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Abstract

Autism Spectrum Disorder (ASD) is a “spectrum” neurological disorder causing different
physical and cognitive disabilities. A major dilemma faced by ASD patients is the deregu-
lated emotions causing certain, unpredicted, and instantaneous bursts of negative emotions.
These negative emotion outbursts (NEOB) cause severe self-injuries and are a major hurdle
for the treatment and rehabilitation of ASD patients. The unavailability of biomarkers for
early prediction along with the life-long nature of the disorder requires life-long medical care
and assistance for ASD patients. A physical or cognitive assistance system that can ease
the severe difficulties faced by ASD children due to these certain NEOBs is direly required.

This Ph.D. thesis has targeted the early prediction of NEOB for ASD children. Early
prediction can help the parents and caregivers control and regularize their emotions. I have
proposed and developed a wearable system-on-chip (SoC) based digital back-end (DBE)
processor for negative emotion and NEOB prediction using Electroencephalogram (EEG)
signals. The feasibility of the wearable SoC processor is highly dependent on the size (area),
battery life (energy), number of EEG electrodes, scalp location of electrodes for the patient’s
comfort, classification results, and the validation of the processor. A miniaturized, low-
power SoC processor with a limited number of electrodes can be embedded in a headband
as a patch sensor for continuous (24/7) prediction of NEOB/negative emotions. I have
proposed and developed two (1st generation and 2nd generation) SoC-based DBE processors
for the NEOB prediction. The identification of the most suitable channels and features for
emotion prediction is an important challenge for researchers. I have also performed an
extensive large-scale feature extraction using multiple benchmark emotions prediction data
sets to identify the most suitable channels and features.

The 1st generation processor (DBE1) and 2nd generation processor (DBE2) provide
the negative emotions prediction with 73.4% and 85.4% classification accuracy respectively.
The DBE processors were designed and developed using a 180nm CMOS process. The
DBE1 processor was implemented using only eight EEG channels, whereas the DBE2 was
implemented using only two (minimum) channels. The DBE1 and DBE2 utilize an area of
5.4 mm2 and 16 mm2 respectively. The energy utilization of DBE1 and DBE2 is 16µJ and
10.13µJ per prediction respectively. The temporal and frontal location EEG electrodes are
used in both DBE processors. ASD children are highly sensitive. Therefore, the location of
the EEG electrodes is very important. The temporal and frontal locations cause minimum
discomfort for the patients. Both DBE processors were validated using SEED and DEAP
emotion prediction data sets.
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Chapter 1

Introduction

Autism spectrum disorder (ASD) is a wide spectrum of various neurological ailments that

include an amalgam of different disorders along with one or multiple disabilities. The dis-

abilities include cognitive weaknesses, behavioral, and communication impairments, etc. A

significant ratio of ASD patients also suffer from other neurological disorders, e.g. epilepsy,

developmental delay, tuberous sclerosis, and fragile X syndrome [3]-[4]. Therefore, ASD is

termed as a “spectrum” disorder and considered as the most complex neurological disorder

because of wide range of symptoms, complications and severity [5].

The recent statistics of ASD are quite alarming. Center for disease control and preven-

tion network’s report for ASD prevalence in 2021 has revealed that 1 in every 44 children

is suffering from ASD based on 2018 data, compared to 1 out of 54 children in 2016 [6].

There is an alarming 241% increase in the number of ASD cases from 2000 to 2018 [6].

Figure 1-1 shows the number of cases per million from 2000 to 2020 which highlights the

sharp increase. The prevalence of ASD in underdeveloped countries is far more concerning.

Pakistan, for instance, lacks reliable ASD statistics and is mostly unaware of the disorder

and its consequences [7]. It is reported that 0.35 million children in Pakistan are affected by

this disorder [8]. The real statistics may be much worse because of unawareness about the

disorder, and the unavailability of basic health facilities to a wide ratio of the population.

The most challenging factor about ASD is the physical impairments and intellectual dis-

abilities associated with the disorder. These disabilities and the difficulties have significant

ramifications on the quality of life of ASD patients and their caregivers, resulting in stress,
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Figure 1-1: Center for Disease Control & Prevention Report 2021, Autism
Spectrum Disorder Statistics in the United States of America.

Figure 1-2: (a) Autism Spectrum Disorder Treatment Cost, United States
of America (b) Autism Spectrum Disorder Diagnosis Age, Scotland.
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emotional issues, and financial burden. The physical impairments involve certain motor

disabilities causing involuntary hand and leg movements, eye movements, etc. [9]. The

intellectual disabilities include a low intelligence quotient level, which creates difficulties in

employment, behaviors, and social relationships. The large patient count with related phys-

ical and mental disabilities is creating a huge financial impact on the health budget. The

cost of treatment for ASD patients is projected to reach 5.54k billion USD in the United

States of America in 2060 [10]. Figure 1-2 (a) shows the estimated ASD treatment budget

in the United States of America from 2020 to 2060. It can be seen that the projected annual

ASD treatment budget in 2060 is ≈ 2400% higher than in 2020.

Diagnosing autism is also a challenging process due to the unavailability of medical and

pathological diagnosis tests [11]. That’s why late diagnosis and hence late treatment is a

major problem for ASD patients. The recent age-related statistics for ASD diagnosis also

reveal that a majority of ASD patients are diagnosed at later ages. Figure 1-2 (b) shows

the age statistics of ASD patients in Scotland [12]. It was observed that the number of

ASD patients diagnosed at later ages is quite higher as compared to the earlier ages. The

number of diagnosed cases in age ≥ 3 years is 1500% times higher than age < 3 years. The

current ASD diagnosis methods require extensive developmental and behavioral screening

by neurologists. Autism Diagnosis Observation Schedule- Second Edition (ADOS-2) is a

standard ASD diagnosis and assessment method [13]. ADOS-2 involves extensive behavioral

evaluations to evaluate ASD markers. The neurologists perform a list of behavioral evalu-

ations, e.g. communication index, reciprocal social interaction, imagination and creativity,

and stereotyped behavior score for each suspected patient, and compare the results with a

cut-off table to mark the investigated patient as an ASD patient.

1.1 Emotional Disorders in Autsim

The most demanding factor related to ASD patients is their lifelong cognitive disabilities

associated with the disorder and coping with the irregular emotions caused due to these

disabilities. It has been observed that ASD patients have significant emotional impair-

ments leading to depression and anxiety disorders [14]. The emotional impairments produce

volatile emotions and emotional deregulation [15]. Emotion deregulation is described as the

failure to regulate emotions appropriately and effectively. The emotional deregulation cre-

3



ates maladaptive emotional responses leading to anger control problems, temper tantrums,

and aggression [16]. These maladaptive emotional responses cause physical damage to self

and others. It has been observed that ASD patients are highly affected by these emotional

disorders and swift negative emotions [17]. The primary reasons for this negative esteem of

emotions and emotion deregulation are the mistreatment and oppression in schools, non-

flexible society behaviors, stigma associated with their cognitive deficiencies, physical and

sensory deficiencies, and the inability of parents and teachers to understand their state of

mind.

Figure 1-3: (a) Suicide Attempts in Autism Spectrum Disorder (b) Anx-
iety & Depression in Autism Spectrum Disorder.

These negative, uncontrolled, and deregulated emotions, are a primary reason for the

large ratio of suicide attempts reported in ASD (78.16%) and depressive (DPR) children

(18.38%) in comparison to the typically developing children (3.46%) as depicted in Fig

1-3 (a) [18]. It is also reported that a large number of ASD patients are either suffering

from anxiety, depression, or both anxiety and depression, as shown in Figure 1-3 (b) [17].

The early recognition of the anger triggers is important to avoid these maladaptive and

deregulated emotions. Therefore, it is vital to predict the emotions of ASD patients to

regulate their emotions and avoid self-injuries [15].

Emotion prediction is a serious deficiency and pain problem in ASD children. The

ASD patients cannot identify their emotions timely and correctly [19]. The inability of

timely prediction of emotions leads to unregulated emotions. Different solutions are used
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to identify and then regulate the emotions for ASD patients. The solutions include emotion

identification using emotion wheels and cards, or surgical solutions.

The ASD children are trained to express their emotions by pointing out to the cor-

responding place on the emotions wheel or picking the equivalent emotion card in the

emotional wheels and card mechanism. However, this is not reliable because of the in-

ability of early prediction, and the lack of self-control among ASD children. The surgical

solutions include deep brain stimulation (DBS) for ASD patients with serious emotional is-

sues [20]. Electroencephalogram (EEG) electrodes are implanted invasively in the patient’s

brain. Electrical pulses are transmitted inside the brain using a neuro-stimulator. The

location of electrodes and the stimulation effects different brain functions. Severe emotions

are managed by stimulating specific parts of the human brain in clinical settings [21].

The limited DBS studies have shown positive results for emotional disorders. But they

have severe limitations. There are chances of misplacement of leads for DBS which can

cause bleeding inside the brain, strokes, infection, headache, and seizures [21]. The primary

reason for these side effects is the invasive nature of the procedure. Small holes are created in

the skull for electrode implantation. The DBS process also has extensive clinical settings,

trained medical staff and patient admission to some hospitals. The 24/7 access of these

facilities cannot be provided to each ASD patient, especially in third-world countries, poor

income groups, and undeveloped areas. Therefore, a noninvasive, wearable, and closed-loop

system to predict and control the emotions for ASD patients is direly required.

1.2 Closed Loop Emotion Prediction System

The early identification of emotions is a key to the identification of self-harming negative

emotions to avoid injuries and regulate the emotions. The ASD children have reported

irrepressible mental feelings before the self-harming negative emotions [22]. This thesis

targets to use these irrepressible mental feelings for the earlier prediction and control of

these negative emotions. The EEG signals of the ASD patients are used for this negative

emotions prediction system. Figure 1-4 depicts the broad idea of the proposed system to

support an ASD child during specific learning activities. The top marked as red shows

the state of an ASD child without any emotional prediction system. The patient’s mind

is surrounded by negative emotions as portrayed in the figure. Since the ASD child is
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affected by limited social syndrome and unable to express his distress and negative emotions,

therefore fails to get any benefit from the learning activity. The bottom part (blue dotted)

shows the proposed effective intervention system which will extract the EEG data, process

the information, and assist the caregiver in molding the learning activity tuned to the

specific patient’s needs after necessary emotional prediction and control. A closed-loop and

child-specific audio/video stimulation can be provided to avoid negative emotions and relax

ASD children. The presented figure exemplifies how the proposed device with real-time

human emotion classification can play a vital role in coping with social interaction issues

for ASD children.

Figure 1-4: Proposed Autism Spectrum Disorder Negative Emotion Prediction & Closed-
Loop Stimulation Solution.

A miniaturized, fully integrated, and wearable system-on-chip (SoC) based emotions

prediction processor is used for this closed-loop emotions control system. The complete

emotions prediction SoC involves the design and development of an analog front end (AFE)

and a digital back end (DBE) processor. The AFE is used for real-time data acquisition and

the DBE is used for emotions prediction using the data acquired through AFE. This Ph.D.
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thesis targets a miniaturized, ultra-low power (ULP), and fully integrated DBE processor

for negative emotions prediction and control.

1.3 Negative Emotions Prediction DBE Processor

Human emotion recognition can be performed through 1) physical signals i.e. facial expres-

sion, speech, and posture, or 2) physiological signals, i.e. EEG, electrocardiogram (ECG),

and temperature. Physical signals are easy to collect but lack reliability. On the other

hand, physiological signal tracking does not have reliability issues but acquiring the data

can be a bottleneck. The EEG signals are highly suitable for the design and development of

a wearable on-chip emotions classification processor [23]. Therefore, I have used the EEG

signals for the design and development of the wearable SoC-based emotions prediction DBE

processor.

Figure 1-5 shows the overall flow of the EEG-based emotions prediction and control

system for ASD patients. The EEG signal acquisition is performed using AFE and ADC.

The real-time EEG data is forwarded for feature extraction and classification for negative

emotions prediction. A closed loop feedback is provided to control the emotions using a

suitable intervention.

Figure 1-5: Scalp EEG Based Emotions Prediction & Control for Autism
Spectrum Disorder.

The DBE emotions prediction processor developed in this Ph.D. project is targeted for a

7



wearable SoC that can be embedded inside a headband as depicted in Figure 1-5. The DBE

operates with a limited number of channels for a miniaturized SoC with low classification

energy, and early prediction (low latency), and is operable with a coin cell battery of size,

area, voltage, and current of 20 mm, 3 V, and 250 mAH, respectively.

1.4 EEG Emotions Prediction: Previous Solutions

To the best of my knowledge, no fully integrated SoC has been developed to predict the

negative emotions before their physical effect using electrical onset and provide closed loop

feedback to suppress them. Most of the previous emotions prediction systems are either

1) software based 2) FPGA-based prototype or 3) does not provide fully integrated SoC

solution [24],[25], [26]. The software-based models are not suitable for a 24/7 wearable

device. The FPGAs are used as a prototype for the SoC testing and cannot provide a

wearable implementation [25]. Some partially integrated SoCs have been developed. But

they only provide on-chip classification and lack feature extraction.

1.5 Proposed Solution: Challenges and Contributions

The long-term monitoring of the EEG patterns is required for the analysis of the neurologists

for ASD patients to track irregular negative emotions. However, the power overhead due to

wireless communication can abruptly drain the battery. It would also continuously dissipate

heat causing discomfort for ASD patients. However, fully on-chip emotions prediction

using suitable features and classification algorithms would reduce the power overhead. The

EEG patterns causing negative emotions can be recorded for later analysis by neurologists.

The full integration of feature extraction and classification algorithms on-chip for wearable

devices reduces the power consumption of the system by 80X [27]. However, the design

and development of an SoC-based DBE processor for negative emotions prediction has the

following main challenges:-

• Number of Channels: Each EEG electrode provides electrical activities for a spe-

cific part of the human brain. That’s why many state-of-the-art works with high

classification results utilize a maximum number of channels. The primary focus of

these works are the classification results. However, fully on-chip wearable SoC systems
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have very strict area, power, classification energy, and patient comfort constraints. It

is highly challenging to achieve high classification results with limited channels on

specific locations (frontal, temporal) causing minimum discomfort.

• Validation: Many high accuracy emotions prediction systems are validated on a

limited number of subjects and private data sets. However, the design and develop-

ment of an SoC-based negative emotions prediction system involve a significant cost.

The systems validated on a limited number of subjects and local data sets may fail

to generalize for benchmark data sets. Therefore, wearable SoC systems should be

validated on multiple benchmark data sets with a large number of subjects before

physical implementation.

• Area, Power and Classification Energy: Many state-of-the-art works utilize

highly complex features and classification algorithms. These features and classifica-

tion algorithms cannot be implemented for a low-power and energy SoC. It is highly

challenging to find low-complexity features and classification algorithms with the max-

imum classification results. The high-complexity features and classification algorithms

require extensive optimizations and tuning for a low area, power, and classification

energy implementation.

• Fully Integrated DBE Processor: There are some SoC-based solutions for emotion

prediction with offline feature extraction. The features are extracted offline and then

forwarded to the emotions prediction chip. The offline feature extraction does not

fulfill the requirements for a wearable SoC solution. Therefore, a fully integrated SoC

with feature extraction and classification units is required.

• Large Scale Feature Extraction Analysis: Selection of the minimum number of

EEG channels is a very challenging problem, and the selection is based on experimen-

tation of a large feature set and literature review. I have presented the first large-scale

feature extraction analysis for emotion prediction. The large-scale feature extraction

analysis points out the most suitable channels and features for emotion prediction.

This dissertation presents the design and analysis of a DBE processor for a miniaturized,

energy-efficient, and wearable SoC for monitoring, prediction, and suppression of negative

emotions with a minimum number of electrodes. Figure 1-6 highlights the shortcomings in
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Figure 1-6: Shortcomings in Previous Solutions and Contributions of My Work.

previous solutions targeting negative prediction, suppression, and control of negative emo-

tions. To the best of my knowledge, no previous work has targeted a non-invasive, wearable,

and fully integrated SoC-based solution with high classification results, a minimum num-

ber of EEG electrodes with the low area, and classification energy solution, validated on

multiple benchmark data sets for negative emotions prediction and control. To achieve this

target, I have designed and developed the 1st and 2nd generation DBE processors, named

DBE1 and DBE2, respectively for negative emotions prediction as highlighted in Figure

1-6. The DBE1 uses a linear support vector machine (SVM) classifier to provide negative

emotions prediction with a small number (8) of EEG channels and high classification accu-

racy (73.14%). The DBE2 uses a deep neural network (DNN) classifier with a minimum

number (2) of EEG channels to provide negative emotions prediction with a maximum
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classification accuracy (85.4%). Both the DBE processors were fabricated using TSMC 180

nm CMOS process and validated using multiple benchmark data sets (BM-DS) for emotion

prediction.

The design and development of DBE1 and DBE2 involved different challenges. Some

of these challenges and the proposed solutions utilized in this work are summarized below:-

• The Interhemispheric Power Ratio (IHPR) feature forDBE1 requires complex floating

point divider implementation, which was replaced and approximated with a Logarith-

mic interhemispheric Power Ratio (LIHPR) with an overall area reduction by 4.7X.

• The skewness feature for DBE2 has a highly complex hardware implementation.

The feature was replaced and approximated by an approximated skewness indicator

(ASKI) with 86X reduced area.

• The conventional implementation for the DNN utilized in DBE2 required a huge

area and does not suit an ULP implementation. The DNN was implemented in a

semi-pipe-lined manner with 77% reduced energy.

• The positive and negative symmetry of the sigmoid function was utilized to implement

the sigmoid unit with 50% lesser memory in DBE2.

1.6 Thesis Organization

This organization of this Ph.D. thesis is presented in Figure 1-7. The chapter-wise summary

of this thesis is presented below:-

• Chapter 1: The challenges faced by ASD patients are explained and the reasons for

selecting this topic are highlighted in Chapter 1. The statistics of ASD including

the number of patients, diagnosis age, challenges in ASD diagnosis, and the emotional

disorders faced by ASD patients are also discussed in this chapter. The reasons for the

requirement and the need of a closed-loop assistance system using emotions for ASD

patients are explained in this chapter. How an SoC-based solution using EEG signals

can be used to control emotional disorders, and assist ASD patients is discussed in

chapter. The challenges and contributions of this PhD work to design a DBE processor

for negative emotions prediction are also highlighted in this chapter.
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Figure 1-7: Thesis Organization.

• Chapter 2: The necessary background knowledge for the readers of this thesis is

provided in Chapter 2. A brief overview of human emotions, measuring human emo-

tions, EEG signals and their electrode placement, EEG-based emotions prediction

data sets, and labels in emotions prediction are provided. The utilization of machine

learning for emotion prediction with a cloud computing-based approach or a fully

on-sensor SoC-based system is discussed. The design challenges associated with the

design and development of the DBE processor for emotion prediction are discussed in

this chapter.

• Chapter 3: provides an organized literature review of the previous state-of-the art

works. The comparison metrics of this work including hardware implementation,

fully integrated solution, benchmark data set validation, the number of EEG channels,

feature vector, classification algorithm, area, and power/energy of emotions prediction

processors are defined.

• Chapter 4 : The design and analysis of the DBE1 emotions prediction processor is

explained in Chapter 4. The DBE1 was the 1st fully integrated SoC-based DBE

processor for emotions prediction. The DBE1 was designed and developed using a

linear SVM classifier with power spectral density (PSD), LIHPR, and absolute inter-

hemispheric power difference (AIHPD) features using eight EEG channels. The nega-
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tive emotions prediction was performed using valence and arousal classification, using

DEAP and SEED data sets. The proposed feature vector was implemented in an area

and energy-efficient manner with 4.7X lesser area than conventional implementation.

The DBE1 provided the classification performance of 73.14% and 75.8% accuracies

using DEAP and SEED data sets respectively. The DBE1 was implemented using

180 nm TSMC CMOS process with an area of 5.4 mm2. The classification energy

consumed by DBE1 was 16µJ per prediction.

The selection of channels, features, and classification algorithm are explained in this

chapter. The hardware architecture and optimization of the selected features for the

minimum area and classification energy are also explained in this chapter. Finally, the

classification performance of the DBE1, and its comparison with the state-of-the-art

works is provided in this chapter.

• Chapter 5 : The design and analysis of the DBE2 for emotions prediction is ex-

plained in Chapter 5. The DBE2 was designed and developed using a fully connected

DNN classifier with zero crossings detector (ZCD), and skewness (SKEW) feature

for two EEG channels. The proposed hardware implementation of the selected fea-

tures utilized 86X lesser area as compared to the conventional implementation. A

semi-pipe-lined DNN classification unit was implemented to reduce the classification

energy by 77%. The DBE2 was also validated using DEAP and SEED data sets

and fabricated using 180 nm TSMC CMOS process. The DBE2 utilized an area of

16mm2. The energy consumption of DBE2 was 10.13µJ per classification.

