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Abstract

We study functional partial differential equations (FPDEs) involving one

and two nonlocal terms for certain constant and variable coefficients. First, we

generalize the first order FPDE with one nonlocal term, studied by Perthame

and Rhyzik, to the two nonlocal term case. We show the large time convergence

of solutions to the separable solution.

We then solve a model that entails an initial boundary value problem in-

volving a second-order parabolic partial differential equation with two nonlocal

terms, the presence of which is a consequence of asymmetry in cell division.

The solution techniques for solving such problems are rare due to the nonlo-

cal terms. We obtain a separable solution, as well as the general solution to

the partial differential equation, and show that the solutions converge to the

separable solution for large time. The dispersion term does not affect the rate

of convergence to the separable solution.

We establish the existence of solutions to an initial boundary value prob-

lem that involves a certain class of nonhomogeneous FPDEs, with one and two

nonlocal terms, of the pantograph type with singular time dependent coeffi-

cients. The problem is motivated from a cell division equation.

We also consider FPDEs with one and two nonlocal terms involving time

dependent coefficients. The existence of a steady size distribution (SSD) so-

lution is established and is shown to be the large time attracting solution

for a certain class of time dependent coefficients. The rate of convergence

of solutions towards the SSD solution is affected by the choice of coefficients



and remains unaffected by the number of nonlocal terms. The uniqueness of

solutions to the initial boundary value problem is also established.
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Chapter 1

Introduction and Literature

review

The principle of causality is an underlying phenomenon in systems considered

in applied sciences. This phenomenon dictates that any future predictions

about the system under consideration be independent of the past and solely

dependent on the present [1]. An ordinary differential equation (ODE) or a

partial differential equation (PDE) governs the systems based on the current

state and the rate with which the state changes. Nonetheless, there are systems

that are not completely independent of the past and take into consideration

not just the present state of the system but previous states as well. These

equations are either differential difference equations or functional differential

equations.

Even though this was known for quite some time, the theory to tackle such

systems has been developed rather recently. Laplace, Bernoulli, and Condorcet

were among the first ones to encounter differential difference equations in the

later half of the eighteenth century but very little progress was accomplished
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until the twentieth century. The subject progressed rapidly and has been

under continuous investigation after the mid of the twentieth century. Focus

has primarily been in the areas of control theory, mathematical applications

in economics and mathematical biology [38].

One of the modern time investigators is Minorsky [37], who was one of the

first ones to study the differential difference equation (DDE)

dx

dt
= F (t, x(t), x(t− r)), (1.1)

where r > 0. The feedback control system he studied could not neglect the

communication time.

While studying the distribution of primes, Lord Cherwell [39] encountered

the differential difference equation

dx

dt
= −αx(t− 1)(1 + x(t)). (1.2)

The theory of growth has used variants of the above equation as models in

different studies. Cunningham [40] studied the delay equation in growth

dN(t)

dt
= [k − aN(t− τ)]N(t), (1.3)

where N(t) and N(t − τ) are populations at times t and t − τ , and k, a and

τ are positive real constants. Studying the predator-prey model, Volterra [41]

studied the distributed delay equations

dN1(t)

dt
=

(
ε1 − γ1N2(t)−

∫ 0

−r
F1(−θ)N2(t+ θ)dθ

)
N1(t)

dN2(t)

dt
=

(
− ε2 + γ2N1(t)−

∫ 0

−r
F2(−θ)N1(t+ θ)dθ

)
N2(t),

(1.4)
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where N1(t) represents the number of prey and N2(t) shows the number of

predators. The constants θ, γ1, γ2, ε1 and ε2 are all positive, as well as the

functions, F1 and F2.

For similar predator-prey models, Wangersky and Cunningham [42] used

the delay equations

d

dt
N1(t) = α(N1(t))

(
A1 −N1(t)

A1

)
− bN1(t)y(t)

d

dt
N2(t) = −βN2(t) + pN1(t− r)N2(t− r),

(1.5)

where N1(t) and N2(t) are the prey and predator populations respectively. α

is increasing rate of prey, A1 is the limitation on growth of prey, b denotes the

effect of predation on N1, p is the effect of predation on N2 and β is the death

rate of N2 and r > 0.

Levin and Nohel [44] studied, in detail, the delay equation

dx(t)

dt
= −1

a

∫ t

t−a
(a− (t− u))k(y(u))du, (1.6)

where a, u > 0, k(y) is spring restoring force and 0 ≤ t < ∞. When study-

ing the circulating-fuel reactor, this model was studied by Ergen [43] where x

denoted the rate of change of neutron density. In viscoelasticity of one dimen-

sion, the same model can be implemented where strain and relaxation function

are represented by x and a respectively.

Brayton [45] studied lossless transmission lines and encountered a delay

differential equation given as

dv(t)

dt
= G(v̇(t), v̇(t− r)) + F (v(t), v(t− r)), (1.7)
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where G and F are linear difference-differential and nonlinear operators re-

spectively, and v̇ represents the derivative with respect to time t. Rubanik

[46] studied a second order delay-differential equation with delay term in the

second derivative in his study of elastic bars with vibrating masses attached

to them.

Several other models have been studied including Driver’s [47] collision

problem in electrodynamics and El’sgol’tz and Hughes [49, 48] variational

(minimization) problem.

The several examples above show equations of different types. Some models

are based on the past states, whereas some are based on future states. There

are some examples of systems incorporating the rates of change of a past state.

Hale described in detail the significant differences in the behavior of solutions

for each type [50]. Bellman and Cooke [51] classified the differential difference

equations as retarded (based on past state), neutral, and advanced (involve

a non-local term). In this thesis, we primarily deal with functional partial

differential equations of the advanced type.

Earlier models, discussed above, invovled ordinary differential equations

with functional (nonlocal) terms. Nonlocal terms arise in partial differential

equations as well. Such PDEs are known as functional partial differential equa-

tions (FPDE’s). It is the representation of our understanding of the complex

processes that take place in our daily lives. A partial differential equation

can express the flow of heat difference over the length of a rod over time, the

motion of mechanical and EM waves, or the population size of a specie over

time. Population models were formally studied in the late 18th century when

Malthus analyzed the human population growth. However, the obvious short-

comings of the model that overlooked several relevant variables, such as age,
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led to the use of structured population models. Age structured population

models have been studied by several mathematicians and detailed accounts

can be found in [68, 69, 67].

Functional PDEs arise in a number of applications such as the fragmenta-

tion process in polymers and droplets [2, 8], internet protocols [3] and more

recently cell division models [31]. Living cells are usually structured on size

because they grow and divide simultaneously. The size of a certain cell is

any quantifiable physical property, for example, mass, volume or DNA con-

tent of the cell. Several researchers have studied a size structured model for

cell populations. In 1962, Collins and Richmond [52] studied the growth rate

of ”Bacillus cereus” and developed a method to find the growth rate at any

given length of the bacterium. In the same year, Koch and Schaechter [53]

came up with a model for the statistics of the cell division process. Powell

[54], in 1964 then published the consequences of the hypothesis provided by

Koch and Schaechther. It was not until 1967, when Sinko and Streifer [16]

constructed a deterministic model, structured on size, for the species repro-

ducing by fission. In the model, they accounted for the continuous changes in

mass and accounted for the influx from the growth of smaller organisms and

the division of larger organisms and neonates.

During the 1980s, O.Diekman et al. [55] studied a related linear problem,

whereas Heijmans [56] developed a nonlinear model, structured on size, to

describe asymmetric cell division. Hall and Wake [10], then built on the works

of O. Diekman et al., Heijmans and others to study solutions to a symmetric,

size structured cell population model. A symmetric size structured model

studies the process where α daughter cells of size x
α

are obtained after a cell

of size x divides. The resulting equation is an advanced first order functional
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PDE of the form

∂

∂t
(n(x, t)) +

∂

∂x
(g(x, t)n(x, t)) = −b(x, t)n(x, t) + α2b(αx, t)n(αx, t), (1.8)

with n(x, t) denoting the number of cells of size x at time t and g(x, t) is the

growth rate of cell which is always positive. The rate of division of cells into α

daughter cells is b(x, t) > 0. Hall and Wake [72] observed that the steady size

distributions (where the size distribution of cell population maintains its shape

irrespective of the overall population growth or decay [11]) is of interest to

biologists. The observation was motivated by the experimental data obtained

in [66]. The key observation in the data was that cell size distribution acquired

a certain shape irrespective of the initial distribution n0(x) = n(x, 0). A

separable solution of the form

n(x, t) = N(t)y(x) (1.9)

was assumed where y(x) is a probability density function (pdf). Hall and Wake

[10] assumed growth and division rate to be dependent on x, (the size) alone,

whereas in general these rates are dependent on both x and t. The separable

solution substitution into the equation (1.8) yields

1

N(t)

d

dt
N(t) = λ, (1.10)

where λ is a separation constant and equation (1.10) becomes

N(t) = Λeλt, (1.11)
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where Λ is a constant. Using the separation constant λ, we get the functional

differential equation

d

dx
(g(x)y(x)) + (b(x) + λ)y(x) = α2b(αx)y(αx), (1.12)

with boundary conditions

y(0) = 0, lim
x→∞

y(x) = 0. (1.13)

Integrating equation (1.12) from 0 to ∞ and using the probability density

function (pdf) property of y(x) yields

λ = (α− 1)

∫ ∞
0

b(x)y(x)dx. (1.14)

In the above equation (1.14), it is assumed that b(x) ∈ L1[0,∞). Hall and

Wake [10] studied the constant division and growth rate case for the equation

(1.8) where b(x) = b > 0 and g(x) = g > 0. For the constant case,

λ = b(α− 1), (1.15)

and equation (1.12) reduces to the following pantograph-type equation

gy′(x) + bαy(x) = bα2y(αx). (1.16)

There are several applications of the pantograph-type equation in physics and

engineering. It appears in the light absorption models in the Milky Way [57]

and current accumulation in an electric locomotive [58]. It also has applications

in probability and arises in a ruin problem [59]. The cell growth variation of

10



the pantograph equation is different from the aforementioned applications due

to the existence of an eigenvalue and boundary conditions in the problem.

As shown in [35] and [36], the higher eigenvalues of the pantograph equation,

that arise in cell growth modeling, do not correspond to eigenfunctions that

are pdf. Hall and Wake [10] showed that the equation (1.16) has a positive,

unique solution for positive x and can be represented as a Dirichlet series of

the form

y(x) =
1∏∞

m=1(1− α−m)

(
e
−bαx
g +

∞∑
k=1

(−1)ke
−bαk+1x

g

αk(k−1)/2
∏k

j=1(1− α−j)

)
. (1.17)

It was shown that the solution is uni-modal [60]. That is the graphical repre-

sentation of the solution in (1.17) had only one local and global maximum.

As the choice of division and growth rates vary, the nature of the solution

to the pantograph equation varies too. When van Brunt and Hulstman [35]

studied pantograph equation with non-constant coefficients of the form

y′(x) + bxdy(x) = λαdxdy(αx), (1.18)

along with the boundary conditions as in (1.13) and the pdf condition (1.14)

for d ≥ 0. They obtained a spectrum of eigenvalues. The corresponding

eigenvectors are

ym(x) = Cm

(
e
−bxd+1

d+1 +
∞∑
k=1

pk(λm)e
−bαk(d+1)xd+1

d+1

)
, (1.19)

where λm = bαm(d+1)+1 and m is a non-negative integer. It was further estab-

lished that these eigenfunctions are unique. Perthame and Rhyzik [15] showed

that for constant growth rate g, (1.16) has a unique solution under certain
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conditions on the size-dependent division rate. They also showed the for con-

stant growth and division rates, large time solutions map on to the separable

solution. In this thesis, we generalize Perthame and Ryzhik’s work to asym-

metric division of cells and to a certain class of time dependent division and

growth rates.

The deterministic model (1.8) may not reflect the significant variations in

growth rates, as supported by experimental data [11]. Hall [11], in his thesis,

derived a second order functional partial differential equation in the form of

a Fokker Planck equation obtained by Cox and Miller [61]. Hall considered

the growth rate to be a stochastic process. Using a probability distribution

of increase in the size x of a cell, Hall introduced the dispersion coefficient,

D(x, t) > 0, into the equation. The equation has the form

∂2

∂x2
(D(x, t)n(x, t)) +

∂

∂t
n(x, t) +

∂

∂x
(G(x, t)n(x, t)) +B(x, t)n(x, t)

= α2B(αx, t)n(αx, t).

(1.20)

Here, G(x, t) > 0 in this model is the approximation of the mean growth rate

and B(x, t) > 0 is the division rate. This model is supplemented with decay

conditions

lim
x→∞

n(x, t) = 0,

lim
x→∞

∂

∂x
n(x, t) = 0,

(1.21)

and no-flux conditions

lim
x→0+

(
∂

∂x
(D(x, t)n(x, t))−G(x, t)n(x, t)

)
= 0,

lim
x→∞

(
∂

∂x
(D(x, t)n(x, t))−G(x, t)n(x, t)

)
= 0.

(1.22)
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The problem is subject to an initial cell size distribution

n(x, 0) = n0(x), (1.23)

for all x ≥ 0. The initial cell size distribution n0(x) may be regarded as a

probability density function (pdf). Consequently, n0(x) ≥ 0 for all x ≥ 0 and∫∞
0
n0(x)dx = 1.

A separable solution to the problem (1.20), subject to conditions (1.21)-

(1.22), was studied by van Brunt and Wake [62] for D(x, t) = Dx and constant

G > 0 and B > 0. The problem involves the equation

(Dxy(x))′′ − (Gy(x))′ − (B + λ)y(x) + α2By(αx) = 0. (1.24)

Using appropriate substitutions, (1.24) becomes

xy′′(x)− k1y
′(x)− k2y(x) + k2αy(αx) = 0, (1.25)

where

k1 =

(
G

D
− 2

)
,

and

k2 =
αB

D
.

They showed the uniqueness and positivity of solution subject to the normal-

izing condition (
∫∞

0
y(x)dx = 1) with existence in L1[0,∞). The solution was

obtained using Mellin transforms and expressed in terms of modified Bessel

functions. In this thesis, we use Mellin transform to determine the existence of

a dispersion problem with time dependent singular coefficients with a source
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term. The existence of solution is subject to certain conditions on the source

term.

A related problem

y′′(x) + ay′(x) + by(x) + cy(αx) = 0, (1.26)

was studied by Kim [63]. Wake et al. [19] had found the separable solutions

to the problem for constant coefficients. Basse et al. [64], while studying

plankton’s symmetric cell division, used constant dispersion and growth rate,

with a generalized division rate b(x). Begg et al. [65] used the entropy method

to study the above problem for constant dispersion and growth rate. However,

they studied it for B(x) = bδ(l− x), with l > 0 and b > 0. Recently, Efendiev

et al. [31] came up with a technique to solve the Dispersion Problem (1.20)

for constant dispersion, growth and division rates. In this thesis, we build on

this technique to find analytic solution and long time asymptotics of the cell

growth model with asymmetric division. Recall that asymmetric division in

cells refer to the situation when daughter cells of different sizes are obtained

after a parent cell divides.

Lately, van Brunt et al [33] studied a size-structured cell division model.

More specifically the following model was studied

nt(x, t) + g(xn(x, t))x + bxrn(x, t) = bα2+rxrn(αx, t), (1.27)

satisfying the conditions

lim
x→0+

gxn(x, t) = 0, lim
x→∞

gxn(x, t) = 0, for t ≥ 0 (1.28)
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along with

n(x, 0) = n0(x), (1.29)

where g and b are positive constants and gx and bxr and size dependent growth

and division rates respectively and n(x, t) represents the number density of

cells of size x at time t. Certain transformations reduce the PDE (1.27) to

ϕt(x, t) + gxϕx(x, t) + bxϕ(x, t) = bαxϕ(αx, t), (1.30)

where ϕ(x, 0) = ϕ0(x) = x2n0(x). Conditions (1.28)-(1.29) give

lim
x→0+

ϕ(x, t)

x
= 0, lim

x→∞

ϕ(x, t)

x
= 0. (1.31)

A Mellin transform technique was used to find the solution of the PDE (1.30).

