∑
u̸=v

d(u, v))2

n

 . (4.1)

The first inequality is the Cauchy-Schwarz inequality, [c.f [72]], while the second follows from the

fact that d(u, v) is non-negative for each u, v.

In view of the above inequality, we approximate the scoreG(v) by score′G(v) given as

score′G(v) = 2d2G(v) + 4

(∑
u̸=v

dG(u, v)

)2

. (4.2)

Our motivation to use score′G(x) is that not only it is easy to compute but also after a node is

deleted it is easy to update the scores of all vertices in the remaining subgraph.
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4.2 Algorithm820

In this section, we give algorithm to select nodes for immunization based on W4(v,G). First,

we show procedure to find score′G(v) for graph G in Algorithm COMPUTE-SCORE(G) , then in

Algorithm UPDATE-SCORE(G, vi), we give algorithm to update the scores of nodes when a node

vi is deleted/immunized from the graph. Finally, we discuss the greedy approach to approximate

that which nodes should be immunized in order to immunize the graph in Algorithm GREEDY-3825

(G,k). We also discuss the time and space complexity of our solution in this section.

Algorithm 2 : COMPUTE-SCORE(G)

1: deg ← ZEROS(n) ▷ Initialize the degree array to n zeros
2: codegSum← ZEROS(n) ▷ Initialize the codegree sum array to n zeros
3: score′G ← ZEROS(n) ▷ Initialize all scores to zeros
4: for each node vi do
5: for each neighbor vj of vi do
6: degG[vi]← degG[vi] + 1

7: for each node vi do
8: for each neighbor vj of vi do
9: codegSum[vj]← codegSum[vj] + degG[vi]− 1

10: for each node vi do
11: score′G[vi]← 2 ∗ degG[vi]2 + 4 ∗ codegSum[vi]

2

Lemma 5. Runtime of Algorithm COMPUTE-SCORE(G) is O(m).

Proof. It is clear that line 6 of Algorithm COMPUTE-SCORE(G) takes O(1) time and it is exe-

cuted O(m) times, where m = |E|. Since loop at line 5 is iterated over all neighbors of a fixed

node, vi. Hence for vi, line 6 is executed dG(vi) times. Thus for all vi ∈ G, line 6 runs for830 ∑
vi∈V (G) dG(vi) = 2m [73]. Same is true for line 9.

Line 11 has constant time computation while it is computed for every node, thus it takes O(n)

time. So total time taken to compute score of every node is O(m).

For a given node v of G, we update the score of vertices after removing v in the following way;

Lemma 6. Algorithm UPDATE-SCORE(G,vi) takes O(m) time to update score with respect to835

parameter vi.
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Algorithm 3 : UPDATE-SCORE(G,vi)
1: for each neighbor vj of vi do
2: degG[vj]← degG[vj]− 1
3: codegSum[vj]← codegSum[vj]− (degG[vi]− 1)
4: for each neighbor vk of vj do
5: codegSum[vk]← codegSum[vk]− 1

6: degG[vi]← 0
7: codegSum[vi]← 0
8: score′G[vi]← 0
9: for each neighbor vjofvi do

10: score′G[vj]← 2 ∗ degG[vj]2 + 4 ∗ codegSum[vj]
2

11: for each neighbor vk of vj do
12: score′G[vk]← 2 ∗ degG[vk]2 + 4 ∗ codegSum[vk]

2

Proof. In algorithm, line 2, 3 and 8 takes constant time steps and both are computed dG(vi) times.

However line 5 and 12 are computed
∑

vj∈NG(vi)
dG(vj) times which is upper bounded by m.

Hence for a fixed node vi runtime of algorithm is O(m)

We here give the proof of correctness of the Algorithms COMPUTE-SCORE(G) and UPDATE-840

SCORE(G,vi).

Lemma 7. 1. For each node v ∈ V , Algorithm COMPUTE-SCORE(G) computes the score′G(v)

as defined in (4.2).

2. For all vertices u, v ∈ V Algorithm UPDATE-SCORE(G,vi) computes the score′G−u(v) as

defined in (4.2).845

Proof. 1. It is clear that the Algorithm COMPUTE-SCORE(G) computes the first term cor-

rectly, as each neighbor vi of v contributes 1 to the degree of v. To see why the second term

is computed correctly, consider the following fact:

For v ∈ V,
∑
u̸=v

dG(u, v) =
∑

w∈NG(v)

dG(w)− 1

The left hand side is counting all occurrences of all vertices w such that w is a common

neighbor of u and some node v. Essentially counting all paths of length 2 from u to v where
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w is the center node.

We count these structures by counting the number of times each center node thus appear.

Since v is fixed, the number of times a node w appears in such a structure is exactly the850

number of neighbors of w, i.e. dG(w) times. Now since v is fixed and it is also a neighbor

of w, we subtract one from it. Hence the expression on the right hand side follows.

2. To see this, consider a node v which is neighbor of u. We note that first contribution of u in

score of v is in the first term i.e. degree of v, so we decrease the degree of v by one. Clearly

from the figure below, u adds dG(u) − 1 in codegree sum of v, which is the second term of855

the score′G(v), given as
∑
u̸=v

dG(u, v).

Now consider the vertices vi, which are neighbors of neighbors of u. Score of these vertices

is also effected by removing u since u contribute one to codegree sum of vi.

u

NG(u) \ {v}
v

u

neighbors of neighbors of u

Figure 4.1: (Left) Node u is a neighbor of node v and the neighbors of u except v are shown.
(Right) For a node u, its neighbors of neighbors are shown.

Here is the algorithm to select k vertices in the given graph G such that approximated eigendrop860

is maximized after deleting those vertices.
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Algorithm 4 : GREEDY-3(G,k)

1: S ← ∅
2: COMPUTE-SCORE(G)
3: while |S| < k do
4: v ← argmax

u∈V \S
score′G[u]

5: S ← S ∪ {v}
6: UPDATE-SCORE(G,v)
7: return S

Theorem 8. The computational complexity of the Algorithm GREEDY-3(G,k) is O(n + km +

k log n), while the space complexity is O(m+ n+ k).

Proof. By Lemma 5 line 2 takes O(m) time. The scores for all nodes can be stored in a MAX-

HEAP, which can be built in O(n) time while each UPDATE-KEY (updation of score of a node in865

MAX-HEAP) and EXTRACT-MAX (retrieval of maximum score entry from MAX-HEAP) takes

O(log n) time [74]. We extract max from the the heap k times, hence its total runtime is O(log n).

As argued by Lemma 6, time consumed in each call to UPDATE-SCORE takes O(m) time, we get

that total time taken by the algorithm is O(n+ km+ k log n).

For the space complexity, in addition to storing the graph that takes O(n+m) space, we need870

O(n) space to store the three additional arrays.

4.3 Experimental Evaluation

In this section, we present the experimental evaluation of our immunization solution. We evaluate

the goodness of our algorithm on real world graphs to quantify the scalability and effectiveness on

large graphs. Throughout this paper, we have used SIR (susceptible − infected − recovered)875

model for virus propagation in graphs. For benchmark comparison, we also implemented MAX-

DEGREE and UPDATED-MAX-DEGREE approaches in which, MAX-DEGREE picks the top

k maximum degree vertices for immunization while UPDATED-MAX-DEGREE selects the node

with the maximum degree and deletes that node and repeats k times. We use the NETSHIELD
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implementation which is available online1. We implemented our proposed algorithm in Matlab880

and our implementation along with source code and documentation is available online 2.

Network Number of Nodes Number of Edges
Karate 34 78
Oregon 10,670 22,002
AA 418,236 2,753,798

Table 4.1: Summary of Datasets

The data sets used in experimentation are described in Table 4.1. All the real graphs used

for experimentation obey power law distribution of degrees. The first data set is of a local karate

club and is named as Karate graph3. Nodes of the graph represent members of the club and an

edge between nodes show that corresponding members are friends with each other. The graph is885

undirected and unweighted and consists of 34 nodes and 78 edges.

The second data set is from Oregon AS (Autonomous System)4 router graphs, which are AS

level connectivity networks inferred from Oregon route views. There are a number of Oregon AS

graphs available and each node represents a router and an edge between two routers represents a

direct peering relationship between two routers. We have selected one dataset from Oregon router890

graphs having 10, 670 nodes and 22, 002 edges. The graph is undirected and unweighted.

The third data set (AA) is from DBLP5 dataset. In graph a node represents an author and

presence of an edge between two nodes shows that two authors have a co-authorship. In DBLP

there is total node count of 418,236 and the number of edges among nodes is 2,753,798. We

extracted smaller graphs by selecting co-authorship graph of only one journal (e.g Displays, Inter-895

national Journal of Computational Intelligence and Applications, International Journal of Internet

and Enterprise Management, etc.). We ran our experiments on 20 different smaller co-authorship

networks based on co-authorship graphs of 20 different journals. For the smaller sub graphs that we

have extracted from DBLP dataset, node count goes up to few thousands and edge count goes up to

1https: //www.dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar.
2https://www.dropbox.com/sh/n7hwjc4imh62pe6/AADCyHG7uMGX6o9xtr1pdH6Qa?dl=0
3http://konect.uni-koblenz.de/networks/ucidata-zachary
4http://snap.stanford.edu/data/oregon1.html
5http://dblp.uni-trier.de/xml/
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few ten thousands. Co-authorship graph of ActaInf contains 1,791 nodes and 1,659 edges, graph900

of AI Communication journal has node count of 1,203 and edge count of 2,204 , sub graph of Asia-

Pacific Journal of Operational Research (APJOR) has 1,132 nodes and 1,145 edges, Computer in

Industry journal contains 2,844 nodes and 4,466 edges among nodes, journal of IEEE Wireless

has total of 7,882 authors and 16,557 co-authorship links among authors. Detail of sub graphs of

DBLP data set is also given in Table 4.2. These subgraphs are also undirected and unweighted.905

Network Number of Nodes Number of Edges
ActaInf 1,791 1,659
AI Communication 1,203 2,204
APJOR 1,132 1,145
Computer In Industry 2,844 4,466
Computing And Informatics 1,598 2,324
Ecological Informatics 1,990 4,913
IEEE Wireless 7,882 16,577
IJCIA 848 975
IJIEM 373 357

Table 4.2: Summary of DBLP subgraphs

We did extensive experimentation with varying count of nodes to be immunized. In the re-

sults shown, x-axis shows the value of k which is count of immunized nodes and y-axis shows

the percentage of eigendrop which is the achieved benefit after deleting k nodes from the graph.

Results are evaluated on the basis of percentage of eigendrop. Eigendrop is difference of largest

eigenvalues of original graph and perturbed version of graph after immunization of k nodes.