The selection of channels, features, and classification algorithms are explained in this

chapter. The hardware architecture and optimization of the selected features for the

minimum area and classification energy are also explained in this chapter. Finally, the

classification performance of the DBE2 and its comparison with the state-of-the-art

works is provided in this chapter.

• Chapter 6 : The large-scale feature extraction (LSFE) methodology analysis for ASD

and emotions prediction using maximum benchmark data sets is explained in Chapter

6. An extensive analysis using LSFE was performed to find the most suitable channels

and features for ASD and emotions prediction. A comprehensive LSFE was carried

out for the most suitable EEG channels and brain area identification in ASD and
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emotions prediction. The identified brain area outperformed many state-of-the-art

using a lower number of channels for emotions and ASD classification. The temporal,

frontal, and prefrontal brain regions are included in the identified brain areas. A set of

features highly suitable for emotions and ASD prediction, identified through LSFE is

also provided in this chapter. The area and energy-efficient hardware implementation

of these features can be used for hardware-based systems,

• Chapter 7 : The overall conclusion of this Ph.D. work with the list of achievements,

and the future work’s directions are discussed in Chapter 7. The DBE processors

designed and developed during this Ph.D. work are presented at multiple top interna-

tional conferences including IEEE AICAS, IEEE ISCAS, and IEEE CICC. This This

work was selected for multiple national and international awards including SBARA,

IEEE CAS Pre-Doctoral award, IEEE CAS student travel grant, and Commonwealth

Split Side Ph.D. fellowship. This work was also published and under review in multi-

ple high-impact journals, transactions, and a book chapter including IEEE TBioCAS,

FRNS, TCAS-1, and Elsevier’s Neural Engineering Techniques for ASD. The future

work directions include SoC implementations of binary neural networks, ULP AFE de-

velopment, and a data set collection for ASD patients including physiological signals,

EEG, and Mechanomyogram (MMG) signals.
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Chapter 2

Background Knowledge

This chapter discusses the background knowledge required for the design and development

of an EEG-based emotions classification processor. In this chapter, human emotions and

their quantization models, EEG signals, placement of EEG electrodes, EEG classification

process, and limitations for the design and development of wearable EEG-based emotions

classification processors are discussed.

2.1 What are Human Emotions?

Human emotions are conscious or unconscious feelings of the human brain. Different theo-

ries defining human emotions have acknowledged that “Human emotions are a complex

phenomenon and cannot be fully described through behavioral experiences” [28].

Scientists have identified that different human emotions excite different neurons [28]. They

are a combination of different neurological, behavioral, and psychological processes. The

complete description of human emotions should incorporate the conscious or unconscious

feelings, and the changes occurring in the human nervous system. The most challenging

problem related to human emotions is the measurement and identification of correct emo-

tions.
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2.2 Measuring Human Emotions

The quantization of human emotions is a notorious problem. The number and scale of

present human emotions is an important question that does not have any defined answer.

Currently, the two popular methods used for emotion quantization include a discrete set of

emotions and dimensional scales. The discrete emotional scale maps a human emotion into

a discrete set of basic emotions ranging between 6 to 14, e.g. anger, fear, sadness, etc. [29].

Table 2.1 lists some popular discrete sets of emotions along with different emotions. The

emotions of each participant are mapped to the nearest emotion among the discrete set of

emotions on that scale. The emotion of each participant is labeled as anger, fear, disgust,

sadness, surprise, or joy using Ekman’s six basic emotions [29]. Similarly, the emotions of

each participant are mapped to the eight, six, and nine emotions using Plutchik, Parrot,

and Tomkin scales, respectively [30], [31], [32].

Table 2.1: Different Discrete Emotional Scales.

Reference Emotions

Ekman [29] anger, fear, disgust, sadness, surprise, joy

Plutchik [30] anger, fear, sadness, disgust, surprise, anticipation, trust, joy

Parrot [31] anger, fear, love, joy, sadness, surprise

Tomkin [32] anger, disgust, distress, contempt, interest, fear, shame, joy, surprise

A major problem with the discrete set of emotions is the identification of mixed emotions

or the emotions that overlap between the available discrete set of emotions [33]. The

dimensional scale of emotions measures emotions in multiple dimensions including valence,

arousal, dominance, liking, etc. [33]. Russel’s valence arousal scale is the most frequently

used dimensional model for emotion measurement. The valence defines the scale of positivity

or pleasantness of emotion, whereas the arousal refers to the scale of the intensity of that

emotion [34].

Figure 2-1 depicts some discrete basic emotions mapped using the valence arousal scale.

It can be observed that the angry and annoyed are negative emotions. However, annoyed

emotion has more intensity than angry emotion. The calm and excited and calm and

positive emotions with similar valence, but different arousing intensities. The valence and
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arousal are scaled in a discrete range from a minimum to maximum value. The increase in

valence and arousal values is represented from left to right and bottom to top, respectively

as shown in Figure 2-1.

Figure 2-1: Valence Arousal Model & Basic Emotions.

2.3 Machine Learning

Machine learning (ML) is a branch of artificial intelligence, in which a machine (computer)

targets to learn the structure of data and find a relationship between the output data (labels)

and input data (features). ML is broadly categorized between supervised and Unsupervised

learning. In supervised learning, the ML algorithm is provided with examples of the input

and output values. The ML algorithm tries to establish a relationship between the inputs

and outputs and then calculates the output values for unknown data using that relationship.

Figure 2-3 depicts the process of a supervised ML algorithm using an example. In this

example, different types of apples and guavas are provided to the ML model with their

labels. The ML model learns to label an unknown example as an apple or guava. The ML

prediction of an object is performed in two ways including classification or regression.
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Figure 2-2: Supervised Machine Learning Example Demonstration.

2.3.1 Classification and Regression

An ML categorization of an object in a discrete set of labels is called classification, whereas

the prediction of an object in some quantity or value is called regression. For e.g. the

categorization of the fruits as apple or guava in the example discussed above would be

classification. The prediction of the room’s temperature in degrees Celsius or the value of a

person’s blood pressure would be regression. Since, in this Ph.D. project, my target was the

prediction of negative emotions and ASD prediction, I have focused on supervised learning

and ML classification.

2.3.2 Features Extraction and Classification Algorithm

The feature extraction process is the procedure to cut down the number of input values

required for the output label prediction. For e.g in the above example of fruits predicted

as an apple or guava, if the ML algorithm is provided with the input images of 500x500

resolution, then the ML algorithm would require to map 0.25 million pixels with the output
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label. However, the features of texture smoothness, color, and shape (length, width, height)

can be used for apple or guava prediction in much lower dimensions.

Classification algorithms in ML are the algorithms that utilize the input data (raw data

or features) and map the output labels to the input data using some algorithm. The popular

algorithms for ML classification are logistic regression (LR), naive Bayes (NB), K nearest

neighbor (KNN), and SVM are the popularly used ML classification algorithms.

2.4 Electroencephalogram Signal

EEG signals are used to record the electrical activities inside the human brain. The human

brain contains billions of neurons generating ionic currents for each neural activity. The

cell membranes covering the brain neuron cells contain negatively or positively charged ions

inside or outside. These electric charges flow through the calcium, potassium, magnesium,

and sodium fluids in cell membranes. The neural activities generated by human brain cells

cause small electrical currents to flow through these ionic channels. This electrical current

is measured by placing electrodes inside the skull or on the scalp. The electrical current

measured by placing electrodes inside the skull is called intracranial EEG (iEEG) [1] and

the electrical current measured by placing the electrodes outside the scalp is called scalp

EEG [2]. Since I was targeting a non-invasive wearable SoC solution. Therefore, I have

focused on data sets utilizing scalp EEG.

Figure 2-3: iEEG and Scap EEG (Pictures are taken from golbylab [1]
and bright brain center [2].

Figure 2-4 shows a sample EEG signal of six seconds duration for a certain brain location.

The electrical voltage measured in micro-volts (uV) is recorded on a specific sampling
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frequency (128 Hz). The sampling frequency is the number of EEG samples recorded

per second. A certain number of electrodes are placed on the human scalp to acquire EEG

signals. The electrode placement position is proportional to the shape and size of the human

skull.

Figure 2-4: EEG Signal Sample.

The 10-20 EEG placement is the international standard method for the uniform place-

ment of EEG electrodes. Figure 2-5 shows the placement of 32 EEG electrodes using a

10-20 layout. The EEG electrodes on the left side of the human head are highlighted in red

color.

The 10% and 20% are used to represent the distance between electrodes [35]. The nasion

refers to a point between the forehead and nose. The inion refers to a bump between the

skull’s bottom and neck [35]. The EEG electrodes record the brain signals of all regions

including frontal, parietal, temporal, and occipital lobes represented by letters F, P, T,

and O, respectively. The EEG electrodes covering right and left hemisphere locations are

numbered with odd and even numbers, respectively. The EEG electrodes covering the

midline of the hemisphere are numbered with Z. For example Fz, F3, and F4 represent the

midline, left side, and right side frontal lobe electrodes, respectively.
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Figure 2-5: EEG 10-20 System Layout.

2.5 Emotion Prediction Data Sets and Labels

The data set selection is a very critical choice for the design and verification of an emotions

classification system. A researcher may claim 100% accurate classification results on a self-

collected data set of a few subjects. However, the system would fail to generalize on other

data sets. Therefore, we have tried to identify the data sets which are being used by the

top international scientific research publication forums related to biomedical systems and

healthcare. DEAP and SEED are the two most popular and widely used data sets for

emotions classification using physiological (EEG, ECG, EMG, EOG, etc.) signals [24], [36].

Table 2.2 summarizes the DEAP and SEED data sets. The DEAP data set provides

the EEG recordings of 32 participants including 17 males and 15 females, respectively.

The SEED data set provides the EEG recordings of 15 participants including 7 males and

8 females, respectively. The total number of EEG channels recorded in DEAP and SEED

data sets are 32 and 64, respectively. The DEAP data set provides the emotion classification

using valence and arousal labels scaled between 1 to 7. The SEED data set provides the

emotion classification label using valence scaled as -1,0 and 1. The SEED and DEAP data

sets were recorded on the sampling frequencies of 512 Hz and 1000 Hz, respectively.

The prediction of human emotion requires positive and negative valence or arousal labels
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Table 2.2: Emotions Classification Data Sets Summary.

Data Set Participants EEG Channels Labels Classification Scale
(#) (#)

DEAP 32 (17,15) 32 Valence, Arousal 1-7
SEED 15 (7,8) 64 Valence -1,0,1

using DEAP and SEED data sets. The SEED data set already provides the positive and

negative valence labels for each EEG signal. In the DEAP data set, the valence and arousal

values are divided into positive and negative labels through low and high threshold values

between 1 to 7. For example, the threshold value of 5 defines the valence and arousal values

≤ 5 as negative and > 5 as positive. Table 2.3 list the valence and arousal labels of a subject

(Subject # 1) in the DEAP data set with a threshold value of 5 for the first ten emotional

trials of the subject.

Table 2.3: Labels Summary for First 10 Emotional Trials in DEAP (Subject # 1).

Trial No Valence Value Arousal Value Valence Label Arousal Label
1 7.71 7.6 HIGH HIGH
2 8.1 7.31 HIGH HIGH
3 8.58 7.54 HIGH HIGH
4 4.94 6.01 LOW HIGH
5 6.96 3.92 HIGH LOW
6 8.27 3.92 HIGH LOW
7 7.44 3.73 HIGH LOW
8 7.32 2.55 HIGH LOW
9 4.04 3.29 LOW LOW
10 1.99 4.86 LOW LOW

2.6 Machine Learning for Emotions Prediction

ML based EEG emotions prediction systems targets extracting a minimum amount of useful

and relevant information from a large raw EEG data. The minimum information derived

from a large amount of data predicts human emotions. The ML process includes the calcu-

lation of suitable features and then applying an appropriate classification algorithm. The

ML algorithm is either on-sensor by integrating an on-chip DBE processor or through cloud

computing. A summary of both approaches is discussed below:-

• Cloud Computing Based Emotions Prediction: Cloud computing for emotional
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prediction would require very high energy during computations and data transfer.

These systems could not provide 24/7 assistance to the children as they are highly

inappropriate for wearable systems. The primary reason for the unsuitability includes

constant data transmission for cloud computing. These systems cannot be operated

with small coin cell batteries and provide long battery timings. The continuous data

transmission would also generate heat due to large energy consumption causing dis-

comfort for the users. These systems would also cause issues related to the privacy

and security of the patient’s data.

• Fully On-Sensor SoC Based Emotions Prediction: The fully on-sensor SoC-

based emotions prediction system using EEG signals requires integrating an AFE

with a DBE processor. The AFE is responsible for acquiring low-noise EEG signals.

The DBE processor is responsible for the calculation of the features and then applying

the classification algorithm to the calculated features. The on-sensor and fully-on-chip

emotions prediction system has several benefits as it avoids high communication costs,

provides low latency, requires lower energy, and can provide long battery timings. The

fully on-chip AFE and DBE implementation also avoids any data security and privacy

issues.

This thesis targets the design and development of a DBE processor for emotion predic-

tion. Therefore, we would discuss the design challenges for a fully on-chip DBE emotions

prediction processor.

2.7 On-Chip DBE Processor Design Challenges

A ML process consists of two phases including ”training” and ”inference”. The train-

ing phase includes learning a model using the available EEG data and the corresponding

emotions. The learned model establishes a relation between the EEG signals and the corre-

sponding emotions. The inference phase applies the learned model to predict the emotions

of unseen EEG data. The training phase is carried out offline, whereas the inference is

performed on-chip. The inference process consists of two parts including feature extraction

and classification. The feature extraction process requires extracting the most suitable fea-

tures to distinguish between positive and negative emotions. The features can be either
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customized or DNN based. Some of the challenges to be considered before the selection of

any ML or deep learning algorithm for a DBE processor are summarized below:-

• Customized vs Deep Learning Based Feature Extraction: The customized

feature extraction process discovers the best and minimum number of features for a

particular application to provide the maximum classification results. However, deep

neural networks do not distinguish between feature extraction and classification. The

deep learning-based approach directly maps the output labels to the input EEG data

without any separate feature extraction process.

The difference between conventional ML and deep learning-based feature extraction is

depicted in Figure 2-6. In the conventional ML or ”hand-crafted” feature extraction,

the extracted features are forwarded to the classifier. The classifier utilizes these

features to predict a negative or positive emotion. However, in deep learned features,

the positive or negative labels of the emotion are directly calculated from the input

EEG signals.

Figure 2-6: Customized Feature Extraction vs Deep Learning.

Deep-learned features can deliver high accuracy as compared to customized features.

But, they require a large number of weights to directly map the EEG signals to

the positive or negative emotions. The number of weights can be in millions and

the required memory can be in gigabytes. The computational cost involved to deal

with these weights is also very high, which would consume a very high amount of

energy. Therefore, we have opted for the customized features and avoided deep-
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learned features for our SoC-based emotion prediction DBE processors.

• Feature Selection and Customization: The ML classification tools and applica-

tions in MATLAB, python, etc. are primarily designed for ”software-based systems”.

The classification results provided by these tools do not consider the hardware cost

of the ML algorithm. Therefore, we have to analyze and calculate the hardware cost

of selected features before their implementation. For example, the hardware cost of

wavelet entropy is > 100X higher than the PSD of an EEG signal. Therefore, a

hardware designer has to analyze the projected hardware cost including area, power,

and energy efficiency before the selection of features. The features calculated using

ML tools also have 64-bit double-precision values by default. However, the hardware

designers have to analyze the trade-off between the classification accuracy and the

hardware cost. The hardware cost directly depends on the number of bits. There-

fore, we have to select the precision for the extracted features and classifier after an

extensive number of bits vs classification results analysis.

• Classifier Selection and Customization: The ML algorithms utilize several clas-

sification algorithms including SVM, decision tree (DT), k nearest neighbor (KNN),

naive Bayes (NB), or artificial neural networks (ANN). The hardware designers have

to consider multiple parameters in classifier selection other than classification results.

These parameters include kernel selection (Linear or Gaussian) in SVM, tree depth

in DT, number of neighbors in KNN, and the number of nodes with the activation

function selection (linear, relu, sigmoid, tanh, etc.) in DNN. The selection of each pa-

rameter has a significant impact on the hardware implementation cost. For example,

the hardware implementation of the relu function is quite simple as compared to the

sigmoid or tanh function.

2.8 Summary

In this chapter, I have provided the necessary background knowledge to the readers of this

thesis. I have explained the following things:-

• What are human emotions and how are they measured?

• What are ML, classification, and regression?
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• What is feature extraction and classification in ML?

• What are an EEG Signal, iEEG, and Scalp EEG?

• An introduction to the emotions prediction data sets and labels.

• An introduction to use ML for emotions prediction.

• The design challenges and constraints to design a DBE processor for emotions predic-

tion.
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Chapter 3

Literature Review

A significant amount of research has been done in the area of internal human emotion

recognition of EEG signals due to the dependency of daily activities on emotions and tech-

nological advancements in miniaturized EEG acquisition systems [15]. Negative emotions

are a major personality disorder, especially in ASD patients [37]. People with negative

emotions disorder frequently encounter negative emotions [37]. Negative affectivity refers

to a personality attribute to continuously encounter negative emotions irrespective of the

situation [38]. ASD patients have a higher frequency of negative emotions and are strongly

affected by negative affectivity and face negative emotion outbursts (NEOB) [39]. NEOB are

unpredicted, sudden, and uncontrolled bursts of negative emotions leading to self-injuries

and suicide attempts.

Despite the significant efforts done in the past two decades, still, no reliable wear-

able EEG-based system is available for NOEB, or negative emotions prediction [38],[39].

Moreover, even the focus of the research is more on a software-based solution for emotion

detection, which has real-time limitations due to large decision latency. To ensure maxi-

mum benefit from emotion detection, it necessitates a wearable device like a hearing aid,

smartwatch, or headband to capture real-time emotion and provide closed-loop feedback

for early and meaningful intervention [40].

I conducted an extensive literature review on the previous works targeting emotion

prediction using EEG signals. Since I was targeting a hardware-based SoC for emotional

prediction. The inclusion criteria were based on the hardware implementation of the system,

classification results, the data sets utilized for the system validation, the number of EEG
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channels, feature and classifier selection, area, and power utilized by the system.

The literature review concluded that previous works targeting emotions classification us-

ing EEG signals can be categorized into four categories including software implementations

with a local (private) data set, based on a large number of EEG channels, utilizing com-

plex features, classifiers, and hardware implementations. All the previous studies categorize

among the four categories discussed below:-

• Category 1: Systems Validated Using Local Data Sets: DEAP and SEED are

the two most widely used data sets for emotion prediction and are considered a bench-

mark. These data sets contain a large number of trials for emotion prediction with a

large number of subjects. These data sets contain subjects from both male and female

genders, different age groups, and balanced distribution of positive and negative emo-

tion labels. Some past works have claimed excellent classification results using local

(private) data sets of a few subjects [41]. However, their algorithms are not validated

using benchmark data sets, and hence not suitable for real-time implementations.

• Category 2: Large Channel Count: Some systems validated using public EEG

data sets provide excellent classification results with ≥ 90% accuracy [42]. However,

these systems have utilized a large number of EEG channels. The researchers working

on SoC-based systems for wearable applications have strongly recommended avoiding

a channel count > 8 [27]. The higher number of channels is a bottleneck in the

system’s implementation and real-time performance due to area, power, and energy

constraints. The patient’s comfort is also compromised due to a large number of

channels [27].

• Category 3: Complex Features and Classification Algorithms: The emotion

prediction algorithms with fairly high classification results and low channel count are

validated on benchmark data sets. However, the features and classification algorithms

utilized by these systems are highly complex and unfeasible for wearable applications.

The highly complex features and classification algorithms including stacked auto-

encoders, dense convolutional, and deep neural networks, etc. have highly complex

hardware realization [43],[44]. The hardware implementations of these features and

classification algorithms would be expensive (more chip area) and have low battery

timings.
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• Category 4: Hardware Implementations: Some systems have provided hardware-

based solutions for emotion prediction, and have achieved very good (≥ 75%) clas-

sification results. However, these systems have either provided only FPGA-based

implementations [44], or lack fully integrated SoC-based solutions [26]. Their hard-

ware implementations also have high area and power and hence could not provide

long battery timings. These systems are also not validated using multiple benchmark

data sets.

.

3.1 Previous State-of-the-Art Works

An organized review of previous studies that have aimed to provide emotional prediction

using EEG signals is presented in Table 4.1. The hardware implementation, benchmark

or public data set validation, the number of EEG channels (Channel #), list of features,

classification algorithm (CLF), classification results (Accuracy %), area and classification

energy of the system (for hardware implementations) of the previous works are listed in

the table. I performed an extensive literature review of the previous state-of-the-art works

including these works. The SoC-based processors in this Ph.D. project were designed after

keeping in view these performance constraints, and previous works.