The solution is

ϕ(x, t) = ω0(xe−gt)e−ηx(1−e−gt) +
∞∑
k=1

akω0(αkxe−gt)e−ηα
kx(1−e−gt), (1.32)

where η = b/g, ak = (−1)kαk∏k
i=1(αi−1)

and ω0 is found to be bounded on (0,∞).

Furthermore ω′0 ∈ C1(0,∞), and ω′0 is bounded on [p0,∞) for any p0 > 0.

Although these results are obtained for the transformed equation, it can be

shown that the method holds for any r > 0 in (1.27).

The above work is a generalization of a simpler problem with constant

growth and division rate. Zaidi et al. [22] developed a novel technique to solve

the problem

nt(x, t) + gnx(x, t) = α2bn(αx, t)− bn(x, t)− µn(x, t), (1.33)
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which, using certain transformations, reduces to

nt(x, t) + nx(x, t) = bα2n(αx, t), (1.34)

where b is a positive constant and n is the number density of cells of size x at

time t. Zaidi et al. first obtained the solution for x ≥ t. The solution obtained

was of the form

S(x, t) =
∞∑
k=0

Lk(x, t), (1.35)

where Lk(x, t) =
∑k

j=0 ak,jVk(uk,j(x, t)). Here

ak,j =
bα2ak−1,j−1

αk−j(αj − 1)
, V0(u) = n0(u), V ′k+1(u) = Vk(u).

In addition,

ak,0 = −
k∑
j=1

ak,j, a0,0 = 1, and uk,j(x, t) = αk−j(αjx− t).

With the above conditions, the non-negativity of S(x, t) is established for

W0 = {(x, t) : x ≥ t}. The solution is then extend to 0 ≤ x < t by constructing

wedges which takes care of the functional terms in Wk if solution is known in

Wk−1, where

Wk = {(x, t) :
t

αk
≤ x ≤ t

αk−1
}.

A piecewise solution is obtained for all x ≥ 0 and t ≥ 0 by finding solutions

in each wedge. Continuity is then imposed on the boundary of wedges. The
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solution obtained for the nth wedge, Wn, is of the form

zn = Ln + J0(u0,0) +
n−1∑
k=1

(bα)k∏k
m=1(αm − 1)

Jk(uk,k),

where J0 is an arbitrary function and J ′k+1(w) = Jk(w) for k ≥ 1.

This approach by Zaidi et al. [22] inspired the work of Mohsin and Zaidi

[34], who showed that a solution to a problem with two non-local terms exists

and is unique. The problem is given below

∂

∂t
n(x, t) +

∂

∂x
n(x, t) = αbn(αx, t) + βbn(βx), (1.36)

where 1
α

+ 1
β

= 1. Their work mainly focuses on the construction of wedges

and solutions are shown to exist in a wedge Wn, if solutions exist in the wedge

Wn−1, for n ≥ 1. The second nonlocal term adds complexity that makes the

construction of wedges formidable.

The case involving two non-local terms, i.e., asymmetric division was stud-

ied by Suebcharoen et al. [30]. They developed a model for asymmetric cell

division arising in Drosophila and C. elegans. In particular they devised the

model

∂

∂t
n(x, t) = −g ∂

∂x
n(x, t)−Qn(x, t) +

2∑
i=1

aiα
2
in(αix, t), (1.37)

where x/αi is the size of the cell after a cell of size x divides, and ai is the

rate of division. The constant g > 0 is the rate of growth, and the constants

ai and αi are positive reals for i = 1, 2. Suebcharoen et al. [30] considered an
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SSD solution of the form n(x, t) = N(t)y(x), where y satisfies

y′(x) + Ay(x) =
2∑
i=1

Ciy(αix). (1.38)

Here, A = a1α1+a2α2

g
and Ci =

aiα
2
i

g
. The unique solution to (1.38) is of the

form

f(z) =
∞∑
i=0

∞∑
j=0

Ki,je
−αi1α

j
2z,

where z = xA, and Ki,j = −1

(αi1α
j
2−1)

(d1Ki−1,j + d2Ki,j−1). Further,

Ki,0 =
(−1)idi1∏i
k=1(αk1 − 1)

K0,0 and K0,j =
(−1)jdj2∏j
k=1(αk2 − 1)

K0,0,

where

K0,0 = 1 +
∞∑
k=1

d1( 1
α1

)k+1 + d2( 1
α2

)k+1∏k
n=1

(
1− d1

αn+1
1

− d2
αn+1
2

) ,
which is convergent and di = aiαi

Ag
, for i = 1, 2.

In this thesis, we build on the theory of functional partial differential equa-

tions arising in cell growth models. Chapter 2 is the generalization of Perthame

and Ryzhik’s work [15] to the asymmetric case (2.1.2)-(2.1.4). In chapter 3,

we tackle the dispersion equation (3.1.7) and find the exact solution to the

asymmetric dispersion problem. Also, large time asymptotics are established

in chapter 3. After solving the dispersion equation for the constant case, we

discuss the second order dispersion equation for symmetric case with inhomo-

geneous time dependent coefficients. In particular, we study equation (4.1.1)

and establish that a unique solution to the problem exists. In chapter 5 we

generalize the work done in chapter 4 for asymmetric case. In chapter 6,

Perthame and Ryzhik’s [15] work is considered for time dependent division
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and growth rates and their results are generalized for a certain class of growth

and division rates.
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Chapter 2

Large time asymptotics for

asymmetric division

2.1 Introduction

Perthame and Ryzhik [15] considered the symmetric division of cells for con-

stant and linear growth rates and established the existence of a steady size

distribution for a broad class of division rates. In this chapter, we extend

Perthame and Ryzhik’s analysis to the case of asymmetric cell division.

Perthame and Ryzhik considered the PDE

∂

∂t
n(x, t) +

∂

∂x
n(x, t) + b(x)n(x, t) = k2b(kx)n(kx, t), (2.1.1)

where k = 2, t > 0, and x ≥ 0. Equation (2.1.1) is supplemented with

conditions

n(0, t) = 0, t > 0 and n(x, 0) = n0(x) ∈ L1(R+).
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Perthame and Ryzhik, showed that ‖eλtn(x, t)− y(x)‖ → 0 as t→∞, where

λ is a unique eigenvalue and y(x) is the corresponding eigenfunction.

In this chapter we extend the method for asymmetric equation with α >

2 > β > 1 such that 1
α

+ 1
β

= 1. We consider the differential equation

∂

∂t
n(x, t) +

∂

∂x
n(x, t) +B(x)n(x, t) = αB(αx)n(αx, t) + βB(βx)n(βx, t),

(2.1.2)

along with boundary condition

n(0, t) = 0, t > 0, (2.1.3)

and the initial condition

n(x, 0) = n0(x) ∈ L1[0,∞). (2.1.4)

Equation (2.1.2) models asymmetric cell division (or growth-fragmentation)

where mass is conserved and particles divide into two unequal parts.

Let us consider a separable solution

n(x, t) = y(x)N(t). (2.1.5)

Upon substitution of (2.1.5) into (2.1.2), we get

d

dx
y(x) + (λ+B(x))y(x) = αB(αx)y(αx) + βB(βx)y(βx), x ≥ 0, (2.1.6)

where λ is a constant and y(x) ≥ 0 for all x ≥ 0. The boundary conditions

21



for the above problem are

lim
x→0+

y(x) = 0, (2.1.7)

lim
x→∞

y(x) = 0, (2.1.8)

coupled with the pdf condition

∫ ∞
0

y(x)dx = 1. (2.1.9)

2.1.1 Adjoint equation

Using Φ(x) to be the adjoint function for y(x) and L∗ be the corresponding

adjoint operator, we get the condition for the adjoint operator as

∫ ∞
0

Φ(x)L(y)dx =

∫ ∞
0

y(x)L∗(Φ)dx, (2.1.10)

which gives the adjoint equation

d

dx
Φ(x)− (λ+B(x))Φ(x) = −B(x)Φ(

x

α
)−B(x)Φ(

x

β
), x ≥ 0, (2.1.11)

along with the conditions

Φ(x) > 0 and

∫ ∞
0

y(x)Φ(x)dx = 1. (2.1.12)

22



2.2 The case of constant division rate

We first consider a constant division rate B(x) = b > 0. Integrating w.r.t x

from 0 to ∞, the equation (2.1.10), gives

λ = b. (2.2.1)

Substituting (2.2.1) in equation (2.1.5) and (2.1.11), we get

d

dx
y(x) + 2by(x) = bαy(αx) + bβy(βx), x ≥ 0, (2.2.2)

and

d

dx
Φ(x)− 2bΦ(x) = −bΦ(

x

α
)− bΦ(

x

β
), x ≥ 0, (2.2.3)

with conditions (2.1.7), (2.1.8) and (2.1.9).

It is easily verified that the function Φ = 1 satisfies (2.2.3) with constant

coefficients. The solutions to (2.2.2) have been discussed in detail. Thus

we apply the technique of Perthame and Rhyzik, using signum function to

determine the uniqueness of the given problem with constant coefficients.

Let sgn(ξ) denote the signum function, then multiplying sgn(y(x)) to equa-

tion (2.2.2) yields

sgn(y(x))
d

dx
y(x) + 2by(x)sgn(y(x)) = bαy(αx)sgn(y(x)) + bβy(βx)sgn(y(x)).

(2.2.4)

Using the fact that |ξ| = ξsgn(ξ), we get

d

dx
|y(x)|+ 2b|y(x)| = bαy(αx)sgn(y(x)) + bβy(βx)sgn(y(x)), (2.2.5)
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for all x ∈ R. Integrating the above equation from 0 to ∞ we get

2b

∫ ∞
0

|y(x)|dx = bα

∫ ∞
0

y(αx)sgn(y(x))dx+ bβ

∫ ∞
0

y(βx)sgn(y(x))dx.

(2.2.6)

Using the substitutions αx = u1 and βx = u2 in the second and third integral

terms respectively of the above expression, we get

2b

∫ ∞
0

|y(x)|dx = b

∫ ∞
0

y(x)sgn(y(x/α))dx+ b

∫ ∞
0

y(x)sgn(y(x/β))dx.

(2.2.7)

Dividing the above by b yields

sgn(y(x)) =
sgn(y(x/α)) + sgn(y(x/β))

2
. (2.2.8)

Theorem 2.2.1. For B(x) = b, with b > 0, all solutions to (2.1.2) satisfy

||n(x, t)e−bt−〈n0〉y(x)||L1[0,∞) ≤ e−bt
[
||n0(x)−〈n0〉y(x)||L1[0,∞)+2b||Υ0||L1[0,∞)

]
,

where

〈n0〉 =

∫ ∞
0

n0(x)dx,

and

Υ0(x) =

∫ x

0

[n0(ξ)− 〈n0〉y(ξ)]dξ → 0 as x→∞.

Proof. Equation (2.1.2), when multiplied by e−bt, becomes

e−bt
∂

∂t
n(x, t) + e−bt

∂

∂x
n(x, t) + e−btbn(x, t) = e−bt(αbn(αx, t) + βbn(βx, t).

(2.2.9)
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Since

e−bt
∂

∂t
n(x, t) =

∂

∂t
[e−btn(x, t)] + be−btn(x, t),

equation (2.2.9) becomes

∂

∂t
[e−btn(x, t)]+

∂

∂x
[e−btn(x, t)]+2be−btn(x, t) = αbe−btn(αx, t)+βbe−btn(βx, t).

(2.2.10)

Let

%(x, t) = n(x, t)e−bt − 〈n0〉y(x).

The equation (2.2.10) yields

∂

∂t
%(x, t) +

∂

∂x
%(x, t) + 2b%(x, t)− αb%(αx, t)− βb%(βx, t) +

∂

∂t
〈n0〉y(x)

= −〈n0〉
(
d

dx
y(x) + 2by(x)− αby(αx)− βby(βx)

)
, (2.2.11)

where the t derivative of 〈n0〉y(x) = 0. Using (2.2.2), the above equation

becomes

∂

∂t
%(x, t) +

∂

∂x
%(x, t) + 2b%(x, t) = αb%(αx, t) + βb%(βx, t). (2.2.12)

The conditions satisfied by (2.2.12) are

%(0, t) = 0,

∫ ∞
0

%(x, t)dx = 0,∀t > 0.
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Integrating (2.2.12) gives

∂

∂t

∫ x

0

%(ς, t)dς+
∂

∂x

∫ x

0

%(ς, t)dς+2b

∫ x

0

%(ς, t)dς = b

∫ αx

0

%(ς, t)dς+b

∫ βx

0

%(ς, t)dς.

(2.2.13)

Let

Υ(x, t) =

∫ x

0

%(ς, t)dς. (2.2.14)

Then (2.2.13) reduces to


∂
∂x

Υ(x, t) + ∂
∂t

Υ(x, t) + 2bΥ(x, t) = bΥ(αx, t) + bΥ(βx, t) t > 0, x ≥ 0

Υ(0, t) = 0, Υ(∞, t) = 0, ∀t > 0.

(2.2.15)

Equations (2.2.15) and (2.2.13) yield

%(x, t) = − ∂

∂t
Υ(x, t)− 2bΥ(x, t) + bΥ(αx, t) + bΥ(βx, t),

so that,

∂

∂t
[e−btΥ(x, t)] +

∂

∂x
[e−btΥ(x, t)] + 2b[e−btΥ(x, t)] = be−bt[Υ(αx, t) + bΥ(βx, t)].

Multiplying sgn(Υ(x, t)), on both sides of the above, gives

∂

∂t
|e−btΥ(x, t)|+ ∂

∂x
|e−btΥ(x, t)|+2b|e−btΥ(x, t)| = be−bt[Υ(αx, t)+Υ(βx, t)]sgn(Υ(x, t)).

(2.2.16)

Integration from 0 to∞, of (2.2.16), with respect to x and boundary conditions
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(2.2.15), yield

∂

∂t

∫ ∞
0

|e−btΥ(x, t)|dx+ 2b

∫ ∞
0

|e−bt(Υ(x, t)|dx ≤ (2.2.17)

b

[ ∫ ∞
0

e−bt(Υ(αx, t) + Υ(βx, t)) sgn(Υ(x, t)

]
dx,

which, using (2.2.8), gives

∂

∂t

∫ ∞
0

|e−btΥ(x, t)|dx+ 2b

∫ ∞
0

|e−btΥ(x, t)|dx (2.2.18)

≤ b

∫ ∞
0

|e−btΥ(αx, t)|dx+ b

∫ ∞
0

|e−btΥ(βx, t)|dx.

Using the substitution ν1 = αx and ν2 = βx gives

∂

∂t

∫ ∞
0

|e−btΥ(x, t)|+ 2b

∫ ∞
0

|e−btΥ(x, t)|dx

≤ b

α

∫ ∞
0

|e−btΥ(ν1, t)|dν1 +
b

β

∫ ∞
0

|e−btΥ(ν2, t)|dν2

= 2b

∫ ∞
0

|e−btΥ(x, t)|dx,

so that

∂

∂t

∫ ∞
0

|e−btΥ(x, t)|dx ≤ 0.

This gives ∫ ∞
0

|Υ(x, t)|dx ≤ e−bt
∫ ∞

0

|Υ0(x)dx|, (2.2.19)

where Υ0(x) =
∫ x

0
[n0(ξ)− 〈n0〉y(ξ)]dξ.

Let

∆(x, t) =
∂

∂t
Υ(x, t). (2.2.20)
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Differentiating (2.2.15) yields


∂
∂x

∆(x, t) + ∂
∂t

∆(x, t) + 2b∆(x, t) = b∆(αx, t) + b∆(βx, t) t > 0, x ≥ 0

∆(0, t) = 0, ∆(∞, t) = 0, ∀ t > 0.