∆λ = λmax(A)− λmax(A|−S) (4.3)

where S is the set containing nodes to be immunized having cardinality k. It is clear from the

results that our greedy algorithm outperforms NETSHIELD approach and other approaches like

top k degree and updated maximum degree approach. Our greedy algorithm is scalable for larger

values of k as well as for larger graphs as our algorithm has less running time complexity than910

NETSHIELD, top k degree and updated maximum degree.
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Figure 4.2: Comparison of eigen drop % (shown on y-axis, higher is better), calculated as ∆λ×100
λmax(A)

,
achieved by immunizing k nodes (x-axis) in graphs using various techniques is shown. The com-
parison of our approach, GREEDY DROP, with NETSHIELD shows that our approach achieves
higher eigen drop %, resultantly, more reduction in the vulnerability of the graphs. Eigen drop
achieved by immunizing nodes based on the maximum degree and the updated maximum degree
is also shown.
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4.4 Summary

In this work, we explored some links between established graph vulnerability measure and other

spectral properties of even powers of adjacency matrix of the graph. We define shield value in

terms of trace of the adjacency matrix of the graph. Based on these insights we present a greedy915

algorithm that iteratively selects k nodes such that the impact of each node is maximum in the

graph, in the respective iteration, and thus we maximally reduce the spread of a potential infection

in the graph by removing those vertices. Our algorithm is scalable to large graphs since it has

linear running time in the size of the graph.

We have conducted experiments on different real world communication graphs to confirm the920

accuracy and efficiency of our algorithm. Our algorithm outperforms the state-of-the-art algorithm

in performance as well as in quality.

In the next chapter, we give method to compute closed walks of length 6 and evaluate its

performance.
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Chapter 5925

Scalable Approximation Algorithm for

Network Immunization

In this chapter, we give solution to network immunization problem based on the number of closed

walks of length 6, W6(v,G) passing through node v in graph G. First, in Section 5.1, we give a

closed form expression to computeW6(v,G). We note that computingW6(v,G) for large graph is930

a computationally expensive task. To scale our solution to large graphs, we also give a method to

approximateW6(v,G). Then, we devise an algorithm to select nodes for immunization in Section

5.2. Experimental evaluation of the goodness of our solution is presented in Section 5.3.

5.1 Computation and Approximation ofW6(v,G)

In this section, first we give a closed form expression to compute W6(v,G) and then we present935

an approximate method to efficiently compute W6(v,G). Computing Wp(S,G) is expensive for

large value of p, but in practice we observe that p = 6 is sufficiently large.
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Theorem 9. Given a graph G with adjacency matrix A

W6(v,G) = 6
n∑

i=1

n∑
j=1

A2(v, vi)A
2(v, vj)A

2(vi, vj)− 3
n∑

i=1

n∑
j=1

A2(v, vi)A
2(v, vj)A(v, vi)A(v, vj)

− 6
n∑

i=1

A2(v, vi)
2A2(v, v) + 2A2(v, v)3

Proof. A typical closed walk W of length 6 can be represented as (a, b, c, d, e, f, a). Note that v

can appear in a closed walk of length 6 at most thrice.

First we count the walks that contain v exactly once. Lets assume that v appears at the first940

position, i.e. W = (v, a, b, c, d, e, v). Now since v can not appear at any other position, we get

that b, c, d ̸= v. Also (v, a, b), (b, c, d) and (d, e, v) are paths of length 2 and number of such

walks can be d(v, b), d(b, d) and d(d, v) respectively. But d(a, d) may include c = v case. So

to exclude this we subtract A(b, v)A(d, v) from d(b, d) (this will be 1 only if v is neighbor of

both b and d). We get that number of closed walks of length 6 containing v only at first po-945

sition is
∑

b̸=v

∑
d ̸=v d(v, b)d(v, d)[d(b, d) − A(v, b)A(v, d)]. Each one position rotation of this

walk results in distinct walk of the kind, so we get that walks containing v exactly once are

6
∑

b̸=v

∑
d ̸=v d(v, b)d(v, d)[d(b, d)− A(v, b)A(v, d)].

Now we count the walks containing v twice. One way to get such walk is v is in first and third

positions i.e. W = (v, a, v, b, c, d, v). Number of such walks is
∑

c ̸=v d(v, c)
2d(v). Again each

rotation gives unique walk, so we have 6
∑

c ̸=v d(v, c)
2d(v) such walks. Another way to have a

walk with v appearing twice is W = (v, a, b, v, c, d, v). There are
∑

b∈N(v)

∑
d∈N(v) d(v, b)d(v, d)

walks with v at first and fourth position which is same as∑
b∈V
∑

d∈V d(v, b)A(v, b)d(v, d)A(v, d). Note that only two clockwise rotations result in new

walks. This gives that total number of closed walks of length 6 containing v twice is

6
∑
c ̸=v

d(v, c)2d(v) + 3
∑

b∈N(v)

∑
d∈N(v)

d(v, b)d(v, d)

If we consider walks which contain v thrice, then there are two possibilities for such walks, one

which start at v i) (v, a, v, b, v, c, v) and ii) (a, v, b, v, c, v, a). Count for either of them is d(v)3.950
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This gives the total count of these walks as 2d(v)3.

So number of closed walks of length 6 containing a vertex v in graph G is

W6(v,G) = 6
∑
b̸=v

∑
d̸=v

d(v, b)d(v, d)[d(b, d)− A(v, b)A(v, d)] + 6
∑
c ̸=v

d(v, c)2d(v)

+ 3
∑

b∈N(v)

∑
d∈N(v)

d(v, b)d(v, d) + 2d(v)3

Clearly computing this number for any vertex v takes O(n2 + c(n)) time where c(n) is the

time taken for computing A2. So instead we approximate the number of closed walks of length 6955

containing v.

5.1.1 Approximating number of walks

An equivalent expression forW6(v,G) is

6A6(v, v)− 6A4(v, v)A2(v, v)− 3(A3(v, v))2 + 2(A2(v, v))3.

The formula forW6(v,G) suggests that we need to approximate the powers of adjacency matrix A

of G. For the purpose, we consider a summary graph H of G which is weighted undirected graph

with adjacency matrix A(H) = C.960

Original Graph Summary Graph

2
3 4

5 687

9

1

{3, 4, 5, 6}
{1, 2}

{7, 8, 9}

Figure 5.1: (Left) A graph and (right) its random summary are shown.
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We generate matrix C (graph H) in the following way. First, we partition the node set V (G)

into random subsets using a random hash function h. Let the partition of nodes under the hash

function h be P(h) with |P(h)| = α. Second we construct matrix C as

Algorithm 5 : SummaryGraph(A(G),α,h)

C ← ZEROS(α× α)
for i = 1 to n do

for j = i to n do
if A(i, j) = 1 then

C[h(i)][h(j)]← C[h(i)][h(j)] + 1
C[h(j)][h(i)]← C[h(i)][h(j)]

return C

This matrix C corresponds to summary graph H in which every node (super-node) represents

a set of nodes in P(h) and C(i, j) entry denotes the number of edges from super-node i to super-965

node j (number of edges from nodes in super-node i to nodes in super-node j). Lets denote ith

super-node of H by Xi

In order to approximate W6(v,G) of a node v ∈ V (G), we use powers of matrix C instead

those of A(G). We keep C2 and C3 matrices. For each Xi ∈ V (H), we compute terms C6(i, i)

using formula
∑α

j=1(C
3(i, j))2 and C4(i, i) by

∑α
j=i(C

2(i, j))2.970

Note that Cp(i, j) represents the total number of walks of length p from nodes in Xi to nodes in

Xj . So, we can find the number of closed walks of length p containing a specific node v ∈ V (G),

by estimating the contribution of this node in the total number of walks in Xh(v). For this purpose,

we define the contribution factor of v with h(v) = i in Cp(i, i) as

dXi
(v)p∑

u∈Xi
dXi

(u)p

This can be seen clear if we expand the terms Cp(i, i). For instance if we expand C3(i, i), we get

one term as (C(i, i))3 which is same as
(∑

v∈Xi
dXi

(v)
)3. We define

∑
u∈Xi

dXi
(u)p to be Dp(i).

So we get that the estimated value of cw6(v,G) is following when h(v) = i

W ′(v) = 6C6(i, i)
dG(v)

6

D6(i)
− 6dG(v)C

4(i, i)
dG(v)

4

D4(i)
− 3

(
C3(i, i)

dG(v)
3

D3(i)

)2

+ 2 (dG(v))
3
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5.2 Algorithm975

In this section, we give the approximate algorithm to compute W(v,G). Since we partitioned

V (G) using random hash functions, we use multiple hash functions to normalize the effect of

randomness as follows.

Algorithm 6 : EstimateWalks(A(G),α,β)

for i = 1 to β do
W ′

i ← ZEROS(n)
hi(i) = (a ∗ i+ b)%α ▷ a and b are two random numbers
Ci ← SUMMARYGRAPH(A(G), α, hi)
for j = 1 to n do

ComputeW ′
i[vj]

cwMin← ZEROS(n)
for j = 1 to n do

cwMin[v]← miniW ′
i[vj]

return cwMin

Once we have estimated the walks for each node v of V (G) using multiple hash functions, call

it W (v)(v), we can select set S for immunization that contain nodes with most number of walks.980

But for efficient results we would prefer to choose S that have nodes which are well spread apart

and we do not want to select a lot of those nodes which are connected to each other. In order to

deal with this, we define the score of each candidate subset S, on basis of which we select S for

immunization. For v ∈ V (G), and S ⊂ V (G),

score(S) = γ
∑
v∈S

W (v)2 −
∑
u,v∈S

W (v)A(u, v)W (u) (5.1)

where γ is a positive integer. We want to find set S such that

S = argmax score(S), |S| = k.

But this optimization problem is clearly computationally intractable since it requires computing985

score for each of
(
n
k

)
sets. So we show that the function score(S) is monotonically non-decreasing

and sub-modular, allowing us to devise a greedy strategy to construct set S with guaranteed good
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approximation of our results.

Proving that our optimization function is sub-modular, and we can use Theorem 1, which

guarantees that the greedy strategy will be (1−1/e)-approximate algorithm. We give the following990

greedy algorithm to construct the required set S.

Algorithm 7 : GreedyNodeImmunization(A(G),k,α,β)

1: S ← ∅
2: W2, Score← ZEROS(n)
3: W ← ESTIMATEWALKS(A(G), α, β)
4: γ ← maxi W [i]
5: for i = 1 to n do
6: W2[i]← γW [i]2

7: for i = 1 to k do
8: aS ← A[:, S] ∗W [S]
9: for j = 1 to n do

10: if j /∈ S then
11: Score[j]← W2[j]− 2aS[j]W [j]
12: else
13: Score[j]← −1
14: maxNode← argmaxj Score[j]
15: S ← S ∪ {maxNode}
16: return S

Analysis of Algorithm

Now we analyze our proposed algorithm and give its runtime complexity. First we discuss com-

plexity of EstimateWalks function. This function needs to compute the following β times (count of

hash functions): C, C2, C3, C4, C6, D6(i) for all sets in partition formed by hash function,W ′(v)995

for n vertices.

Note that C matrix for all hash functions can be computed with one scan of the whole graph,

which takes n2 time. Computing all the above, except C takes at most O(α3) time. For every hash

function, it takes maximum O(n+ α3) time and finding minW ′(i) for each vertex takes βn time.