Panagiotis [41] proposed a software-based emotions classification algorithm using only

three EEG channels. They utilized the higher order crossing (HOC) features. Multiple-order

polynomial kernel-based SVM classifiers were used for the classification. They achieved ex-

cellent classification results (83.3% accuracy). The EEG channels used by them correspond

to the frontal-parietal locations. These locations would cause minimum discomfort for ASD

patients. However, they validated their algorithm on a private data set of limited (15)

subjects.

T. Song [45] proposed a software-based emotions classification algorithm using 62 EEG

channels. They utilized the PSD, HOC, Hjorth (HJ), Hilbert-Huang transform (HHT), and

short-term Fourier transform (STFT) features. Three attention long short-term memory

(A-LSTM) architecture was used for the classification. The final class is decided by the

majority voting. The A-LSTM architecture is highly unfeasible for SoC implementations

due to huge memory requirements. A large number of channels is another limitation of this
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Table 3.1: Literature Review.

Ref Hardware Data Set Channel Features CLF Acc Area/Power)

(Yes/No) (Pub/Pvt) # (%) (mm/uJ)

[41] No Private 3 HOC SVM(Poly) 83.3 —

[45] No Private 62 PSD,HOC, HJ, A-LSTM 71.8 —

HHT, STFT

[46] No Public 15 3DCNN 3DCNN 97.3 —

[24] No Public 16 PSD NB 62 —

[42] No Public 62 PSD,DE, DASM GELM 91.1 —

RASM, DCAU

[36] No Public 62 DE DBN 86.1 —

[47] No Public 1 AlexNet SVM (RBF) 90.2 —

[48] No Public 32 SK, KT,HJ, SVM (RBF) 88.5 —

FD, WE, FC.

[49] No Public 32 PSD LSTM-RNN 79.5 —

[50] No Public 32 DE CNN 90.6 —

[51] No Public 62 DE CNN 78 —

[44] No Public 32 Hybrid CNN Hybrid CNN 80.8 —

[43] No Public 32 STF,RASP LSTM 60.2 —

[25] Yes Public 14 PSD (Welch) CNN 83.1 41,409*/150

[26] Yes Public 6 Entropy, STFT, DASM CNN 83.37 3.35/76.61

[52] Yes Public 6 ASR, STFT, DASM CNN 83.7 –/29.51

[53] Yes Private 8 LRCNN LRCNN 88.34 1.28/48.24

[54] Yes Public 12 LRCNN RCNN 82.88 —
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work. They also validated their system on a local data set with 23 participants. The private

data set validation is another issue in their system.

Shuaiqi [46] proposed a three-dimensional convolutional neural network (3DCNN) based

algorithm for emotion prediction. They utilized 15 EEG channels for emotion prediction

and achieved excellent classification results (97.3% accuracy). The feature extraction was

also based on the proposed 3DCNN. They validated their system on the SEED data set.

The number of EEG channels and the 3DCNN architecture for feature extraction and

classification algorithms require a large amount of memory and consume high power. Hence,

they are not suitable for SoC systems with strict battery timing constraints.

Koelstra [24] proposed an emotions classification algorithm using 16 EEG channels.

They utilized the PSD of different frequency bands as features and the NB classifier as

the classification algorithms and achieved 62% classification accuracy. The algorithm was

validated on the DEAP data set. The main limitations of this work are low classification

results, lack of multiple data sets validation, and a large number of EEG channels.

Peiyang [42] proposed an emotions classification algorithm using PSD, differential en-

tropy (DE), differential asymmetry (DASM), rational asymmetry (RASM), asymmetry

(ASM), and differential caudality (DCAU) features. They utilized 64 EEG channels and

achieved 91.1% classification results. A customized Graph regularized Extreme Learning

Machine (GELM) classification algorithm was utilized in this work. Although they achieved

excellent classification results using multiple benchmark data sets, their algorithm also uti-

lizes a large number of channels. The GELM algorithm was primarily designed for software-

based implementations and was not suitable for hardware implementation. The DE, RASM,

ASM, and DCAU features would also have highly complex hardware realization.

Demir [47] proposed an emotions classification algorithm using a single EEG channel

and achieved excellent classification results using the DEAP data set. They utilized the

AlexNet CNN for the feature extraction and radial basis kernel function (RBF) SVM for

classification. The Alexnet CNN has a highly complex architecture and requires millions of

classification parameters (weights and biases) for hardware realization.

Soleymani [49] proposed an emotions classification algorithm using a local data set of

ten participants. They used 32 EEG channels for the classification. They used the PSD

of different frequency bands as features and Long Short Term Memory Recurrent Neural

Network (LSTM-RNN) architecture as the classification algorithm. The main limitations
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of this work were the large number (32) of EEG channels and a private data set validation.

The LSTM-RNN architecture is also highly complex for hardware realization.

Zhongke [50] proposed an emotions classification algorithm using DEAP and SEED data

sets. They used 32 EEG channels for the classification. They used DE as the feature and a

CNN for the classification algorithm and achieved excellent (90.6%) classification results.

Luo [51] proposed an emotions classification algorithm using multiple public EEG data

sets. They achieved 78% classification results using 64 EEG channels for the DEAP and

SEED data sets respectively for emotions classification. The DE and CNN were used for the

feature extraction and classification respectively. The main limitations of this work were

the large number of channels and complex hardware realization for DE and CNN.

Hector [25] implemented an FPGA-based hardware algorithm for emotions classification

using publicly available EEG data sets. They utilized 14 EEG channels and provided 83.1%

classification results. They used PSD and CNN for the features extraction and classification

algorithm respectively. Although they provided hardware (FPGA) implementation, they

did not provide SoC implementation. They utilized 41,409 look-up tables and flip flops using

a Spartan-6 FPGA board with a power consumption of 150 mW. The main limitations of

this work are a large number of EEG channels, lack of SoC implementation, and high area

and power.

Fang [26] designed and developed an SoC using a 28-nm CMOS process for emotion

prediction. They utilized only 6 EEG channels and achieved excellent(83.37%) classification

results using public EEG data sets. The main limitations of this work are the lack of a

fully-integrated SoC solution. They did not provide SoC implementation for the feature

extraction engine. The features are extracted offline and fused in the form of images. The

feature images are then transmitted to the SoC using blue-tooth communication and a

Spartan 3E FPGA. The area and power consumption of this system were 3.35mm2 and

76.61 mW respectively.

Yang [53] proposed an SoC-based hardware solution using a 16nm FET process. They

utilized a private data set of 52 subjects for the validation of their system. They utilized a

long-term recurrent neural network (LRCN) for feature extraction and classification. The

area and power consumption of the system are 1.29mm2 and 48.24mW, respectively. They

also did not provide a fully integrated SoC solution and the feature extraction process was

carried out offline (outside SoC). They also lack public data set validation which limits their
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robustness.

K. Wang [54] proposed an emotions prediction network-on-chip using DEAP data set

with 83% accuracy. They utilized a CNN which was implemented on a 28 nm CMOS process.

They utilized an EEG channel subset of 12 channels for the emotions prediction. The main

frailty of their work was a large number of channels, lack of multiple BM-DS validations, and

offline feature extraction. Since they targeted a network-on-chip, they only implemented

the CNN on the chip. The offline feature extraction forwards a set of windowed images after

noise removal, BPF, STFT, channel reconstruction, and image generation. They also did

not report the area, power, and classification energy of their CNN-based network-on-chip

implementation.

C. Ardito [55] proposed an emotions prediction algorithm using five EEG channels.

They tested and validated their algorithm using the DREAMER data set. They utilized a

single-dimensional CNN in their emotions prediction algorithm, Although they achieved ex-

cellent classification results (93%), they also lack multiple BM-DS validations and hardware

implementation.

X. Shen [56] proposed a contrast learning method for inter-subject alignment, which

proposed an emotions prediction algorithm using SEED and a private data set THU-EP.

The main novelty of their work was cross-subject or subject-independent emotion recogni-

tion. Their contrastive learning algorithm utilized a CNN and provided excellent (86.4%)

classification results. But they lack multiple BM-DS validations, utilize a large number of

channels, and lack hardware implementation.

J. Li [57] proposed a single-channel emotion recognition algorithm with excellent clas-

sification (82.18%) results. They validated their algorithm on multiple BM-DS including

DEAP, SEED, and MAHNOOB [57]. They utilized subject-dependent variable channels for

variable time instances in their algorithm, which is not suitable for a wearable SoC design.

A. Menon [58] designed and proposed an energy-efficient hyper-dimensional computing

processor. The processor was implemented using a 28 nm CMOS process and validated

using a non-frequently used emotions recognition data set AMIGOS.
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3.2 Summary

The review and analysis of the previous works provided me with the targets of multiple

public data sets validation, a lower number of EEG channels, high classification accuracy,

and a fully integrated SoC solution. Therefore, I designed and developed two SoC-based

DBE processors (DBE1 and DBE2) using TSMC 180 nm CMOS process. The proposed

DBE processors are discussed later in Chapter 4 and Chapter 5 in detail [38], [39]. The

channel count, classification accuracy, public or private data set validation, and the hard-

ware or software-based implementation of the previous state-of-the-art works is depicted in

Figure 3-1.

Figure 3-1: Previous State-of-the-Art Works.

It can be observed that the majority of the previous works utilized ≥ 16 EEG channels.
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Some of the previous works provided private data sets validation. Some of the previous

works have provided low classification results. Therefore, I targeted a high classification

accuracy (≥ 80%) with a minimum number of channels (≤ 8), and multiple public data

sets validation. My first SoC-based DBE processor (DBE1) predicted human emotions

with 73.4% classification accuracy and utilized only eight EEG channels [39]. This 180 nm

CMOS processor used PSD and linear SVM for the feature extraction and classification,

respectively. The processor utilized an area and power of 5.4mm2 and 16 µJ, respectively.

The processor was validated on multiple public data sets. The second SoC-based DBE

processor (DBE2) performed emotions prediction with 85.4% accuracy using only two EEG

channels. The processor used zero crossings and skewness for the feature extraction, and

a feed-forward deep neural network for the classification algorithm. The processor utilized

an area and power of 16mm2 and 10.13 µJ, respectively. The processor was also validated

using multiple public data sets.
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Chapter 4

DBE1: 1st Generation Digital

Back-End Processor for Negative

Emotions Prediction

The design of the 1st generation DBE processor (DBE1) is presented in this chapter.

The challenges related to the processor design for the suitable channels, features, classifier

identification, and hardware implementation are discussed. The classification algorithm,

hardware implementation with optimization of the identified features, and the classification

algorithm to minimize area, and classification energy of the proposed DBE1 are explained

in this chapter. Section 4.1 explains the process of emotion prediction using EEG signals.

The choice of data sets, labels for emotion prediction, and the challenges in emotion predic-

tion using EEG signals is explained in this section. Section 4.2 explains the ML algorithm

used for negative emotions prediction in DBE1. The selection of a suitable subset of EEG

channels, features, and classification algorithm selection are explained in this section. Sec-

tion 4.3 explains the hardware architecture for the SoC implementation of the selected ML

algorithm in DBE1. The overall architecture of DBE1, hardware implementation of EEG

pre-processing unit, feature extraction engine including feature normalization unit, classi-

fication unit, and the parameters register for classification parameters upload is explained

in this section. The classification performance of DBE1 including classification results,

chip performance summary, and performance comparison with the other state-of-the-art
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works are discussed in section 4.4. Section 4.5 summarizes the overall achievements and

shortcomings of DBE1.

4.1 EEG Emotions Prediction

Emotion prediction using EEG signals is a very challenging problem due to multiple fac-

tors including limited benchmark data sets, unavailability of extensive analysis for suit-

able features with channels identification, and subject-dependent emotional patterns [59].

These challenges are a major bottleneck for the robustness and reliability of emotion pre-

diction systems [59]. Therefore, emotions prediction is considered a very challenging task

in comparison to other EEG classification tasks like epilepsy prediction or motor imagery

classification [60]-[61]. Another major challenge for the EEG emotions prediction is the un-

availability of medically verified annotated emotions and emotion triggers [62]. The epilepsy

prediction data sets for example contain the medically verified and annotated EEG patterns

during and before seizures [27]. The labels for emotion prediction are marked on the user

experience and feelings, which may not depict the actual state of the mind resulting in

intermixed emotions [63]. That’s why emotion prediction is considered a testing task and

many state-of-the-art works have reported lower classification results [38].

4.1.1 Emotions Prediction Scale and Data Sets

Human emotions are very complex and are a combination of different neurological, behav-

ioral, and psychological processes [64]. The human emotions are mapped either in a discrete

number of emotions or a bi-directional valence-arousal scale as explained earlier in Chapter

2 (Background Knowledge) [65]. I have utilized Russel’s 2-D valence-arousal scale for the

emotions prediction in this DBE1 processor for negative emotions prediction [34].

The DEAP and SEED data sets for emotions prediction using EEG and other physio-

logical signals were utilized for the design and validation of the DBE1 processor [38]. The

valence and arousal scales in the DEAP data set and the valence scale in the SEED data set

are used for emotion prediction. The DEAP data set has mapped the valence and arousal

of each participant from 1 (minimum) to 9 (maximum) [24]. The positive and negative

emotions classification in the DEAP data set is shown in Figure 4-1.

The valence and arousal values mapped between 1(Tmin) to 9(Tmax) were labeled as
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Figure 4-1: (a) Valence & Arousal Scale for DEAP (b) List of Predicted
Emotions in DEAP.

positive or negative using the threshold values of 4(T1) and 6(T2). The valence and arousal

values between 1(Tmin) to 4(T1) were labeled as negative. The valence and arousal values

between 6(T2) to 9(Tmax) were labeled as positive as shown in Figure 4-1 (a). The nega-

tive (low) valence with negative (low) arousal, negative (low) valence with positive (high)

arousal, positive (high) valence with negative (low) arousal, and positive (high) valence with

positive (high) arousal are mapped as sad, angry, relaxed, and happy emotions, respectively

as shown in Figure 4-1 (b). The SEED data set provides valence labels only as negative,

neutral, or positive [36]. The positive or negative valence prediction was performed for

DBE1 processor and the neutral labels were discarded.

4.1.2 Emotions Prediction Challenges

The emotion classification is a very daunting challenge due to the unavailability of visible

markers to distinguish between different emotions [59]. The time domain EEG signals for

different time segments and frequency response in different frequency bands are used for

emotions classification using EEG signals [59].

The analysis of time-domain EEG signals and the frequency domain response of different

frequency bands are mostly used for different physiological signal classification problems. I

analyzed different time segments of EEG signals along with their frequency responses and
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the band-passed signals in different frequency bands.

Figure 4-2 shows the time-domain plot of Subject # 01 in the DEAP data set for F7

channel. Figure 4-2 (a) shows the EEG signal for emotional trial # 11 with valence and

arousal values of 2.99 and 2.36, respectively. The valence and arousal values of 2.99 and

2.36 correspond to low valence and low arousal (LVLA) with the selected threshold values.

Figure 4-2 (b) shows the EEG signal for emotional trial # 15 with valence and arousal values

of 3.17 and 8.08, respectively. The valence and arousal values of 3.17 and 8.08 correspond

to low valence and high arousal (LVHA) with the selected threshold values. Figure 4-2 (c)

shows the EEG signal for emotional trial #22 with the valence and arousal values of 7.09

and 2.08, respectively. The valence and arousal values of 7.09 and 2.08 correspond to high

valence and low arousal (HVLA) with the selected threshold values. Figure 4-2 (d) shows

the EEG signal for emotional trial #25 with the valence and arousal values of 8.86 and 7.21,

respectively. The valence and arousal values of 8.86 and 7.21 correspond to high valence

and high arousal (HVHA) with the selected threshold values.

The extensive analysis of different time domain EEG segments for LVLA, LVHA, HVLA,

or HVHA does not show any visible markers to differentiate between low and high, valence

or arousal labels. The EEG signals were then band-passed from different frequency bands

including theta, alpha, beta, and gamma band. Figure 4-3 shows the selected 15-second

segment of the band-passed EEG signal of F7 channel in alpha, beta, and gamma bands

for emotional trial numbers 11 (LVLA), 15 (LVHA), 22 (HVLA) and 25 (HVHA) in subject

#01 from DEAP data set. The naked-eye observations of the band-passed signals also did

not show any visible information to differentiate between low and high valence or arousal

labels.

Similarly, Figure 4-4 shows the selected 15-second segment of the frequency response of

the EEG signal of F7 channel in alpha (4-8 Hz), beta (12-30 Hz), and gamma (32-40 Hz)

bands for emotional trial numbers 11 (LVLA), 15 (LVHA), 22 (HVLA), and 25 (HVHA) in

subject #01 from the DEAP data set. The frequency response of the EEG signals also did

not show any visible markers to predict the low or high valence and arousal labels using

EEG signals. Therefore, complex ML or deep learning algorithms are required to extract

the deeply unobserved information for emotion prediction using EEG signal [59].

The majority of the previous works in EEG-based emotion classification are on an al-

gorithmic level (software-based) as discussed previously in Chapter 3. The software-based
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Figure 4-2: Time Domain Plot for (a) Low Valence Low Arousal (b) Low
Valence High Arousal (c) High Valence Low Arousal and (d) High Valence
High Arousal.

43



Figure 4-3: EEG plots in Alpha, Beta, and Gamma Bands for (a) Low
Valence Low Arousal (b) Low Valence High Arousal (c) High Valence Low
Arousal and (d)High Valence High Arousal.
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Figure 4-4: EEG Frequency Response in Alpha, Beta, and Gamma Bands
for (a) Low Valence Low Arousal (b) Low Valence High Arousal (c) High
Valence Low Arousal and (d)High Valence High Arousal.
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algorithms have much flexibility in terms of the number of EEG channels, the number, and

complexity of features, and the complexity of classification algorithm [66]. The previous

works have utilized the maximum (64) number of EEG channels, a large number of com-

plex features (HOC, HJ, HHT, STFT), or complex neural networks for emotions prediction

[46],[45]. Since the primary target of these algorithms is to achieve the maximum classifica-

tion results, they can utilize the maximum EEG channels along with large complex feature

vectors and complex classification algorithms. However, a wearable SoC-based DBE proces-

sor has stringent constraints for the area, classification energy, and channel count [26], [38],

[39]. Therefore, a hardware realizable feature vector utilizing limited EEG channels with a

hardware feasible classification algorithm is required for our negative emotions prediction

DBE processor’s algorithm [66].

4.2 Negative Emotions Prediction Processor Algorithm

4.2.1 EEG Channels Selection

The channel selection is the process of choosing a subset of EEG channels suitable for

emotions classification from the complete set of 32 or 64 channels provided in the data

set [59]. The channel selection is a key procedure for the on-sensor integration of the

proposed processor, which requires a limited number (≤ 16) of channels [67]. The on-sensor

integration is required for efficient hardware implementation [67]. It is targeted to provide

a wearable system for real-time negative emotion prediction [38], [39]. However, reducing

the number of channels can lower the classification accuracy due to exclusion of useful

information [66]. Therefore, it is important to analyze the effect of each channel on the

classification results [66].

Channel selection involves the selection of a minimum number of channels without com-

prising the classification results. I therefore initially investigated the complete set of 32

EEG channels in the DEAP data set with different features. The complete set of 32 chan-

nels provided the best-case classification results of 54% accuracy. The complete set of 32

EEG channels is highly unfeasible for a wearable SoC implementation, in addition to the

low classification results. The number of EEG channels being utilized for a wearable SoC

system is a key to a feasible hardware implementation [26]. The reduction in the number

of EEG channels directly affects the hardware complexity. Therefore, it is desired to utilize
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the minimum number of EEG channels.

The channel reduction process requires finding the minimum number (1 < N ≤ 32) of

channels from the total set of 32 or 64 channels [24], [68]. The large channel count is not

feasible due to high area, classification energy, and patient discomfort for wearable SoC

systems [67]. I, therefore, targeted to utilize ≤ 16 EEG channels. Reducing the number

of EEG channels directly lowers the hardware complexity and patient’s discomfort [66].

Therefore, different combinations of 1, 2, 4, 8, and 16 EEG channels were investigated for

negative emotion prediction. The frontal and temporal scalp locations are more suitable for

the emotions prediction, based on the classification results and the patient’s comfort [69]. A

subset of 16 channels (FP1, AF3, F3, F7, FC5, FC1, T7, FP2, AF4, Fz, F4, F8, FC6, FC2,

T8, and C4) including 15 frontal and temporal channels provided the best classification

results among different 16 channel subsets.