(2.2.21)

Also, (2.2.20) and (2.2.15) give

∆(x, t) = bΥ(αx, t) + bΥ(βx, t)− 2bΥ(x, t)− ∂

∂x
Υ(x, t), (2.2.22)

so that at t = 0, (2.2.22) gives

∆0(x) = bΥ0(αx) + bΥ0(βx)− 2bΥ0(x)− %0(x), (2.2.23)

where %0(x) = %(x, 0) and ∆0(x) = ∆(x, 0). The earlier analysis can be

employed to show that

∫ ∞
0

|∆(x, t)|dx ≤ e−bt
∫ ∞

0

|∆0(x)|dx, (2.2.24)

so that

∫ ∞
0

|∆(x, t)|dx ≤ e−bt
(∫ ∞

0

[|2bΥ0(x)|+ |%0(x)|]dx
)
. (2.2.25)

Substituting ∂
∂t

Υ(x, t) = ∆(x, t) in (2.2.15) and integrating with respect to x

from 0 to ∞ yields

∫ ∞
0

|%(x, t)|dx ≤ e−bt
(∫ ∞

0

|∆(x, t)|dx+ 2b

∫ ∞
0

|Υ0(x)|dx
)
,
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The inequality (2.2.25) yields

∫ ∞
0

|%(x, t)|dx ≤ e−bt
(
|h0(x)|dx+ 2b

∫ ∞
0

|Υ0(x)|dx
)
,

which establishes the Theorem 2.2.1.

2.3 The variable asymmetric division case

We study the large time dynamics of (2.1.2)-(2.1.4) and show that solutions to

problem converge to the solution of (2.1.6)-(2.1.9) in L1[0,∞) norm as t→∞.

Theorem 2.3.1. Let B ∈ C(R+), and let bm, bM and b∞ be the minimum,

maximum and limiting values of B(x) for x ∈ R+. Furthermore, assume

the existence of a unique solution (λ, y,Φ) to the (2.1.6) and (2.2.3), where

y,Φ ∈ C1(R). Moreover, let the renormalized rate of division, B(x), defined

by

B̂(x) = B(x)
(Φ(x/α) + Φ(x/β))

Φ(x)
,

satisfies

0 < b̂m ≤ B̂(x) ≤ b̂M <∞,

where b̂m and b̂M are some constants. In addition to the above, assume that Φ

satisfies

p̂(1 + xz0) ≤ Φ(x) ≤ P̂ (1 + xz0),

where p̂, P̂ and z0 are positive constants such that αz0 = αb∞
λ+b∞

. Furthermore,
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it is also assumed that y(x) decays rapidly, i.e., for all c > 0,

∫ ∞
0

xcy(x)dx <∞,

and the bounds on λ are

bm ≤ λ ≤ bM .

Then there exists a constant W > 0 such that

κ := ‖B̂(x)−W‖L∞[0,∞) <
W

k +W
,

and the solution to (2.1.2) satisfies

‖
(
n(x, t)e−λt − 〈n0〉y(x)

)
Φ(x)‖L1[0,∞)

≤ e−µt(α + β)

[
‖(n0(x)− 〈n0〉y(x))Φ(x)‖+ (α + β)E3‖Υ0‖L1

[0,∞)

]
,

(2.3.1)

where µ = ((α + β)2(1 + E2κ) + (2 − α − β)E) and Υ0(x) =
∫ x

0
[n0(ζ) −

〈n0〉y(ζ)]dζ → 0 as x→∞.

Proof. Equation (2.1.2) is multiplied by e−λt. This gives

e−λt
∂

∂t
n(x, t) +

∂

∂x
[e−λtn(x, t)] +B(x)[e−λtn(x, t)]

= αe−λtB(αx)n(αx, t) + βe−λtB(βx)n(βx, t). (2.3.2)

Since

e−λt
∂

∂t
n(x, t) =

∂

∂t
[e−λtn(x, t)] + λ[e−λtn(x, t)],
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equation (2.3.2) gives

∂

∂t
[e−λtn(x, t)] +

∂

∂x
[e−λtn(x, t)] + (B(x) + λ)e−λtn(x, t)

= αB(αx)e−λtn(αx, t) + β(βx)e−λtn(βx, t). (2.3.3)

Let

%(x, t) = n(x, t)e−λt − 〈n0〉y(x).

Then (2.3.3) yields

∂

∂t
%(x, t) +

∂

∂x
%(x, t) + (B(x) + λ)%(x, t)

−αB(αx)%(αx, t)− βB(βx)%(βx, t) +
∂

∂t
〈n0〉y(x)

= −〈n0〉
(
d

dx
y(x) + (B(x) + λ)y(x)− αB(αx)y(αx)− βB(βx)y(βx)

)
,

(2.3.4)

where the t derivative of 〈n0〉y(x) = 0. Since y satisfies (2.1.6), equation (2.3.4)

reduces to

∂

∂t
%(x, t) +

∂

∂x
%(x, t) + (B(x) + λ)%(x, t) = αB(αx)%(αx, t) + βB(βx)%(βx, t),

(2.3.5)

so that %(0, t) = 0. Multiplying (2.3.5) with Φ(x) gives

∂

∂t
Φ(x)%(x, t) +

∂

∂x
Φ(x)%(x, t) + (B(x) + λ)%(x, t)Φ(x)− %(x, t)Φ′(x)

= αB(αx)%(αx, t)Φ(x) + βB(βx)%(βx, t)Φ(x),

(2.3.6)
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which, using (2.1.11), implies

∂

∂t
Φ(x)%(x, t) +

∂

∂x
Φ(x)%(x, t) +B(x)

(
Φ(x/α) + Φ(x/β)

)
%(x, t)

= αB(αx)%(αx, t)Φ(x) + βB(βx)%(βx, t)Φ(x). (2.3.7)

Dividing (2.1.11) by Φ(x) and using the definition of B̂(x) gives

λ+B(x) =
Φ′(x)

Φ(x)
+ B̂(x).

Let

ψ(x, t) = Φ(x)%(x, t). (2.3.8)

Then (2.3.7) yields

∂

∂t
ψ(x, t) +

∂

∂x
ψ(x, t) +B(x)

(
Φ(x/α) + Φ(x/β)

)
Φ(x)

ψ(x, t)

= αB(αx)ψ(αx, t)
Φ(x)

Φ(αx)
+ βB(βx)ψ(βx, t)

Φ(x)

Φ(βx)
,

so that

∂

∂t
ψ(x, t) +

∂

∂x
ψ(x, t) + B̂(x)ψ(x, t) = αB(αx)ψ(αx, t)

Φ(x)

Φ(αx)
+

βB(βx)ψ(βx, t)
Φ(x)

Φ(βx)
, (2.3.9)

Since %(0, t) = 0, so ψ(0, t) = 0. In order to determine the large time conver-

gence of solutions, we first establish the exponential decay of the antiderivative

of ψ(x, t). We begin by integrating (2.3.9) with respect to x from 0 to x. This
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gives

∂

∂t

∫ x

0

ψ(ξ, t)dξ +
∂

∂x

∫ x

0

ψ(ξ, t)dξ +

∫ x

0

B̂(ξ)ψ(ξ, t)dξ

=

∫ αx

0

B(ξ)ψ(ξ, t)
Φ(ξ/α)

Φ(ξ)
dξ +

∫ βx

0

B(ξ)ψ(ξ, t)
Φ(ξ/β)

Φ(ξ)
dξ. (2.3.10)

Let

Υ(x, t) =

∫ x

0

ψ(ξ, t)dξ. (2.3.11)

Recasting (2.2.13) gives


∂
∂x

Υ(x, t) + ∂
∂t

Υ(x, t) +
∫ x

0
B̂(ξ)ψ(ξ, t)dξ =

∫ αx
0
M1 +

∫ βx
0
M2 t > 0, x ≥ 0

Υ(0, t) = 0, Υ(∞, t) = 0, ∀ t > 0,

(2.3.12)

where M1 = B(ξ)ψ(ξ, t)Φ(ξ/α)
Φ(ξ)

dξ and M2 = B(ξ)ψ(ξ, t)Φ(ξ/β)
Φ(ξ)

dξ. Splitting the

integrals on the right hand side of (2.3.12) gives

∂

∂t
Υ(x, t) +

∂

∂x
Υ(x, t) +

∫ x

0

B̂(ξ)ψ(ξ, t)dξ

=

∫ x

0

B(ξ)ψ(ξ, t)
Φ(ξ/α)

Φ(ξ)
dξ +

∫ x

0

B(ξ)ψ(ξ, t)
Φ(ξ/β)

Φ(ξ)
dξ

+

∫ αx

x

B(ξ)ψ(ξ, t)
Φ(ξ/α)

Φ(ξ)
dξ +

∫ βx

x

B(ξ)ψ(ξ, t)
Φ(ξ/β)

Φ(ξ)
dξ,

so that

∂

∂t
Υ(x, t) +

∂

∂x
Υ(x, t) +

∫ x

0

B̂(ξ)ψ(ξ, t)dξ

=

∫ x

0

B̂(ξ)ψ(ξ, t)dξ +

∫ x

0

B(ξ)ψ(ξ, t)
Φ(ξ/α)

Φ(ξ)
dξ +

∫ x

0

B(ξ)ψ(ξ, t)
Φ(ξ/β)

Φ(ξ)
dξ.
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This gives

∂

∂t
Υ(x, t) +

∂

∂x
Υ(x, t) =

∫ αx

x

M1 +

∫ βx

x

M2,

whereM1 andM2 are given by (2.3.12). Adding and subtracting (α+β)EΥ(x, t)−

αEΥ(αx, t)− βEΥ(βx, t) on both sides yields

∂

∂t
Υ(x, t) +

∂

∂x
Υ(x, t) + (α + β)EΥ(x, t)− αEΥ(αx, t)− βEΥ(βx, t)

=

∫ αx

x

B1(ξ)ψ(ξ)dξ +

∫ βx

x

B2(ξ)ψ(ξ)dξ + (α + β)EΥ(x, t)

−αEΥ(αx, t)− βEΥ(βx, t), (2.3.13)

where B1(ξ) = B(ξ)Φ(ξ/α
Φ(ξ)

and B2(ξ) = B(ξ)Φ(ξ/β
Φ(ξ)

. Equation (2.3.13) gives

∂

∂t
Υ(x, t) +

∂

∂x
Υ(x, t) + (α + β)EΥ(x, t)− αEΥ(αx, t)− βEΥ(βx, t)

=

∫ αx

x

(B1(ξ)− αE)ψ(ξ)dξ +

∫ βx

x

(B2(ξ)− βE)ψ(ξ)dξ. (2.3.14)

Multiplying (2.3.14) by sgn(Υ) gives

∂

∂t
|Υ(x, t)|+ ∂

∂x
|Υ(x, t)|+ (α + β)E|Υ(x, t)| − αE|Υ(αx, t)|

−βE|Υ(βx, t)| ≤
∫ αx

x

|(B1(ξ)− αE)ψ(ξ)|dξ +

∫ βx

x

|(B2(ξ)− βE)ψ(ξ)|dξ.

Integrating from 0 to ∞ with respect to x and applying boundary conditions
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on Υ yields

∂

∂t
‖Υ(t)‖+ (α + β)E‖Υ(t)‖ − 2E‖Υ(t)‖

≤
∫ ∞
x=0

∫ αx

ξ=x

|(B1(ξ)− αE)ψ(ξ)|dξdx+

∫ ∞
x=0

∫ βx

ξ=x

|(B2(ξ)− βE)ψ(ξ)|dξdx

≤
∫ ∞
x=0

∫ ∞
ξ=0

|(B1(ξ)− αE)ψ(ξ)|dξdx+

∫ ∞
x=0

∫ ∞
ξ=0

|(B2(ξ)− βE)ψ(ξ)|dξdx,

where ‖Υ(x, t)‖ denotes the L1[0,∞) norm of Υ with respect to x. The above

inequality can be written as

∂

∂t
‖Υ(t)‖+ (α + β − 2)E‖Υ(t)‖ ≤ κ‖ψ(t)‖. (2.3.15)

Multiplying (2.3.15) by eE(α+β−2) and the integrating with respect to t from 0

to ∞ yields

‖Υ(t)‖ ≤ e−E(α+β−2)t‖Υ0‖+ κ

∫ ∞
0

e−E(α+β−2)(t−s)‖ψ(s)‖ds, (2.3.16)

where Υ0 is the value of Υ(t) at t = 0. The analysis of the constant coeffi-

cient case is not applicable here due to the form of the integrand in (2.3.16).

Consequently, we introduce

ω(x, t) = ψ(x, t)e(α+β)Et. (2.3.17)

Multiplying (2.3.9) by e(α+β)Et gives

∂

∂t
ω(x, t) +

∂

∂x
ω(x, t) = αEω(αx, t) + βEω(βx, t) +Q(x, t), (2.3.18)
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where

Q(x, t) = e(α+β)Et[α(B1(αx)− E)ψ(αx, t)+β(B2(βx)− E)ψ(βx, t)

− (B̂(x)− (α + β)E)ψ(x, t)].

Let the characteristic variables be defined as ξ and η. Integration of (2.3.18)

along the characteristic projection yields

∂t

∂ξ
= 1, t(0, η) = 0,

∂x

∂ξ
= 1, x(0, η) = η,

so that x = ξ + η and t = ξ. Thus

∂ω

∂ξ
= αEω(α(ξ + η), ξ) + βEω(β(ξ + η), ξ) +Q(ξ + η, ξ), ω(η, 0) = ω0(η).

(2.3.19)

Integration of (2.3.19) with respect to ξ gives

ω(η, ξ) = ω0(η) + Eα

∫ ξ

0

ω(ασ + αη, σ)dσ + Eβ

∫ ξ

0

ω(βσ + βη, σ)dσ

+

∫ ξ

0

Q(σ + η, σ)dσ.

In terms of x and t, we have

ω(x, t) = ω0(x− t) + Eα

∫ t

0

ω(ασ + α(x− t), σ)dσ+

Eβ

∫ t

0

ω(βσ + β(x− t), σ)dσ +

∫ t

0

Q(σ + (x− t), σ)dσ. (2.3.20)
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Let σ = t− u. Then (2.3.20) implies

ω(x, t) = ω0(x− t)− Eα
∫ 0

t

ω(α(x− u), t− u)du−

Eβ

∫ 0

t

ω(β(x− u), t− u)du

∫ 0

t

Q(x− u, t− u)du,

i.e.,

ω(x, t) = ω0(x− t) + Eα

∫ t

0

ω(α(x− u), t− u)du+

Eβ

∫ t

0

ω(β(x− u), t− u)du+

∫ t

0

Q(x− u, t− u)du. (2.3.21)

The first integral on the right hand side of (2.3.21), after iterating the formula

for ω, can be expressed as

∫ t

0

ω(α(x− u), t− u) =

∫ t

0

ω0(αx− t− (α− 1)u)du

+Eα

∫ t

0

∫ t−u

s=0

ω(α2(x− u)− αs, t− u− s)dsdu

+Eβ

∫ t

0

∫ t−u

x=0

ω(βα(x− u)− αs, t− u− s)dsdu

+

∫ t

0

∫ t−u

s=0

Q((αx− αu− s), t− u− s)dsdu.

(2.3.22)
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Similarly, the second integral in (2.3.21) can be expressed as

∫ t

0

ω(β(x− u), t− u) =

∫ t

0

ω0(βx− t− (β − 1)u)du

+Eα

∫ t

0

∫ t−u

s=0

ω(αβ(x− u)− βs, t− u− s)dsdu

+Eβ

∫ t

0

∫ t−u

s=0

ω(β2(x− u)− βs, t− u− s)dsdu

+

∫ t

0

∫ t−u

s=0

Q((βx− βu− s), t− u− s)dsdu.

(2.3.23)

Substituting (2.3.22) and (2.3.23) in (2.3.21) gives

ω(x, t) = ω0(x− t) +

∫ t

0

Q(x− u, t− u)du

+Eα

∫ t

0

ω0(βx− t− (β − 1)u)du+ Eβ

∫ t

0

ω0(αx− t− (α− 1)u)du

+(Eα)2

∫ t

0

∫ t−u

s=0

ω(α2(x− u)− αs, t− u− s)dsdu

+E2αβ

∫ t

0

∫ t−u

s=0

ω(αβ(x− u)− αs, t− u− s)dsdu

+Eα

∫ t

0

∫ t−u

s=0

Q((αx− αu− s), t− u− s)dsdu

+E2αβ

∫ t

0

∫ t−u

s=0

ω(αβ(x− u)− βs, t− u− s)dsdu

+(Eβ)2

∫ t

0

∫ t−u

s=0

ω(β2(x− u)− βs, t− u− s)dsdu

+Eβ

∫ t

0

∫ t−u

s=0

Q((βx− βu− s), t− u− s)dsdu.