This implies EstimateWalks function takes O(n2 + β(n+ α3)) time.1000

Line 4 and first for loop takes O(n) steps. The jth iteration if loop in lines 9 to 13 takes O(n+

nj) and line 14 is O(n) work. This shows that second loop from line 7 to 15 takes
∑k

j=1O(n+nj)
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time which is O(nk2) in total.

So GreedyNodeImmunization(A(G), k, α,β) algorithm takes total O(n2 + β(n + α3) + nk2)

time.1005

5.3 Experiments

We present results of our suggested algorithm in detail in this section. We have compared results

of our algorithm with those of NETSHIELD1, Brute Force Method and Walk 4 [21] to evaluate the

quality and efficiency. NETSHIELD selects the vertices based on the eigen vector corresponding to

largest eigenvalue of graph, Brute Force algorithm picks vertices which have maximum number of1010

closed walks of length six passing across them and Walk 4 chooses nodes based on approximation

of walks of length 4 for immunization purpose. We have implemented the algorithm in Matlab and

we have made our code available at the given link2.

Network Number
of Nodes

Number
of Edges

Karate 34 78
Oregon 10,670 22,002
AA 418,236 2,753,798

Table 5.1: Summary of Datasets

We have used real world graphs for experimentation and all our graphs are undirected and un-

weighted. The first data set called Karate graph3 is a small graph of local karate club in which1015

nodes represent members of the club and an edge between two nodes shows friendship among

corresponding members. Karate graph consists of 34 nodes and 78 edges.

Second dataset is obtained from Oregon AS (Autonomous System)4 router graphs. We have con-

structed a communication graph in which nodes are participating routers and an edge between

two routers represents direct peering relationship among them. A number of Oregon graphs are1020

1https://www.dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar
2https://www.dropbox.com/sh/n7hwjc4imh62pe6/AADCyHG7uMGX6o9xtr1pdH6Qa?dl=0
3http://konect.uni-koblenz.de/networks/ucidata-zachary
4http://snap.stanford.edu/data/oregon1.html
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available and each graph is made from communication log of one week. We have selected a graph

containing 10,670 nodes and 22,002 edges.

The third data set (AA) is from DBLP5 dataset. In this graph a node represents an author and pres-

ence of an edge between two nodes shows that two authors have a co-authorship. In DBLP there

is total node count of 418,236 and the number of edges among nodes is 2,753,798. We extracted1025

smaller sub-graphs by selecting co-authorship graphs of individual journals (e.g Displays, Inter-

national Journal of Computational Intelligence and Applications, International Journal of Internet

and Enterprise Management, etc.). We ran our experiments on 20 different smaller co-authorship

graphs of different journals. For the smaller sub graphs that we have extracted from DBLP dataset,

node count goes up to few thousands and edge count goes up to few ten thousands. Details of1030

sub graphs of DBLP data set is given in Table 6.3. These subgraphs are also undirected and un-

weighted.

Network Number
of Nodes

Number
of Edges

AI Communication 1,203 2,204
APJOR 1,132 1,145
Computer In Industry 2,844 4,466
Computing And Informatics (CAI) 1,598 2,324
Decision Support Systems (DSS) 4,926 14,660
Display 1,374 3,204
Ecological Informatics 1,990 4,913
Engineering Application of AI 4,164 6,733
IJCIA 848 975

Table 5.2: Summary of DBLP subgraphs

We performed extensive experimentation with varying number of nodes to be immunized in

graph. In the results shown, x-axis shows the count of nodes being immunized denoted by k

while y-axis shows the benefit achieved in terms of percentage of eigen drop after immunizing k1035

nodes in graph. It is clear from results that our algorithm beats other variants for immunizing the

graph in terms of effectiveness. Our algorithm has less computational cost than its competitors

and is scalable to larger values of k and also for large size graphs. It is worth mentioning that our

5http://dblp.uni-trier.de/xml/
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Figure 5.2: Eigendrop of Karate Graph
Figure 5.3: Eigendrop of Computer In Industry
Graph

Figure 5.4: Eigendrop of CAI Graph Figure 5.5: Eigendrop of DSS Graph

Figure 5.6: Eigendrop of Displays Graph
Figure 5.7: Eigendrop of Ecological Informatics
Graph

algorithm achieves high accuracy in terms of approximation with very small k. Hence for very

large graphs, our algorithm will achieve reasonable level of accuracy in very little time.1040
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Figure 5.8: Eigendrop of IJCIA Graph Figure 5.9: Eigendrop of Oregon Graph

5.4 Summary

In this work, we explored some links between established graph vulnerability measure and other

spectral properties of even powers of adjacency matrix of the graph. We define a shield value in

terms of the trace of the adjacency matrix of the graph. Based on these insights, we present a

greedy algorithm that iteratively selects k nodes such that the impact of each node is maximum in1045

the graph, in the respective iteration. Thus, we maximally reduce the spread of a potential infection

in the graph by removing those vertices. Our algorithm is scalable to large graphs and we have

done experimentation on different real world communication graphs to prove the accuracy and

efficiency of our algorithm. Our method beats the state-of-the-art algorithms in performance as

well as in quality.1050

In the next chapter, we extend our solution to compute closed walks of length 8 and evaluate

its performance.
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Chapter 6

Combinatorial trace method for network

immunization1055

In this chapter, we give solution to network immunization problem based on the number of closed

walks of length 8, W8(v,G) passing through node v in graph G. First, in Section 6.1, we give a

closed form expression to computeW8(v,G). We give our approximate algorithm in Section 6.2

to immunize nodes based onW8(v,G). Experimental evaluation of the goodness of our solution is

presented in Section 6.3.1060

6.1 Computing walks of length 8

The proposed shield value, scorep(S), quantifies the importance of set S based on the number of

p-length closed walks containing nodes from S. Building S requiresWp(v,G) for all v ∈ V . A

closed-form ofWp(v,G) depends on the actual value of p. In practice, the value of p = 8 produces

the set S with sufficient quality. We select nodes in a graph based on the number of closed walks1065

of length 8 (referred to as 8-walks) for immunization purposes.
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6.1.1 Justification for p=8

Recall that our aim is to find a set S that minimizes λmax(A|−S). From (3.1), we get that for large

p, trace(Ap) approaches λmax(A)
p. Hence, we find a set S with minimum trace(A|p−S). We show

that in practice trace(A8) =
n=|V |∑
i=1

λi(A
8) is sufficiently close to λmax(A

8) . Table 6.1 demonstrates1070

that in real world graphs
λmax(A

8)∑n
i=1 λi(A8)

=
λmax(A

8)

trace(A8)
is close to 1 specially if there is significant

eigen-gap
(
λmax(A)− λ2(A)

)
. In other words, λmax(A

8) is the most dominant term in trace(A8)

and the combined effect of the other terms
(
λ2(A

8) + · · ·+ λn(A
8)
)

diminishes.

Table 6.1: Ratio of λmax(A
8) to

∑n
i=1 λi(A

8) is shown. Note that as relative eigen-gap increases,
the ratio approaches to 1. We show the ratio only for moderately large graphs because computing
all n eigen values for very large graphs takes very long time.

Network |V | λmax(A) λ2(A) λmax(A
8)∑n

i=1 λi(A8)

EngineeringApplicationofAI 4164 16 13.2 0.756
Facebook 4039 162.4 125.5 0.859
Email 1005 77.2 36.9 0.993
AICommunication 1203 33 12.1 0.999

6.1.2 Closed-Form expression forW8(v,G)

We derive a closed-form expression for computing W8(v,G). To the best of our knowledge, we1075

are the first one to derive such expression.

Theorem 10.

W8(v,G) =8A8(v, v)− 8A2(v, v)A6(v, v)− 8A3(v, v)A5(v, v)− 4(A4(v, v))2

+ 8A2(v, v)(A3(v, v))2 + 8(A2(v, v))2A4(v, v)− 2(A2(v, v))4

Proof. An 8-walk in G is represented as W = (a, b, c, d, e, f, g, h, a) and the goal is to compute

the number of 8-walks containing a node v. Node v can occur at most four times in an 8-walk and

we consider each case of the number of occurrences of v as follows.
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Let T{l1,··· ,li}, 1 ≤ i ≤ 4 be the collection of 8-walks containing v exactly i times. For W ∈1080

T{l1,··· ,li}, then W starts and ends at v and can be written as concatenation of walks of lengths

l1, · · · , li, each starting and ending at v. We note that 2 ≤ lk ≤ 8, for 1 ≤ k ≤ 4, and
∑i

k=1 lk =

8. For example T{2,3,3} contains the walks of type (v, a, v, b, c, v, d, e, v) i.e. it is sequence of

(v, a, v), (v, b, c, v) and (v, d, e, v).

The rotations of nodes in a walk give different, and sometimes distinct, walks. Given a walk1085

(a, b, c, d, e, f, g, h, a), one vertex left rotation will produce another walk (b, c, d, e, f, g, h, a, b). So

recurrent, one vertex, rotations of walks in T{l1,··· ,li} can give up to 8|T{l1,·,li}| different walks.

We count the walks of each type i.e. walks in T{2,2,2,2}, T{2,2,4}, T{2,3,3}, T{2,6}, T{3,5}, T{4,4}, T{8}

and their distinct rotations. In counting there are cases when walks in T{2,3,3} are considered and

these are different from walks in T{3,2,3}, but |T{2,3,3}| = |T{3,2,3}|.1090

First, we count the number of walks containing v exactly 4 times. The walk (v, a, v, b, v, c, v, d, v),

where {a, b, c, d} ∈ N(v), is represented as T{2,2,2,2} as concatenation of 4 closed walks of length

2. The number of such walks is (A2(v, v))4. In this case, only one vertex rotation is possible which

gives (a, v, b, v, c, v, d, v, a) because a second rotation gives the same original walk. Hence, the

number of walks containing v exactly 4 times is 2(A2(v, v))4.1095

The walks having v exactly 3 times are contained in T{2,3,3} and T{2,2,4}. The number of walks

in T{2,3,3} is A2(v, v)(A3(v, v))2 and for each walk in this set, 8 distinct walks are possible after

rotations. The total number of walks containing v 3 times is 8
[
A2(v, v)(A3(v, v))2

]
.

A walk in T{2,2,4} is concatenation of (v, a, v), (v, b, v), (v, c, d, e, v), where d ̸= v. Number

of all walks of form (v, a, v, b, v, c, d, e, v) is at most 8(A2(v, v))2A4(v, v) but this number in-

cludes walks with d = v as well. To exclude those, we note that when d = v, walk is of type

T{2,2,2,2} which we have already counted in first case. Subtracting the instance when d = v in

(v, a, v, b, v, c, d, e, v), we get |T{2,2,4}| = (A2(v, v))2A4(v, v)− (A2(v, v))4. All 8 vertex rotations

of walks in T{2,2,4} give distinct walks. The total number of 8-walks containing v thrice is

=8|T{2,2,4}|+ 8|T{2,3,3}|

=8
[
(A2(v, v))2A4(v, v)− (A2(v, v))4

]
+ 8

[
A2(v, v)(A3(v, v))2

]
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Walks containing v exactly twice are represented as T{3,5}, T{2,6} and T{4,4}. A walk in T{3,5} is

of the form (v, a, b, v, c, d, e, f, v) where d, e ̸= v. The number of walks with d = v and e = v is1100

|T{3,2,3}| and |T{3,3,2}|. So |T{3,5}| = A3(v, v)A5(v, v) − 2A2(v, v)(A3(v, v))2. In this case, vertex

rotations give 8 distinct walks.