The 16-channel subset (FP1, AF3, F3, F7, FC5, FC1, T7, FP2, AF4, Fz, F4, F8, FC6,

FC2, T8, and C4) with the best case classification results was used to further reduce the

channel count. Different subsets of 1, 2, 4, and 8 channels were utilized from these 16 chan-

nels. An eight-channel pool (F3, F4, F7, F8, AF3, AF4, T7, and T8) of electrodes provided

the maximum classification results as compared to other 1,2,4 and 8-channel combinations.

The classification results of the selected combinations of EEG channels, scalp placement

locations of these channels, and their locations on the 10-20 placement system are shown

in Figure 4-5. The temporal and forehead locations of EEG electrodes are more feasible

for the long-term monitoring of the EEG data for ASD patients [70]. They are also less

frustrating for continuous wearable systems and are strongly linked with human emotions

and behaviors [59].

4.2.2 Feature Selection

The complexity of the FE algorithm would directly impact the overall area and energy

of the negative emotions prediction DBE processor [38],[39]. The software-based systems

on the other hand do not have any such limitations. Therefore, it is critical to analyze

the hardware implementation cost of the features in addition to the classification results

[38],[39]. The EEG signal of one-minute duration was used as a feature vector initially.

Different ML classification algorithms were applied for the negative emotions prediction.

The best-case classification algorithm obtained with this feature vector was ≊ 75%. But
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Figure 4-5: Scalp Locations of Selected Electrodes & Classification Re-
sults.

this feature vector is unrealizable from a hardware designer’s perspective. It would require

huge on-chip memory (> 1MB) for the FLP weights to be uploaded on-chip for the negative

emotions prediction.

The number of features extracted per EEG channel also affects the hardware cost. I

decided to limit it to four features per EEG channel. A set of different features including

mean, root mean square, standard deviation, variance, Kurtosis, Hjorth parameters, en-

tropy, and PSD in different frequency bands was experimented. The estimated hardware

cost including area (number of gates) and the power consumption was calculated using

TSMC 180 nm CMOS process. Table 4.1 lists some of the experimented features with the

highest importance in different feature combinations and the classification accuracy for neg-

ative emotions prediction with a synthesized area (number of gates) and power using 180

nm CMOS process.

Common spatial patterns (CSP), wavelet transforms and PSD features provided maxi-

mum classification results for negative emotions prediction. The hardware implementation

of the CSP requires covariance matrices with huge (> 5MB) memory requirements. There-

fore, this feature vector was not selected. A feature vector containing PSD, AIHPD, and

IHPR of EEG signals in the beta band (12 Hz to 30 Hz) was selected as shown in equation
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Table 4.1: Features and Estimated Hardware Resources.

Feature CLS Accuracy Area* Power*

(# of Gates) (uJ)

Mean 55% 0.49k 10

Root Mean Square 50% 1.05k 30.3

Standard Deviation 60% 1.12k 22.2

Variance 45% 2.68k 50.04

Common Spatial Pattern 55% 11.75k 185

Hjorth Parameters 75.3% 8.06k 150.1

Entropy 68.3% 4.25k 78.3

PSD, AIHPD, IHPR 71.3% 1.71k 34.2

PSD, AIHPD, LIHPR 73.4% 1.37k 20.1

4.1.

The PSD is the spectral power of an EEG signal in a specific frequency band. The beta

band ranging from 12 Hz to 30 Hz was used for our DBE1 negative emotions prediction

processor. AIHPD is the absolute difference of the PSD for the selected channels on the

left(PSDLeft) and right (PSDRight) side hemispheres. IHPR is the ratio of the PSD among

selected channels on the left(PSDLeft) and right (PSDRight) side hemispheres. PSDLeft is

the PSD of the left side hemisphere EEG channels. PSDRight is the PSD of the right side

hemisphere channels. Equations 4.2, 4.3, 4.4, 4.5, and 4.6 are used to calculate the PSD,

AIHPD, IHPR, PSDLeft, and PSDRight, respectively.

FV =

[
{PSD, IHPR,LIHPR}

]
(4.1)

PSD =

[ N∑
i=0

[Xn]

]
(4.2)
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AIHPD =

[
|PSDLeft − PSDRight|

]
(4.3)

IHPR =

[
PSDLeft

PSDRight

]
(4.4)

PSDLeft =

[
PSD{T7, F7, F3, AF3}

]
(4.5)

PSDRight =

[
PSD{T8, F8, F4, AF4}

]
(4.6)

A floating point (FLP) divider is required for the implementation and realization of

equation 4.4. The FLP divider unit consumes high area and power, due to which division

operations are avoided in hardware applications [71]. Therefore, to avoid the FLP division

operation, and design a hardware feasible solution, it is required to approximate the IHPR

feature without compromising the classification results.

IHPR was replaced by SIHPR initially [72]. SIHPR is a scaled ratio between PSDLeft

and PSDRight to avoid IHPR values lesser than 1 as shown in equation 4.7. The value of k

was selected in way to ensure SIHPR ≥ 1. The SIHPR provided good classification results

(63% accuracy). However, this approximation of IHPR did not validate on multiple data

sets including SEED data set [36].

SIHPR =

[
PSDLeft

PSDRight
∗ k
]

(4.7)

Equation 4.4 for the IHPR feature can be rewritten as 4.8 and 4.9 using the differ-

ence conversion property of logarithms [73]. Equation 4.9 can be further simplified as

4.10 and 4.11. The LIHPR is the logarithm of the IHPR as shown in equation 4.12.

The ratio-to-difference conversion properly of the logarithms is beneficial for the hard-
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ware implementation of LIHPR using look-up-table (LUT) implementation. The hardware

implementation of log2(PSDLeft ÷ PSDRight) for equation 4.8 requires the storage of all

possible combinations of log2(PSDLeft ÷ PSDRight). However, the hardware implemen-

tation of log2(PSDLeft) − log2(PSDRight) for equation 4.9 only requires the storage of

log2(PSDLeft) or log2(PSDRight), if both (PSDLeft) and (PSDRight) have a similar range.

Therefore, the calculation of LIHPR using the ratio-to-difference conversion property of

logarithms requires only a square root of the memory required without using this property.

IHPR =

[
2
log2(

PSDLeft
PSDRight

)
]

(4.8)

IHPR =

[
2log2(PSDLeft−log2PSDRight)

]
(4.9)

IHPR =

[
2
log2(

PSDLeft

PSDRight
)
]

(4.10)

IHPR =

[
2LIHPR

]
(4.11)

LIHPR =

[
log2(

PSDLeft

PSDRight
)

]
(4.12)

The IHPR feature requires the calculation of the power of 2 (2∧) or anti-log base 2 of the

IHPR as shown in equation 4.11. Therefore, the original IHPR feature was approximated

with the LIHPR. The IHPR feature is embedded inside the LIHPR feature, which can be

retrieved by the anti-log base 2 operations. Moreover, the LIHPR feature does not hamper

the classification results in comparison to IHPR.

The IHPR and LIHPR of a subject (subject # 27) in the DEAP data set for two EEG

channels (F7, F8) is shown in Figure 4-6. Figure 4-6 (a) and Figure 4-6 (b) show the
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increasing trend of IHPR and LIHPR, respectively. The IHPR and LIHPR for a constant

PSDRight and variable PSDLeft values in ascending order are shown in Figure 4-6 (a) and

Figure 4-6 (b), respectively. The X-axis shows the index of the sorted IHPR and the Y-axis

shows the IHPR and LIHPR. It can be observed that the IHPR and LIHPR follow a similar

trend within a different range of values. Similarly, Figure 4-6 (c) and Figure 4-6 (d) show

the decreasing trend of IHPR and LIHPR, respectively. The X-axis shows the index of

the sorted IHPR and the Y-axis shows the IHPR and LIHPR. The IHPR and LIHPR also

follow a similar decreasing trend. The proposed LIHPR feature reduces the gate count and

power consumption by 4.7X and 1.5X, respectively, as compared to IHPR. Therefore, we

utilized the LIHPR feature for our negative emotions prediction processor DBE1.

4.2.3 Feature Normalization

The selected features including PSD, AIHPD, and LIHPR follow a quite different range of

values. The ML algorithms can assign higher significance to the features with higher values

without feature normalization [74]. Feature normalization is an important ML process in

which all the features are transformed into a uniform range. The uniform range of feature

values ensures the equal importance of each feature during classifier training [74]. I have

used the Z-score feature normalization technique for the feature normalization. The feature

vector including sixteen features for the selected eight channels is normalized to a uniform

range with zero mean and unit variance using the equation 4.13.

NFV =

[
FV − µFV

σFV

]
(4.13)

FV represents the extracted feature vector, µFV represents the mean of the extracted

features and σFV represents the standard deviation of the extracted features. The clas-

sification results for our negative emotions prediction processor DBE1 were significantly

improved (≥ 10%) after feature normalization. The normalized feature vector (NFV) is

then forwarded to the selected classification algorithm for negative emotions prediction.
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Figure 4-6: (a) Interhemispheric Power Ratio for Increasing Trend (b)
Logarithmic Interhemispheric Power Ratio for Increasing Trend (c) In-
terhemispheric Power Ratio for Decreasing Trend (d) Logarithmic Inter-
hemispheric Power Ratio for Decreasing Trend.

4.2.4 Classifier Selection

A ML classification algorithm is used to predict the label using the selected features. The

classifier selection is a composite procedure and depends on a trade-off between classification

results and the hardware complexity for on-chip ML processors and hardware applications

[38],[39]. The selected features were utilized for negative emotions prediction with different

ML classification algorithms. The ML classification algorithms include LR, DT, SVM with

linear and RBF kernel, KNN, and NB classifier. Figure 4-7 shows the classification results

for negative emotions prediction using DEAP data set with different ML classifiers using
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selected features.

The SVM classifier with linear and RBF kernel provided the best classification results.

The SVM classifier finds a hyperplane in a k-dimensional space to separate the two classes

for binary classification using different kernel functions [75]. The kernel function is used

to convert linearly inseparable data to a separable form [76]. The linear SVM classifier

consumes less computational energy as compared to the RBF kernel [77]. The on-chip clas-

sification parameters storage using the RBF kernel requires ≈ 165X memory as compared

to the linear SVM classifier using the selected features. Therefore, I selected the linear

SVM classifier for the negative emotions prediction DBE processor (DBE1). The choice of

classification algorithm was based on the classification results and the feasibility of on-chip

implementation of DBE1.

Figure 4-7: Classification Results with Different Machine Learning Clas-
sifiers.
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4.3 Negative Emotions Prediction Processor Hardware Im-

plementation

The hardware architecture of the proposed negative emotion prediction SoC consists of an

AFE, a successive approximation analog-to-digital converter (SAR-ADC), the pre-processing

unit (PPU), a feature extraction engine (FEE), and a classification unit (CFU). The AFE

utilizing a low-noise capacitive coupled instrumentation amplifier (CCIA) and programmable

gain amplifier (PGA) is integrated with DBE1 processor [27]. The amplified EEG data is

digitized by utilizing a 10-bit SAR-ADC, multiplexed among all channels. The digitized

EEG signals are then fed to the DBE1 processor designed for negative emotions prediction.

Figure 4-8 shows the overall architecture of the negative emotions prediction SoC device.

TheDBE1 processor is highlighted in a red colored box. The EEG data acquired using AFE

is forwarded to the DBE1 processor for negative emotions prediction. The DBE1 processor

first preprocesses the EEG data to remove noise and other artifacts. The preprocessed data

is then forwarded to the FEE. The FEE calculates the PSD, IHPD, and LIHPR features for

the selected EEG channels. The features are then forwarded to the feature normalization

unit (FNU). The FNU normalizes the extracted features to a uniform range with zero mean

and unit variance. The normalized features are then forwarded to the linear SVM CFU for

valence and arousal classification, and then negative emotions prediction.

The CFU utilizes the training parameters acquired after offline learning. The parameters

are uploaded to the parameter register inside the CFU. The binary valence and arousal

classification performed by the CFU is transmitted to a mobile phone using low-power

Bluetooth communication module for negative emotions prediction. The low or high valence

and arousal labels are used for negative (sad, angry) or positive (relaxed, happy) emotions

prediction.

4.3.1 EEG Pre-Processing Unit

The raw EEG data sampled at 4096 samples/second provided by the AFE contains noise

and other artifacts (eye blinking, chewing, etc.). The EEG data is then down-sampled to

128 Hz using a programmable down-sampling unit (DS) unit. To minimize these artifacts

and noise, a mean average referenced (MAR) unit and a band-pass filter from 2-60 Hz are

utilized.
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Figure 4-8: Negative Emotions Prediction Processor Architecture
(DBE1).

4.3.2 Feature Extraction Engine

The FEE is used to calculate the selected features including PSD, AIHPD, and LIHPR

from preprocessed EEG signals. Figure 4-9 shows the hardware architecture of the FEE.

The calculated features (FV1 − FV16) are forwarded to the feature normalization unit for

Z-score normalization. The normalized features (NFV1 − NFV16) are then forwarded by

the feature extraction unit for negative emotions prediction to the CFU.

The EEG data of the selected eight channels is forwarded to the FEE. A 3-bit channels

selection input (ch-sel) is used to indicate the selected channel. A 3-bit comparator followed

by a 3-bit flip flop indicates the change in the channel to reset the feature calculation. The

incoming EEG data of the eight channels are sequentially forwarded to the FEE. This

utilized 8X times lower area and input pins than a parallel implementation. A bandpass

filter is used to calculate the PSD feature in the beta band (12-30 Hz). The bandpass filter

is implemented using a finite impulse response filter of the 50th order utilizing the least
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Figure 4-9: Feature Extraction Engine Hardware Architecture.

square method to minimize the number of filter coefficients. The passband and stopband

frequencies of the filter are 0db and -43db, respectively, to maximize the signal-to-noise ratio

(SNR). PSD is calculated by accumulating the absolute values of the band-passed EEG

signal using a 32-bit integer accumulator and absolute unit (ACCM-ABS). The output of

the ACCM-ABS is quantized to 16 bits and stored in a memory block (MEM-PSD) of 8 x

16 bits as P1-P8. The ch-sel provides the address input for the MEM-PSD.

The PSD for the four right and left hemisphere pairs (P1−P2, P3−P4, P5−P6, P7−P8)

are forwarded for the AIHPD, and LIHPR calculation using two 4-to-1 multiplexers and ch-

sel. AIHPD and LIHPR are calculated by absolute subtraction (ABS-SUB) and logarithmic

division units (LDU), respectively as shown in Figure 4-9.
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AIHPD and LIHPR Implementation

AIHPD is calculated using a 16-bit subtractor and substituting the sign bit with zero.

AIHPD is stored in a memory block (MEM-AIHPD) of 4 x 16 bits as D1-D4 using ch-sel as

address input. The hardware implementation of the LIHPR feature requires a logarithmic

unit to calculate the logarithm function. The logarithm function is usually implemented by

a LUT, piecewise approximation, or CORDIC algorithm [78].

Figure 4-10 shows the architecture of the LDU for LIHPR calculation. The PSD values

of the selected channels follow a different range. The conventional implementation of the

logarithmic unit using LUT for LIHPR calculation requires a huge (> 1MB) amount of

memory. Therefore, the PSD values of the selected channels are down-scaled and rounded

off to a uniform range (0-1023) using a feature downscaling and rounding unit. Equation

4.14 is used to downscale and round the features to a uniform range.

PDS =

[
(P − PMIN ) ∗ RMAX −RMIN

PMAX − PMIN
+RMIN

]
(4.14)

P represents the PSD value, and PDS represents the downs scaled PSD value. RMAX and

RMIN are the maximum and minimum values of the targeted range of values, which are 0

and 1023, respectively, in this case. PMAX and PMIN represent the maximum and minimum

PSD values for each channel. Since RMAX and RMIN are constant numbers, equation 4.14

was simplified as equation 4.15 and then 4.16 for hardware implementation. RMXMNDIFF

and PMXMNDIFF are the differences of RMAX , RMIN , and PMAX , PMIN , respectively in

equation 4.15. RPMXMNDIFF is the ratio of RMXMNDIFF and PMXMNDIFF in equation

4.16. Equation 4.16 is expanded as 4.17, which is further simplified as equation 4.18.

PDS =

[
(P − PMIN ) ∗ RMXMNDIFF

PMXMNDIFF
+RMIN

]
(4.15)

PDS =

[
(P − PMIN ) ∗RPMXMNDIFF +RMIN

]
(4.16)
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PDS =

[
P ∗RPMXMNDIFF−(PMIN ∗RPMXMNDIFF+RMIN )

]
(4.17)

m PDS =

[
(P ∗ SPx)− SPy

]
(4.18)

PDSR =

[
round(PDS)

]
(4.19)

Figure 4-10: Logarithmic Division Unit for Logarithmic Interhemispheric
Power Ratio Calculation.

SPa and SPb are the scaling parameters for each EEG channel. These scaling parameters
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are uploaded to the parameters register along with classification parameters. Sixteen scaling

parameters (SP1 − SP16) are uploaded for the selected subset of eight channels.

The LIHPR of PSD in comparison to LIHPR of down-scaled and rounded-off PSD

values (PSDDSR) is shown in Figure 4-11. The LIHPR(PSDDSR) has a much narrower

and smaller range as compared to the LIHPR(PSD) and appears as a constant value as

shown in the top part of Figure 4-11. However, if the value is zoomed in, it can be observed

that it follows a similar trend in a narrower range (0-80). The graph of PSDDSR in the

smaller range can be seen in the bottom part of Figure 4-11. Therefore, we have utilized the

LIHPR(PSDDSR) instead of LIHPR(PSD) for our negative emotions prediction DBE

processor DBE1.

The range of bits for PSDDSR has a direct impact on the hardware resources and the

classification results. If the PSD values are down-scaled and rounded off to a wider range, the

LIHPR(PSDDSR) provides a better approximation to the actual LIHPR (PSD). However,

it would also utilize higher hardware resources. I, therefore, analyzed the classification

results along with a variable number of bits for the LUT storage to calculate LIHPR.

Figure 4-12 shows the effect of quantization of the number of bits of LUT for LIHPR

implementation. The valence and arousal prediction results against the variable size of the

LUT to calculate LIHPR(PSDDSR) is shown in Figure 4-12 (a). It was observed that the

classification results were not affected if the number of bits for the LUT index is reduced

from 16 bits (64k elements) to 10 bits (1k elements). However, if the number of bits for the

LUT index is further reduced, the classification results are degraded (> 5%). Therefore,

a LUT with 10 bits index (1024 elements) is used for the LIHPR(PSDDSR) calculation.

This quantization of the number of bits for the LUT index reduces the memory requirement

for LUT from 1MB to 16KB as depicted in Figure 4-12 (b). The proposed LDU for LIHPR

calculation replaces the division operation with 34% lesser area compared to piece-wise

linear and CORDIC algorithms for the division. But, the proposed implementation cannot

be used for the general division and is customized for this ML application.

Feature Normalization Unit

The feature normalization unit in Figure 4-9 calculates the normalized features as defined

in equation 4.13. The µFV and 1/σFV of the selected features are acquired from the

parameter registers as normalization parameters N1-N16 and N17-N32, respectively. Two
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Figure 4-11: Logarithmic Interhemispheric Power Ratio (Power Spectral
Density) & Proposed Logarithmic Interhemispheric Power Ratio (Down
Scaled and Rounded Off).
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Figure 4-12: (a) Number of Bits for Look Up Table Index & Classifi-
cation Results (b) Number of Bits for Look Up Table Index & Memory
Requirement.

16-to-1 multiplexers are used to select the normalization parameters Na and Nb for each

feature. A 4-bit counter is used for the selection input of these multiplexers.

The normalized feature vector (NFV1−16) is stored in a memory block (MEM-FV) of

16 x 16 bit FLP numbers and then forwarded to the CFU for negative emotions prediction.

The CFU utilizes the normalized features along with patient-specific and pre-uploaded

classification parameters for negative emotions prediction.

4.3.3 Classification Parameters Upload

Patient-specific or subject-dependent classification parameters are uploaded to a parameters

register for the negative emotions prediction. The parameter uploading is performed using

write-enable (WE), strobe (STB), write data in (WDIN), write data out (WDOUT), and

write done (WDONE) inputs and outputs in negative emotions prediction SoC. The WEN

and STB initiate the parameters uploading serially through WDIN. The WDONE indicates

the completion of parameters uploading.

Figure 4-13 shows the parameter uploading process which starts when the STB and

WEN inputs are asserted after reset. Figure 4-13 (a) shows the state diagram and the

timing diagram for the parameters upload. The default parameters are uploaded to the

parameters register if the user does not want to upload new parameters. The parameters

62



Figure 4-13: (a) State & Timing Diagram for Parameter Uploading (b)
State Diagram for Emotions Prediction Processor.

are forwarded serially through WDIN input after asserting STB and WEN inputs. The

WDONE output indicates the completion of the parameter uploading process.