(2.3.24)
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Integrating (2.3.24) with respect to x from 0 to ∞, we have

‖ω(x, t)‖ ≤
∫ ∞

0

|ω0(x− t)|dx+

∫ ∞
0

∫ t

0

|Q(x− u, t− u)|dudx

+Eα

∫ ∞
0

∫ t

0

|ω0(βx− t− (β − 1)u)|dudx

+Eβ

∫ ∞
0

∫ t

0

|ω0(αx− t− (α− 1)u)|dudx

+(Eα)2

∫ ∞
0

∫ t

0

∫ t−u

s=0

|ω(α2(x− u)− αs, t− u− s)|dsdudx

+E2αβ

∫ ∞
0

∫ t

0

∫ t−u

s=0

|ω(αβ(x− u)− αs, t− u− s)|dsdudx

+Eα

∫ ∞
0

∫ t

0

∫ t−u

s=0

|Q((αx− αu− s), t− u− s)|dsdudx

+E2αβ

∫ ∞
0

∫ t

0

∫ t−u

s=0

|ω(αβ(x− u)− βs, t− u− s)|dsdudx

+(Eβ)2

∫ ∞
0

∫ t

0

∫ t−u

s=0

|ω(β2(x− u)− βs, t− u− s)|dsdudx

+Eβ

∫ ∞
0

∫ t

0

∫ t−u

s=0

|Q((βx− βu− s), t− u− s)|dsdudx.

(2.3.25)

The bounds on each term of the above inequality give

‖ω(x, t)‖ ≤ (1 + E(α + β)t)‖ω0‖+ (Eα + Eβ)2

∫ t

0

‖Υ(t− v)‖dv

+(α + β)

∫ t

0

‖ω(u)‖du+ α(α + β)E

∫ t

0

(t− u)‖ω(u)‖du.

+β(α + β)E

∫ t

0

(t− u)‖ω(u)‖du.

(2.3.26)
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Using inequality (2.3.16), the first integral in (2.3.26) becomes

(Eα + Eβ)2

∫ t

0

e(α+β)Ev‖Υ(v)‖dv = (Eα + Eβ)2‖Υ0‖
∫ t

0

e(α+β)Eve−E(α+β−2)vdv

+(Eα + Eβ)2κ

∫ t

0

e(α+β)Ev

∫ v

0

e−E(α+β−2)(v−s)‖ψ(s)‖dsdv, (2.3.27)

which, in terms of ω, the becomes

(Eα + Eβ)2

∫ t

0

e(α+β)Ev‖Υ(v)‖dv = (Eα + Eβ)2‖Υ0‖(e2Et − 1)

+(Eα + Eβ)2κ

∫ t

0

e2Ev

∫ v

0

e−2Es‖ω(s)‖dsdv. (2.3.28)

The second term on the right hand side of the above equation, after changing

the order of integration, becomes

(Eα+Eβ)2κ

∫ v

0

e−2Es‖ψ(s)‖
∫ t

0

e2Evdvds ≤ (Eα+Eβ)2κ

∫ v

0

e−2E(t−s)‖ω(s)‖ds.

since 0 ≤ v ≤ t, we have

(Eα+Eβ)2κ

∫ v

0

e−2Es‖ω(s)‖
∫ t

0

e2Evdvds ≤ (Eα+Eβ)2κ

∫ t

0

e−2E(t−s)‖ω(s)‖ds.

Inequalities (2.3.28) and (2.3.26) give

‖ω(x, t)‖ ≤ (1 + E(α + β)t)‖ω0‖+ (Eα + Eβ)2(e2Et − 1)‖Υ0‖

+(α + β)

∫ t

0

(1 + (α + β)E(t− u))‖ω(u)‖du

+(Eα + Eβ)2κ

∫ t

0

e2E(t−v)‖ω(v)‖dv.

(2.3.29)
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Since (1+E(α+β)t) ≤ (α+β)e2Et and (Eα+Eβ)2(e2Et−1) ≤ (α+β)2E3e2Et,

inequality (2.3.29) reduces to

‖ω(x, t)‖ ≤ (α + β)e2Et‖ω0‖+ (α + β)2E3e2Et‖Υ0‖

+(α + β)2(1 + E2κ)

∫ t

0

e2E(t−v)‖ω(v)‖dv, (2.3.30)

so that

e−2Et‖ω(x, t)‖ ≤ (α + β)‖ω0‖+ (α + β)2E3‖Υ0‖

+(α + β)2(1 + E2κ)

∫ t

0

e−2Ev‖ω(v)‖dv. (2.3.31)

Let

f(t) =

∫ t

0

e−2Es‖ω(s)‖ds.

Then

f ′(t) = e−2Et‖ω(s)‖, (2.3.32)

where f ′(t) = df(t)
dt

. The inequality (2.3.31) in terms of f becomes

f ′(t) ≤ (α + β)‖ω0‖+ (α + β)2E3‖Υ0‖+ (α + β)2(1 + E2κ)f(t). (2.3.33)

Using Gronwall’s lemma [76], we have

f(t) ≤ e(α+β)2(1+E2κ)t

(α + β)2(1 + E2κ)

[
(α + β)‖ω0‖+ (α + β)2E3‖Υ0‖

]
, (2.3.34)

which, differentiating with respect to t, yields

f ′(t) ≤ e(α+β)2(1+E2κ)t
[
(α + β)‖ω0‖+ (α + β)2E3‖Υ0‖

]
. (2.3.35)
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Equation (2.3.32) and inequality (2.3.35) give

‖ω(t)‖ = e2Etf ′(t) ≤ e(α+β)2(1+E2κ)t
[
(α + β)‖ω0‖+ (α + β)2E3‖Υ0‖

]
e2Et,

which, in terms of % and Φ, becomes

‖%(t)Φ(x)‖ ≤
(
e((α+β)2(1+E2κ)+(2−α−β)E)t

[
(α + β)‖ω0‖+ (α + β)2E3‖Υ0‖

])
.

Consequently, as t goes to infinity the solution, any solution n(x, t) to (2.1.2)-

(2.1.4) approaches the separable solution (2.1.5).

42



Chapter 3

Asymmetric cell division with

stochastic growth rate

3.1 Introduction

The first order hyperbolic functional partial differential equation (PDE) of the

pantograph type

∂n

∂t
+ g

∂n

∂x
= bα2n(αx, t)− (b+ µ)n(x, t), (3.1.1)

together with an initial cell distribution

n(x, 0) = n0(x), (3.1.2)

and the boundary condition

n(0, t) = 0, (3.1.3)
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for t > 0, arises in a size structured cell growth model in which cells grow at

a constant rate g > 0 and divide into α > 1 equal sized daughter cells at a

constant rate b > 0. Here size is mass (or DNA content), n(x, t) is the number

density of cells of size x at time t and µ > 0 is the per capita death rate. The

cell growth model (3.1.1)-(3.1.3) is based on a model proposed by Sinko and

Streifer [16, 17] for planarian worms. The functional PDE (3.1.1) was studied,

among others, by Hall and Wake [10, 66], Begg et al. [65], Metz and Diekmann

[70] and Zaidi et al. [22]. Perthame and Ryzhik [15] established the existence

of a unique eigenvalue λ and the corresponding positive eigenfunction y(x)

towards which all solutions to (3.1.1) converge exponentially for large time,

i.e.,

‖e−λtn(x, t)− < n0 > y(x)‖L1(R+) → 0,

as t → ∞. Here < n0 >=
∞∫
0

n0(x)dx is a normalization constant. Hall and

Wake [10] determined the long time asymptotic solution to (3.1.1) by consid-

ering a separable solution of the form n(x, t) = N(t)y(x), where y satisfies the

pantograph equation

gy′(x) + bαy(x) = α2by(αx).

They called it a Steady Size Distribution (SSD) solution and showed that y

can be expressed as a certain Dirichlet series.

The functional PDE (3.1.1) models a symmetric cell division problem in

which cells divide into α daughter cells of equal size. Cells, however, may

divide asymmetrically [71]. The simplest case is when a cell divides into two

daughters of different sizes, say size α and size β. It is assumed that there is
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no loss of mass (or DNA content) in the division. The sizes α and β are thus

related by

1

α
+

1

β
= 1. (3.1.4)

Asymmetrical division was studied, among others, by Diekmann et al. [55]

and Heijmans [56]. This type of division leads to a functional partial differen-

tial equation with two non local terms

∂n

∂t
+ g

∂n

∂x
= αbn(αx, t) + βbn(βx, t)− (µ+ b)n(x, t), (3.1.5)

where α > 2 > β > 1. Suebcharoen et al. [30] found the separable solution to

(3.1.5) subject to conditions (3.1.2) and (3.1.3) and Zaidi et al. [29] showed

that this solution is unimodal.

A second order analogue of the functional PDE (3.1.1), involving symmetric

division of cells, arises when dispersion is included by virtue of stochasticity

in the growth rate of cells [32, 11]. This leads to a modified Fokker-Planck

equation of the form

∂n

∂t
+ g

∂n

∂x
= D

∂2

∂x2
(n(x, t)) + bα2n(αx, t)− bn(x, t)− µn(x, t), (3.1.6)

where D = σ2

2
≥ 0 is the constant dispersion coefficient and σ is the standard

deviation. We thus assume a Gaussian “white noise” sharply peaked around

g, which now represents the mean growth. This means, to leading order ε2,

D is a constant where ε is roughly the “width” of the Gaussian ‘blip’. Wake

et al. [19] derived the SSD solution to the equation and showed that the

solution is positive and unique. They, however, did not establish that their
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SSD solution was in fact the long time asymptotic solution. Efendiev et al.

[31] solved PDE (3.1.6) and established that this SSD solution is the long time

asymptotic solution. The first order cell growth problem and its second order

generalization have also been studied for non-constant coefficients [72], [21],

[62].

In this chapter, we generalize the work of Efendiev et al. [31] to the case

of asymmetric division. Specifically, we study the PDE

∂n

∂t
+ g

∂n

∂x
=

∂2

∂x2
(Dn(x, t)) + bαn(αx, t) + bβn(βx, t)− bn(x, t)− µn(x, t).

(3.1.7)

This equation is supplemented by the no-flux conditions (1.22) and an initial

number density (3.1.2). The boundary conditions (1.22) are Robbins type

conditions which suggest that there is no flux of cells across the boundary

at x = 0 and at infinity. In this model, the conservation of mass (or DNA

content) during division is assumed so that α and β satisfy (3.1.4)

The PDE (3.1.7) is a special case of a more general coagulation-fragmentation

equation for which there is a dearth of general solution techniques. Here, we

solve (3.1.7) analytically and establish directly the long time asymptotic be-

haviour of solutions.

The PDE (3.1.7) can be reduced to a simplified form by using a sequence

of transformations. The transformation

n(x, t) = e−(b+µ)tñ(x, t)
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reduces (3.1.7) to

∂

∂t
ñ(x, t) + g

∂

∂x
ñ(x, t) =

∂2

∂x2
(Dñ(x, t)) + bαñ(αx, t) + bβñ(βx, t),

which, using the transformation x = gx̂, can be further reduced to

− ∂2

∂x̂2
(D̂n̂(x̂, t)) +

∂

∂t
n̂(x̂, t) +

∂

∂x̂
n̂(x̂, t) = bαn̂(αx̂, t) + bβn̂(βx̂, t).

Here, D̂ = D
g2

and n̂(x̂, t) = ñ(gx̂, t). The problem can thus be simplified, by

dropping circumflexes and tildes of the above PDE, to

− ∂2

∂x2
(Dn(x, t)) +

∂

∂t
n(x, t) +

∂

∂x
n(x, t) = bαn(αx, t) + bβn(βx, t), (3.1.8)

along with conditions (3.1.2) and (1.22). If, for any fixed t > 0 and for all

x ≥ 0, we assume that the solutions to (3.1.8) subject to conditions (3.1.2)

and (1.22) are integrable with respect to x, then PDE (3.1.8) transforms to

− ∂2

∂x2
(Dm(x, t)) +

∂

∂t
m(x, t) +

∂

∂x
m(x, t) = b{m(αx, t) +m(βx, t)}, (3.1.9)

where

m(x, t) =

∞∫
x

n(ξ, t)dξ.

To specify a boundary condition on (3.1.9), we integrate (3.1.8) with respect

to x from 0 to ∞ and apply conditions (1.22). This gives

∂

∂t
m(0, t) = 2bm(0, t),
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so that the boundary condition is

m(0, t) = k0e
2bt, (3.1.10)

for some constant k0. The initial condition to (3.1.9) can be obtained by

evaluating the expression for m(x, t) at t = 0. This yields

m0(x) = m(x, 0) =

∞∫
x

n0(ξ)dξ. (3.1.11)

The no-flux conditions (1.22) become

lim
x→0+

−D ∂2

∂x2
m(x, t) +

∂

∂x
m(x, t) = 0, (3.1.12)

lim
x→∞
−D ∂2

∂x2
m(x, t) +

∂

∂x
m(x, t) = 0. (3.1.13)

In the next section, we derive some qualitative results that concern the

existence of a probability density function (pdf) eigenvalue, the steady size

distribution (SSD) solution to the corresponding eigenfunction, its positivity

and uniqueness. In section 3.3, we solve the full PDE (3.1.7) in the form of

a certain series. In section 3.4, we show that the general solution obtained in

section 3.3 approaches the SSD solution.

3.2 The Separable Solution

In this section, we determine separable solutions to the original PDE (3.1.6)

subject to conditions (3.1.2) and (1.22). The separable solution to the trans-

formed equation (3.1.9) subject to conditions (3.1.10)-(3.1.13) can be deter-

mined in a similar manner. The first order PDE (3.1.5) involving two non
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local terms was shown to have an eigenvalue and a corresponding SSD solu-

tion as a certain double Dirichlet series ([29]). The second order case involving

a modified Fokker-Planck equation (3.1.6) with only one non local term was

considered by Wake et al. [19] and they found the eigenvalue and the SSD so-

lution as a certain single Dirichlet series. In both the instances, the eigenvalue

and the SSD solution were found by considering a separable solution to the

PDE. Motivated by this, we find the eigenvalue and the SSD solution to the

second order equation (3.1.7) with two non local terms by first considering a

solution of the form

n(x, t) = N(t)y(x), (3.2.1)

where y is a pdf and N(t) =
∞∫
0

n(x, t)dx is the total population at time t. The

Solution form (3.2.1) and equation (3.1.7) yield

n(x, t) = e−λty(x),

where λ is the constant of separation. In addition, y satisfies the ordinary

functional differential equation

Dy′′(x)− gy′(x) + αby(αx) + βby(βx)− (µ+ b− λ)y(x) = 0, (3.2.2)

along with the no-flux condition

Dy′(0)− gy(0) = 0, (3.2.3)
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and the conditions

lim
x→∞

y(x) = 0, lim
x→∞

y′(x) = 0. (3.2.4)

Since y is a pdf, we require that y(x) ≥ 0 for all x ≥ 0 and

∞∫
0

y(x)dx = 1. (3.2.5)

The eigenvalue λ can be found by integrating (3.2.2) from 0 to ∞ and using

conditions (3.2.3)-(3.2.5). This gives

λ = µ− b, (3.2.6)

and so,

N(t) = ke(b−µ)t,

for some constant k > 0. This indicates an exponential growth in time if the

rate of division b is greater than the mortality rate µ. We note that the λ

given by (3.2.6) is independent of α and β in contrast with the symmetric cell

division ([19]), where the value of λ is µ − b(α − 1). It is also worth noting

that the eigenvalue λ for the case D = 0 is the same as given in (3.2.6) (cf.