Walks in T{2,6} are of the form (v, a, v, b, c, d, e, f, v) where c, d, e ̸= v. There are maximum

A2(v, v)A6(v, v) walks of type T{2,6} but these include walks with c = v, d = v, e = v and

c, e = v. For c = v and e = v, we get walks of types T{2,2,4} and T{2,4,2} respectively while if1105

d = v then it is a walk of type T{2,2,2,2}. For d = v, we get walk of type T{2,3,3}.

|T{2,6}| =A2(v, v)A6(v, v)− 2|T{2,2,4}| − |T{2,3,3}| − |T{2,2,2,2}|

=A2(v, v)A6(v, v)− 2(A2(v, v))2A4(v, v)− A2(v, v)(A3(v, v))2 + (A2(v, v))4

In the case of T{2,6}, rotations of vertices give 8 different walks.

The number of walks of type T{4,4} in (A4(v, v))2 but it also includes |T{2,4,4}| and |T{2,2,2,2}|.
Therefore, we get

|T{4,4}| = (A4(v, v))2 − 2|T{2,2,4}| − |T{2,2,2,2}|

= (A4(v, v))2 − 2(A2(v, v))2A4(v, v) + (A2(v, v))4

In this case, only the first 4 vertex rotations give different walks and 5th rotation gives the1110

original walk. The total number of walks containing v exactly twice is

=8|T{3,5}|+ 8|T{2,6}|+ 4|T{4,4}|

=8
[
A3(v, v)A5(v, v)− 2A2(v, v)(A3(v, v))2

]
+ 8[A2(v, v)A6(v, v)

− 2(A2(v, v))2A4(v, v)− A2(v, v)(A3(v, v))2 + (A2(v, v))4] + 4
[
(A4(v, v))2

− 2(A2(v, v))2A4(v, v) + (A2(v, v))4
]

=8A3(v, v)A5(v, v) + 8A2(v, v)A6(v, v) + 4(A4(v, v))2 − 24A2(v, v)(A3(v, v))2

− 24(A2(v, v))2A4(v, v) + 12(A2(v, v))4

T{8} consists of walks containing v only once and are of the form (v, a, b, c, d, e, f, g, v). The
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number of such walks is A8(v, v). But this includes walks with some combinations of b, c, d, e, f

equal to v as well. Subtracting already counted walks from T{8} gives

|T{8}| =A8(v, v)− 2A2(v, v)A6(v, v)− 2A3(v, v)A5(v, v)− (A4(v, v))2

+ 3A2(v, v))2A4(v, v) + 3A2(v, v)(A3(v, v))2 − (A2(v, v))4

In T{8}, vertex rotations give 8 distinct walks so the number of walks containing v once is

8|T{8}| =8A8(v, v)− 16A2(v, v)A6(v, v)− 16A3(v, v)A5(v, v)− 8(A4(v, v))2

+ 24A2(v, v))2A4(v, v) + 24A2(v, v)(A3(v, v))2 − 8(A2(v, v))4

Combining all the four cases of occurrence of v in 8-walk gives

W8(v,G) =2|T{2,2,2,2}|+ 8|T{2,2,4}|+ 8|T{2,3,3}|+ 8|T{3,5}|+ 8|T{2,6}|

+ 4|T{4,4}|+ 8|T{8}|

=8A8(v, v)− 4(A4(v, v))2 − 8A2(v, v)A6(v, v)− 8A3(v, v)A5(v, v)

+ 8A2(v, v)(A3(v, v))2 + 8(A2(v, v))2A4(v, v)− 2(A2(v, v))4

1115

6.2 Proposed algorithm

In this section, we give our algorithm to compute the number of 8-walks passing through each

vertex and select nodes for immunization. Recall from Theorem 10 that computing number of

8-walks requires 8th power of the adjacency matrix A. Let f(n) be the running time for taking 8th

power of A. ComputingW8(v,G) for all v ∈ V using Theorem 10 takes O(n+ f(n)) time. Note1120

that while for many real-world graphs A is sparse; this does not necessarily hold for A2 and higher

powers of A. The above runtime, therefore is prohibitive for real-world graphs, since best-known

bounds on f(n) are super-quadratic.

We propose to approximately compute W8(v,G) from a summary of G [7, 25, 26]. Given a
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graph G = (V (G), E(G)) on n nodes, a summary H of G, H = (V (H), E(H)) is a graph on t

nodes with weights on both its nodes and edges. V (H) = {V1, . . . , Vt} is a partition of V (G), i.e.

Vi ⊂ V (G) for 1 ≤ i ≤ t, Vi ∩ Vj = ∅ for i ̸= j and
⋃t

i=1 Vi = V (G). Each Vi (called supernode)

is associated with two integers ni = |Vi| and ei = |{(u, v)|u, v ∈ Vi, (u, v) ∈ E(G)}|. Weight of

an edge (Vi, Vj) ∈ E(H) (called superedge), is eij : the number of edges in the bipartite subgraph

induced between Vi and Vj i.e. eij = |{(u, v)|u ∈ Vi, v ∈ Vj, (u, v) ∈ E(G)}|. The original graph

G is approximately reconstructed from H as the expected adjacency matrix, A′
n×n with a row and

column corresponding to each u ∈ V (G) given as:

A′(u, v) =


0 if u = v

ei

(ni
2 )

if u, v ∈ Vi

eij
ninj

if u ∈ Vi, v ∈ Vj

Let H be a summary graph of G on t supernodes and let C be its adjacency matrix. Clearly,

Cp(i, j) is the number of walks of length p from nodes in Vi to nodes in Vj . We estimate the1125

contributions of v ∈ Vi to Cp(i, i) by αp(v).C
p(i, i), where αp(v) =

dG(v)
p∑

u∈Vi
dG(u)p

. Our estimate

forW8(v,G) is

W ′
8(v,G) =8C8(i, i)α8(v)− 8dG(v)6C

6(i, i)α6(v)− 8C5(i, i)α5(v)C
3(i, i)α3(v)−

4
(
C4(i, i)α4(v)

)2
+ 8dG(v)

(
C3(i, i)α3(v)

)2
+ 8dG(v)

2C4(i, i)α4(v)− 2dG(v)
4

(6.1)

This expression is same as that of Theorem 10 except for p ≥ 3, Ap(v, v) is substituted by

αp(v).C
p(i, i) where Vi ∋ v. Note that A2(v, v) = dG(v).

We construct a summary H of G by randomly partitioning V (G) into t parts. There are better1130

techniques [7, 25, 26] for graph summarization that might result in enhanced estimates.

6.2.1 Proposed WALK-8 algorithm

We select a subset S that approximately maximizes score8(S) as given in (3.2). In Algorithm 8,

Line 3 computes W vector using (6.1) and W [i] is the estimated number of walks of length 8 con-
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taining vertex vi. In each iteration of Lines 7-15, we greedily extend S by adding a node with the1135

highest score (Line 11). Line 13 excludes nodes already selected in S from further consideration.

Algorithm 8 : WALK-8(A,k,t)

1: S ← ∅
2: W2, Score← ZEROS(n)
3: W ← ESTIMATEWALKS(A, t) ▷ compute approx. count of walks using super graph of order

t based on Eq. (6.1)
4: γ ← maxi W [i]
5: for i = 1 to n do
6: W2[i]← γW [i]2

7: for i = 1 to k do
8: u← A[:, S] ∗W [S]
9: for j = 1 to n do

10: if j /∈ S then
11: Score[j]← W2[j]− 2u[j]W [j]
12: else
13: Score[j]← −1
14: maxNode← argmaxj Score[j]
15: S ← S ∪ {maxNode}
16: return S

6.2.2 Runtime analysis of WALK-8

We derive analytical bounds on the runtime of Algorithm 8. Partitioning G into t supernodes

takes O(n) time as it can be done with a linear scan on V (G) to put nodes in respective buckets

(supernodes). Computing the summary graph (populating the weighted adjacency matrix, C) re-1140

quires traversing the edges E(G) and incrementing the appropriate entry of C. This takes a total

of O(m) time, where m = |E(G)|. The powers of C matrix can be computed in O(t3) time. Thus

ESTIMATEWALKS function takes O(n + m + t3) time. Line 4 and the first for loop (Lines 5-6)

takes O(n) steps. An iteration of the inner for loop (Lines 9-13) takes O(n + nk) and Line 14

takes O(n) steps. This shows that the outer loop (Line 7-15) takes
∑k

i=1 O(n + nk) = O(nk2).1145

Therefore, Algorithm 8 takes total O(n+m+ t3 + nk2) time.
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6.3 Experimental evaluation

We present the results of the detailed experimentation of our proposed solution in this section. Ex-

periments are performed on several real-world datasets to analyze the performance of our method

and results are compared with NETSHIELD1, the state-of-the-art algorithm, to evaluate quality,1150

scalability and efficiency. NETSHIELD computes the score of each node using the eigenvector cor-

responding to the largest eigenvalue λmax of the original graph. WALK-6 and WALK-8 versions

of our algorithm select nodes for immunization based on 6-walks and 8-walks respectively passing

through each node.

We evaluate the performance of our algorithm across a range of budgets for the number of1155

nodes to be immunized in the graphs and different counts of supernodes for approximation. First,

we evaluate the quality of our approximation technique. To show that our approach maximally

reduces the spread of the virus across the graph, we give results for the virus spread simulation on

graphs immunized by NETSHIELD, WALK-6 and WALK-8. Furthermore, we measure quality in

terms of the reduction in λmax (vulnerability) of the graph after immunizing the set S of selected1160

nodes. We report results using eigendrop percentage, which is ∆λ(S)
λmax(A)

× 100. Finally, we give

runtime comparisons for the above-mentioned techniques.

We performed experiments on a standard desktop machine with 3.6 GHz Intel Core i7-7700

and 8 GB of main memory. The MATLAB code for our algorithm is available 2 for reproducibility

and further experimentation.1165

6.3.1 Datasets

Experiments are performed on real-world graphs of order ranging from a few thousands to a few

millions nodes. All graphs are undirected and unweighted. HEP-TH3 is a collaboration network

of High Energy Physics - Theory category extracted from the e-print arXiv. A node in the network

represents an author and an edge between two authors shows collaboration between them. Face-1170

1https://www.dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar
2https://www.dropbox.com/sh/n7hwjc4imh62pe6/AADCyHG7uMGX6o9xtr1pdH6Qa?dl=0
3https://snap.stanford.edu/
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Table 6.2: Statistics of Datasets

Network Number of nodes Number of edges λmax(A)
HEP-TH 9,877 25,998 31.03
Facebook 4,039 88,234 162.37
Gowalla 196,591 950,327 170.94
Dblp 317,080 1,049,866 115.85
Amazon 334,863 925,872 23.98
AA 418,236 2,753,798 -
Youtube 1,134,890 2,987,624 210.40
Skitter 1,696,415 11,095,298 670.35

book1 graph shows the friendship network among users in which people are represented as nodes

and relationships among two users are shown as edges.