Figure 4-13 (b) shows the complete EEG-emotion classification process by a state di-

agram. The digitized and decimated EEG data is forwarded to the FEE to calculate the

feature vector. The classification parameters are acquired from the parameter register and

uploaded serially as explained earlier. The feature vector and the classification parameters

are forwarded to the linear SVM CFU for negative emotions prediction using valence and
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arousal classification. The valence and arousal classes determine the negative (sad, angry)

or positive (happy, relaxed) emotions.

4.3.4 Classification Unit Implementation

The CFU calculates the labels of valence and arousal as positive (one) or negative (zero)

using a linear SVM classifier. The NFV1−16 and pre-loaded classification parameters (VAL-

P and ARR-P) for valence and arousal, respectively, are forwarded to the CFU by FEE

and parameter register, respectively. A 40 kHz clock (iCLK) is used to select the VAL-P or

ARR-P using a 2 x 1 multiplexer. An LSVM classifier is utilized to ensure area-and-power-

optimized hardware implementation.

Linear SVM performs a binary classification using weights (W), the scaled feature vector

(H), and bias (B), defined in equations 4.20-4.23. H1−16 is obtained by adding the scale shift

(SS1−16) to the normalized feature vector (NFV1−16) and then multiplying the intermediate

vector named K1−16 with scale factor (SF1−16) as in equations 4.20 and 4.21. The SS1−16,

SF1−16, W1−16 and, B are extracted from the 784-bit valence and arousal classification

parameters (VAL-P or ARR-P) as depicted in Figure 4-14.

K1−16 =

[
NFV1−16 + SS1−16

]
(4.20)

H1−16 =

[
K1−16 ∗ SF1−16

]
(4.21)

Y1−16 =

[ 16∑
n=0

Wn.Hn +B

]
(4.22)

V alence/Arousal =


1, if Y < 0

0, if Y ≥ 0

(4.23)
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Figure 4-14: Classification Unit Hardware Implementation.

Figure 4-14 shows the architecture of the hardware unit for linear SVM classifier imple-

mentation. Two 16-bit FLP multipliers (FPT-MUL), one 16-bit FLP adder (FPT-ADD)

and one 16-bit FLP accumulator (FPT-ACCM) are used to implement the equations 4.20-

4.22. Three 16 x 1 multiplexers are used to select the SSx, SFx, Wx, and Hx from

SS1−16,SF1−16, W1−16, and H1−16, respectively. The selection input (P-SEL) of the multi-

plexer is derived by a 4-bit counter.

The valence and arousal label is calculated using a sign bit of Y (SBY ) in equation

4.23. The SBY is stored in a memory block (MEM-VA) of 2 x 1 bit for valence and arousal

classification. Finally, negative or positive emotion is determined using a 2-to-4 decoder

based on the valence and arousal classification.
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4.4 Classification Performance & Measurement Results

The classification performance of the proposed negative emotions prediction processorDBE1

is evaluated using classification accuracy, sensitivity, and specificity. The classification ac-

curacy represents the ratio of correct predictions. It is calculated from the number of true

positive (TP), true negative (TN), false positive (FP), and, false negative (FN) predictions

performed. The TP represents the classes that are positive in actual and are truly predicted

as positive by the classifier. The TN represents the classes that are negative in actual and

are predicted negative (truly) by the classifier. The FP represents the classes that are ac-

tually negative and are predicted positive (falsely) by the classifier. The FN represents the

classes that are actually positive and are predicted negative (falsely) by the classifier. The

formulas for the calculation of classification accuracy, specificity, and sensitivity are shown

in equations 4.24, 4.25, and 4.26, respectively.

Classification Accuracy =

[
TP + TN

TP + TN + FP + FN

]
(4.24)

Sensitivity =

[
TP

TP + FN

]
(4.25)

Specificity =

[
TN

TN + FP

]
(4.26)

The summary of the overall classification results is shown in Table 4.2. The classifica-

tion accuracies of 72.96% and 73.14% were obtained for the DEAP data set for valence and

arousal classification, respectively. The classification accuracy of 70.71% was obtained for

the valence classification using the SEED data set. The best-case patient-specific classifica-

tion accuracy reported for DEAP and SEED data sets are ≈ 90% and 100%, respectively.

The sensitivity and specificity of 73.0% and 73.1%, respectively, are achieved using the

DEAP data set, whereas, the sensitivity and specificity of 70% and 71.4%, respectively, are

achieved using the SEED data set.
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Table 4.2: Classification Results for DBE1 Negative Emotions Prediction Processor.

Data Set Valence Arousal

DEAP 72.96% 73.14%

SEED 70.71% —–

Figure 4-15 shows the patient-specific or subject-dependent classification results for

DEAP data set. The classification results of all subjects in the DEAP data set for valence

and arousal classification are shown in Figure 4-15 (a) and 4-15 (b), respectively. The

subject-wise patient-specific classification results of this negative emotions prediction DBE

processor DBE1 using the SEED data set are shown in Figure 4-16.

The classification results are evaluated using the leave-one-out cross-validation method.

Cross-validation is the process of validating the trained ML classification model against

unknown EEG data to avoid over-fitting. K-fold and leave-one-out validation methods

are most widely used for emotion classification processors [59]. The leave-one-out cross-

validation scheme trains the classifier on all emotion labels except one label and repeats

this process for all labels of a subject. I chose this validation scheme because of its lower

dependence on the data partitioned during the train and test split and a variable number

of positive and negative classes for each subject.

4.4.1 Measurement Results

The measurement results represent the testing of the proposed negative emotions prediction

processor. Figure 4-17 demonstrates the measurement result of two scenarios of negative

and positive emotions. The negative and positive emotions correspond to negative valence

with positive arousal and positive valence with positive arousal corresponding to angry and

happy emotions, respectively. It shows the 15 seconds of selected eight EEG channels for

the trials (subject # 8) from the DEAP data set.

The EEG signals of the selected channels are forwarded to the negative emotions pre-

diction processor. A feature vector compromising PSD, AIHPD, and LIHPR is calculated

by the FEE. The calculated features are then Z-score normalized by the feature normaliza-
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Figure 4-15: Subject-Wise Classification Results using DEAP for (a) Va-
lence Classification (b) Arousal Classification.

tion unit. The normalized feature vector is forwarded to the linear SVM CFU for positive

or negative emotions prediction using valence and arousal labels. The classification of low
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Figure 4-16: Subject-Wise Classification Results using SEED Data Set.

valence and high arousal (sad emotion) matches the original labels of low (1.21) valence

and high (7.94) for valence and arousal, respectively as shown in Figure 4-17 (a). Similarly,

another EEG segment corresponding to a happy emotion (high valence, high arousal) is

shown in Figure 4-17 (b). The classification of high valence and high arousal matches the

original labels of high (8.15) valence and high (6.96) arousal.

4.4.2 Chip Performance Summary

The chip performance summary summarizes the performance of the SoC implementation of

this proposed negative emotions prediction processor. DBE1 negative emotions prediction

DBE processor is fabricated using TSMC 0.18µm 1-Poly-6-Metal (1P6M) CMOS technol-

ogy. The chip micrograph and the performance summary of DBE1 are shown in Figure

4-18.

TheDBE1 was implemented with an active area utilization of 5.4mm2 including the area

utilization of 3.6mm2, 1.4mm2, and 0.4mm2 for the FEE, CFU, and the support vector

cache (SVC), respectively. The support vector cache represents the parameters register

for classification parameters. It stores the classification parameters. The classification
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Figure 4-17: DBE1 Negative Emotions Prediction Processor Measure-
ment Results for (a) Angry (b) Happy Emotion on a Subject in DEAP.

parameters are obtained during classifier training (offline) and are uploaded to the system

as explained earlier. The supply voltage of 1.0 V was used for this SoC implementation.

The proposed SoC performs the negative emotions prediction with the power and energy

utilization of 2.04mW and 16µJ/prediction, respectively using eight EEG channels.
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Figure 4-18: Chip Micrograph & Performance Summary of System.

Classification Energy and Battery Time Calculation

The total power consumption of the DBE1 synthesized on a 1 MHz clock frequency is 2.04

mW, which down-scales to ≈ 2088µW with a 1 kHz clock frequency. The power of a system

is defined as the energy per unit of time. Therefore, the energy utilization of the DBE1

per prediction can be calculated by multiplying the power by the number of time units

consumed per prediction, which is approximately 16µJ/prediction. The total estimated

backup time of a battery can be calculated as equation 4.27. The estimated battery time in

hours for DBE1 processor using a coin cell battery of size, voltage, and area of 20 mm, 3 V,

and 250 mAH, respectively is calculated in equation 4.28, which is ≈ 367 Hrs. Considering

the aging factor and other losses of 50%, the estimated time would be ≈ 183 Hrs or 7 days.

Estimated Backup T ime(Hrs) =

[
Battery Capacity X Input V oltage

Total Load

]
(4.27)

Estimated Backup T ime(Hrs) =

[
250mAH Capacity X 3V

2088µW

]
(4.28)
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Table 4.3: Comparison With the State-of-The-Art Works.

S. Koelstra H. Ullah W.Fang W.Zheng H. Soleymani DBE1

[24] [79] [26] [68] [49] [38]

Hardware No No Yes (28nm) No No Yes(0.18µm)

Area — — 3.35mm2 — — 5.4 mm2

Power/Energy — — 76.61mW — — 16µJ

Data Set(s) DEAP DEAP DEAP DEAP,SEED MAHNOOB DEAP, SEED

Ch. Count 32 Variable 6 32 32 8

Classifier NB SVM CNN GELM LSTM SVM

Accuracy (%) 59.8 73.8 80.1 80.4 82.5 74

Multiple BM-DS No No No Yes No Yes

4.4.3 Performance Comparison

The proposed DBE1 DBE processor was the first fully integrated on-chip processor for

negative emotions prediction. The performance comparison of the DBE1 negative emotions

prediction processor with the previous state-of-the-art works is summarized in Table 4.3.

S.Koelstra [24] performed the emotions classification using 32 EEG channels. They

achieved the average classification results of 59.8% using a naive Bayes classification al-

gorithm and DEAP data set. They did not provide any hardware implementation of the

system and the system was software-based. The system was validated on only one data set

(DEAP), and the algorithm was not validated on multiple BM-DS.

H. Ullah [79] reported the average classification results of 73.8% for the emotions pre-

diction using a linear SVM classifier and DEAP data set. They have used an automatic

channel selection mechanism, with a variable number of EEG channels, which is not suitable

for hardware implementation. They also lack multiple BM-DS validations.

W. Fang [26] is the only other hardware-based implementation for an emotions prediction

system targeting an SoC. The system was implemented using a 28nm CMOS technology

process. They achieved the average classification results of 80.1% for emotions prediction
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using a convolutional neural network classifier and DEAP data set. They utilized only 6

EEG channels for emotion prediction. The area and power utilization by this system were

3.35mm2 and 76.61mW, respectively. However, they did not provide a fully integrated SoC

or DBE processor. The features are calculated offline and then forwarded to the SoC for

emotion prediction. They also lack multiple BM-DS validations.

W.Zheng [68] proposed an emotions classification algorithm using DEAP and SEED data

sets. They achieved the average classification accuracy of 80.4% using a GELM classifier

[80]. Although, they have validated their system on multiple BM-DS. But, they also lack a

hardware implementation and have utilized a large number of EEG channels (DEAP=32,

SEED=64).

H. Soleyemani [49] provided the average classification result of 82.5% on a self-recorded

private data set (MAHNOOB) using LSTM classification. They have not utilized any

BM-DS to validate their emotions classification algorithm. They have also utilized a large

number (32) of EEG channels, and lack hardware implementation.

In this, first, fully integrated SoC implementation for a DBE processor (DBE1) for nega-

tive emotions prediction, a very good average classification accuracy of ≈ 74% was achieved

for multiple BM-DS including DEAP and SEED data sets. The DBE1 utilizes only eight

EEG channels with minimum power (2.04 mW), classification energy (16µJ/prediction),

and area (3.35mm2) with a fully integrated SoC solution.

4.5 Summary

In this chapter, I have explained the design ofDBE1 negative emotions prediction processor.

The DBE1 negative emotions prediction processor has the following novel points:-

• 1st fully integrated SoC-based 8-channel EEG-based emotion classification processor.

• Utilizes hardware-efficient linear SVM classifier.

• Can assist in the learning and cognitive development of ASD patients.

• Continuously detects human emotions using valence and arousal scales.

• Validated using well-known BM-DS including DEAP and SEED.

• Utilizes area-and-energy-efficient features including PSD, AIHPD, and LIHPR.
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• Proposed approximated implementations of the FV with 4.7X reduced area.

• The LUT-based log-2 divider utilized for LIHPR is 34% more area-efficient.

• Provides very good classification results on DEAP (73.14%) and SEED (75.8%).

• Fabricated using TSMC 180nm CMOS process

• Consumes an overall classification energy of 16µJ at 1 kHz with a system latency of

< 0.8 min for every emotion prediction.

4.6 Conclusion

The proposed DBE1 negative emotions prediction processor provided very good (74%), but

not excellent (< 80%) classification results for negative emotions prediction. The system

was fully validated on DEAP data set and on randomly selected sessions in SEED data

set. The classification energy (16µJ/prediction) and the number of EEG channels (8) for

the negative emotions prediction was also high. In order to overcome these shortcomings,

a second-generation processor DBE2 was proposed and developed. The DBE2 processor

utilizes deep neural networks for emotion prediction. The detailed algorithm and hardware

architecture of DBE2 are explained in the next chapter (Chapter 5).
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Chapter 5

DBE2: 2nd Generation DBE

Processor for Negative Emotion

Outburst Prediction

The design of the 2nd generation DBE processor (DBE2) is presented in this chapter. The

challenges related to the processor design for the suitable channels, features with classifier

identification, and hardware implementation are discussed. The classification algorithm,

hardware implementation, and optimization of the identified features with the classifica-

tion algorithm to minimize the area, and classification energy of the proposed DBE2 are

explained in this chapter. Section 5.1 explains the process of emotion prediction using

EEG signals. The choice of data sets, labels for emotion prediction, and the challenges in

emotion prediction using EEG signals is explained in this section. Section 5.2 explains the

ML algorithm used for negative emotions prediction in DBE2. The selection of a suitable

subset of EEG channels, features, and classification algorithm selection are explained in this

section. Section 5.3 explains the hardware architecture for the SoC implementation of the

selected ML algorithm in DBE2. The overall architecture of DBE2, hardware implementa-

tion of EEG pre-processing unit, feature extraction engine including feature normalization

unit, classification unit, and the parameters register for classification parameters upload is

explained in this section. The classification performance of DBE2 including classification

results, chip performance summary, and performance comparison with the other state-of-
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the-art works are discussed in section 5.4. Section 5.5 summarizes the overall achievements

and shortcomings of DBE2.

5.1 Introduction

A primary challenge for ASD patients is emotional dysregulation and NEOB as discussed

earlier in chapter 1 and chapter 2. The early prediction of these NEOB’s can therefore

be used to control their effects by regulating emotion. The DBE2 NEOB prediction DBE

processor was therefore designed and developed. The DBE2 addresses and provides a

solution to the shortcomings of previous solutions including DBE1. The shortcomings

of previous solutions include low classification results, limited data set validation, a large

number of channels, high classification energy, large area, and lack of a fully-integrated SoC

solution.

ASD children face frequent and swift mood changes as compared to neurotypical or

typically developing children. Past research has shown that these emotional disorders are

not only key symptoms of ASD, but also associated with other core symptoms including

repetitive behaviors [15]. It is observed that ASD patients have constricted valence and

arousal scales as compared to typically developing children [15]. The Amygdala region of

the brain is primarily responsible for emotion processing, and ASD patients suffer from an

enlarged amygdala volume [81]. The aggression, anxiety, depression, and negative emotions

in ASD result from the atypical amygdala region and are reflected by narrower valence and

arousal scales [82].

The self-injurious emotions have reported higher levels of negative valence and high

arousal [83]-[84]. A NEOB is therefore defined to represent the self-harming emotions

with maximum valence negativity and maximum arousal [83], [84]. Each human emotion

is predicted as self-harming or non-self-harming emotion. The self-harming and non-self-

harming emotions are represented by emotions with NEOB and emotions without NEOB,

respectively. It has been observed that the electrical onset in EEG signals of the NEOB

occurs before the physical outcome [85]-[86].

The DEAP and SEED emotions prediction data sets are used for the NEOB prediction

[24]. The positive and negative valence and arousal for NEOB prediction are defined as

valence values between 7 to 9, and 1 to 3 respectively. A NEOB is defined as an emotion
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with minimum (negative) valence and maximum (positive) arousal. For example in subject

#1, the emotional trial numbers 31, 32, 34, and 35 are used to represent the NOEB in

DEAP data set [24].

Since the SEED data set only provides valence labels [36]. The negative valence values

were used to defined as NEOB. The emotional trials numbered 3, 4, 7, 12, and 15 correspond

to NEOB in the SEED data set for all subjects. Figure 5-1 is used to portray an ASD mind

with and without NEOB using valence and arousal scales.

Figure 5-1: (a) Valence Arousal Classification & Corresponding Emo-
tion, (b) Valence Arousal Thresholds & Minimum, Maximum Value (c)
ASD Patient’s Mind With Emotional Disorders (d) Constricted Valence
Arousal Scale.

Figure 5-1 (a) and Figure 5-1 (b) show the procedure to mark an emotion with NEOB
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or without NEOB (No NEOB) using DEAP data set and Russel’s valence arousal scale

[24], [34]. The positive and negative valence and arousal threshold values (1-3 and 7-9) are

used to mark NEOB, as depicted in Figure 5-1 (b). Figure 5-1 (c) portrays the brain of an

ASD patient for such emotional disorders dominated by negative emotions. The constricted

valence and arousal scales for NOEB can be handled by altering the minimum and maximum

valence and arousal scales as depicted in Figure 5-1 (d). The outer circle in Figure 5-1 (d)

portrays the valence and arousal scales of a neurotypical person. The inner circles portray

the constricted valence and arousal scales of an ASD patient. The change of threshold can

be handled by simply uploading new classification parameters as discussed earlier in section

4.3.3 for DBE1.

5.2 NEOB Prediction Processor Algorithm

Deep learning or DNN is a new dimension of ML, where the algorithms are inclined toward

human brain structure. DNN has recently shown great performance over conventional

ML algorithms for human emotions prediction [25]. The DNN eliminates the conventional

feature extraction process and the raw EEG data is directly fed to the DNN for classification

as discussed earlier in chapter 2 (Figure 2-6).

Despite the excellent results, the DNNs are mostly used for software-based systems and

avoided in hardware implementations targeting emotion prediction using EEG signals. The

few DNN-based hardware implementations have either used customized feature extraction

with DNN based classifier or the features are extracted offline [25]-[26]. The offline feature

extraction with the on-chip implementation for emotions prediction does not provide a fully

on-chip wearable implementation. The fully on-chip implementation of a DNN for emotions

prediction requires millions of classification parameters, and hence not feasible to provide

an ULP and miniaturized SoC. I, therefore, targeted a customized DNN implementation

after suitable feature extraction with a minimum number of channels. It was targeted to

implement the DBE2 NEOB prediction SoC with 2-4 low complexity features per EEG

channel utilizing two to four EEG channels.
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5.2.1 Limited Channel Selection

Previous research has proposed that the frontal lobe is highly related to negative emotions

[87]. The frontal lobe EEG channels are highly suitable for wearable systems for real-

time and continuous brain activity monitoring [88]. The frontal EEG electrodes are very

convenient and suitable for dry electrode headsets [88]. The dry electrode headsets with

frontal EEG channels can avoid the uncomfortable adjustment of electrodes through hair

[88].

I, therefore, targeted to utilize a subset of two to four EEG channels from the set of

frontal EEG channels (FP1, FP2, F3, F4, F7, F8, AF3, and AF4). F3 and F4 electrodes were

identified to be the most discriminating for NEOB prediction among these eight electrodes.

This channel combination is feasible for ASD patients due to minimal discomfort and unease

[88]. They utilized 9.5X fewer resources (gate count) compared to our previous eight-channel

pool [38], [72] using DNN. The selection of the most relevant and minimum number of EEG

channels eases the job for the feature extraction and classification algorithms to provide a

higher classification accuracy [39].

5.2.2 Feature Selection

The customized DNN-based NEOB prediction processor requires suitable features and DNN

architecture selection for NOEB prediction. A separate and dedicated feature set is selected

instead of conventional DNN implementation to avoid huge on-chip EEG data and parame-

ters storage [39], [89]. The feature selection process involves the selection of suitable feature

vectors which can utilize the real-time EEG signals for NEOB prediction with maximum

classification results. I analyzed a set of different time and frequency domain features for

the selected EEG channels. The experimented set of features includes mean, standard de-

viation, Kurtosis value, Hjorth parameters, Skewness (SKEW), ZCD, wavelet transforms

(db4), and spectral energy in different frequency bands.