[29]). The eigenvalue (3.2.6) reduces (3.2.2) to

Dy′′(x)− gy′(x) + αby(αx) + βby(βx)− 2by(x) = 0. (3.2.7)

Motivated by the observation that the PDE (3.1.6) involving only one non
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local term has an SSD solution in terms of a single Dirichlet series, and that

the PDE (3.1.5) with two non local terms has an SSD solution in terms of a

double Dirichlet series, we seek a solution to (3.2.7) of the form

y(x) =
∞∑
k=0

∞∑
j=0

ck,je
−αkβjAx, (3.2.8)

where the coefficients ck,j and A are to be determined. From equation (3.2.8)

we have

y′(x) =
∞∑
k=0

∞∑
j=0

(−αkβjA)ck,je
−αkβjAx, (3.2.9)

y′′(x) =
∞∑
k=0

∞∑
j=0

(α2kβ2jA2)ck,je
−αkβjAx, (3.2.10)

y(αx) =
∞∑
k=0

∞∑
j=0

ck,je
−αk+1βjAx, (3.2.11)

y(βx) =
∞∑
k=0

∞∑
j=0

ck,je
−αkβj+1Ax. (3.2.12)

Equations (3.2.7) and (3.2.8)-(3.2.12) give

D
∞∑
k=0

∞∑
j=0

α2kβ2jA2ck,je
−αkβjAx − g

∞∑
k=0

∞∑
j=0

(−αkβjA)ck,je
−αkβjAx+

αb
∞∑
k=0

∞∑
j=0

ck,je
−αk+1βjAx + βb

∞∑
k=0

∞∑
j=0

ck,je
−αkβj+1Ax − 2b

∞∑
k=0

∞∑
j=0

ck,je
−αkβjAx = 0.

(3.2.13)

Equating coefficients of e−Ax, e−α
kAx,e−β

jAx, and e−α
kβjAx yields the indicial

equation

DA2 + gA− 2b = 0, (3.2.14)
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and

ck,0 =
(−1)k(αb)kc0,0

k∏
s=1

(DA2α2s + gAαs − 2b)

, (3.2.15)

c0,j =
(−1)j(βb)jc0,0

(
j∏
s=1

(DA2β2s + gAβs − 2b)

, (3.2.16)

ck,j =
−b

(DA2α2kβ2j + gAαkβj − 2b)
(αck−1,j + βck,j−1), (3.2.17)

for k, j ∈ N. Since the series (3.2.8) diverges if A < 0, we choose A to be the

positive root of (3.2.14). This gives

A =
−g +

√
g2 + 8bD

2D
. (3.2.18)

The coefficient c0,0 is chosen so that
∞∫
0

ydx = 1. We note that (3.2.8) and

(3.2.15)-(3.2.17) reduce to the results obtained by Zaidi et al. when D = 0

(cf. [29]).

The convergence of series (3.2.8) for the ck,j defined by (3.2.15)-(3.2.17)

can be established in a way similar to that used by Zaidi et al. [21]. The

positivity, uniqueness and unimodality of the double Dirichlet series solution

can be proved by employing analysis, similar to the one used by Suebcharoen

et al. [30] and Zaidi et al. [29].

We can determine the separable solution F to the transformed PDE (3.1.9)

subject to conditions (3.1.10)-(3.1.13) by term by term integration of (3.2.8).
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3.3 The General Solution

In this section, we find the general solution to the initial boundary value

problem (3.1.9)-(3.1.13). In the next section, we show that this general solution

approaches the SSD solution obtained in Section 3.2. Motivated by this, let

m(x, t) = e2btF (x)− v(x, t), (3.3.1)

where v(x, t) satisfies

−Dvxx(x, t) + vx(x, t) + vt(x, t) = bv(αx, t) + bv(βx, t), (3.3.2)

along with the initial condition

v(x, 0) = F (x)−m0(x) = w0(x). (3.3.3)

Here, F satisfies

−DF ′′(x) + F ′(x) + 2bF (x) = b(F (αx) + F (βx)). (3.3.4)

The above ordinary differential equation can be obtained from (3.1.9) by fol-

lowing a pattern similar to that used in Section 3.2 for equation (3.1.7), i.e.,

we assume a separable solution to (3.1.9) of the form m(x, t) = M(t)F (x),

where M(t) = k0e
bt, for some constant k0, and F satisfies (3.3.4). Given the

relation between m and n, equation (3.3.4) is in fact an “integrated” version

of (3.2.7). We know the solution to (3.3.4) with mortality transformed out
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and g = 1 is given by the double Dirichlet series

F (x) =
∞∑
k=0

∞∑
j=0

dk,je
−αkβjAx,

where

dk,0 =
(−1)kbkc0,0

k∏
s=1

(DA2α2s + Aαs − 2b)

,

d0,j =
(−1)jbjc0,0

(
j∏
s=1

(DA2β2s + Aβs − 2b)

,

dk,j =
−b

(DA2α2kβ2j + gAαkβj − 2b)
(ck−1,j + ck,j−1),

and

A =
−1 +

√
1 + 8bD

2D
.

Note that

−DF ′′(0) + F ′(0) + 2bF (0) = 2bF (0),

so that e2btF (x) also satisfies the no-flux condition (3.1.12) at x = 0. The

solution v(x, t) to (3.3.2) can be obtained using the technique of Efendiev et

al. [31]. In the absence of the functional term, equation (3.1.9) along with

(3.1.11) corresponds to the Cauchy problem

−Duxx + ux + ut = 0,

u(x, 0) = u0(x).
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The solution to the above problem is given by

u(x, t) =

∞∫
0

ψ(x, ξ, t)u0(ξ)dξ,

where

ψ(x, ξ, t) =
e
−t
4D e

−(ξ−x)
2D

2
√
Dπt

{e
−(x−ξ)2

4Dt − e
−(x+ξ)2

4Dt }. (3.3.5)

The kernel ψ is the same as that in Efendiyev at al. [31], and has the properties

(a) limt→0+

∞∫
0

ψ(x, ξ, t)u0(ξ)dξ = u0(x).

(b) ψ(0, ξ, t) = 0 for all t > 0.

(c) −Dψxx + ψx + ψt = 0.

(d)
∞∫
0

ψ(x, ξ, t)dξ ≤ 1.

(e)
∞∫
0

ψ(x, ξ, t)dx ≤ 1.

We seek a solution to (3.3.2) of the form

v(x, t) =
∞∑
k=0

vk(x, t), (3.3.6)

where, if the differential operator L is defined by

Lφ = −Dφxx + φx + φt,

the vk are defined by

Lvk+1 = b{vk(αx, t) + vk(βx, t)}, (3.3.7)
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with

v0(x, t) =

∞∫
0

ψ(x, ξ, t)w0(ξ)dξ, (3.3.8)

and for k ≥ 0,

vk+1(x, t) = b

t∫
0

∞∫
0

ψ(x, ξ, t− τ){vk(αξ, τ) + vk(βξ, τ)}dξdτ. (3.3.9)

We note that the vk defined by (3.3.9) satisfy equation (3.3.7). Also from

equation (3.3.9), it is clear that for k ≥ 1

vk(x, 0) = 0, (3.3.10)

and from equation (3.3.9) and property (b), that

vk(0, t) = 0. (3.3.11)

We show that the series solution (3.3.6) converges uniformly in ΩT = {(x, t) :

x ≥ 0, 0 ≤ t ≤ T}. Let

‖w0‖ = sup
x≥0
|w0(x)|.

Then, using property (d) of ψ,

|v0(x, t)| ≤
∞∫

0

|ψ(x, ξ, t)||w0(ξ)|dξ ≤ ‖w0‖,
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and

|v1(x, t)| = b

t∫
0

∞∫
0

|ψ(x, ξ, t− τ)|{|v0(αξ, τ)|+ |v0(βξ, τ)|}dξdτ

≤ 2b‖w0‖t,

since ψ(x, ξ, t− τ) also satsifies property (d). Continuing this process,

|v2(x, t)| ≤ b

t∫
0

∞∫
0

|ψ(x, ξ, t− τ)|{|v1(αξ, τ)|+ |v1(βξ, τ)|}dξdτ

≤ b

t∫
0

2b‖w0‖τ
∞∫

0

ψ(x, ξ, t− τ)dξdτ

≤ (2b)2‖w0‖
t2

2
,

and in general,

|vk(x, t)| ≤ (2b)k‖w0‖
tk

k!
;

hence,

|v(x, t)| ≤
∞∑
k=0

|vk(x, t)| ≤ ‖w0‖e2bt,

so that the solution converges uniformly in ΩT .

3.4 Large time asymptotics

In this section, we show that the solution v obtained in the Section 3.3 goes

to zero in the L1 norm as time goes to infinity. Let

‖f‖1 =

∞∫
0

|φ(x, t)|dx.
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Then

‖vk+1‖1 =

∞∫
0

|vk+1(x, t)|dx =

∞∫
0

|b
t∫

0

∞∫
0

ψ(x, ξ, t− τ){vk(αξ, τ) + vk(βξ, τ)dξdτ |dx

≤ b

t∫
0

∞∫
0

{
∞∫

0

ψ(x, ξ, t− τ)dx}|vk(αξ, τ) + vk(βξ, τ)|dξdτ,

which, using property (d) of ψ, gives

‖vk+1‖1 ≤ b

t∫
0

∞∫
0

(|vk(αξ, τ) + vk(βξ, τ)|)dξdτ,

= b

t∫
0

(
1

α
‖vk‖1 +

1

β
‖vk‖1)dτ,

= b

t∫
0

‖vk‖1dτ. (3.4.1)

Now,

‖v0‖1 =

∞∫
0

|v0(x, t)|dx =

∞∫
0

|
∞∫

0

ψ(x, ξ, t)w0(ξ)dξ|dx,

≤
∞∫

0

∞∫
0

|ψ(x, ξ, t)||w0(ξ)|dξdx,

which, using property (d), gives

‖v0‖1 ≤
∞∫

0

|w0(ξ)|dξ;
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thus,

‖v0‖1 ≤ ‖w0‖1. (3.4.2)

Similarly, for k = 0, inequalities (3.4.1) and (3.4.2) give

‖v1‖1 ≤ b‖w0‖1t.

In general, for any k ≥ 0,

‖vk‖1 ≤ bk‖w0‖1
tk

k!
.

Thus

‖v(x, t)‖1 ≤ ebt‖w0‖1. (3.4.3)

From equation (3.3.1), we have

|m(x, t)e−2bt − F (x)| = e−2bt|v(x, t)|,

so that

∫ ∞
0

|m(x, t)e−2bt − F (x)|dx =

∫ ∞
0

e−2bt|v(x, t)|dx.

The above equation and inequality (3.4.3) thus give

∫ ∞
0

|m(x, t)e−2bt − F (x)|dx ≤ e−bt‖w0‖1.
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It is evident from the above equation that the solution m(x, t) converges to

the separable solution e2btF (x) for large time.

3.5 Conclusions

Solutions to the cell division equation (3.1.7) subject to conditions (1.22) were

procured analytically, which is significant because there is a paucity of an-

alytical solutions to most functional PDEs. The nonlocal PDE considered

here with constant D, g and b has a dominant eigenvalue and a corresponding

eigenfunction towards which solutions to the PDE converge exponentially in

time. This is different from the case when D = 0 and G(x) = x which, for

instance, gives rise to time dependent oscillatory solutions [24].

The solution technique for the symmetric cell division case can be adapted

to determine the general solution for the case of asymmetric cell division. We

conclude that adding dispersion to the cell division problem (3.1.5) does not

impact the shape and positivity the SSD solution in a substantial way (See

Figure (3.1)), though it does increase the number density of smaller cells. We

also conclude that shape of the SSD solution and its positivity remain largely

unaffected by the mode of cell division. Even if cells divide asymmetrically,

the SSD solution still remains positive and unimodal (see Figure 3.2). It has

been mooted that cells under division do not always produce daughter cells

of exactly same size [20]. The analysis here shows that the model is robust in

that the same general behaviour occurs even under asymmetrical division.

The SSD solution is another name for the positive separable solution. This

solution is important in simpler models because it also corresponds to the

solution to which other solutions converge for large time. We have shown that
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Figure 3.1: The solution obtained by Zaidi et al. [29] for the no dispersion
case and the solution given by the Dirichlet series (3.2.8) for D = 1. Here,
α = 3, β = 3

2
, b = 1 and g = 2 units.

Figure 3.2: The solution obtained by Wake et al. [19] for the case of symmetric
cell division and the solution given by the Dirichlet series (3.2.8) for binary
asymmetric division. Here, D = 1, α = 3, β = 3

2
, b = 1 and g = 2 units.

the SSD for this problem is the long time attracting solution for the model.

The cell division model considered in this chapter is a size structured model

and is essentially one dimensional. It is the simplest version of the process,

but underlying this is some of the biological assumptions. Certainly we can

go up to higher dimensions with the model by bringing in, for example, age

structure as well as size. This will be addressed in future work.
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The more general case where D = D(x, n) and G = G(x, n) is also to be

addressed in future work. Some work in this direction, for related models, has

been done in [73, 74].
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Chapter 4

Inhomogeneous Pantograph

Type Equation with singular

coefficients and symmetric cell

division

4.1 Introduction

This chapter deals with the existence of solutions to a certain class of functional

partial differential equations (PDEs) of the form

nt(x, t) + (G(x, t)n(x, t))x +B(x, t)n(x, t) =(D(x, t)n(x, t))xx(x, t)

+ α2B(αx, t)n(αx, t) + f(x, t),

(4.1.1)
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subject to the initial condition

lim
t→0+

n(x, t) = n0(x), (4.1.2)

the boundary conditions (1.22), and the condition

lim
x→∞

n(x, t) = 0. (4.1.3)

for t > 0. Here, α > 1, and f(x, t) is a known forcing term. If f ≡ 0, then

(4.1.1) appears in a cell division model with stochastic growth rate, where

x ≥ 0 represents size and t > 0 denotes time. The coefficients D(x, t), G(x, t)

and B(x, t) represent the dispersion rate, growth rate and the frequency of

division of cells respectively. Also, n(x, t) denotes the number density of cells.

The homogeneous version of (4.1.1) has been studied for constant coeffi-

cients. Wake et al. [19] obtained separable solutions to this problem. Sepa-

rable solutions are of interest since these usually correspond to the large time

attracting solutions, referred to as steady size distribution (SSD) solutions.

Wake et al., however, did not show that their separable solutions are the large

time attracting solutions to the problem. Efendiyev et al. [31] then solved the

full PDE by developing a solution technique. They obtained exact solutions

to the problem and showed that the separable solution obtained by Wake et

al. was the SSD solution. Recently, Gul [9] studied the case of linear growth

in size with constant dispersion and division rate, and showed that the prob-

lem does not have a steady size distribution solution as t → ∞. Zaidi et

al. [21] studied the homogeneous problem for D(x, t) = ax2, B(x, t) = bx2,

G(x, t) = gx, where a > 0, b, > 0 and g > 0, and showed that there is a unique

probability density function that solves the problem. Lo [12] then obtained
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the exact solution of the problem.

The homogeneous first order case (D = 0) has also been studied and has

applications in fragmentation in polymers and droplets [2, 8, 13], internet pro-

tocols in telecommunication systems [3], planarian worm division [16, 17], and

a cell division model [10]. For constant coefficients, Hall and Wake [10] ob-

tained separable solutions to the problem. Perthame and Ryzhik [15] showed

that the separable solutions of Hall and Wake are the SSD solutions to the

problem as t → ∞. The full problem was solved by Zaidi et al. [22] using

a novel solution technique. The homogeneous first order case has also been

studied for certain choices of size dependent coefficients. Hall and Wake stud-

ied separable solutions for G(x, t) = ax and B(x, t) = bxk, where a, b and k are

positive numbers [72]. The full PDE problem was solved by van Brunt et al.

[24]. The large time attracting solution, in this case, is periodic in time. The

dynamics are thus different from the constant coefficient case. There has been

much progress, however, on the local inhomogeneous equations with singular

coefficients and explicit solutions have been obtained. For instance, Bizhanova

[6] studied a Cauchy problem entailing a parabolic equation with singular co-

efficients and proved the existence and uniqueness of solutions to the problem.

He also obtained explicit solutions to the problem along with the estimates of

the solution.