To test our algorithm on large networks we use five different real-world graphs as given in Table

6.2. Gowalla1 dataset shows friendship relations in a location-based social network. Amazon1 is a

co-purchasing graph of products where each node is a product and there is an edge between two1175

nodes if the products are purchased by a user in a single basket. Dblp1 is a co-authorship network

in which two authors are connected if they have co-authored at least one publication. Youtube1

graph shows the friendship network of users in the Youtube social network. Skitter1 is an internet

topology network where nodes correspond to autonomous systems and communication between

them constitutes edges.1180

Table 6.3: Statistics of AA subgraphs

Network Number
of nodes

Number
of edges

λmax(A)

Applied Mathematics and Computing (AMC) 18,371 24,224 10.99
Decision Support Systems (DSS) 4,926 14,660 12.0
Ecological Informatics (EI) 1,990 4,913 16.68
Communication ACM 11,476 16,687 32.90

The dataset AA4 is a co-authorship network extracted from DBLP archive data. We select 4

different smaller co-authorship subgraphs each corresponding to manuscripts in a distinct journal.

Node count goes up to a few thousands and edge count goes up to a few ten thousands for extracted

4http://dblp.uni-trier.de/xml/
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subgraphs. Details of the subgraphs of AA data set are provided in Table 6.3.

6.3.2 Approximation quality of WALK-81185

In order to evaluate the goodness of our approximate method, we compare it with the exact solution

as described in Theorem 10. The exact number of closed walks of length 8 can be computed using

the original adjacency matrix A as given in Theorem 10 instead of using a summary graph. We

analyze the quality of our approximation method by comparing the eigendrop percentages achieved

using the exact and approximate method. We report comparison results of the exact solution with1190

the summary graphs of order {100, 500, 1000}.
It is clear from Figure 6.1 that the performance of our approximate method improves with the
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Figure 6.1: The effect of the order of summary graph on the quality of the approximation. Eigen-
drop percentages using different numbers of supernodes have been reported (WALK-8(t), where t
is the number of supernodes). It is clear that as t increases, the quality of approximation tends to
match with that of the exact solution.

increase in the number of supernodes in the summary graph. As the order of the summary graph

increases, the achieved benefit tends to match with that of the exact solution. Note that we compute

the exact number of walks for small graphs having the order of a few thousands only as it is1195

computationally infeasible to compute the exact solution for large graphs.

59



6.3.3 Virus spread simulation

Another criterion used for quality evaluation is to estimate the spread of virus propagation in the

immunized version of the graph. We use SIR virus propagation model to observe the spread of1200

contagion after immunizing a small subset (∼ 5 %) of nodes in a graph. Let s = λmax × β/δ be

the virus strength (larger value of s corresponds to more strength of virus while the virus gradually

dies out if s ≤ 1), where β and δ denote the infection and recovery rate respectively. In our

experimentation, we immunize k nodes in a graph and infect all the nodes in the immunized version

of the graph. We then observe the spread of the virus under different virus strengths with varying1205

values of β and δ. Results in Figure 6.2 show that the graphs immunized by our approach have

less number of infected nodes as compared to NETSHIELD. We report the average of 3 runs of

experiments to mitigate the effect of randomness.

6.3.4 Eigendrop percentage comparison

We compare the quality of approximate versions of our algorithms with NETSHIELD in terms of1210

eigendrop and results are shown in Figure 6.3. For smaller graphs and subgraphs of AA which

consist of a few thousand nodes, a budget of up to 100 nodes is used and for large graphs with

more than 100, 000 nodes, we immunize up to 1000 nodes. We have used summary graphs with

different orders (100, 500, 1000) to perform experiments. Time complexity increases as the number

of supernodes increases but we observe that there is a proportionately minor improvement in the1215

quality of solution for increasing order of graph after a certain threshold is reached. For smaller

graphs, we report results for supernode count of 500 and for large graphs, the number of supernodes

is set to 1000.

We observe that the immunizing quality of our algorithm clearly outperforms NETSHIELD in

terms of eigendrop. The improvement in quality of solution is particularly evident on large graphs1220

Gowalla Figure 6.3c, Youtube Figure 6.3d, and Skitter Figure 6.3e. For reasonably large budget,

WALK-8 outperforms both NETSHIELD and WALK-6. Experiments also reveal that NETSHIELD

performs better than our approach for very small values of budget k but as the count of nodes to be

immunized increases, its effectiveness degrades.
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6.3.5 Run time comparison1225

We also present comparable computational cost while achieving much better quality as one of the

merits of our algorithm as discussed in the theoretical time complexity in Section 3.3. Comparison

of runtimes of NETSHIELD, WALK-6 and WALK-8 is provided in Figure 6.4. Results show that

the runtime of our algorithm matches with that of NETSHIELD. The results are reported with 1000

supernodes (t) in summary graphs.1230
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Figure 6.4: Comparison of time taken (in seconds) to immunize graphs using NETSHIELD,
WALK-6 and WALK-8 approach against the number of nodes to be immunized (k). Results are
reported on summaries with 1000 supernodes.

Recall that runtime of our algorithm is O(n + |E(G)| + t3 + nk2), where the first three terms

comprise runtime of constructing a summary of order t and computing the W8(v,G) for all v ∈
V (G), while the last term (nk2) is the runtime to select the best k nodes (NETSHIELD also requires

O(nk2) for this task). Hence, runtime of our algorithm depends quadratically only on k, which

generally is a small constant. We note that our runtime is superior to that of NETSHIELD in the1235

sense that in relatively less time we achieve significantly more eigendrop even for a small value of

t (see Figure 6.1).
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Figure 6.2: Virus propagation simulation for varying virus strength s on the immunized version of
graphs. Caption of each plot represents (graph name, number of immunized nodes k, s, infection
rate β, recovery rate δ). Initially, all the nodes in the graphs were contaminated and the plots
show the fraction of infected nodes (y-axis logged scale) as the time proceeds. We select nodes for
immunization using a summary graph having 500 supernodes.
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Figure 6.3: Comparison of NETSHIELD, WALK-6 and WALK-8 in terms of eigendrop percentages
(y-axis) against budget k, number of nodes immunized, (x-axis). WALK-6 and WALK-8 achieve
significantly higher eigendrop for increasing k. Results in (a)-(e) are computed using 1000 supern-
odes while in (f)-(i) experiments are performed using summary graph of order = 500. The range
for k is chosen keeping in view the number of nodes in the host graphs.
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6.4 Summary

In this work, we address the problem of finding a small subset of nodes in a network whose immu-

nization results in a significant reduction in network vulnerability towards the spread of undesirable1240

content. We explored the relationships between spectral and graph-theoretic properties of networks

and exploit these relationships to design an efficient algorithm to find crucial nodes in the network.

We select a subset of nodes for immunization based on the number of closed walks of length 8.

With the use of easily computable local graph properties and approximation techniques, the run-

ning time of our technique is linear in the size of the graph. Thus, our method is scalable and can1245

be applied to large graphs. Experiments on large real-world networks suggest that our algorithm

provides better results than previously employed methods and is significantly faster in terms of

time complexity. The approximation quality comparison shows that our method is a close approx-

imation of the exact solution. Experimental results for various quality measures like virus spread

simulation, reduction in network vulnerability and the run time comparison show that our method1250

performs better than the state-of-the-art solution.

In the next chapter, we give our solution to graph summarization problem. Initially, we aim

to devise a summarization method as a sub-routine to improve the quality of approximate immu-

nization algorithm. However, we realized that graph summarization, itself, is a standalone area of

research in the domain of graph theory. So, we include our contribution to graph summarization1255

problem as a separate line of research and we are sure that the use of specialized graph summa-

rization approaches will improve the approximation quality of our immunization algorithm.
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Chapter 7

Scalable Approximation Algorithm for

Graph Summarization1260

7.1 Introduction

Graphs analysis is a fundamental task in various applications. Graphs with millions of nodes

and billions of edges are ubiquitous in many research fields such as e-commerce, social networks

analysis, bioinformatics, internet of things, etc [75, 76]. The magnitude of these graphs poses

significant computational challenges for graph processing. A practical solution is to compress the1265

graph into a summary that retains the essential structural information and the important properties

of the original graph. Processing and analyzing the summary graph is significantly faster and also

reduces the storage and communication overhead.

Graph summarization has various applications in a variety of domains. It plays a pivotal role

in privacy preservation while allowing to draw insights from a network [77–80]. Graph summa-1270

rization is also used to protect networks from infection spread and identify source nodes of infec-

tion [81]. he summary of a graph is used to estimate the combinatorial trace of the original graph

for immunizing a select few nodes to minimize the infection spread in the graph [22, 23, 82, 83].

Moreover, summarization techniques help generate graph descriptors, mapping graphs to a fixed

dimensional vector space [84, 85]. These descriptors make classification, clustering, and other1275
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graph processing tasks computationally efficient. Furthermore, a summary makes visualization of

very large graphs possible by removing less useful information [86, 87].

The summary graph is represented as a supergraph with weights on supernodes and superedges.

A supernode is a subset of nodes and the weight of a supernode is the density of the subgraph

induced by the subset. While an edge between two supernodes is termed as superedge and the1280

weight on a superedge is the density of the bipartite subgraph induced by the subset of nodes in

respective supernodes. Broadly there are two types of graph summarization approaches: i) lossless

and ii) lossy. In lossless graph summarization, the original graph can be reconstructed exactly

from the summary graph. The exact reconstruction is done by storing extra information as edge

corrections, the edges to be inserted or deleted in the reconstructed graph. Storing edge corrections1285

along with the summary poses an additional memory overhead. In lossy graph summarization, the

original graph is approximately reconstructed from the summary. The quality of a lossy summary

is measured by the extent to which the original graph can be reconstructed. For lossy summaries,

reconstruction error, a widely adopted quality measure of a summary, quantifies a norm of the

structural difference between the original and the reconstructed graph. Another goodness criterion1290

of the summary is the accuracy of answers to queries related to graph topology.