A set of two time-domain features including SKEW and ZCD was selected for the NOEB

prediction after an extensive analysis between the classification results and the hardware

implementation cost. The hardware implementation cost was calculated using the area

(number of gates), and the power utilization of these features. The wavelet transform and

the feature vector including ZCD and SKEW provided the best classification results. But
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the hardware cost (area x power) of the wavelet transform was > 39X higher than the

feature set including ZCD and SKEW.

ZCD feature embeds useful information for emotions prediction [90]. SKEW is also one

of the most important statistical features for NEOB prediction [91]. The ZCD measures

the frequency of sign changes in the EEG signal. The SKEW represents the amplitude

regularity of the EEG signal. Equations 5.1 and 5.1 are used to calculate the ZCD and

SKEW respectively. The SKEW is calculated after the calculation of mean(µ) and standard

deviation (σ) of the EEG signal. k is an integer value that varies from 1 to N in equations

5.1 and 5.2. N is the total number of EEG samples. EEGk and EEGk−1 are used to

represent the current and preceding EEG samples, respectively. µEEG and σEEG are used

to represent the mean and standard deviation of the EEG signal respectively.

ZCD =

[ N∑
k=0

[Sign(EEG[k]) ̸= Sign(EEG[k − 1]) | EEG[k] ̸= 0

]
(5.1)

SKEW =

[ N∑
k=0

[
(EEG[k]− µEEG)

3

(N − 1) ∗ σ3
EEG

]
(5.2)

Since, a subset of two EEG channels including F3 and F4 channels was selected for this

DBE2 NEOB prediction processor. The selected feature vector (FV) contains a set of four

features. The selected FV includes ZCDF3, ZCDF4, SKEWF3, and SKEWF4. ZCDF3,

and ZCDF4 represent the number of zero crossings for F3 and F4 channels, respectively.

SKEWF3, and SKEWF4 represents the skeweness for F3 and F4 channels, respectively.

Equation 5.3 is used to represent the selected FV.

FV =


ZCDF3

ZCDF4

SKEWF3

SKEWF4

 (5.3)

The ZCD and SKEW features have quite different range of values. The ZCD feature
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ranges in thousands whereas the SKEW feature ranges in fractions. Therefore, the selected

FV is then normalized to a uniform range using Z-score normalization. The normalized FV

(FVNorm) is represented in equation 5.4 which is calculated after Z-score normalization of

FV. A detailed analysis of these features was carried out for NEOB prediction.

FVNorm =

[
ZScore(FV )

]
(5.4)

Figure 5-2 shows the center scattered plot for ZCD and SKEW features for emotions

corresponding to NEOB and without NEOB for 12 different randomly chosen trails in DEAP

data set. It can be observed that their is a clear separation between the ZCD for NEOB

and emotions without NOEB as shown in Figure 5-2 (a). The emotions corresponding to

NEOB and are mostly on one side of the center, whereas the NO NEOB’s are on both sides

of the center. Similarly, the emotions corresponding to NEOB and without NEOB have a

clear separation for SKEW feature as shown in Figure 5-2 (b). The emotions corresponding

to NEOB and are mostly on one side of the center, whereas the NO NEOB’s are on other

side of the center.

The customized DNN classifier model used in this work benefits from this clear separa-

tion between positive and negative classes to achieve the high accuracy for NOEB prediction

(85.4%) for DBE2 NOEB prediction processor. The other hidden information is learned

by the proposed DNN classifier for NOEB prediction.

5.2.3 Deep Neural Network Classifier

A customized feed-forward DNN is used for the NEOB prediction using the selected FV.

The DNN classifier contains an input layer (IL), an output layer (OL), and two hidden

layers. The hidden layers are added to handle the non-linearity of data for classification,

and more complex classification problems require more hidden layers [92]. However, the

hardware complexity for the on-chip implementation of DNN classifier increases with the

addition of each hidden layer (HL). The area and classification energy for the hardware

implementation of DNN is directly affected by the number of hidden layers. Therefore, it

was aimed to utilize a DNN with a minimum number of hidden layers.

The proposed fully connected DNN classifier contains two hidden layers (HL1 and HL2),
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Figure 5-2: Z-Score Normalized ZCD & SKEW for Different (a) NEOB’s
& (b) Without NEOB Emotions.

an IL and, an OL. The IL, HL1, HL2, and OL contain 8, 16, 32, and 1 node with a structure

of 4 x 8, 8 x 16, 16 x 32, and 32 x 1, respectively. Figure 5-3 shows the architecture of the

fully connected DNN for NEOB prediction.

The activation functions in a DNN are used to activate or deactivate certain neurons in

a DNN [93]. A sigmoid (SGM) activation function provides fast learning and is suitable for

binary classification problems [94]. The RLU activation function speeds up the learning and

classification process by nullifying certain neurons [94]. The linear, SGM, RLU, and SGM

activation functions were used for the IL, HL1, HL2, and OL, respectively. The proposed

fully connected DNN was trained for 1000 epochs to calculate the best weights and biases

for NOEB prediction.
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Figure 5-3: Fully Connected DNN Classifier Architecture for DBE2.

The Z score normalized FV was forwarded to the DNN for NEOB prediction. Equation

5.5-5.9 are used for NEOB prediction using the selected features. NFV3-NFV0 represents

the normalized FV in equation 5.5. The IL multiplies and accumulates the normalized

features with the IL weights (W00 −W07) and biases (b00 − b07), as in equation 5.5. The

output for IL is forwarded as Z00 − Z07 to the first HL (HL1).

[ Z07 ... Z00 ] = [NFV 3....NFV 0 ].


W03 W07 .... W031

W02 W06 ... W030

W01 W05 ... W029

W00 W04 ... W028

+
[
b07 .... b00

]

(5.5)
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[Z115...Z10 ] = SGM

(
[ Z07 Z00 ].


W17 W115 .... W1127

W16 W114 ... W1126

. . .

W10 W18 ... W1120

+
[
b115 .... b10

])

(5.6)

The HL1 multiplies and accumulates the IL output (Z00 − Z07) with the HL1 weights

(W10−W131) and biases (b10− b115), as in equation 5.6. The output for HL1 is forwarded

as Z10 − Z115 to the second HL (HL2).

[ Z231 ... Z20 ] = RELU

(
[ Z115 Z10 ].


W215 W231 .... W2511

W214 W230 ... W2510

. . .

W20 W216 ... W2496

+
[
b231 .... b20

])

(5.7)

The HL2 multiplies and accumulates the HL1 output (Z10−Z115) with the HL2 weights

(W20−W2511) and biases (b20−b231), as in equation 5.7. The output for HL2 is forwarded

as Z20 − Z231 to the OL.

[ Z3 ] = SGM

([
Z231 Z230 . Z20

]
.


W331

W330

.

W30

+
[
b3
])

(5.8)

The OL multiplies and accumulates the HL2 output (Z20 −Z231) with the OL weights

(W30−W331), and bias (b3), as in equation 5.8. The output for OL is forwarded as Z3 for

the final emotion prediction.
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NEOB =

1 , if Z3 < 0.5

0 , if Z3 ≥ 0.5

 (5.9)

Since, the decision boundary of the sigmoid activation function is centered around 0.5

for positive and negative classes separation. Therefore, a NEOB is predicted by comparing

the output for OL with 0.5 as in equation 5.9.

The complete NEOB classification process using limited (two) EEG channels with sep-

arate feature extraction and DNN classification is depicted in Figure 5-4. The EEG signals

for F3 and F4 channels are forwarded for feature extraction and DNN classification using a

fully connected DNN. The EEG data of two channels for 60 seconds duration is forwarded to

the feature extraction engine. The DNN-based NEOB classification processor is trained on

the EEG data sampled on a sampling frequency of 128 Hz, which requires 7680 samples for

an EEG segment of 60 seconds duration per channel. The two-channel DNN-based NEOB

classification processor requires 15360 EEG samples to calculate the ZCD and SKEW fea-

tures. A total number of 15500 clock cycles are required to establish the features including

the clock cycles required to sample the input EEG signals for the two channels and the

multiplexing operations for the twin channel EEG operation. The features are established

in 15.14 seconds with the 1 kHz clock provided to the feature extraction engine. Figure 5-4

shows the selected segments of the EEG signal to depict the NEOB classification procedure.

The ZCD calculates the zero crossings of the EEG signal. The EEG signal is marked as

red at the time instances on which it changes its sign. The SKEW calculates the amplitude

regularity of the signal through normalized EEG using mean and standard deviation.

5.2.4 NEOB Prediction System Architecture

The SoC block diagram of the proposed DNN-based patient-specific NEOB classification

processor is shown in Figure 5-5 . The AFE is comprised of two channels with a twin-

channel sharing capacitive sampling (TCSCS) technique that contains a parallel on resis-

tance channel sharing multiplexer (PRONCSM) to switch between the two channels [39].

The channel switching frequency (CSF) of 500Hz multiplex both the capacitive coupled low

noise amplifier (C2LNA) and continuous-time digitally assisted capacitive coupled (CTDC2)

instrumentation amplifier. To maximize the common mode rejection ratio (CMRR), all ca-
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Figure 5-4: Negative Emotion Outburst Prediction Using an EEG Signal
Highlighting Features & Deep Neural Network Classification

pacitors used in C2LNA and CTDC2 are integrated on-chip to ensure maximum matching.

The amplified and filtered EEG data is digitized using a 10-bit successive approximation

analog-to-digital converter (SAR-ADC) [39]. The digitized data is processed in the DNN-

based patient-specific classification processor for NEOB prediction. The AFE is integrated

with the proposed DBE processor for NOEB prediction (DBE2) in this Ph.D. project. The

SoC implementation and the hardware architecture of DBE2 are explained in the next

section.

5.2.5 NEOB Prediction DBE Processor Implementation

The on-chip emotion prediction FEE and classification are done in the DNN based patient-

specific classification processor. Figure 5-5 shows the architecture of the DNN processor,

which incorporates a FEE, and a DNN classification engine (DNN-CE) for the NEOB or

four-state emotion classification, followed by an emotion decision logic (EDL) block. The

classification engine can be used for the NEOB classification or the four-state emotion

classification, i.e., (happy, sad, relaxed, and angry) using standard biomarkers for emotion

classification (valence and arousal). The valence and arousal classification parameters are

uploaded to the DNN classification engine for the four-state emotion classification. The

classification parameters upload is performed in a similar way as DBE1, explained earlier

in Figure 4-13, Section 4.3.3. The 2x1 multiplexer (MUX) and the EDL are used to select the
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Figure 5-5: Deep Neural Network Negative Emotion Outburst Prediction
Processor Architecture.

valence arousal (VA) or NEOB classification parameters and, perform NEOB prediction as

depicted in Figure 5-5. The AFE of [39] was integrated with the DBE2 processor designed

in this Ph.D. work.

This SoC provides the NEOB classification closed loop biofeedback to the caregiver in

real-time with < 1 min latency during a learning or cognitive skill activity. This continuous

biofeedback can avoid NEOB and consecutive self-injuries.

Feature Extraction Engine Implementation

The FEE extracts ZCD and SKEW features from the incoming EEG signal. Figure 5-6

shows the hardware architecture of the ZCD implementation unit. The 10-bit incoming
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quantized EEG signal is forwarded to the ZCD unit after preprocessing to remove noise

and other artifacts. A customized comparator (comp1) determines that the incoming EEG

signal is zero, positive, or negative and raises the flags A, B, or C accordingly. A state

table (6b x 3b) compares the current state along with these flags and provides the next

state using a state register (S Reg). Two different states (S3 and S5) are used to detect

the positive-to-negative or negative-to-positive sign changes using comparators comp1 and

comp2, respectively. An OR gate increments a counter (Count) using an increment (INC)

signal, if there is any sign change. The ZCD for the two channels is stored in a memory

block (2 x 32 bits) as ZC1 and ZC0. The ZC1 corresponding to channel 1 (CH1) and ZC0

corresponding to channel 2 (CH2) are then and forwarded to the DNN classification unit

as FN3 and FN2, respectively, after feature normalization.

Figure 5-6: Hardware Architecture for ZCD Implementation.

The conventional SKEW implementation involves the calculation of the cubic difference

of µ from each sample to calculate (EEG[k] − µ), (EEG[k] − µ)2, and (EEG[k] − µ)3 as

in equation 5.2. It also requires the calculation of cubic standard deviation (σ3). These

calculations require the storage of complete EEG time series requiring a huge memory of ≈

10 MB for a 2-channel operation.

Since we are performing a binary classification, the exact values of SKEW are insignifi-

cant. We exploited this fact and mathematically analyzed the SKEW equation after ignoring

EEG[k] in equation (5.2), which results in an ASKI as mentioned in equation 5.10. The
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revised ASKI equation is further simplified as equation 5.11-5.13 to propose equation 5.13

for calculating ASKI. The value of N in equation 5.13 is data set dependent. It depends on

the sampling frequency and the time duration for which a NEOB classification is performed

from the EEG signals.

ASKI =

[ N∑
k=0

[
−µ3

EEG

(N − 1) ∗ σ3
EEG

]
(5.10)

ASKI =

[ N∑
k=0

[
−µ3

EEG

(N − 1) ∗ sqrt(
∑

µ2
EEG
N )

]
(5.11)

ASKI =

[ N∑
k=0

[
−µ3

EEG

(N − 1) ∗
∑

µEEG
sqrt(N)

]
(5.12)

ASKI =

[ N∑
k=0

[
EEG[k]3

(N − 1) ∗ sqrt(N) ∗N3

]
(5.13)

The variation of N does not cause any significant impact on the classification metrics of

the system if the selected duration of EEG signals for NOEB prediction is ≥ 45 seconds.

The analysis of the ASKI trend in comparison with SKEW for binary classification of

NEOB for 10 random trials was performed. It depicts that the ASKI contains some partial

information about SKEW. The rest of the information for NEOB prediction is learned by

the DNN classifier.

Figure 5-7 shows the hardware architecture of the proposed ASKI (equation 5.13) in

comparison with the conventional SKEW implementation (equation 5.2). The hardware

architecture of the proposed ASKI is shown in Figure 5-7 (b). The ASKI only requires the

prior calculation of the sum of EEG signals. The mean (µ) in equation 5.11-5.12 is calculated

after summing up the EEG signal and then dividing (inverse multiplication) with the total

number of samples, as simplified in equation 5.13. Similarly, the (µ3) is calculated after the

multiplication of (µ) and (µ2), as simplified in equation 5.13. The division operations in
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Figure 5-7: Hardware architecture for (a) Conventional SKEW imple-
mentation (b) Proposed ASKI implementation.

ASKI can simply be replaced by inverse multiplications. The ASKI for the selected channels

is stored in a memory block (2 x 32 bits) as (SK0 and SK1) .

The conventional SKEW implementation, however, requires the storage of a large num-

ber of EEG samples to calculate (µ) , and then (µ2), and (µ3), as shown in Figure 5-7 (a).

This ASKI implementation resulted in gate reduction by 86X as compared to the costly
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implementation of conventional SKEW, without compromising the classification results.

The (SK0 and SK1) calculated by the ASKI unit are forwarded to the classification unit as

(FN0 and FN1) respectively after feature normalization. The FN0, and FN1 correspond

to the two selected EEG channels CH0, and CH1, respectively.

Deep Neural Network Classification Unit Implementation

The DNN classification unit implements the proposed four-layer fully connected deep neural

network classifier. The hardware implementation of the fully connected DNN classifier unit

requires the multiplication and accumulation (MAC), SGM, and RELU (RLU) calculation

units. The MAC operations involve the multiplication and addition operations for each

layer using classification parameters (weights and biases).

Figure 5-8 shows the hardware architecture of the proposed semi-pipelined fully-connected

DNN classification unit for NEOB classification. A semi-pipelined arithmetic and logic unit

(ALU) controlled by a finite state machine design is used to control the ALU operations.

The ALU operations are controlled by the opcode (ctrl) and the input operands provided

by the fully connected DNN control unit. The input operands are either weights, biases,

or intermediate results based on the DNN architecture. The ALU performs the addition,

multiplication, SGM, RLU, or no operation (NOP) instructions on each clock cycle. The

NOP operations are inserted to avoid data hazards and resolve any data dependencies. The

proposed methodology requires ≈ 34X lesser resources (gate count) than the conventional

approach [95].

The fully connected DNN control unit directs the ALU about the number of multipli-

cation and additions in the MAC operation, and the number of intermediate outputs to

be stored in the memory block (MEM). The ALU contains four floating point multipliers

(M3-0), four floating point adders (A3-0), one memory block (32 x 16 bits), one RLU, and

one SGM (sg) unit.

Figure 5-9 highlights the fully connected DNN operations for IL at two different time in-

stances during the classification process. The ALU performs the MUL operations (equation

5.5) at T = 1 to multiply the FV (FN3−FN0) with the first column of weights (W3−W0)

using the four floating point multipliers (M3 −M0). The remaining weights (W7 −W4) to

(W31 −W28) are multiplied with the FV (FN3 −FN0) from T = 2 to T = 8. The addition

operations are initiated at T = 2 to complete the MAC operations. The operations for IL
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Figure 5-8: Proposed Fully Connected Deep Neural Network Architecture
Hardware Implementation.

are completed at T = 21 to provide Z03 −Z00. The Z03 −Z00 is the output for IL, which

is used as an input for the HL1.

Figure 5-10 shows the timeline for the semi-pipelined ALU-based fully connected DNN

classification unit. The classification process is imitated by a low to high pulse (CF) after

the calculation of FV. The IL, HL1, HL2, and OL operations are performed from T = 1 to

T = 21, T = 22 to T = 190, T = 191 to T = 945, and T = 945 to T = 998, respectively.

M3 − M0 represents the outputs for four floating point multipliers for multiplication,

and A3−A0 represents the outputs for four floating point adders for addition. GX,Y is used

to represent the output for the floating point adders. The X represents the output number

associated with the addition for MAC operation and Y represents the number of additions.
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Figure 5-9: Fully Connected Deep Neural Network Classifier at Different
Time Instances.

The FLP adder (A3 − A0) performs the accumulation operations for Z07 − Z04 at T = 2

to T = 9.

G7,1 at T = 2 represents that the current addition operation is associated with IL and

the first addition operation is being performed. Similarly, G7,2 to G7,4 represent the second

to fourth additions required for IL. Four, eight, sixteen, and thirty-two addition operations

are required in each MAC operation for the IL, HL1, HL2 and, OL to calculate Z07 −Z00,

Z115 − Z10, Z231 − Z20 and Z3, respectively. A 16 x 32 bits memory block is used to

store the intermediate outputs. The proposed semi-pipelined implementation reduced the

classification energy by 77% compared to the conventional fully connected DNN architecture

[95].

The hardware cost of a SoC based processor is primarily dependent on its area. The

overall area of the proposed DNN classification processor primarily depends on the number

of FLP addition units, FLP multiplication units, activation function units, and the bit

precision of these units. The bit precision of these units also effects the memory requirement

for the classification parameters uploaded to the DNN classification processor. A fully

parallel implementation of the proposed DNN classification processor with full precision
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Figure 5-10: Timeline for Semi-Pipe-Lined Arithmetic and Logic Unit for
Deep Neural Network classifier.

FLP numbers required a huge area (> 100mm2). Therefore, I implemented the DNN

processor in the semi-pipe-lined approach explained above, which required an overall area

of 16mm2.

The RLU and SGM activation functions for the DNN classification are defined in equa-

tions 5.14 and 5.15 respectively. The RLU function is linear for positive values and the

output of these values follows the input. However, it nullifies the negative values to zero

as shown in equation 5.15. The hardware implementation for RLU is quite simple and just

requires a two-to-one multiplexer.

RLU(x) =

 0, x < 0

x, x ≥ 0
(5.14)
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SGM(x) =
1

(1 + e−x)
(5.15)

Figure 5-11: Sigmoid Activation Function Graph.

The SGM activation function predicts the output as a probability function between

0 and 1. The negative and positive inputs are mapped between 0 to 0.5, and 0.5 to 1,

respectively. It has a complex hardware implementation as it involves the floating point

exponential function and division operation as mentioned in equation 5.15. The SGM

function is conventionally implemented by LUT, piecewise approximation, or CORDIC

algorithm. The output values of the SGM function saturate near +/-8 with positive and

negative symmetry (x > 0 and x < 0) to form an S-shaped curve as shown in Figure 5-

11. This symmetry allowed us for a 50% lower memory usage for a LUT-based hardware

implementation.