There are no general methods for solving such initial boundary value prob-

lems even for a restricted class of coefficients. The inhomogeneous problem

has not been solved hitherto. In this paper, we consider time dependent co-

efficients D(x, t) = D
t
, G(x, t) = g

t
, B(x, t) = b

t
, where D, g and b are positive

numbers, and show that for a certain class of functions f(x, t), there exists so-

lutions to the initial boundary value problem. With these choice of coefficients,
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equation (4.1.1) reduces to

− D

t
nxx(x, t) +

g

t
nx(x, t) + nt(x, t) +

b

t
n(x, t) =

b

t
α2n(αx, t) + f(x, t),

which can be simplified, using the transformation x = gx̃, to

− D̃

t
ñxx(x̃, t) +

1

t
ñx(x̃, t) + ñt(x̃, t) +

b

t
ñ(x̃, t) =

b

t
α2ñ(αx̃, t) + f(x̃, t),

where D̃ = D
g2

and ñ(x̃, t) = n(gx̃, t). Dropping the tildes yields

− D

t
nxx +

1

t
nx(x, t) + nt(x, t) +

b

t
n(x, t) =

b

t
α2n(αx, t) + f(x, t). (4.1.4)

We consider functions f and solutions n that are integrable with respect to x

for any fixed t. The transformations

m(x, t) =

∞∫
x

n(ξ, t)dξ, and q(x, t) =

∞∫
x

f(ξ, t)dξ,

yield

− D

t
mxx +

1

t
mx(x, t) +mt(x, t) +

b

t
m(x, t) =

b

t
αm(αx, t) + q(x, t). (4.1.5)

The boundary condition on m is specified by integrating (4.1.4) with respect

to x from 0 to ∞ and using conditions (1.22). This gives

mt(0, t)−
b

t
(α− 1)m(0, t) = q(0, t),
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so that

m(0, t) = ctb(α−1) + tb(α−1)

∫
t−b(α−1)q(0, t)dt, (4.1.6)

where c is the constant of integration. The initial condition on m is

m(x, 0) = m0(x) =

∞∫
x

n0(ξ)dξ. (4.1.7)

In the next section, we obtain a Mellin transform solution to the problem.

In Section 4.3, we show that the inverse Mellin transform exists for a certain

class of source terms f . We conclude the discussion in Section 4.4

4.2 A Mellin transform Solution

In this section, we study the existence and uniqueness of a Mellin transform so-

lution to equation (4.1.5) subject to conditions (4.1.6) and (4.1.7). The Mellin

transform converts equation (4.1.5) to a nonhomogeneous ordinary differential

equation, which can be solved using the Green’s function. This leads to an

integral equation that has a unique solution.

Applying the Mellin transform to equation (4.1.5) with respect to time

yields

−DMxx(x, s− 1)− (s− 1− b)M(x, s− 1) +Mx(x, s− 1) =bαM(αx, s− 1)

+ F (x, s− 1),

(4.2.1)
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where s < 1, and

M(x, s− 1) =

∞∫
0

ts−2m(x, t)dt and F (x, s− 1) =

∞∫
0

ts−2tq(x, t)dt,

so that, for s < 0, equation (4.2.1) yields

−DMxx(x, s) +Mx(x, s)− (s− b)M(x, s) = bαM(αx, s) + F (x, s). (4.2.2)

The boundary conditions are

lim
x→∞

M(x, s) = 0, (4.2.3)

and

M(0, s) =

∞∫
0

ts−1m(0, t)dt = − 1

s+ b(α− 1)
F (0, s+ 1)

= H(s), (4.2.4)

where s < −b(α−1). The problem can be converted to one with homogeneous

boundary conditions using the transformation

V (x, s) = P (x)H(s)− kM(x, s),

and this requires

lim
x→∞

P (x) = 0,
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and,

P (0) = k.

Equation (4.2.2) thus converts to

−DVxx(x, s) + Vx(x, s)− (s− b)V (x, s)− bαV (αx, s) + kF (x, s)

+(s− b)P (x) + bαP (x) = [−DP ′′(x) + P ′(x) + bαP (x)− bαP (αx)]H(s).

(4.2.5)

We choose P (x) such that it solves

−DP ′′(x) + P ′(x) + bαP (x) = bαP (αx),

subject to the boundary conditions

lim
x→0+

(−DP ′(x) + P (x)) = 0,

lim
x→∞

(−DP ′(x) + P (x)) = 0,

and the condition

lim
x→∞

P (x) = 0.

Wake et al. [19] obtained such a solution P (x), which is given as a certain

Dirichlet series. With this choice of P (x), equation (4.2.5) reduces to

−DVxx(x, s) + Vx(x, s)− (s− b)V (x, s) = bαV (αx, s) + η(x, s), (4.2.6)
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where

η(x, s) = −P (x)F (0, s+ 1)− kF (x, s). (4.2.7)

The corresponding Green’s function satisfies

−DG′′ +G′ − (s− b)G = δ(x− ξ),

where the derivative is with respect to x. Thus,

G(x, ξ, s) =


G1(x, ξ, s) = e−m1ξ

D(m1−m2)

(
em1x +

(
m1D−1
1−m2D

)
em2x

)
; 0 < x < ξ

G2(x, ξ, s) = em2x

D(m1−m2)

(
e−m2ξ +

(
m1D−1
1−m2D

)
e−m1ξ

)
; ξ < x <∞

(4.2.8)

where m1 and m2 are given by

m1 =
1 +

√
1− 4(s− b)D

2D
,

m2 =
1−

√
1− 4(s− b)D

2D
.

(4.2.9)

The solution V (x, s) thus satisfies

V (x, s) = bα

∞∫
0

G(x, ξ, s)V (αξ, s)dξ + h(x, s), (4.2.10)

where h(x, s) is a known function and is given by

h(x, s) =

∞∫
0

G(x, ξ, s)η(αξ, s)dξ. (4.2.11)
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Let K and T be operators defined by Kφ = Tφ+ h, where

Tφ = bα

∞∫
0

G(x, ξ, s)φ(αξ, s)dξ.

The work of Efendiev et al. [31] can be mimicked to show that

‖Kφ1 −Kφ2‖ ≤
bα

(−Re s+ b)
‖φ‖∞,

so that T is a contraction mapping for Re s < −b(α − 1). The solution V is

thus given by

V =
∞∑
j=0

Tj h, (4.2.12)

where T0 h = h, and Tj h = Tj−1 h.

4.3 Asymptotics as |s| → ∞

In this section, we show that for a certain class of source terms f , the solution

V obtained in Section 4.2 lies in a suitable space, so that the Paley-Wiener the-

orem can be invoked to establish the existence of an inverse Mellin transform.

In the next lemma, we establish bounds on h(x, s).

Lemma 4.3.1. Let Re s < −b(α− 1) and F be a function such that F (x, s) =

R(x)Q(s), where |Q(s)| ∼ O( 1
|s|p ), p ≥ 1, and R(x) is bounded and R′(x) ∈

L1[0,∞), then there exists an L > 0, such that

|h(x, s)| < L

|s|2
. (4.3.1)
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as |s| → ∞.

Proof. Let h(x, s) = C1 + C2, where

C1 =

x∫
0

G2(x, ξ, s)η(ξ, s)dξ,

and,

C2 =

∞∫
x

G1(x, ξ, s)η(ξ, s)dξ.

Integrating C1 and C2 by parts gives

C1 = [η(ξ, s)v1(x, ξ, s)]|xξ=0 −
x∫

0

v1(x, ξ, s)
∂

∂ξ
η(ξ, s)dξ, (4.3.2)

and

C2 = [η(ξ, s)v2(x, ξ, s)]|ξ=∞ξ=x −
∞∫
x

v2(x, ξ, s)
∂

∂ξ
η(ξ, s)dξ, (4.3.3)

where

v1(x, ξ, s) =

ξ∫
0

G2(x, τ, s)dτ,

and

v2(x, ξ, s) =

∞∫
ξ

G1(x, τ, s)dτ.
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Since,

|v2(ξ)| ≤ 1

|Dm1(m1m2)|
+

|m2|2 + |m1|2

D|m1(m1m2)(m1 −m2)|
,

and, from (4.2.8), mk ∼ O(|
√
s|) for k = 1, 2 as |s| → ∞, so that there exists

a constant γ2 such that

|v2(ξ)| ≤ γ2

|s|
, (4.3.4)

as |s| → ∞. Similarly, for v1, there exists a constant γ1 such that, as |s| → ∞,

|v1(ξ)| ≤ γ1

|s|
. (4.3.5)

Since P (x) is a positive decreasing function in [0,∞) ([19]) and R is bounded,

equation (4.2.7) implies that there exists numbers k1 and k2 such that

|η(x, s)| ≤ (|P (x)R(0)|+ |kR(x)|) 1

|s|
≤ k1

|s|
, (4.3.6)

and,

| ∂
∂x
η(x, s)| ≤ (|P ′(x)R(0)|+ |kR′(x)|) 1

|s|
≤ k2

|s|
, (4.3.7)

as |s| → ∞. Equations (4.3.2)-(4.3.3) and inequalities (4.3.4)-(4.3.7) yield

|h(x, s)| ≤ |C1|+ |C2| <
L

|s|2
,

as |s| → ∞, where L = max(γ1, γ2)(k1 + k2).

Lemma 4.3.2. Let F (x, s) satisfy the assumptions of Lemma 4.3.1. Then for
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any ν > bα,

|V (x, s)| < L̃

|s|2
, (4.3.8)

where L̃ = L
1−q and q = bα

ν
.

Proof. Since,

|V (x, s)| ≤ |h(x, s)|+
∞∑
n=1

|Tn h(x, s)|, (4.3.9)

we compute the bounds on the terms of the Neumann series to get a bound

on V . Now,

|Th(x, s)| ≤ bα

∞∫
0

|G(x, ξ, s)||h(αξ, s)|dξ,

≤ bα
L

|s|2

∞∫
0

|G(x, ξ, s)|dξ.

≤ bα
L

|s|2
{

x∫
0

|G2(x, ξ, s)|dξ +

∞∫
x

|G1(x, ξ, s)|dξ}. (4.3.10)

It is straightforward to show that

x∫
0

|G2(x, ξ, s)|dξ ≤ 1

Dµ2(µ1 + µ2)
, (4.3.11)

and

∞∫
x

|G1(x, ξ, s)|dξ ≤ 1

Dµ1(µ1 + µ2)
, (4.3.12)

where µ1 = Rem1 > 0, and −µ2 = Rem2 < 0. Inequalities (4.3.10)-(4.3.12)
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yield

|Th(x, s)| ≤ L

|s|2
bα

Dµ1µ2

. (4.3.13)

Now,

µ1 = Rem1 =
1

2D
(1 + Re

√
1− 4(s− b)D),

and,

µ2 = −Rem2 =
1

2D
(Re

√
1− 4(s− b)D − 1),

so that,

1

µ1µ2

≤ D

(−Re s+ b)
,

which, using inequality (4.3.13), gives

|Th(x, s)| ≤ L

|s|2
bα

(−Re s+ b)
,

and since Re s < −b(α− 1), the above inequality yields

|Th(x, s)| ≤ L

|s|2
q,

where q = bα
ν
< 1. In general,

|Tn h(x, s)| ≤ qn
L

|s|2
, (4.3.14)
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so that, inequalities (4.3.1), (4.3.9) and (4.3.14), yield (4.3.8).

The above Lemmas establish the following result.

Theorem 4.3.3. Let F (x, s) satisfy the assumptions of Lemma 4.3.1. There

exists a solution m to equation (4.1.5) that satisfies conditions (4.1.6) and

(4.1.7) for all x > 0 and t > 0.

Proof. Since |V (x, s)| < L̃
|s|2 , the Paley-Wiener theorem ([9], [14], [18]) asserts

the existence of a unique continuous function v(x, t), such that

V (x, s) =

∞∫
0

ts−1v(x, t)dt.

4.4 Concluding remarks

In this chapter, the existence of a unique solution to the inhomogeneous panto-

graph type equation (4.1.1), subject to conditions (4.1.2)-(4.1.3), is established

for a restricted class of source terms f , and for a certain choice of coefficients.

The Mellin transform F (x, s) of the “integrated” version of the source term

f(x, t) is O( 1
|s|p ), p ≥ 1. The approach used here can also be employed for

a more general class of dispersion, growth and division rates. The challenge,

however, is finding the appropriate Green’s function that satisfies the cor-

responding nonlocal differential equation (DE). The choice of coefficients, in

this paper, makes the Green’s function DE local and able to be solved eas-

ily. The inverse transform in the time domain is formidable to obtain and the

Paley-Wiener theorem for Mellin transforms is employed to extract qualitative
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information about the solution. Some tools in this regard have been developed

by Butzer and Stefan [5] and Bardaro et al. [4]. Future work will cover a more

general class of functions f .

The homogeneous problem f ≡ 0 can be addressed using a similar ap-

proach. It, however, leads to a homogeneous Fredholm equation of the second

kind and the analysis used here breaks down. Solution techniques for the

homogeneous problem will be discussed in future work.
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Chapter 5

Inhomogeneous Pantograph

Type Equation with singular

coefficients and asymmetric cell

division

5.1 Introduction

This chapter is the asymmetric generlization of chapter 4 and deals with PDEs

of the form

nt(x, t) + (G(x, t)n(x, t))x +B(x, t)n(x, t) = (D(x, t)n(x, t))xx

+αB(αx, t)n(αx, t) + βB(βx, t)n(βx, t) + f(x, t) (5.1.1)
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subject to the initial condition

lim
t→0+

n(x, t) = n0(x), (5.1.2)

and the boundary conditions (1.22), and the condition

lim
x→∞

n(x, t) = 0, (5.1.3)

for t > 0. Here α > 2 > β > 1, and f(x, t) is a known forcing term. Further-

more 1
α

+ 1
β

= 1. If f ≡ 0, then (5.1.1) appears in a cell division model with

stochastic growth rate, where x ≥ 0 represents size and t > 0 denotes time.

The coefficients D(x, t), G(x, t) and B(x, t) represents dispersion rate, growth

rate and frequency of division of cells respectively. Furthermore, the number

density of cells at a given time is denoted by n(x, t).

As discussed prviously, general techniques for solving such initial boundary

value problems lack, even for a restricted class of coefficients. The inhomo-

geneous problem, for symmetric case, has been discussed in detail in previ-

ous chapter, and here we tend to find the results for the asymmetric version

of the problem in chapter 4. Here, we consider time dependent coefficients

D(x, t) = D
t
, G(x, t) = g

t
, B(x, t) = b

t
, where D, g and b are positive numbers,

and show that for a certain class of functions f(x, t), there exists solutions to

the initial boundary value problem. With these coefficients, equation (5.1.1)

becomes

−D
t
nxx(x, t)+

g

t
nx(x, t)+nt(x, t)+

b

t
n(x, t) =

b

t
αn(αx, t)+

b

t
βn(βx, t)+f(x, t),
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which can be simplified, using the transformation x = gx̃, to

−D̃
t
ñxx(x̃, t)+

1

t
ñx(x̃, t)+ñt(x̃, t)+

b

t
ñ(x̃, t) =

b

t
αñ(αx̃, t)+

b

t
βñ(βx̃, t+f(x̃, t),

where D̃ = D
g2

and ñ(x̃, t) = n(gx̃, t). Dropping the tildes yields

− D

t
nxx +

1

t
nx(x, t) + nt(x, t) +

b

t
n(x, t) =

b

t
αn(αx, t) +

b

t
βn(βx, t) + f(x, t).

(5.1.4)

We consider functions f and solutions n that are integrable with respect

to x for any fixed t. The transformations

m(x, t) =

∫ ∞
x

n(ξ, t)dξ, and q(x, t) =

∫ ∞
x

f(ξ, t)dξ,

yield

− D

t
mxx +

1

t
mx(x, t) +mt(x, t) +

b

t
m(x, t) =

b

t
m(αx, t) +

b

t
m(βx, t) + q(x, t).

(5.1.5)

The boundary conditions on m is specified by integrating (5.1.4) with re-

spect to x from 0 to ∞ and using conditions (1.22). This gives

mt(0, t)−
b

t
m(0, t) = q(0, t),

so that

m(0, t) = ctb + tb
∫
t−bq(0, t)dt, (5.1.6)

where c is a constant of integration. The initial condition on m is

m(x, 0) = m0(x) =

∫ ∞
x

n0(ξ)dξ. (5.1.7)
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In the next section, we obtain a Mellin transform solution to the problem.

In section 5.2, we show that the inverse Mellin transform exists for a certain

class of source terms f . We conclude the dicussion in section 5.3.

5.2 A Mellin transform solution

In this section, we study the existence and uniqueness of a Mellin transform so-

lution to equation (5.1.5) subject to conditions (5.1.6) and (5.1.7). The Mellin

transform converts equation (5.1.5) to a nonhomogeneous ordinary differential

equation, which can be solved using the Green’s function. This leads to an

integral equation that has a unique solution.