As the number of possible summaries (vertex set partitions) is exponential, computing the

‘best’ summary is challenging [7, 10]. A well-known method, GRASS [7] uses an agglomerative

approach to form a summary of the given graph. Initially, each node is considered as a supernode,

and in every iteration, two supernodes are merged until the desired number of supernodes are1295

formed. In this setting, selecting a pair of nodes to merge and computing the error incurred after

merging a pair are computationally expensive challenges. At iteration t, let n(t) be the number of

supernodes in the summary, the total possible number of pairs of supernodes is
(
n(t)
2

)
. To reduce

this search space, GRASS proposed a sampling approach in which only O(n(t)) pairs of nodes

are considered randomly for merging. The selection and merging of the best pair are made in1300

O(n(t)). The overall runtime to summarize the graph on n nodes is O(n3), which is infeasible

even for graphs with a few thousand nodes. On the other hand, S2L [10], represents each vertex

by an n-dimensional vector and applies vector-clustering to find supernodes. The runtime of S2L
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to compute a summary with k supernodes is O(n2t), where t is the number of iterations before

convergence. This runtime is also infeasible for large graphs.1305

In this paper, we devise a lossy summarization approach that iteratively computes the summary

of the input graph in an agglomerative fashion. In each iteration, we consider a pair of nodes

from the logarithmic-sized sample for merging. We assign a weight to each node to estimate the

contribution of the node in the score of pairs containing it. Based on the node weights, we prob-

abilistically select a sample of node pairs of better quality and yields summaries of comparable1310

quality with the logarithmic-sized sample. For each pair in the sample, we define a score that

quantifies the goodness of the pair for merging. To improve the efficiency, we approximate this

score through a closed-form expression and storing constant extra variables at each node. The

overall runtime of our approach to compute a summary is O(n log2 n). We perform experiments

on several benchmark real-world networks to demonstrate the effectiveness and efficiency of our1315

approach as compared to GRASS and S2L.

The chapter is organized as follows. In section 7.2 we formally define the problem with its

background. We present our algorithm along with its analysis in section 7.3. In section 7.4 we

report results of experimental evaluation of our algorithm on several graphs. We also provide

comparisons with existing solutions both in terms of runtime and quality.1320

7.2 Problem Definition

Given a graph G = (V,E) on n vertices, let A be its adjacency matrix. For k ∈ Z, a summary

of G, S = (VS, ES) is a weighted graph on k vertices. Let VS = {V1, . . . , Vk}, each Vi ∈ VS is

referred to a supernode and represents a subset of V . More precisely, VS is a partition of V , i.e.

Vi ⊂ V for 1 ≤ i ≤ k, Vi ∩ Vj = ∅ for i ̸= j and
⋃k

i=1 Vi = V . Each supernode Vi is associated

with two integers ni = |Vi| and ei = |{(u, v)|u, v ∈ Vi, (u, v) ∈ E}|. For an edge (Vi, Vj) ∈ ES

(known as superedge), let eij be the number of edges in the bipartite subgraph induced between

Vi and Vj , i.e. eij = |{(u, v)|u ∈ Vi, v ∈ Vj, (u, v) ∈ E}|. Given a summary S, the graph G is
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Figure 7.1: A graph G having 6 vertices and its summary graph S are shown. The summary graph
consists of 3 supernodes and each supernode Vi in S stores the number of nodes (ni) and number
of edges (ei) between nodes in Vi. Each superedge eij also contains the number of edges between
Vi and Vj . Ā shows the expected adjacency matrix constructed from S.

approximately reconstructed by the expected adjacency matrix, Ā, where Ā is a n× n matrix with

Ā(u, v) =


0 if u = v

ei

(ni
2 )

if u, v ∈ Vi

eij
ninj

if u ∈ Vi, v ∈ Vj

The quality of a summary S is assessed by lp-norm of element-wise difference between Ā and A.

Definition 11. (lp-Reconstruction Error (REp)): The (unnormalized) lp reconstruction error of a

summary S of a graph G is

REp(G|S) = REp(A|Ā) =

 |V |∑
i=1

|V |∑
j=1

|Ā(i, j)− A(i, j)|p
1/p

(7.1)

Note that the case p = 1 considered in [7] and p = 2 considered in [10] are closely related to

each other. In this paper we use p = 1 and refer to RE1(G|S) as RE(G|S). The derivation of

following closed form expression of RE(G|S) is given in Section 7.3.

RE(G|S) = RE(A|Ā) =
k∑

i=1

4ei −
4e2i(
ni

2

) + k∑
i=1

k∑
j=1,j ̸=i

2eij −
2e2ij
ninj

(7.2)

Formally, we address the following problem.
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Problem 6. Given a graph G(V,E) and a positive integer k ≤ |V |, find a summary S for G with

k super nodes such that RE(G|S) is minimized.1325

Another measure to assess quality of a summary S of G is by the accuracy of answers of

queries about structure of G based on S only. In the following we list how certain queries used in

the literature are answered from S.

Adjacency Queries: Given two vertices u, v ∈ V , the query whether (u, v) ∈ E is answered

with Ā(u, v). This can either be interpreted as the expected value of an edge being present between1330

u and v or as returning a ‘yes’ answer based on the outcome of a biased coin with probability

Ā(u, v).

Degree Queries: Given a vertex v ∈ V , the query about degree of v is answered as d̄(v) =∑n
j=1 Ā(v, j).

Eigenvector-Centrality Queries: Eigenvector-centrality of a vertex v, p(v) measures the rel-1335

ative importance of v [88]. For a vertex v ∈ V , this query is answered as p̄(v) = d̄(v)
2|E| , where E

represents edges in the graph.

Triangle density queries: Let t(G) be the number of triangles in G. t(G) is estimated from

S by counting the expected number of triangles within each super node, the expected number of

triangles made with one vertex in one supernode and two in another, and that made with one vertex

each from three different super nodes. More precisely, this query is answered as follows. Let

πi =
ei

(ni
2 )

and πij =
eij
ninj

, then t̄(G), the estimate for t(G), is

k∑
i=1

[(
ni

3

)
π3
i +

k∑
j=i+1

(
π2
ij

[(
ni

2

)
njπi +

(
nj

2

)
niπj

]
+

k∑
l=j+1

ninjnlπijπjlπil

)]
.

7.3 Algorithm

Given a graph G and an integer k our algorithm produces a summary S on k super nodes as follows.

Let St−1 be the summary before iteration t with n(t − 1) super nodes, i.e. S0 = G, and let Āt be1340

the expected adjacency matrix of St. For 1 ≤ t ≤ n − k, we select a pair of supernodes (u, v)

and merge it to get St. To select an approximately optimal pair, we define weight of each node v
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that closely estimates the contribution of this node to score of pairs (v, ∗). We randomly sample

nodes for each pair with probability proportional to their weights and evaluate score of the pairs.

We derive a closed form formula to evaluate score of a pair. Furthermore, in this form these scores1345

can be approximately computed very efficiently. Based on approximate score, we select the best

pair in the sample and merge it to get St. In what follows, we discuss implementation of each of

these subroutines and their analyses.

Lemma 12. A pair (u, v) of nodes in St, can be merged to get St+1 in time O(deg(u) + deg(v)).

Proof. In the adjacency list format, one needs to iterate over neighbors of each u and v and record1350

their information in a new list of the merged node. However, updating the adjacency information

at each neighbor of u and v could potentially lead to traversal of all the edges. To this end, as a

preprocessing step, for each (x, y), in the adjacency list of x at node y, we store a pointer to the

corresponding entry in the adjacency list of y. With this constant (per edge) extra book keeping,

we can update the merging information at each neighbor in constant time by traversing just the1355

list of u and v (see Figure 7.2). It is easy to see that this preprocessing of storing the pointers

corresponding to each edge can be done in time O(|E|) once at the initialization.

(a) (b) (c)

2 31

3 1

3

x

v

u

u

v

x

3 x

2 31

3 1

v

u

x

u, v 3 x

2 31

3 1 u,v

x

u, v

u,v

Figure 7.2: (a) The adjacency list of a graph is shown in which neighbors store the pointer to the
corresponding node in their adjacency lists. (b) When two nodes u and v are merged, there is a need
of informing the neighbors of merged nodes about the merging (c) The merging information of u
and v is updated at their neighbors by traversing the pointers stored at the entries in the adjacency
list of the merged node.
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Derivation of closed-form expression for RE: We derive a closed-form expression to effi-

ciently compute RE(G|S), which is the total error incurred in the estimation of A from S only. We

first calculate the contribution of Va ∈ VS in RE(G|S) and then extend it to a general expression1360

that sums the contribution of all the supernodes in RE(G|S). The cumulative contribution of all the

supernodes sums to RE(G|S). We have Va = {va1, va2, · · · , vana}, where vaj ∈ V, a ≤ k, j ≤ na.

Va contributes to all the entries/edges in Ā, which have one or both the endpoints in Va. We predict

the presence of each of the possible internal edge (edge with both the endpoints in Va) as ea

(na
2 )

.

However, there are a total of ea edges in Va and analogously, 2ea corresponding positions in A1365

have value 1. The error at these 2ea locations in A and Ā is 2ea(1 − ea

(na
2 )

). The error at the re-

maining 2[
(
na

2

)
− ea] positions is 2(

(
na

2

)
− ea)(

ea

(na
2 )

). In case of superedges (Va, Vb) ∈ ES, Va, Vb ∈
VS, a, b ≤ k, a ̸= b, we predict the presence of an edge (u, v), v ∈ Va, u ∈ Vb, u, v ∈ V as
eab
nanb

. Doing the similar calculation as above, the contribution of Va in the error at the locations

(u, v), u ∈ Va, v ∈ Vb is eab(1 − eab
nanb

) + (nanb − eab)(
eab
nanb

). The total error introduced by su-1370

pernode Va is 2ea(1 − ea

(na
2 )

) + 2(
(
na

2

)
− ea)(

ea

(ni
2 )
) + eab(1 − eab

nanb
) + (nanb − eab)(

eab
nanb

). With

some simplification, the total error accumulated while reconstructing A using summary S with k

supernodes is given as

RE(G|S) = RE(A|Ā) =
k∑

i=1

4ei −
4e2i(
ni

2

) + k∑
i=1

k∑
j=1,j ̸=i

2eij −
2e2ij
ninj

(7.3)

Score computation of a pair of nodes: The next important step is to determine the goodness

of a pair (a, b). This can be done by temporarily merging a and b and then evaluating (7.1) or (7.3)

respectively taking O(n2) and O(n(t)). For a pair of nodes (a, b) in St−1, let Sa,b
t be the graph

71



obtained after merging a and b. We define score of a pair (a, b) to be

scoreRE
t (a, b) =RE(G|St−1)−RE(G|Sa,b

t )

= 4ea + 4eb −
4e2a(
na

2

) − 4e2b(
nb

2

) + k∑
i=1
i ̸=a,b

4ei −
4e2i(
ni

2

) + 2(2eab −
2e2ab
nanb

) +
k∑

i=1
i ̸=a,b

4eai

− 4e2ai
nani

+
k∑

i=1
i ̸=a,b

4ebi −
4e2bi
nbni

+
k∑

i,j=1
i,j ̸=a,b

2eij −
2e2ij
ninj

− 4
(
ea + eb + eab

)

+
4
(
ea + eb + eab

)2(
na+nb

2

) −
k∑

i=1
i ̸=a,b

4ei −
4e2i(
ni

2

)
− 4

k∑
i=1
i ̸=a,b

((
eai + ebi

)
−
(
eai + ebi

)2(
na + nb

)
ni

)
−

k∑
i,j=1
i,j ̸=a,b

2eij −
2e2ij
ninj

=− 4e2a(
na

2

) − n(t)∑
i=1
i ̸=a

4e2ai
nani

+
4e2ab
nanb

− 4e2b(
nb

2

) − n(t)∑
i=1
i ̸=b

4e2bi
nbni

+
4
(
ea + eb + eab

)2(
na+nb

2

)
+

4(
na + nb

) n(t)∑
i=1
i ̸=a,b

(e2ai
ni

+
e2bi
ni

+
2eaiebi
ni

)
(7.4)

Fact 5. Since St−1 is fixed, minimizing RE(G|Sa,b
t ) is equivalent to maximizing scoret(a, b).