The hardware architecture for the SGM function implementation is shown in Figure

5-12. Since the SGM function inputs have floating point values, we scaled the values by 512

to shift them to an integer range. The scaling is performed by adding 9 to the mantissa

values (X[14]-X[10]) of the input X. The scaled value is converted to integer format using a

95



Figure 5-12: Sigmoid Activation Function Hardware Implementation.

floating-point to integer converter (FP2I). The integer index is then forwarded to a 210 x 16

bits LUT. The LUT provides a shifted SGM value which is added to + or -0.5 based on the

sign bit (X[15]) of the input X to obtain the SGM value. This hardware implementation

avoids the expensive floating point implementation, which requires 512X more memory

storage. The hardware architecture for the SGM activation function is shown in Figure

5-12.

The generic utilization of the proposed SGM unit cannot be ensured for all applications.

Since the proposed SGM unit was implemented using a LUT-based approach. The LUT

stores a total of 1024 SGM values as half-precision FLP numbers. The utilization of the

SGM unit is dependent on the statistics of the input values, and the deviation of the input

values from the values stored in the LUT. For e.g. the proposed SGM unit stores the 1024

shifted SGM values of 0.0068359375,0.013671875,...,7 in half-precision FLP format. Figure

5-13 shows the actual sigmoid values in full precision FLP format against the SGM values

provided by the proposed SGM unit. It can be observed that the proposed SGM unit

approximates the SGM values because of limited LUT size and half-precision FLP values.

The SGM values provided by the proposed worked accurately for the emotions prediction
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using DEAP and SEED data sets. But the generic utilization of the SGM unit is dependent

on the DNN architecture, data statistics, and classification weights.

Figure 5-13: Sigmoid Values by Proposed Unit vs Sigmoid Values with
Full Precision.

The ALU size (number of bits) is an important parameter for an ALU-based hardware

implementation and affects the hardware cost significantly. Figure 5-14 shows the classifi-

cation accuracy against the number of bits used for FEE and the fully connected DNN clas-

sification unit (FCDNN-CLU). The classification results were initially calculated using full

precision (32 bits) FEE and CLU. The number of bits for FCDNN not only affects the hard-

ware complexity of FCDNN-CLU but also significantly impacts the memory requirement

for the classification parameters (weights and biases). The FEE requires single-precision

floating-point numbers and if the number of bits is reduced, the classification accuracy
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degrades significantly as highlighted in Figure 5-14 (a). However, the number of bits for

the DNN classification unit was reduced to half-precision (16 bits) without any significant

effect on the classification accuracy as shown in Figure 5-14 (b). Therefore, we used a 32-bit

FEE and a 16-bit classification unit for our NEOB prediction processor (DBE2) to reduce

the memory requirements by ≈ 50%. The implemented DNN architecture reduces the area

(gate count) for the processor from 69.3K to 19.8K. Moreover, it achieves an overall en-

ergy efficiency of 1.13 TOPS/W for 16 bits precision, which is comparable to [96] with the

integrated AFE.

Figure 5-14: Classification Accuracy vs. Number of Bits for (a) Feature
Extraction & (b) Classifier.

5.3 Measurement Results and Performance

The chip micrograph and the performance summary of the implemented DBE processor

(DBE2) for the NOEB prediction system are shown in Figure 5-15. The implementation

fully integrates a 2-channel TCSCS AFE, SAR ADC, and 2-channel DNN processor for

NEOB prediction. The SoC consumers an overall area and energy of 16mm2 and 10.13

µ J/classification, respectively, while implemented using 0.18 µm One-Poly-Six-Metal lay-
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ers CMOS process. The SoC continuously tracks the NEOB and can provide real-time

assistance to the caregiver/neurologist in assessing the emotional state in response to any

learning activity for autistic people and beyond.

The total power consumption of the DBE2 synthesized on a 1 MHz clock frequency is

1.29 mW, which down-scales to ≈ 1320µW with a 1 kHz clock frequency. The power of a

system is defined as the energy per unit of time. Therefore, the energy utilization of the

DBE2 per prediction can be calculated by multiplying the power by the number of time

units consumed per prediction, which is approximately 10.13µJ/prediction.

The estimated backup time of a battery can be calculated as equation 5.16. The esti-

mated battery time in hours for DBE2 processor using a coin cell battery of size, voltage,

and area of 20 mm, 3 V, and 250 mAH, respectively is calculated in equation 5.17, which is

≈ 580 Hrs. Considering the aging factor and other losses of 50%, the estimated time would

be ≈ 288 Hrs or 12 days.

Estimated Backup T ime(Hrs) =

[
Battery Capacity X Input V oltage

Total Load

]
(5.16)

Estimated Backup T ime(Hrs) =

[
250mAH Capacity X 3V

1320µW

]
(5.17)

Figure 5-15: Chip Micrograph & Performance Metrics of the System.
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Figure 5-16: Measurement Results for (a) Negative Emotion Outburst &
(b) No Negative Emotion Outburst.

Figure 5-16 shows the measurement results of the DBE processor for a subject (Subject

#2, DEAP) for an emotion corresponding to NEOB and without NEOB. Both the multi-

plexed channels are processed in the same manner by the NEOB classification processor.

The DNN classification unit classifies the EEG signal to predict a NEOB using the feature

vector. The NEOB and No NEOB relate to emotion numbers 32 and 11, in the data set

corresponding to [valence, arousal] values of [1, 9] and [7.08,1], respectively.

The hardware costly features were implemented in a customized manner to optimize the

gate count to 86X lesser than conventional realization. The DNN classification unit was also

optimized in a semi-pipelined manner and rescheduling the pipelined instructions using a

customized ALU with 34X lesser resources. The SGM activation function was implemented

using customized LUT, which provided an overall reduced energy consumption of 77% for

the DNN classification unit.

100



Figure 5-17 shows the classification results for the NEOB prediction using the proposed

NEOB prediction processor (DBE2) for DEAP and SEED data sets. Figure 5-17 (a) shows

the classification results of 16 subjects in the DEAP data set for NEOB prediction. Figure

5-17 (b) shows the classification results for valence classification of 15 subjects in the SEED

data set. The classification results were evaluated using a leave-one-out cross-validation

scheme. The overall sensitivity and specificity for NEOB classification were 78.80% and

89.10%, respectively.

Figure 5-17: Classification Results for (a) DEAP (b) SEED.

Figure 5-18 shows the SoC measurement of an example for the NEOB test with an
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analogous approach to the DEAP data set. The DNN was trained using > 100 different

trials of emotions with NEOB and without NEOB from the emotion classification data sets.

Short videos (1–2 min) with happy (No NEOB) and sad (NEOB) contents were displayed

to the subject (Age: 7 Years, Gender: Male) with learning disability signs. Two-channel

EEG information was recorded simultaneously, the features were extracted, and DNN was

trained offline. The top part of the figure depicts an example to show the EEG signals for

a trial of happy emotion followed by two trials of sad emotion.

Figure 5-18: SoC Measurement for Negative Emotion Outburst Predic-
tion.

To verify the full functionality of the SoC, we uploaded the extracted DNN parameters
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on SoC and, repeated similar video content to evaluate the real-time performance. The

NEOB DNN classifier was successful in classifying the majority of them and achieved an

average accuracy of > 90% for more than 15 min of continuous operation of the SoC.

5.4 Performance Comparison

The proposed DBE2 DBE processor was the second fully integrated on-chip processor

for NEOB prediction, after our 1st negative emotions prediction processor DBE1. The

performance comparison of the DBE2 NEOB prediction processor with the previous state-

of-the-art works are summarized in Table 5.1.

H. Gonzalez [97] performed the emotions classification using 14 EEG channels. They

achieved the classification results of 72.4% using a convolutional neural network (CNN)

classifier on two public BM-DS including DEAP and DREAMER. They also did not provide

any hardware implementation, and only provided a software-based system. The number (14)

of EEG channels utilized by them was also high, and hence not feasible for a wearable SoC

implementation.

The first negative emotions prediction processor (DBE1) of this Ph.D. project predicted

the negative emotions with 73.4% classification accuracy [38]. The DEAP and SEED public

BM-DS were utilized for the system validation. It was the first fully integrated SoC solution,

which utilizes 8 EEG channels for negative emotions prediction. Although the classification

results of this system were very good, but not high (< 80%). The number of EEG channels

and the classification energy (16µJ) were also high. This SoC was designed using 180 nm

TSMC CMOS process.

H. Gonzalez [25] proposed an emotions prediction processor titled “BioCNN” using a

CNN. The system utilizes 14 EEG channels for emotion prediction with 83.12% classifica-

tion accuracy. The processor was implemented on a Digilent Atlys Board with a Spartan-6

FPGA. An excellent energy efficiency of 11 Gops/W was provided by the system. However,

the system lacks a fully integrated SoC, and only an FPGA implementation was provided.

The number of EEG channels was also high and not suitable for a wearable SoC implemen-

tation.

T. Song [45] proposed an emotions prediction algorithm using an A-LSTM recurrent

neural network. An emotions prediction data set MPED was used in this work. The
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Table 5.1: Comparison With the State-of-The-Art Works.

H.Gonzalez A.Aslam H.Gonzalez T.Song S.Koelstra This Work

[97] [38] [25] [45] [24] [39]

Hardware No Yes Yes No No Yes(0.18µm)

Area — — 3.35mm2 — — 16 mm2

Power/Energy — — 76.61mW — — 10.13µJ

Data Set(s) DEAP DEAP DEAP DEAP,SEED MAHNOOB DEAP, SEED

Ch. Count 32 Variable 6 62 32 2

Classifier NB SVM CNN GELM LSTM DNN

Accuracy (%) 59.8 73.8 80.1 80.4 82.5 85.2

Multiple BM-DS No No No Yes No Yes

provided an emotions prediction algorithm with 81.1% accuracy. Although they provided

excellent classification results, but the number of EEG channels utilized by them is very

high. They also did not provide any hardware implementation of the system.

W. Fang [26] proposed an SoC-based emotions prediction classifier using 28 nm CMOS

process. They implemented a CNN-based classifier for emotions prediction using 6 EEG

channels with 80.1% accuracy. The area and power consumption of their SoC were 3.35

mm2 and 76.61 mW respectively. The algorithm was validated on the DEAP data set. The

main limitations of their system were the lack of a fully integrated system. The features

were extracted offline and then forwarded to the SoC for emotion prediction.

The previous systems are either software-based, FPGA-based or lack a fully integrated

SoC solution. The proposed DBE2 DBE processor for emotion prediction provides a fully

integrated SoC solution using a minimum number of EEG channels. The system provided

excellent classification results (85.2%) with a low area (16mm2), and minimum energy

consumption (16µJ). The SoC is validated using multiple BM-DS including DEAP and

SEED data sets.
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5.5 Summary

In this chapter, I have explained the design ofDBE2 negative emotions prediction processor.

The DBE2 negative emotions prediction processor has the following novel points:-

• Second Fully integrated twin-channel SoC based NEOB prediction processor.

• Utilizes a fully connected DNN classifier for NEOB prediction.

• Continuous NEOB prediction can help parents or caregivers to suppress this NOEB.

• Processor’s performance is validated using well-known BM-DS inluding DEAP and

SEED.

• Utilizes an an area-and-energy-efficient feature extraction including ZC and ASKI.

• The proposed approximated FV implementation reduced the overall area (gate count)

by 86X.

• An area-and-energy-efficient semi pipe lined DNN architecture was used for DNN

implementation.

• The semi pipe lined DNN consumed 77% lower classification energy.

• A LUT based SGM unit was implemented for DNN with 50% lesser memory resources.

• Fabricated using TSMC 180nm CMOS process.

• Provide excellent (> 85%) classification results.

• Utilizes minimum (2) number of EEG channels among hardware based EEG classifi-

cation systems.

5.6 Conclusion

The proposed DBE2 processor consumed an active area of 16mm2 while consuming an

energy of 10.13µJ/classification. The proposed processor can be embedded inside a

hand band SoC after integration with ULP and low-noise AFE. The classification pro-

cessor would be operable with a coin cell battery of area, voltage, and current of 20 mm,

3 V, and 250 mAH respectively, for a time duration of one week to provide a real-time
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emotional prediction. The proposed DBE2 negative emotions prediction processor pro-

vided excellent (85.4%) classification results for NEOB prediction. The classification energy

(10.13µJ/prediction) and the number of EEG channels (2) for the NEOB prediction were

also minimum in comparison with the state-of-the-art works.

I have achieved excellent classification results with the lowest number of EEG channels

for real-time emotion prediction. During the design and development of the DBE (DBE1

and DBE2) processors for real-time negative emotions prediction, I noted that the selec-

tion of a minimum number of suitable channels, and features are a major challenge for

the researchers for emotions prediction using EEG signals. The choice of channels and

features in previous research is either based on the previous literature or some limited self-

experimentation. I have, therefore, performed a LSFE to identify the best suitable channels

and features for emotion prediction. This suitable channel and feature identification would

be highly beneficial for the DBE processors for emotion prediction. I have also performed

a LSFE analysis for ASD prediction using EEG signals. The next chapter (Chapter 6)

explains the LSFE methodology for emotions and ASD prediction using EEG signals.
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Chapter 6

Suitable Channels & Features

Identification: A LSFE

Methodology

The recorded EEG signals are contaminated by noise and other artifacts including eye

movements, eye blinks, muscle activities, and chewing [98]. The complete set of EEG signals

also contains a very large amount of data due to the large number (≥16) of channels. The

presence of noise and the size of data makes it difficult for the ML classification algorithms

to accurately map the input (EEG signals) to the output (label). Therefore, it is desired to

remove the noise and other artifacts to identify the most relevant subset of the information

required for the classification.

Channel selection is the process to identify the most suitable subset of channels out of

the total number of available channels. The feature extraction process is to identify some

variables or formulas instead of raw EEG signals for classification. The channel selection

process selects a subset of the most suitable channels. The feature extraction process

calculates features from these channels and the FS process selects the best subset out of

these features.

The channel and FS are iterative processes and one of the most challenging procedures

in ML classification. There is no fixed method to identify the best suitable features and

channels for a time series EEG classification problem. Different features have to be exper-
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imented by the researchers to find the best suitable features and corresponding channels.

The channel and FS are not only required for the accurate prediction or classification of

the label. But they also directly affect the hardware resources for hardware accelerators or

on-chip systems [89]. Generally, there are two approaches used for the channel and FS pro-

cess a) self-experimentation using previous literature and domain knowledge, and b) LSFE.

The LSFE techniques calculate a huge number of features from the input data, which are,

later on, analyzed to filter for the best suitable features.

The self-experimentation approach is usually considerably limited and analyzes a sig-

nificantly smaller number of features as compared to the LSFE method. To the best of

our knowledge, there is no previous work that has utilized the LSFE to identify the most

optimal channels and features for emotions and ASD classification. Therefore, LSFE to

identify the most suitable channels and features for emotions and ASD classification using

DEAP, SEED, Old Dominion University (ODU), and King Abdul Aziz University (KAU)

data set was utilized.

The DEAP and SEED data sets for emotion prediction are already discussed and ex-

plained in Chapter 2 (Section 2.4). The DREAMER data set provides the EEG and ECG

data of 23 participants. The EEG signals are recorded using 14 electrodes through an emo-

tive EPOC headset [99]. It provides the labels of valence, arousal, and dominance for the

emotion’s classification. We have utilized the labels of valence and arousal only from this

data set. The DREAMER data set is unevenly balanced between both genders. The valence

and arousal labels in the DREAMER data set are scaled between 1 and 5. The valence and

arousal values lesser or equal to 3 are labeled as low, and those greater than 3 are labeled

as high. It can be observed that the binary classes of arousal are evenly balanced using a

threshold of 3. However, the valence classes are unevenly balanced in the data set.

A brief overview of the ASD prediction data sets is provided below before large-scale

feature extraction methodology for emotions and ASD prediction.

6.1 ASD Classification Data Sets

There are very few ASD classification data sets compared to other problems like emotional

classification, epilepsy, Alzheimer, etc. The primary reason for that can be the uncoopera-

tive behavior of ASD children, as they are generally very uncooperative. The uncooperative
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nature of ASD children is due to multiple reasons, a) difficulties to understand instructions,

b) social interaction and c) communication and sensory issues. The EEG classification data

sets for ASD classification records the EEG data for a certain number of ADOS-2 confirmed

ASD patients and TD children.

The ASDOS-2 is a standard ASD diagnosis method. It requires a communication score

(CSC), social interaction score (SCI), imagination and creativity score (IMC), stereotyped

behaviors score (STB), and their cut-off values with a certain threshold table being evaluated

by the neurologists [100]. A behavioral diagnosis cycle of the patient evaluates the SCI, CSC,

STB, and IMC scores of the patient. The scores are compared with the cut-off table and

then the patient is labeled as ASD or TD [100].

The EEG-based ASD classification system is trained to predict the patient as ASD or

TD using EEG signals. The predicted labels are then compared with the original labels

assigned through the ADOS-2 method [100]. There is no publicly available EEG-based ASD

data set to the best of my knowledge. I have utilized the ASD data sets by Old Dominion

University (ODU), USA and KAU, KSA shared with me for this research [101]-[102].

ODU data set provides the EEG data of 17 subjects including 8 ASD and 9 TD subjects.

The subjects include 10 males and 7 females [101]. The males include 6 ASD and 2 TD

subjects. The females include 2 ASD and 5 TD subjects. The ODU data set has also

provided the ADOS-2 scores of each patient on which they were labeled as ASD or TD.

The ASD patients have a higher ADOS-2 score than the TD subjects. The ODU data set

recorded the EEG signals of all subjects using 32 electrodes. However, in our analysis, we

observed that the EEG signals for only 14 electrodes (F7, F3, Fz, F8, FC1, FC2, FC6, T9,

T7, C3, T10, CP5, CP2, P7, P3) were available across all subjects. The EEG data of the

remaining electrodes were either missing in some subjects or too noisy to be included in the

analysis. Therefore, we have focused only on these 14 channels in this work.

KAU data set provides the EEG data of 12 children including 8 ASD children and 4

TD children [102]. The data set does not provide the ADOS-2 scores of the patients. The

ASD children include 5 boys and 3 girls whereas the TD children include 4 boys. All the

participants were aged between 10 to 11 years. They recorded the EEG data using 16

channels (FP1, FP2, F7, F3, Fz, F4, F8, T3, C4, Cz, C3, T5, Pz, O1, Oz, and O2).
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6.2 LSFE AND CLASSIFICATION METHODOLOGY

The feature extraction process for the time series classification problems, including emotion

recognition and ASD prediction, is hectic [103]. It requires the analysis of a large com-

bination of features using previous domain knowledge and experimentation with different

features. Some LSFE packages including TSFRESH, TSFEL, HCTSA, etc using MATLAB

or python implementations are proposed by different researchers [104],[105].A large set of

features using the time series EEG data is calculated by these packages. These features

can be passed through different feature selection (FS) methods, including selecting k best

(SKB), sequential forward search (SFS), etc. to select the best optimal feature subset. The

FS methods utilize different learning algorithms to find the best subset of features from the

large feature set acquired through the LSFE method.

The block diagram of the LSFE methodology for emotions or ASD prediction is depicted

in Figure 6-1. The complete set of prepossessed EEG data is passed through the threshold

process for label creation if required. If the data set has already provided the binary labels

for positive and negative emotions or ASD/TD classification, then the threshold process is

not required. The EEG data and labels are forwarded to the LSFE method (TSFRESH etc)

for LSFE analysis. A large set of features is calculated by the LSFE process. The LSFE

features are forwarded to the channel and feature selection methods. The small subset of

features after suitable channel and feature selection is used for the preparation of the feature

set. The final feature set after feature preparation is provided to the classification method

(CLS) for positive/negative emotions or ASD/TD classification.

The TSFRESH package for the LSFE of emotions classification and ASD prediction

was utilized in this work. The TSFRESH package provides 63-time series characterization

methods and calculates a total of 794 features for each EEG channel. It can be used for both

univariate and multivariate time series and can handle variable-length time series. Some of

the features used in TSFRESH include mean absolute energy, absolute maximum, number

of peaks, quantile value, and zero crossings. An exhausting list of features extracted in

TSFRESH is listed in [106].

The large-scale feature matrix is then forwarded to the FS method to find the best

subset of features.The SKB and SFS methods are used in this work [107]. SKB is an

implementation of a filter FS method where it eliminates all excluding the highest-scoring
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Figure 6-1: Large Scale Feature Extraction & Classification Methodology.

features. The number of selected features is controlled by the k value. The SKB uses a

linear method to select features that contain information about the target variable using

statistical tests such as ANOVA, Fisher score, and Chi-Squared [108]. The selection of

important features was based on the ANOVA test with k=8. SFS is an iterative wrapper-

based method [108]. It starts with an empty set and adds features to form a feature subset.