Applying the Mellin transform to equation (5.1.5) with respect to time

yields

−DMxx(x, s− 1)− (s− 1− b)M(x, s− 1) +Mx(x, s− 1)

= bM(αx, s− 1) + bM(βx, s− 1) + F (x, s− 1), (5.2.1)

where s < 1, and

M(x, s− 1) =

∫ ∞
0

ts−2m(x, t)dt and F (x, s− 1) =

∫ ∞
0

ts−2tq(x, t)dt,

so that, for s < 0, equation (5.2.1) yields

−DMxx(x, s) +Mx(x, s)− (s− b)M(x, s) = bM(αx, s) + bM(βx, s) +F (x, s).

(5.2.2)
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The boundary conditions are

lim
x→∞

M(x, s) = 0, (5.2.3)

and

M(0, s) =

∫ ∞
0

ts−1m(0, t)dt = − 1

s+ b
F (0, s+ 1) (5.2.4)

= H(s),

where s < −b. The problem can be converted to one with homogeneous

boundary conditions using the transformation

V (x, s) = P (x)H(s)− kM(x, s),

and this requires

lim
x→∞

P (x) = 0,

and,

P (0) = k.

Equation (5.2.2) thus converts to

−DVxx(x, s) + Vx(x, s)− (s− b)V (x, s)− bV (αx, s) + bV (βx, s)kF (x, s) + 2bP (x)

+ (s− b)P (x) = [−DP ′′(x) + P ′(x) + 2bP (x)− bP (αx)− bP (βx)]H(s).

(5.2.5)

We choose P (x) such that it solves

−DP ′′(x) + P ′(x) + 2bP (x) = bP (αx) + bP (βx),

82



subject to the boundary conditions

lim
x→0+

(−DP ′(x) + P (x)) = 0,

lim
x→∞

(−DP ′(x) + P (x)) = 0,

and the condition

lim
x→∞

P (x) = 0.

A Dirichlet series solution, P (x), was obtained by Wake et al. [19]. Using a

certain choice of P (x), (5.2.5) reduces to

−DVxx(x, s) + Vx(x, s)− (s− b)V (x, s) = bV (αx, s) + bV (βx, s) + η(x, s),

(5.2.6)

where

η(x, s) = −P (x)F (0, s+ 1)− kF (x, s).

The corresponding Green’s function satisfies

−DG′′ +G′ − (s− b)G = δ(x− ξ),

where the derivative is with respect to x. Thus

G(x, ξ, s) =

 G1(x, ξ, s) = e−m1ξ

D(m1−m2)
(em1x − (m1D−1

1−m2D
)em2x), 0 < x < ξ

G2(x, ξ, s) = em2x

D(m1−m2)
(e−m2ξ − (m1D−1

1−m2D
)e−m1ξ), ξ < x <∞

(5.2.7)
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where m1 and m2 are given by

m1 =
1 +

√
1− 4(s− b)D

2D
,

m2 =
1−

√
1− 4(s− b)D

2D
.

(5.2.8)

The solution to (5.2.6) thus satisfies

V (x, s) = b

∫ ∞
0

G(x, ξ, s)(V (αξ, s) + V (βξ, s))dξ + h(x, s), (5.2.9)

where h(x, s) is a known function and is given by

h(x, s) =

∫ ∞
0

G(x, ξ, s)(η(αξ, s) + η(βξ, s))dξ. (5.2.10)

Let the operators K and T be defined by Kφ = Tφ+ h, where

Tφ = b

∫ ∞
0

G(x, ξ, s)(φ(αξ, s) + φ(βξ, s))dξ.

Since,

|Tφ| ≤ b‖φ‖∞{∆1 + ∆2}, (5.2.11)

∆1 =

∫ x

0

∣∣G2(x, ξ/α, s) +G2(x, ξ/β, s)
∣∣dξ,

and

∆2 =

∫ ∞
x

∣∣G1(x, ξ/α, s) +G1(x, ξ/β, s)
∣∣dξ,

a straightforward calculation shows that

|G1(x, ξ/α, s)| = |G1α| ≤
2

D(ζ1 + ζ2)

[
e−ζ1(ξ/α−x)

]
,
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|G1(x, ξ/β, s)| = |G1β| ≤
2

D(ζ1 + ζ2)

[
e−ζ1(ξ/β−x)

]
,

|G2(x, ξ/α, s)| = |G2α| ≤
2

D(ζ1 + ζ2)

[
e−ζ2(x−ξ/α)

]
,

and

|G2(x, ξ/β, s)| = |G2β| ≤
2

D(ζ1 + ζ2)

[
e−ζ2(x−ξ/β)

]
,

where ζ1 = Re m1 > 0 and −ζ2 = Re m2 < 0.

Also, it can be shown that

∆1 ≤
2(α + β)

Dζ2(ζ1 + ζ2)
,

and

∆2 ≤
2(α + β)

Dζ1(ζ1 + ζ2)
.

Inequality (5.2.11), implies

|Tφ| ≤ 2b(α + β)

Dζ1ζ2

‖φ‖∞.

Since

1

ζ1ζ2

≤ D

(−Res+ b)
,

we have,

|Tφ| ≤ 2b(α + β)

(−Res+ b)
‖φ‖∞, (5.2.12)

so that

‖Kφ1 −Kφ2‖ ≤ ‖T (φ1 − φ2)‖

≤ 2b(α + β)

(−Res+ b)
‖φ1 − φ2‖.
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Consequently, T is a contraction mapping for Res < b(1 − 2(α + β)) and the

solution is given by

V =
∞∑
j=0

T jh, (5.2.13)

where T 0h = h, and T jh = T j−1h.

5.3 Asymptotics as |s| → ∞

In this section, we show that for a certain class of source terms f , the solution

V obtained in Section 5.2 lies in a suitable space, so that the Paley-Wiener

theorem can be invoked to establish that an inverse of the Mellin tranform

exists. In the next lemma, we establish bounds on h(x, s).

Lemma 5.3.1. Let Re s < b(1 − 2(α + β)) and F be a function such that

F (x, s) = R(x)Q(s), where |Q(s)| ∼ O( 1
|s|p ), p ≥ 1, and R(x) is bounded and

R′(x) ∈ L1[0,∞), then there exists an L > 0, such that

|h(x, s)| < L

|s|2
. (5.3.1)

as |s| → ∞.

The analysis in Lemma 4.3.1 establishes Lemma 5.3.1.

Lemma 5.3.2. Let F (x, s) satisfy the assumptions of Lemma 5.3.1. Then for

any ν > 2(α + β),

|V (x, s)| < L̃

|s|2
, (5.3.2)

where L̃ = L
1−q and q = 2(α+β)

ν
.
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Proof. Since,

|V (x, s)| ≤ |h(x, s)|+
∞∑
n=1

|Tn h(x, s)|, (5.3.3)

we compute the bounds on the terms of the Neumann series to get a bound

on V . Now,

|Th(x, s)| ≤ b

∞∫
0

|G(x, ξ, s)||h(αξ, s) + h(βξ, s)|dξ,

≤ b
L

|s|2

∞∫
0

|G(x, ξ, s)|dξ.

≤ b
L

|s|2
{

x∫
0

|G2(x, ξ, s)|dξ +

∞∫
x

|G1(x, ξ, s)|dξ}. (5.3.4)

It is straightforward to show that

x∫
0

|G2(x, ξ, s)|dξ ≤ 2(α + β)

Dµ2(µ1 + µ2)
, (5.3.5)

and

∞∫
x

|G1(x, ξ, s)|dξ ≤ 2(α + β)

Dµ1(µ1 + µ2)
, (5.3.6)

where µ1 = Rem1 > 0, and −µ2 = Rem2 < 0. Inequalities (5.3.4)-(5.3.6)

yield

|Th(x, s)| ≤ L

|s|2
2(α + β)

Dµ1µ2

. (5.3.7)
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Now,

µ1 = Rem1 =
1

2D
(1 + Re

√
1− 4(s− b)D),

and,

µ2 = −Rem2 =
1

2D
(Re

√
1− 4(s− b)D − 1),

so that,

1

µ1µ2

≤ D

(−Re s+ b)
,

which, using inequality (5.3.7), gives

|Th(x, s)| ≤ L

|s|2
2(α + β)

(−Re s+ b)
,

and since Re s < b(1− 2(α + β)), the above inequality yields

|Th(x, s)| ≤ L

|s|2
q,

where q = 2(α+β)
ν

< 1. In general,

|Tn h(x, s)| ≤ qn
L

|s|2
, (5.3.8)

so that, inequalities (5.3.1), (5.3.3) and (5.3.8), yield (5.3.2).

The above Lemmas establish the following result.

Theorem 5.3.3. Let F (x, s) satisfy the assumptions of Lemma 5.3.1. There
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exists a solution m to equation (5.1.5) that satisfies conditions (5.1.6) and

(5.1.7) for all x > 0 and t > 0.

Proof. Since |V (x, s)| < L̃
|s|2 , the Paley-Wiener theorem ([9], [14], [18]) asserts

the existence of a unique continuous function v(x, t), such that

V (x, s) =

∞∫
0

ts−1v(x, t)dt.
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Chapter 6

Time dependent growth and

division rates

6.1 Introduction

In this chapter, we study the asymmetric cell division equation

∂

∂t
n(x, t) +

∂

∂x
(G(x, t)n(x, t)) = αB(αx, t)n(αx, t) + βB(βx, t)n(βx, t),

− b(x, t)n(x, t), (6.1.1)

subject to an initial distribution

n(x, 0) = n0(x), (6.1.2)

and the boundary condition

lim
x→0+

(G(x, t)n(x, t)) = 0, (6.1.3)
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for a certain class of time dependent coefficients. The assumption that division

does not cause any loss of DNA content or mass leads to

1

α
+

1

β
= 1. (6.1.4)

The major focus, hitherto, has been on the cell growth PDEs where B and

G are either constant or functions of x alone. This makes the separation of

variables possible and the separable solution in most cases corresponds to the

long time asymptotic solution. Time dependent coefficients classically appear

in biology. Michel et al. [27] studied time varying coefficients in the context of

renewal equation with T−periodic death and birth rates. Here, we investigate

time dependent growth and division rates and show that, at least, for a certain

class of time dependent functions B(x, t) and G(x, t), the separable solution

to the initial boundary value problem (6.1.1), (6.1.2)-(6.1.3) exists and is in

fact the long time asymptotic solution towards which solutions to the PDE

converge in time.

In the next section, we determine a probability density function eigenvalue

and a separable solution to the initial boundary value problem (6.1.1), (6.1.2)-

(6.1.3) for a certain class of growth and division rates. In Section 6.3 we show

that this separable solution is the long time asymptotic solution. In Section

6.4 we show that if the problem has a solution, then it is unique.

6.2 The Separable Solution

Separable solutions are of central interest since these usually correspond to the

steady size distribution solutions which attract solutions to the PDE for large
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time. We show that if B and G are separable with same time dependence,

i.e., B(x, t) = br(t)m(x) and G(x, t) = gr(t)h(x), where b and g are positive

numbers and r, h and k are positive functions for all t > 0 and x > 0, then

variables can be separated in principle. Consequently, we consider the PDE

∂

∂t
n(x, t) + gr(t)

∂

∂x
(h(x)n(x, t)) = αbr(t)m(αx)n(αx, t) + βbr(t)m(βx)n(βx, t)

− br(t)m(x)n(x, t),

(6.2.1)

and solutions of the form

n(x, t) = N(t)y(x), (6.2.2)

where y is required to be a probability density function with
∞∫
0

y(x)dx = 1,

and N(t) represents the total population of cells of all sizes at a given time t.

The separable form (6.2.2) and PDE (6.2.1) give

N ′(t)y(x) + gr(t)h′(x)N(t)y′(x) + gr(t)h(x)N(t)y′(x) + br(t)m(x)N(t)y(x)

= αbr(t)m(αx)N(t)y(αx) + βbr(t)m(βx)N(t)y(βx),

which, dividing by r(t)N(t)y(x), yields

N(t) = ce−ΛR(t),
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for some constant c > 0, separation constant Λ (to be determined), and

R(t) =

∫
r(t)dt. (6.2.3)

The function y(x) satisfies

gh(x)y′(x) + (gh′(x) + bm(x)− Λ)y(x) = αbm(αx)y(αx) + βbm(βx)y(βx),

(6.2.4)

along with the conditions

lim
x→0+

gh(x)y(x) = 0, (6.2.5)

lim
x→∞

gh(x)y(x) = 0. (6.2.6)

Equation (6.2.4) is a pantograph type equation with two nonlocal terms. It

appears in various applications including the absorption of light in the Milky

Way [57] and internet protocols [3]. Although there are no general methods of

solving (6.2.4), solutions have been obtained for constant coefficients [30] and

for h(x) = x and m(x) = xr, where r > 0 [75]. In both instances, the solution

entails a positive Dirichlet series of the form

∞∑
κ=0

∞∑
ν=0

dκ,ν exp(−αsκβsνrf(x)), (6.2.7)

where ck are coefficients, s and r are constants and f satisfies

f(αx) = αsf(x). (6.2.8)

Zaidi and van-Brunt [75] also showed that for any positive solution to (6.2.4),
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Λ < 0. Dirichlet series solutions are of central interest since these correspond

to the long time asymptotic solution to (6.2.1) at least for constant coefficients.

We show that if h is not constant or h is not a linear monomial, then (6.2.4)

does not possess a Dirichlet series solution of the form (6.2.7). To establish

this, we suppose on the contrary that a Dirichlet series solution of the form

(6.2.7) to the PDE (6.2.4) exists. Equations (6.2.4) and (6.2.7) give

∞∑
κ=0

∞∑
ν=0

dκ,ν exp(−αsκβsνrf(x))gh′(x) (6.2.9)

+
∞∑
κ=0

∞∑
ν=0

(−αsκβsνr)dκ,ν exp(−αsκβsνrf(x))gh(x)f ′(x)

+
∞∑
κ=0

∞∑
ν=0

dκ,ν exp(−αsκβsνrf(x))m(x)− Λ
∞∑
κ=0

∞∑
ν=0

dκ,ν exp(−αsκβsνrf(x))

= α
∞∑
κ=0

∞∑
ν=0

dκ,ν exp(−αs(κ+1)βsνrf(x))m(αx) (6.2.10)

+ β
∞∑
κ=0

∞∑
ν=0

dκ,ν exp(−αsκβs(ν+1)rf(x))m(βx). (6.2.11)

Balancing the coefficients yields

gh′(x)− rh(x)f ′(x) +m(x)− Λ = 0,

so that

f(x) =
1

r

(
g

∫
h′(x)

h(x)
dx+

∫
m(x)

h(x)
dx− Λ

∫
1

h(x)
dx

)
.

For constant h and m [29], f(x) = a1x, for some constant a1, so that f

satisfies (6.2.8). Also, for h(x) = x, and m(x) = xs, s > 0 [75], the eigenvalue

Λ = −g, so that f(x) = a2
xs

s
for some constant a2. Consequently, f satisfies
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(6.2.8). It may be possible that m(x) ∼ −h′(x), but since Λ < 0, balancing

coefficients in (6.2.11) requires m(x) and h′(x) to be constants. Consequently,

if h is not constant or a linear monomial, the first of these integral yields a

logarithmic function which is not a homogeneous function in general. Hence,

f(αx) 6= αsf(x) for any s ∈ Z, and equation (6.2.4) does not possess a Dirichlet

series solution of the form (6.2.7).

For h ≡ 1 and m ≡ 1, the eigenvalue Λ and the corresponding solution to

(6.2.4) have been determined [29]. The eigenvalue is

Λ = 2b,

and solution y to the corresponding eigenvalue is

y(x) =
∞∑
κ=0

∞∑
ν=0

dκ,νe
− 2b
g
αkβjx, (6.2.12)

where dκ,ν ’s are determined as in [29].

In the next section, we show that for this choice of h and m, the separable

solution is the long time asymptotic solution to (6.2.1) at least for a certain

class of functions r.

6.3 Large time asymptotics

In this section we show that the separable solution to (6.2.1),(6.1.2)-(6.1.3)

obtained in Section 6.2 for B(x, t) = br(t) and G(x, t) = gr(t) is the large time

attracting solution for a certain class of r(t). For this choice of coefficients,
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PDE (6.1.1) reduces to

∂

∂t
n(x, t) + gr(t)

∂

∂x
n(x, t) = αbr(t)n(αx, t) + βbr(t)n(βx, t)− br(t)n(x, t).