Remark 1. Except for the last summation in (7.4) all other terms of scoret(a, b) can be computed1375

in constant time. Since na, nb, ea, and eb are already stored at a and b, this can be achieved by

storing an extra real number Da at each super node a such that, Da =
∑n(t)

i=1
i ̸=a

e2ai
ni

. Note that Da

can be updated in constant time after merging of any two vertices x, y ̸= a, i.e. after merging

x, y, while traversing their neighbors for a we subtract exa/nx and eya/ny from Da and add back

(ex + ey)/(nx + ny) to it. This value can be similarly updated at the merged node too.1380

The last summation in (7.4),
∑n(t)

i=1
i ̸=a,b

2eaiebi
ni

, in essence is the inner product of two n(t) di-

mensional vectors A and B, where the ith coordinate of A is eai√
ni

(B is similarly defined). Stor-

ing these vectors will take O(n(t)), moreover computing score will take time O(n(t)). How-

ever, ⟨A,B⟩ = A · B can be very closely approximated with a standard application of count-min
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sketch [89].1385

Theorem 13. (c.f [89] Theorem 2) For 0 < ϵ, δ < 1, let
〈
Â,B

〉
be the estimate for ⟨A,B⟩ using

the count-min sketch. Then

•
〈
Â,B

〉
≥ ⟨A,B⟩

• Pr[
〈
Â,B

〉
< ⟨A,B⟩+ ϵ||A||1||B||1] ≥ 1− δ. A,B

Furthermore, the space and time complexity of computing
〈
Â,B

〉
is O(1

ϵ
log 1

δ
). While after a1390

merge, the sketch can be updated in time O(log 1
δ
).

Hence, for a pair of nodes (a, b) in St−1, scoret(a, b) can be closely approximated in constant

time. The bounds on time and space complexity, though constants are quite loose in practice.

The next important issue the quadratic size of search space. This is a major hurdle to scalability

to large graphs. We define weight of a node a as

f(a) = − 4e2a(
na

2

) − n(t)∑
i=1
i ̸=a

4e2ai
nani

w(a) =


−1
f(a)

if f(a) ̸= 0

0 otherwise
(7.5)

We select pairs by sampling nodes according to their weights so as the pairs selected will likely

have higher scores. With this weighted sampling a sample of size O(log n) outperforms a random1395

sample of size O(n). Let W =
∑n(t)

i=1 w(i) be the sum of weights, we select a vertex w with

probability w(a)/W . Weighted sampling though can be done in linear time at a given iteration. In

our case it is very challenging since the population varies in each iteration; two vertices are merged

into one and weights of some nodes also change. To overcome this challenge, we design special

data structure D that has the following properties.1400

Theorem 14. D can be implemented as a binary tree such that

1. it can be initially populated in O(n),

2. a node can be sampled with probability proportional to its weight in O(log n),
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3. inserting, deleting or updating a weight in D takes time O(log n).

Remark 2. We designed this data structure independently, but found out that it has been known to1405

the statistics community since 1980 [90]. We note that this technique could have many applications

in sampling from dynamic graphs.

Algorithm 9 is our main summarization algorithm that takes as input G, integers k (summary

size), s (sample size), w and d ( w = 1
ϵ

and d = log 1
δ

are parameters for count-min sketch).

Algorithm 9 : ScalableSumarization(G = (V,E), k, w, d)

1: D ← BUILDSAMPLINGTREE(V,W, 1, n) ▷ W [1 . . . n] is initialize as W [i] = w(vi)
2: while G has more than k vertices do
3: samplePairs← GETSAMPLE(D, s) ▷ s calls to Algorithm 12
4: scores← COMPUTEAPPROXSCORE(samplePairs) ▷ Uses (7.4) and Theorem 13
5: bestPair ← MAX(scores)
6: MERGE(bestPair) ▷ Lemma 12
7: for each neighbor x of u, v ∈ bestPair do
8: UPDATEWEIGHT(x,D)

For each vertex a we maintain a variable Da (Remark 1). Hence the weight array can be1410

initialized in O(n) time using (7.5). By Claim 14, D can be populated in O(n) time. By Claim

14, Line 3 takes O(s log n) time, by Theorem 13 and (7.4) Line 4 takes constant time per pair,

and by Lemma 12 merging can be performed in O(∆) time. Since delete and update in D takes

time O(log n) and the while loop is executed n − k + 1 times, total runtime of Algorithm 9 is

O((n − k + 1)(s log n + ∆ log n). Generally k is O(n) (typically a fraction of n) and in our1415

experiments we take s to be O(log n) and O(log2 n). Furthermore, since many real world graphs

are very sparse, (∆ which is worst case upper bound is constant), we get that overall complexity

of our algorithm is O(n log2 n) or O(n log3 n).

Data Structure for sampling: We implement D as a balanced binary tree, where leaf corre-

sponds to (super) node in the graph and stores weight and id of the node (shown in Figure 7.3).1420

Each internal node stores the sum of values of the two children. The value of the root is equal to∑n(t)
i=1 w(i). Furthermore, at each node in the graph we store a pointer to the corresponding leaf.

We give pseudocode to construct this tree in Algorithm 10 along with the structure of a tree node.
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By construction, it is clear that height of the tree is ⌈log n⌉ and running time of building the tree

and space requirement of D is O(n).1425
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∑
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Figure 7.3: The tree data structure used to sample nodes based on node weights is shown.

Algorithm 10 BuildSamplingTree(A,W ,st,end)

1: if A[st] = A[end] then
2: leaf ← CREATENODE()
3: leaf.weight← W [st]
4: leaf.vertexID ← A[st]
5: return leaf
6: else
7: mid = end+st

2

8: left← CREATENODE()
9: left← BUILDSAMPLINGTREE(A,W, st,mid)

10: right← CREATENODE()
11: right← BUILDSAMPLINGTREE(A,W,mid+ 1, end)
12: parent← CREATENODE()
13: parent.weight← left.weight+ right.weight
14: left.parent← parent
15: right.parent← parent
16: return parent

Structure TreeNode
int vertexID
double weight
TreeNode ∗left
TreeNode ∗right
TreeNode ∗parent

The procedure to sample a vertex with probability proportional to its weight usingD is given in

Algorithm 12. This takes as input a uniform random number r ∈ [0,
∑n(t)

i=1 w(i)]. Since it traverses

a single path from root to leaf, the runtime of this algorithm is O(log n). The update procedure is

very similar, whenever weight of a node changes, we start from the corresponding leaf (using the1430

stored pointer to leaf) and change weight of that leaf. Following the parent pointers, we update

75



weights of internal nodes to the new sum of weights of children. Deleting a node is very similar,

it amounts to updating weight of the corresponding leaf to 0. Inserting a node (the super node

representing the merged nodes) is achieved by changing the weight of the first empty leaf in D. A

reference to first empty node is maintained as a global variable.

Algorithm 12 :GetLeaf(r,node)
1: if node.left = NULL ∧node.right = NULL then
2: return node.vertexID
3: if r < node.left.weight then
4: return GETLEAF(r, node.left)
5: else
6: return GETLEAF(r − node.weight, node.right)

1435

7.4 Evaluation

We evaluate the performance of our algorithm in terms of runtime, reconstruction error and accu-

racies of answers to queries on standard benchmark graphs 1. We demonstrate that our algorithm

substantially outperforms existing solutions, GRASS [7] and S2L [10] in terms of quality while

achieving an order of magnitude speed-up over them. Our Java Implementation is available at 2.1440

We also report the accuracies in query answered based on summaries only and show that error is

very small and we save a lot of time. Errors reported are normalized by |V |. All runtimes are in

seconds.

Dataset Description and Statistics: We perform experiments on unweighted real-world graphs

of varying sizes. We treat all the datasets as undirected. The order of the graphs ranges from a few1445

thousand to a few million. The brief statistics of the graphs used in experiments are given in Table

7.1.
1http://snap.stanford.edu
2https://bitbucket.org/M_AnwarBeg/scalablesumm/
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Name Number of Nodes Number of Edges Network Type
Facebook 4, 039 88, 234 social network
Email 36, 692 183, 831 social network
Stanford 281, 903 1, 992, 636 web network
Amazon 403, 394 2, 443, 408 co-purchasing network
Youtube 1, 157, 828 2, 987, 624 social network
Skitter 1, 696, 415 11, 095, 298 internet topology
Wiki-Talk 2, 394, 385 4, 659, 565 social network

Table 7.1: Brief statistics and type of datasets used for experimental evaluation.

• Facebook1: The dataset is an anonymized subgraph of Facebook, where a node is a user and

an edge shows the friendship between the respective nodes.

• Email1: This is an email network, where a node represents an email address and an exchange1450

of a email between two email addresses constitutes an edge.

• Stanford1: The dataset consists of webpages from Stanford university and a hyperlink is

represented as an edge in the dataset.

• Amazon1: Amazon is a co-purchasing graph of products, where a product is represented by

a node and there is an edge between two nodes if the two products are bought together.1455

• Youtube1: Youtube graph is the largest connected component of Youtube friendship network.

In the graph, a node represents a user and an edge between two users shows the friendship

between them.

• Skitter1: It is an internet topology network where nodes correspond to autonomous systems

and communication between them constitutes edges.1460

• Wiki-Talk1: The dataset shows the Wikipedia Talk network in which a node is a user and

an editing activity by a user on the page of another user makes an edge between the two

respective users.

Impact of Sample Size on RE and Runtime: We show the impact of sample size on RE and

the time taken to compute the summary. We evaluate our approach with s ∈ {log n(t), 5 log n(t),1465
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√
n(t), log2 n(t)} and w = 200 to show the impact of s on the quality of the summary and run-

time. In Figure 7.4, it is evident that the error decreases with the increase in s, however, the

benefit in quality is not proportional to the increase in computational cost. We show the results for

Email, Facebook and Stanford datasets; other datasets show the same trend regarding the quality

of summary and computational time with varying s.1470

0 0.5 1

·104

2

4

·10−4

k

R
ec

on
st

ru
ct

io
n

E
rr

or EMAIL

0 1,000 2,000 3,000

0

0.5

1

1.5

·10−2

k

FACEBOOK

0 1 2

·104

6

8

·10−5

k

STANFORD

0 0.5 1

·104

5

10

k

Ti
m

e
(s

ec
on

ds
)

EMAIL

0 1,000 2,000 3,000

0.2

0.4

0.6

k

FACEBOOK

0 1 2

·104

100

200

k

STANFORD

log n(t) 5 log n(t) log2 n(t)
√
n(t)

Figure 7.4: Impact of sample size on RE (left column) and runtime (right column). We take
sample size s ∈ {log n(t), 5 log n(t), log2 n(t),

√
n(t)}, where n(t) is the number of supernodes

in the summary. Increasing s results in significant increase in runtime, however, there is relatively
less reduction in RE.
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Figure 7.5: Comparison of our approach and GRASS based on RE for varying summary sizes k on
Facebook dataset. Note that to build a summary with k = 500, our method and GRASS took 0.33
and 11.16 seconds, respectively.