(6.3.1)

For constant coefficients and symmetric cell division, Zaidi et al. [22] de-

rived the large time attracting solution from solutions to the PDE (1.33). The

solution turned out to be the separable solution.

Since the full problem (6.3.1), (6.1.2)-(6.1.3) has not been solved for any

choice of coefficients, we employ the tools developed by Perthame and Ryzhik

[15] to study the long time dynamics. The analysis in [15], however, is valid for

one non local term and for constant coefficients and certain arguments break

down because of the t dependence of coefficients. We can, nonetheless, extend

their analysis to a certain class of time dependent coefficients and asymmetric

cell division.

Theorem 6.3.1. Let n be a solution to (6.3.1) that satisfies (6.1.2) and (6.1.3)

and R(t) and y be defined by (6.2.3) and (6.2.12) respectively. If r(t) is mono-

tonically decreasing and R(t) is bounded at t=0 and R(t) goes to infinity as t

tends to infinity, then

lim
t→∞

∞∫
0

|n(x, t)e−bR(t) − ky(x)| = 0,

where k = e−bR(0)
∞∫
0

n0(x)dx.

Proof. Let

u(x, t) = n(x, t)e−bR(t) − ky(x).
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Then u satisfies the PDE

∂

∂t
u(x, t) + gr(t)

∂

∂x
u(x, t) + 2br(t)u(x, t) = αbr(t)u(αx, t) + βbr(t)u(βx, t),

(6.3.2)

and the conditions

u(0, t) = 0,

lim
x→∞

u(x, t) = 0.

Also, the integration of (6.3.2) with respect to x from 0 to ∞, along with

condition (6.1.2), yields

∞∫
0

u(x, t)dx = 0. (6.3.3)

The transformation

S̃(x, t) =

x∫
0

u(s, t)ds (6.3.4)

yields

∂

∂t
S̃(x, t) + gr(t)

∂

∂x
S̃(x, t) + 2br(t)S̃(x, t) = br(t)S̃(αx, t) + br(t)S̃(βx, t),

(6.3.5)
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along with the conditions

S̃(0, t) = 0, (6.3.6)

lim
x→∞

S̃(x, t) = 0. (6.3.7)

Equation (6.3.5) gives

∂

∂t
[S̃(x, t)ebR(t)] + gr(t)

∂

∂x
[S̃(x, t)ebR(t)] + br(t)[S̃(x, t)ebR(t)] = br(t)[S̃(αx, t)ebR(t)]

+ br(t)[S̃(βx, t)ebR(t)],

(6.3.8)

which, multiplication by sgn(S̃), yields

∂

∂t
|S̃(x, t)ebR(t)|+ gr(t)

∂

∂x
|S̃(x, t)ebR(t)|+ br(t)|S̃(x, t)ebR(t)| ≤ br(t)|S̃(αx, t)ebR(t)|

+ br(t)|S̃(βx, t)ebR(t)|.

(6.3.9)

Integrating (6.3.9) from 0 to∞ with respect to x and using conditions (6.3.6),

(6.3.7) and (6.1.4) yields

d

dt

∞∫
0

|S̃ebR(t)|dx ≤ 0,

which shows that
∞∫
0

|S̃ebR(t)|dx is a decreasing function in time, so that

∞∫
0

|S̃ebR(t)|dx ≤ ebR0

∞∫
0

|S̃0(x)|dx, (6.3.10)
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where S̃0(x) = S̃(x, 0) and R0 = R(0). Let

P̄ (x, t) = S̃(x, t)ebR(t).

Then (6.3.8) becomes

∂

∂t
P̄ (x, t) + gr(t)

∂

∂x
P̄ (x, t) + br(t)P̄ (x, t) = br(t)P̄ (αx, t) + br(t)P (βx, t),

(6.3.11)

which, differentiating with respect to t, gives

∂

∂t
K(x, t) + gr′(t)

∂

∂x
P̄ (x, t) + gr(t)

∂

∂t

(
∂P̄

∂x

)
+ br′(t)P̄ (x, t) + br(t)K(x, t)

= br′(t)P̄ (αx, t) + br′(t)P̄ (βx, t) + br(t)K(αx, t) + br(t)K(βx, t), (6.3.12)

where

K =
∂P̄

∂t
.

Equations (6.3.12) and (6.3.11) give

∂

∂t
K(x, t) + gr(t)

∂

∂x
K(x, t)− r′(t)

r(t)
K(x, t) + br(t)K(x, t) = br(t)K(αx, t)

+ br(t)K(βx, t).

(6.3.13)
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Equation (6.3.13) can be multiplied with sgn(K). This gives

∂

∂t
|K(x, t)|+ gr(t)

∂

∂x
|K(x, t)| − r′(t)

r(t)
|K(x, t)|+ br(t)|K(x, t)| ≤ br(t)|K(αx, t)|

+ br(t)|K(βx, t)|,

(6.3.14)

which, integrating with respect to x from 0 to ∞ and using (6.1.4) and the

fact that K(0, t) = 0 = K(∞, t), yields

d

dt

∞∫
0

|K|dx ≤ 0,

which shows that
∞∫
0

|K|dx ≤ 0 is decreasing in t, so that

∞∫
0

|K|dx ≤
∞∫

0

|K0(x)|dx, (6.3.15)

where

K0(x) = K(x, 0) =
∂P̄

∂t

∣∣∣∣
t=0

.

Since P̄ = S̃ebR(t), we have

K0(x) =
∂

∂t
[S̃ebR(t)]

∣∣∣∣
t=0

= S̃0(x)br0e
bR0 + ebR0

∂S̃

∂t

∣∣∣∣
t=0

,

where r0 = r(0) and R0 = R(0). Equations (6.3.5) and (6.3.4) imply

∂S̃

∂t

∣∣∣∣
t=0

= r0[−gu0(x)− 2bS̃0(x) + bS0(αx) + bS̃0(βx)],
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so that,

K0(x) = ebR0r0[−gu0(x)− 2bS̃0(x) + bS̃0(αx) + bS̃0(βx) + bS̃0(x)]. (6.3.16)

Equations (6.3.15), (6.3.16) and (6.1.4) give

∞∫
0

|K|dx =

∞∫
0

∣∣∣∣ ∂∂t [S̃ebR(t)]

∣∣∣∣ dx
≤ ebR0r0

∞∫
0

[|gu0(x)|+ |2bS̃0(x)|+ b|S̃0(αx)|+ b|S̃0(βx)|+ |bS̃0(x)|]dx

= ebR0r0

 ∞∫
0

|gu0(x)|+ 4b

∞∫
0

|S̃0(x)|dx

 . (6.3.17)

Equations (6.3.4) and (6.3.8) give

u(x, t) =
∂

∂x
S̃(x, t) =

e−bR(t)

gr(t)
{− ∂

∂t
[S̃(x, t)ebR(t)]− br(t)[S̃(x, t)ebR(t)]

+ br(t)[S̃(αx, t)ebR(t)] + br(t)[S̃(βx, t)ebR(t)]},

so that

∞∫
0

|u(x, t)|dx ≤e
−bR(t)

gr(t)
{
∞∫

0

| ∂
∂t

[S̃(x, t)ebR(t)]|dx+ br(t)

∞∫
0

|S̃(x, t)ebR(t)|dx

+ br(t)

∞∫
0

|S̃(αx, t)ebR(t)|dx+ br(t)

∞∫
0

|S̃(βx, t)ebR(t)|dx},
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which, using (6.1.4), gives

∞∫
0

|u(x, t)|dx ≤e
−bR(t)

gr(t)
{
∞∫

0

| ∂
∂t

[S̃(x, t)ebR(t)]|dx+ 2br(t)

∞∫
0

|S̃(x, t)ebR(t)|dx}.

(6.3.18)

Inequalities (6.3.18), (6.3.17) and (6.3.10) give

∞∫
0

|u(x, t)|dx ≤e
−bR(t)

gr(t)
{ebR0r0[

∞∫
0

|gu0(x)|dx+ 4b

∞∫
0

|S̃0(x)|dx]

+ 2br(t)ebR0

∞∫
0

|S̃0(x)|dx},

which goes to zero as t goes to infinity.

The above analysis, for r(t) = 1 for all t > 0 and α = β = 2, recovers

the result of Perthame and Ryzhik [15]. As seen from the above equation,

the asymmetry in cell division does not affect the rate of convergence to the

separable solution.

6.4 Uniqueness

In this section we show that if there exists a solution to the problem (6.3.1),(6.1.2)-

(6.1.3), then it is unique. The uniqueness of solutions to (1.33) for constant

coefficients was established by Zaidi et al. [22]. Their analysis, however, breaks

down for time dependent coefficients and asymmetric cell division equation.
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To prove uniqueness, we simplify (6.3.1) using the transformation

h̃(x, t) =

∞∫
x

n(ζ, t)dζ. (6.4.1)

This yields

∂

∂t
h̃(x, t) + gr(t)

∂

∂x
h̃(x, t) + br(t)h̃(x, t) = br(t)h̃(αx, t) + br(t)h̃(βx, t).

(6.4.2)

Integrating (6.3.1) with respect to x from 0 to∞, and using (6.1.4) and (6.1.3),

gives

∂

∂t
h̃(0, t) = br(t)h̃(0, t),

so that,

h̃(0, t) = cebR(t), (6.4.3)

for some constant c. Also, equations (6.1.2) and (6.4.1) give

h̃(x, 0) = h̃0(x) =

∞∫
x

n0(ζ)dζ. (6.4.4)

Suppose that h̃1 and h̃2 are two distinct solutions to (6.4.2) that satisfy (6.4.3)

and (6.4.4). Let m̄(x, t) = h̃1(x, t)− h̃2(x, t). Then m satisfies

∂

∂t
m̄(x, t) + gr(t)

∂

∂x
m̄(x, t) + br(t)m̄(x, t) = br(t)m̄(αx, t) + br(t)m̄(βx, t),

(6.4.5)
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and the conditions

m̄(0, t) = 0, (6.4.6)

m̄(x, 0) = 0. (6.4.7)

The PDE (6.4.5) can be multiplied with sgn(m). This gives

∂

∂t
|m̄(x, t)|+ gr(t)

∂

∂x
|m̄(x, t)|+ br(t)|m̄(x, t)| ≤ br(t)|m̄(αx, t)|+ br(t)|m̄(βx, t)|,

which, integrating with respect to x from 0 to∞ and using (6.1.4) and (6.4.6)-

(6.4.7), yields

d

dt

∞∫
0

|m̄(x, t)|dx ≤ 0,

which shows that
∞∫
0

|m̄(x, t)|dx is a decreasing function in t, so that

∞∫
0

|m̄(x, t)|dx ≤
∞∫

0

|m̄(x, 0)|dx

= 0 (6.4.8)

and consequently h̃1(x, t) = h̃2(x, t).

We note that if r(t) = 1 for all t > 0, the above analysis establishes

the uniqueness of solutions to (6.1.1) subject to conditions (6.1.2)-(6.1.3) for

constant coefficients. It also endorses the result of Zaidi at al. [22] for r(t) ≡ 1

and α = β = 2.
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6.5 Conclusions

In this chapter we have determined the separable solution to the cell division

equation (6.3.1) subject to conditions (6.1.2) and (6.1.3) and have shown that

solutions to the PDE converge to this separable solution for large time, at

least for a certain class of time dependent coefficients. The convergence of

solutions to the separable solution is observed for constant coefficients but

not for certain choice of variable coefficients [24]. The asymmetry in cell

division does not affect the rate of convergence of solutions towards the SSD

solution. We have also established the uniqueness of solutions to the problem

(6.3.1),(6.1.2)-(6.1.3).

The shape of the SSD obtained for time dependent coefficients is a scaling,

in time, of the shape of the SSD solution of the constant coefficients case (See

Figure 6.1).

Figure 6.1: The SSD solution obtained by Zaidi et al. [29] for the constant
coefficient case and the SSD solution given by the (6.2.2) for t = 1, α = 3,
β = 3

2
, b = 1, g = 2 units.
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Chapter 7

Conclusion

This dissertation has supplemented a cell growth models for symmetric and

asymmetric divisions with constant and time dependent growth and division

rates [22, 11, 19]. Several models with constant and size-dependent growth and

division rates have been studied in detail previously. Due to lack of analytical

tools and solution techniques to solve functional PDEs, it is not easy to find a

general solution for these models. Several techniques were developed to tackle

symmetric and asymmetric growth models with constant division and growth

rates. However, specific models with size-dependent growth and division rates

and their solutions were discussed. Chapter 1 gives a detailed overview of the

difference differential equations, their applications, and their evolution into

advanced functional partial differential equations used in cell growth modeling.

Chapter 2 generalizes the work of Perthame and Ryzhik [15] for the asym-

metric cell division model with α > 2 > β > 1. The analysis holds for the

first order asymmetric equation (2.1.2). Perthame and Ryzhik [15] had estab-

lished this result for the symmetric case where α = 2. The general solution

to equation (2.1.2) converges in large-time to separable solutions for constant
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and size-dependent growth and division rates.

As discussed in chapter 1, the first order advanced functional PDE does

not account for the stochasticity involved in the cell division process. For

this purpose, Hall [11] in his thesis developed the Dispersion problem (1.20).

Efendiev et al. [31] developed a technique to solve the Dispersion problem for

the symmetric case. Chapter 3 generalizes the solution technique developed

in [31] to the asymmetric cell division model (equation (3.1.7) with conditions

(1.22)) with constant division and growth rates. This is a notable achievement

because of the scarcity of analytical solutions to most functional PDEs with

nonlocal terms. The analytic solution was obtained using Laplace transforms.

The analytic solution was shown to converge to the separable solution for

large-time. It was also shown that the mode of cell division had no effect on

the positivity and unimodality of the solution, as shown in the figure 3.1.

So far, many cell growth models have been investigated [22, 19, 31]. They

vary from first order functional PDEs with constant growth and division

rates to second order functional PDEs with size-dependent growth and di-

vision rates. Few models have incorporated the time dependence of division

and growth rates since it simplifies mathematics. In Chapters 4, 5, and 6,

we have studied different models with time dependent growth and division

rates. In chapter 4, a second order symmetric cell division equation (4.1.1)

is studied with singular time dependent growth and division rates. In partic-

ular, the growth and division rates are given by g
t

and b
t

respectively. The

equation (4.1.1) contains a source term f(x, t) belonging to a restricted class.

The integrated form of the source term has its Mellin transform of the order

O( 1
|s|p ), p > 1. For this choice of source term and coefficients, we establish

the existence and uniqueness of the solution to the problem. We find a so-
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lution in the transformed space using Mellin transform and find the suitable

Green’s function. Finding the inverse transform is challenging, but we use

Paley-Wiener theorem for Mellin transform to establish the existence of the

inverse transform. When f ≡ 0, the analysis leads to a homogeneous Fred-

holm equation of the second kind. Future work will deal with such problems

as the analysis in this chapter breaks down for homogeneous cases. Chapter

5 employs the same analysis technique developed in chapter 4 and extends

the work for asymmetric equation (5.1.1). The results obtained are promising

since the tools used for the symmetric case also work for the asymmetric case.

The first order functional PDE with nonlocal terms (1.33) was solved, using

a novel technique, by Zaidi et al. [22]. The explicit solution obtained converges

to the separable solution of the equation. This thesis considers time dependent

coefficients involved in first and second order functional PDEs with one and

two nonlocal terms. To understand the behavior of the model with a certain

class of time dependent coefficients, we use a technique motivated by the work

of Perthame and Ryzhik [15]. In chapter 6, we find the separable solution

to (6.1.1) and show that the solutions to this PDE converge to the separable

solution. It is worth noting that the coefficients G(x, t) and B(x, t) have the

same time dependence. In particular, both these coefficients involve the same

function of t, i.e., r(t). In addition to the above, we also establish that the

solution to (6.1.1), (6.1.2)-(6.1.4) is unique.

We have furthered the theory of functional PDEs arising in cell growth

models for most of the thesis. We have considered size-structured models in

one dimension. Future work may involve higher dimensions by introducing

age variable to the size-structured models.
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