Reconstruction Error and Runtime Comparison: We compare the reconstruction error (RE)

and the runtime to compute summaries by our approach and the competitor methods, GRASS and

S2L. We normalize RE by the number of entries in the expected adjacency matrix Ā and show

the comparison of normalized RE with GRASS and S2L in Figure 7.5 and Table 7.2, respectively.

Note that GRASS only works for graphs with a few thousand nodes, so we show the comparison1475

with GRASS on a small graph only. From the results, it is clear that our method computes the

summary in much less time and RE of the summary produced by our solution remains comparable

with that of the known methods. Similarly, the quality of the summary also improves by increasing

the width of the count-min sketch (increase in approximation budget). To show the approximation

quality of score computation, we also report results for exact score computation. Results show1480

that, especially for large graphs, the count-min sketch closely approximates the exact score of a

pair for merging.
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Reconstruction Error Time Taken(seconds)

Graph k w Our Approach S2L Our Approach S2L

Facebook

100

50 2.07E−2
1.06E−2

0.34

1.45
100 1.99E−2 0.25
200 1.65E−2 0.19
2 1.62E−2 0.32

500

50 1.92E−2
8.61E−3

0.33

4.68
100 1.80E−2 0.24
200 1.35E−2 0.22
2 1.32E−2 0.37

Email

100

50 5.39E−4
5.00E−4

1.91

45.94
100 5.35E−4 1.84
200 5.28E−4 1.96
2 5.26E−4 2.57

500

50 5.29E−4
4.49E−4

2.73

55.40
100 5.26E−4 2.52
200 5.18E−4 2.79
2 4.89E−4 4.10

Stanford

1000

50 8.31E−5
5.37E−5

81.27

305.19
100 7.54E−5 74.44
200 7.16E−5 89.43
2 7.10E−5 108.78

2000

50 8.17E−5
4.65E−5

75.74

425.95
100 7.40E−5 68.89
200 6.91E−5 80.60
2 6.87E−5 109.36

Amazon

1000

50 5.98E−5
5.91E−5

418.52

993.00
100 5.98E−5 420.91
200 5.98E−5 496.17
2 5.97E−5 632.35

2000

50 5.97E−5
5.81E−5

385.21

1115.78
100 5.96E−5 502.39
200 5.96E−5 793.57
2 5.95E−5 1096.01

Table 7.2: Comparison of reconstruction error (RE) and runtime (in seconds) on summary graphs,
with k supernodes, produced by our approach and the competitor approach, S2L. We take sample
size s = 5 log n(t) and compute the approximate score of a pair nodes for merging using varying
approximation budgets (count-min sketch widths) w ∈ {50, 100, 200}. It is clear that RE decreases
with an increase in w as expected and our estimated score is a close approximation of the exact
score (w = 2).
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Scalability of Our Approach To demonstrate the scalability of our approach, we perform

experiments on large graphs having more than 1 million nodes. Table 7.3 contains quality and

runtime for large graphs, on which GRASS and S2L are not applicable. We use the same parameter1485

values for s and w as mentioned earlier to generate summaries. We note that increasing the value

of w does not improve the quality summaries of large graphs. As on these graphs, none of the

competitor methods works, we report results for our approach only.

Skitter Wiki-Talk Youtube
|E|= 1,696,415 |E| = 2,394,385 |E| =1,157,828
|V |= 11,095,298 |V | = 4,659,565 |V | = 2,987,624

k × (103) w RE Time(s) RE Time(s) RE Time(s)

10

50 2.29E−6 521.43 1.56E−6 311.10 3.34E−6 207.38
100 2.23E−6 516.03 1.51E−6 328.19 3.22E−6 222.22
200 2.19E−6 559.91 1.46E−6 363.37 3.11E−6 251.94
2 2.14E−6 649.82 1.44E−6 319.95 3.09E−6 242.58

50

50 2.11E−6 481.40 1.23E−6 285.89 2.50E−6 184.67
100 1.96E−6 480.85 1.21E−6 299.98 2.38E−6 195.85
200 1.88E−6 524.94 1.20E−6 329.39 2.37E−6 215.87
2 1.97E−6 591.35 1.20E−6 273.24 2.36E−6 199.48

100

50 1.91E−6 436.84 1.09E−6 266.15 1.97E−6 160.11
100 1.70E−6 445.27 1.09E−6 276.32 1.94E−6 167.67
200 1.66E−6 486.88 1.09E−6 303.44 1.94E−6 183.64
2 1.66E−6 535.02 1.09E−6 248.73 1.94E−6 164.80

250

50 1.38E−6 332.27 9.07E−7 223.65 1.30E−6 103.25
100 1.24E−6 350.47 9.05E−7 232.39 1.30E−6 107.79
200 1.23E−6 376.89 9.03E−7 256.05 1.30E−6 118.73
2 1.23E−6 392.58 9.03E−7 203.93 1.30E−6 98.70

Table 7.3: We report the reconstruction error (RE) and the time (in seconds) to compute the sum-
maries using our approach on large graphs. S2L does scale to these large graphs. On these large
graphs, we compute summaries of relatively larger sizes with approximate score computation us-
ing count-min sketch width w ∈ {50, 100, 200} and using exact score computation (w = 2).

Accuracy in Query Answers: Recall that a measure to evaluate the quality of S is the accu-

racy in answers to queries based on S only. We run different structural queries including degree,1490

eigenvector-centrality of a node, and triangle density of the graph to quantify the goodness of our

summary. In Table 7.4, we report the average error along with standard deviation for the degree

query and for triangle density, we show relative triangle density error computed as t̄(G)−t(G)
t(G)

. As
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the eigenvector-centrality query is computed based on degree, we show results for the degree query

and omit the results for the centrality query. Results are reported with increasing values of k, the1495

number of supernodes in summary, and varying width w for the count-min sketch. The results

follow the expected trend that the accuracy of query answers improves with the increase in w.

Similarly, the error in query answers reduces as k increases.

Avg. Degree Error Triangle Density Error

Graph k w Our Approach S2L Our Approach S2L

Facebook
100

200 16.74± 21
9.89± 12

-0.52
-0.30

2 17.18± 20 -0.49

500
200 11.99± 15

7.21± 8
-0.30

-0.32
2 11.22± 12 -0.28

Email
100

200 6.79± 25
5.70± 16

-0.80
-0.77

2 6.31± 14 -0.76

500
200 5.71± 19

4.79± 12
-0.65

-0.73
2 5.15± 10 -0.63

Stanford
1000

200 7.69± 41
5.11± 36

-0.68
-0.26

2 8.06± 42 -0.67

2000
200 7.38± 40

4.06± 10
-0.64

-0.23
2 7.60± 38 -0.63

Amazon
1000

200 5.63± 13
5.37± 11

-1.00
-0.96

2 5.64± 13 -1.00

2000
200 5.57± 12

5.13± 9
-0.99

-0.92
2 5.60± 13 -0.99

Table 7.4: Accuracy in answers to queries from summaries produced by our approach and S2L.
We report the average error along with the standard deviation on the degree query and the error in
the relative triangle density of the graphs. k is the number of supernodes in the summary and w is
the width of the count-min sketch(w = 2 shows exact score computation for pairs of nodes).

7.5 Conclusion

In this work, we devise a sampling-based efficient approximation algorithm for graph summariza-1500

tion. We derive a closed form for measuring the suitability of a pair of nodes for merging. We

approximate this score with theoretical guarantees on error. Another major contribution of this
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work is the efficient weighted sampling scheme to improve the quality of samples. This enables

us to work with substantially smaller sample sizes without compromising summary quality. Our

algorithm is scalable to large graphs on which previous algorithms are not applicable. Extensive1505

evaluation on a variety of real-world graphs shows that our algorithm significantly outperforms

existing solutions both in quality and time complexity.
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Chapter 8

Conclusion and Future Directions

In this thesis, we solve two problems of network immunization and graph summarization based1510

on approximation techniques. Firstly, we address the problem of network immunization in which

we immunize a small subset of nodes to reduce the network vulnerability against the spread of

malicious content. We use the relationship between spectral and graph-theoretic properties of

networks and in our series of work, we select a subset of nodes for immunization based on closed

walks of lengths 4, 6 and 8. We also devise a technique to approximately count the number of1515

closed walks, which makes our approach scalable to large graphs. Experimental evaluation on

large real-world networks suggests that our method is a close approximation of the exact solution.

Moreover, results for various quality measures like virus spread simulation, reduction in network

vulnerability and the run time comparison show that our method performs better than the state-of-

the-art solution.1520

Secondly, we give a sampling-based algorithm for graph summarization. We derive a closed

form for measuring the error introduced after merging a pair of nodes. The score also gives the

suitability of the pair for merging. We then give an approximate method to compute this score with

theoretical guarantees on error. Another major contribution of this work is the efficient weighted

sampling scheme to improve the quality of samples. This enables us to work with substantially1525

smaller sample sizes without compromising summary quality. Our algorithm is scalable to large

graphs on which previous algorithms are not applicable. Extensive evaluation on a variety of real-
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world graphs shows that our algorithm significantly outperforms existing solutions both in quality

and time complexity.

As future work, we aim for a non-preemptive approach for network immunization in which1530

the information of healthy and infected nodes is available at each time stamp and nodes are im-

munized based on the available information. Another line of work is the reverse propagation of

network immunization in which given a snapshot of an infected graph, the goal is to identify the po-

tential (culprit) nodes from where the infection has started. Some other potential extensions of this

work also include i) utilizing specialized graph summarization methods, which will further reduce1535

computational cost as well as improve the immunization performance of the solution ii) extending

this work to incorporate dynamic graphs which evolve with time through the addition or deletion

of edges iii) exploring non-preemptive graph immunization approaches, where the immunization

process starts after the virus attack and the information of infected nodes is available.

In graph summarization, we aim to further reduce the reconstruction error and storage size1540

of the summary graphs. The reconstruction error can be reduced by computing the usefulness

of superedges in the summary graph. In this regard, by doing some reverse calculations, we can

compute the contribution of retaining and dropping a particular superedge in the summary graph.

This step during the construction of the summary can help further reduce the reconstruction error.

Another related extension is the sparsification of the summary graph in which superedges with1545

very small weights are dropped from the summary graph, which helps in reducing the storage size

of the summary graph. Another related research area is of representing nodes in a low-dimensional

feature space and do summarization by making clusters of close-by/similar nodes.
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