Those selected features give the highest value for the objective function. The objective

function is defined by a perceptron in our case. The FS is a back-and-forth learning process

through the relevant learning algorithm. The FS methods work to reduce the size of the

feature matrix. They reduce overfitting by excluding redundant features, improving the

classification results, and decreasing the classifier’s training time. LSFE and FS is performed

for the selected data sets. The results of valences in emotions classification data sets are

presented in detail, whereas the results of arousal classification are briefly summarized.

6.2.1 Emotions Classification LSFE

The DEAP and SEED data sets include the data of 32 and 62 EEG channels, respectively.

Several previous works have identified different smaller pools of the most suitable channels

for emotion classification with customized feature sets [24]. However, a detailed analysis of

all EEG channels were not performed to show the significance of their channel subsets. The

utilization of different channels using LSFE to identify the best suitable channel subset was

analyzed in this chapter.
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The LSFE matrix calculated a considerable number (≈25K) of features for the DEAP

data set using 32 EEG channels. The classification performance using the LSFE matrix

was not satisfactory (≤65%). The primary reason for the low classification results using

LSFE matrix with all EEG channels was over-fitting and redundant features. The SKB

and SFS methods significantly improved the classification results ( 85%) for emotions clas-

sification. Figure 6-2 represents the classification performance of LSVM, SNN, KNN, DT,

and XGB classifiers using the LSFE matrix before and after FS. Figure 6-2 (a) represents

the classification results using the LSFE matrix. Figure 6-2 (b) represents a box chart of

the subject-wise classification results after FS for all subjects in the DEAP data set. The

red and blue colors in Figure 6-2 (b) indicate the classification results of SKB and SFS

methods, respectively. It can be observed that the classification results were significantly

improved.

Figure 6-2: (a) Large Scale Feature Extraction Classification (b) Feature
Selection Using Select K Best & Sequential Forward Search for DEAP.

The identification of a smaller subset of suitable channels was performed using the SKB

and SFS methods. These FS methods were tuned to utilize a set of 8 best-suitable features

for the classification. As a result, the FS methods improve the classification performance

and significantly impact (>3k times) the hardware resources for hardware accelerators and

on-chip applications. Figure 6-3 represents the utilization of each EEG channel using the
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SKB and SFS methods. The heat maps in Figure 6-3 (a) and Figure 6-3 (b) represent the

channel importance using SKB and SFS, respectively. It can be observed in Figure 6-3 (a)

that channel number 1 (FP1) is utilized for all features (8/8) using the SKB method for

subject number 11.

Figure 6-3: Heat map for Feature Selection using (a) Select K Best, (b)
Sequential Forward Search, (c) Bar Graph for Feature Selection using
Select K Best, & (d) Sequential Forward Search for DEAP.

The maximum (8/8) and minimum (0/8) utilization of the channel are reflected by

white and black colors in the heat map respectively. However, it was difficult to completely

analyze the utilization of each channel for each subject using the heat maps. Therefore, we

have presented the accumulated utilization percentage of each channel using SKB and SFS
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in Figure 6-3 (c) and Figure 6-3 (d), respectively. These bar graphs show the accumulated

utilization of each channel for all subjects in the DEAP data set. It can be observed that

channel numbers 1 (FP1),17 (FP2), 23 (FC2), and 26 (T8) were most suitable for the

emotion classification. The T8 channel was also observed to be among the eight-channel

pool in our previous work [72]. This channel subset relates to the amygdala region of

the brain [109]. The amygdala region of the brain is closely linked to human emotions

[110]. After LSFE, the most significant features identified using these FS methods include

autocorrelation, Fourier transform coefficients, signal energy, continuous wavelet transform

coefficients, change quantiles, and aggregated least square regression.

The LSFE feature extraction and FS methods improved the classification results for

the SEED data set significantly compared to the DEAP data set. Figure 6-4 presents the

classification results of SEED after FS and LSFE using TSFRESH. The red and blue colors

represent the SKB and SFS methods, respectively. Both FS techniques provided excellent

classification results ( 98%) for SEED data set.

Figure 6-4: Classification Results After Feature Selection for SEED.
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The identification of a smaller subset of suitable channels (4 channels) for the SEED

and DREAMER data sets would reduce the hardware resources to ≈12.5k and ≈3.5k times,

respectively. Figure 6-5 shows accumulated channel utilization for SEED using SKB and

SFS methods. Figure 6-5 (a) and Figure 6-5 (b) represent the channel importance for the

SEED data set using SKB and SFS, respectively.

Figure 6-5: Channel Importance for SEED using (a) Select K Best, & (b)
Sequential Forward Search.

The channel utilization analysis suggested that channel numbers 24 (T7), 32 (T8), and 1

(FP1) were significantly important in the SEED data set. It can be observed from Figure 6-5

(a) and Figure 6-5 (b) that only three EEG channels have significantly important utilization.

The channel combination (T7, T8) confirmed our previous observations of the significance of

temporal channels and asymmetric electrodes combination for emotions classification [89].

Channel number 3 (FP2) was included as the fourth channel as a 4-channel subset was

targeted. This channel selection was used to exploit the benefit of asymmetric electrodes

combination [89]. The channel combination (T7, T8, FP1, FP2) further improved the

classification results as discussed later in this section.

6.2.2 ASD Classification LSFE

The ODU ASD classification data set provides the EEG signals of 14 channels for all subjects

as explained earlier in Section 6.1 [101]. The LSFE matrix provided ≈11k features for the

ODU data set. The LSFE matrix provided a maximum accuracy of 83% for the ASD
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classification (KNN classifier).

Figure 6-6 (a) and Figure 6-6 (b) show the classification results for ASD classification for

the ODU data set using LSVM, SNN, KNN, DT, and XGB classifiers before and after FS

respectively. The SKB and SFS methods were used to extract the best 8 features from the

LSFE matrix. The SKB methods provided excellent classification results ( 100%) whereas

the SFS method provided the maximum classification accuracy of 93%. The FS methods

would reduce the hardware complexity ≥ by 1.4k times for the hardware accelerators and

on-chip applications [89],[72].

Figure 6-6: Classification Results for ASD (a) Before Feature Selection
(b) After Feature Selection using ODU Data Set.

The identification of a smaller subset of suitable channels (4 channels) for ASD classifi-

cation would also reduce the discomfort for ASD children for wearable on-chip applications.

Figure 6-7 shows the channel importance of different channels for ASD classification with

SKB and SFS methods using the ODU data set. The subset of 8 channels using SKB and

SFS are shown in Figure 6-7 (a) and Figure 6-7 (b), respectively. It can be observed that

the channel locations CP2, FC2, F7, and FC6 have the maximum utilization among the

8 feature subsets. Therefore, these channels were identified to be most suitable for ASD

classification using the ODU data set.

The KAU data set provides the EEG signals of 16 channels for 12 subjects as explained
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Figure 6-7: ODU Data Set Channel Importance for ASD Classification
After (a) Select K Best (b) Sequential Forward Search.

earlier in the data set section. The LSFE matrix provided ≈12.5k features for the KAU data

set. The LSFE matrix provided a maximum classification accuracy of 77% for the ASD

classification using the SNN classifier. Both the FS methods provided excellent classification

results (≈ 100%) after FS. The FS methods would also significantly impact the hardware

complexity ≥1.6k times for the hardware accelerators and on-chip applications.

Similarly, the channel locations F3, T5, O1, and O2 have the maximum utilization

among the 8 feature subsets in the KAU data set. Therefore, these channels were identified

to be most suitable for ASD classification using the KAU data set. The most suitable

features for ASD classification include Fourier transform coefficients, auto-correlation, and

mean absolute energy.

6.2.3 Channel and Feature Subset Settlement

The settlement or consensus of the identified channel and feature subset is required to

conclude the suitable channel and feature subset for emotions classification. The primary

reason for this is the subject-wise classification and dependence of the channel and feature

subsets. The channel and feature combination proposed in this work provided the best clas-

sification results. However, due to the subject-wise dependence on emotions classification,

the selected subject of channels may not correspond to the FS of many subjects.
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Figure 6-8 (a) shows the channel utilization percentage of the best EEG channel (FP1)

in the DEAP data set using SKB. The best feature subset using SKB does not contain any

feature corresponding to the FP1 channel for multiple subjects. Therefore, it is impractical

to have a subject-specific channel selection. But the classification results were degraded

(≈10%) using the selected subset of 4 channels.

Figure 6-8: (a) Channel Importance of FP1 Channel in DEAP (b) Clas-
sification Results using Brute Force Approach in DEAP.

The primary challenge of the research for emotions classification using EEG signals is
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to discover a subject-independent channel and feature subset feasible for the classification.

Therefore, the LSFE and FS process to select the best 32 features using the subsets of 4 EEG

channels using DEAP, SEED, and DREAMER data sets was repeated. The selected features

include auto-correlation, change quantiles, entropy, signal energy, aggregated linear trend,

welch density, Fourier entropy, and auto-correlation. A brute force approach was applied

to select the best possible subset of 8 features from all possible (≈10 million) features. The

classification results from the brute force approach using the DEAP data set are shown

in Figure 6-8 (b). The average classification results of 90.1%, 95.22%, and 98.56% were

achieved using DEAP, SEED, and DREAMER data sets for valence classification using the

LSVM classifier.

The LSVM classifier was selected based on the classification results and the classifier’s

complexity. A subset of eight features is forwarded to the classifier for positive and negative

emotion or ASD classification. The dot product of the FV is calculated with the classifier

weights as mentioned in equation 6.1. A positive or negative class is assigned based on the

comparison of the dot product with a constant K. The LSVM process assigns the positive

or negative class assignment to a feature based on the dot product.

C = FV.W ≥ K (6.1)

The complexity of the LSVM classifier is O(n), where n is the number of input dimensions

[111]. The number of input dimensions is dependent on the number of features. The LSVM

classifier is chosen due to the classification results and lower complexity than DNN or CNN.

The DNN or CNN with the same or more input dimensions than an LSVM would always

have a higher complexity than the LSVM due to activation functions. For example a shallow

neural network with eight input nodes and one output node with a sigmoid activation

function would have more computational complexity than an LSVM with 8 features. We

have therefore preferred the LSVM classifier.

6.3 Results

Emotions and ASD classification and its analysis using DEAP, SEED, DREMAER, ODU,

and KAU data sets were performed in this study. A total of 99 subjects were classified
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and analyzed. The emotions classification included positive or negative valence and arousal

classification for the DEAP data set. The SEED and DREAMER data sets were utilized

for the positive or negative valence classification only. The DEAP data set provided the

valence and arousal values from 1 (minimum) to 9 (maximum). A classification threshold

of 5 was used in the data set to mark the labels as positive or negative. The SEED data

set does not require a classification threshold as the positive or negative valence labels were

provided by the data set. The valence values from 1 to 5 were provided in the DREAMER

data set. A classification threshold of 3 was used to mark the labels as positive or negative

valence. The ASD classification data sets (ODU and KAU) provided the subjects labeled

as ASD (positive) or TD (negative).

The emotions and ASD classification was performed using LSVM, DNN, KNN, DT, and

XGB classifiers. The LSVM classifier provided the overall best-case classification results. A

subset of only 4 EEG channels was utilized for the classification. The classification result

and the four EEG channels subset are summarized in Table 6.1.

Table 6.1: Classification Results of Emotions & ASD Data Sets using EEG Signals.

Data set Parameter Channels Accuracy

DEAP
Valence

FP1, FP2, FC2, T8
90.1%

Arousal 93.5%

SEED Valence T7, T8, FP1, FP2 95.2%

DREAMER Valence F3,F4,FC5,T7 98.6%

ODU ASD CP2, FC2, F7, FC6 100%

KAU ASD F3, T5, O1, O2 95.5%

The classification accuracies of 90.1% and 93.5% were achieved for the valence and

arousal classification, respectively, in the DEAP data set. The SEED data set was classified

for valence classification with 95.2% accuracy. The DREAMER data set was classified

with 98.6% classification respectively for valence classification. The ASD classification was

performed with 100% and 95.5% classification accuracy using ODU and KAU data sets

respectively.

The selected four EEG channels included FP1, FP2, FC2, and T8 channels for the DEAP

data set. The SEED data set provided the best classification results using T7, T8, FP1,

and FP2 channels. The selected four channels for the DREAMER data set included F3,

F4, FC5, and T7 channels. The four EEG channel subsets for the ODU data set included

the CP2, FC2, F7, and FC6 channels. The selected channels for the KAU data set include
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F3, T5, O1, and O2 channels.

A set of eight features for the four EEG channels was used for the classification. The

eight features are calculated using the brute-force approach from the set of 32 suitable fea-

tures identified for emotions and ASD classification. The selected features include the fast

Fourier transform coefficients, skewness, mean, signal energy, continuous wavelet transform

coefficients, auto-correlation, absolute energy, mean absolute change, mean second deriva-

tive, change quantiles, energy ratio, and linear trend for emotions and ASD classification.

The frequency of the selected features for emotions and ASD classification for each data set

is plotted through a wheel diagram in Figure 6-9.

The auto-correlation, energy ratio, linear trend, fast Fourier transform coefficients, skew-

ness and mean features were observed to be highly significant for the ASD classification.

Among the selected features for ASD classification, fast Fourier transform coefficients and

auto-correlation were observed to be more significant irrespective of the data set. The

emotions classification using the DEAP, SEED, and DREAMER data sets provided the

maximum classification results using the change quantile, mean absolute change, mean 2nd

derivative, absolute energy, fast Fourier transform coefficients, auto-correlation, signal en-

ergy, and continuous wavelet transform coefficients. The fast Fourier transform coefficients,

mean absolute change, continuous wavelet transform coefficients, and absolute energy was

observed to be more significant across multiple data sets for emotions classification as de-

picted in Figure 6-9.

6.4 Performance Comparison

A brief comparison of the proposed LSVM classifier with selected features and channels with

the previous state-of-the-art works using NB, GELM, 3DCANN, RNN, KNN, and CSVM

classifiers for emotions and ASD classification is presented in Table 6.2. The classification

problem (CLF Prob), Channel count (Ch. Count), best-case percentage accuracy (Acc%),

number of validation data sets, and the channel ranking are mentioned in the table.

All the previous works have focused on the emotions or ASD classification and none

of them have provided a single framework for both classification problems [24], [26], [42],

[89],[115],[46]. This is the first study (to the best of my knowledge) that provides a frame-

work and guideline for both emotions (EMT) and ASD classification. The significance of
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Figure 6-9: Features Wheel Diagram for Emotions & ASD Classification.

EEG-based emotions and ASD classification systems is highly dependent on the channel

count, especially for wearable systems [26],[72]. The identification of a minimum (4) num-

ber of channels was a primary focus of this study. This study also provided the maximum

classification results of 98.6% and 100% classification accuracies for the emotions and ASD

classification. The highest number (99) of subjects were analyzed in this study, with the

largest number (5) of data sets. This is the only study that provided a detailed analysis for

the channel ranking to identify the best four suitable EEG channels.
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Table 6.2: Comparison With the State-of-The-Art Works.

Koelstra Aslam Li Fang Liu Aslam Bouallegue Alturki Baygin T.W

[24] [39] [42] [26] [112] [46] [113] [114] [115] [66]

CLF Prob EMT EMT EMT EMT EMT ASD ASD ASD ASD EMT+ASD

Ch. Count 32 8 32 6 62 4 16 16 64 4

Classifier NB LSVM GELM CNN 3DCANN LSVM RNN KNN CSVM LSVM

Acc (%) 62 73.4 88 83.4 97.3 85.5 99.5 98.5 96.4 98.6/100

# of Sub 32 47 74 32 15 12 12 17 54 99

# of Data Set 1 2 3 1 1 1 1 1 1 5

Ch. Rank No No No No No No No No No Yes

This paper provides a framework for the researchers performing emotions and ASD

classification using ML. The most frequently utilized and “benchmark-considered” data

sets for the emotions and ASD classification including DEAP, SEED, DREAMER, ODU,

and KAU data sets were utilized. A detailed analysis of the data sets including the number

of subjects, number of classes per subject, range of label values including valence and

arousal, gender and age statistics of each subject, the importance of classification threshold

for emotions classification, and the percentage of the positive-negative split in each data set

was described.

The location of the EEG channels becomes highly significant for the hardware-based

emotions and ASD prediction systems in addition to the channel count. The location

of the shortlisted four channels using the 10-20 system is shown in Fig 6-10. It can be

observed that temporal and frontal locations are highly significant for emotions prediction,

irrespective of the data set. The significance of the prefrontal (FP) region is higher than

in other regions and can be observed from DEAP and SEED data set analysis through Fig

6-10 (a),(d). Similarly, the fontal-central and occipital brain regions were observed to be

highly significant for the ASD classification.
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Figure 6-10: Location of 4 Channel EEG subset using 10-20 System on
(a) DEAP (b) SEED (c) DREAMER (d) ODU (e) KAU Data Sets.

6.5 Summary

This chapter has provided a guideline to early researchers for EEG-based emotions and

ASD classification. The following main point are discussed and explained in this chapter:-

• The procedure to quantify and measure human emotion is described.

• Multiple data sets for the emotions and ASD classification are characterized.

• Most frequently used and “benchmark-considered” data sets for emotions and ASD

prediction are identified.

• The significance of classification threshold in emotions prediction is highlighted.
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• The significant brain areas, related EEG channels and significant features for the

emotions and ASD prediction are identified using LSFE.

• Performed emotions and ASD prediction using DEAP, SEED, DREAMER, KAU and

ODU data sets.

• Achieved excellent classification results for emotions (98.6%) and ASD (100%) pre-

diction.

• The conventional ADOS-2 method for ASD diagnosis and the ADOS-2 scores confir-

mation with the aid of neurologists is also detailed.

• Utilized a lower number (4) of channels for emotions and ASD prediction.

6.6 Conclusion

In this chapter targeting suitable features and channel identification using LSFE method-

ology, I have primarily focused on an extensive analysis through LSFE to identify the most

suitable channels and brain areas for emotions and ASD classification. I achieved higher

classification results than the state-of-the-art using a lower number of channels for emotions

and ASD classification. The algorithm was validated on a maximum number of subjects

and benchmark data sets. The LSVM classifier used in this work has significantly lower

complexity than the other classifiers. The identified brain areas for the emotions classifica-

tion included the temporal, frontal, and prefrontal regions. The identified regions for the

ASD classification included the occipital and frontal-central regions. A subset of the most

suitable four EEG channels was identified for each data set which is highly beneficial for the

researchers targeting a minimum number of channels. The feature significance highlighted

by the extensive LSFE analysis is highly important, especially for the researchers targeting

hardware-based systems. The approximated hardware implementations of the highlighted

features can be used to develop low-cost (area, power, and energy) hardware systems for

emotions and ASD prediction.
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Chapter 7

Dissertation Conclusion and

Future Work

7.1 Conclusion

This thesis presented the design and development of two wearable DBE processors for ASD

children’s assistance using their emotions. Irregular emotions and uncontrolled NEOB are

major dilemmas for ASD patients causing self-injuries and suicide attempts. The DBE pro-

cessors are designed and developed using 180 nm CMOS process. The DBE1 processor was

designed and developed using a linear SVM classification algorithm. The DBE2 processor

was designed and developed using a DNN classifier. These processors can be fully integrated

with an ULP and low noise AFE for a wearable real-time negative emotions prediction SoC

device. The real-time negative emotions prediction can be used to control and regulate

negative emotions using suitable biofeedback. Later on, a LSFE analysis was conducted to

identify the most suitable channels and features for emotions and ASD prediction.

This PhD thesis presents several contributions, which are summarized below:-

• DBE1 : The first generation LSVM based processor was designed and developed using

a 180 nm CMOS process. The DBE1 utilizes an area and classification energy of 5.4

mm2, and 16µJ/prediction, respectively. The processor provides the classification

accuracy of 73.4%, and was validated using DEEP and SEED data sets [116]. This

work was published in the following top international conference, transactions and
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book chapters:-

1. IEEE International Symposium on Circuits and Systems (ISCAS),

2019

– Abdul Rehman Aslam and Muhammad Awais Bin Altaf, “An 8 channel

patient specific neuromorphic processor for the early screening of autistic

children through emotion detection,” in 2019 IEEE International Symposium

on Circuits and Systems (ISCAS), pp. 1–5, 2019.

2. IEEE Transactions on Biomedical Circuits and Systems (TBioCAS),

2020

– Abdul Rehman Aslam and Muhammad Awais Bin Altaf, “An on-chip

processor for chronic neurological disorders assistance using negative affectiv-

ity classification,” IEEE Transactions on Biomedical Circuits and Systems,

vol. 14, no. 4, pp. 838–851, 2020.

3. Neural Engineering Techniques for Autism Spectrum Disorder, 2021

– Abdul Rehman Aslam and Muhammad Awais Bin Altaf, “Machine learn-

ing–based patient-specific processor for the early intervention in autistic

children through emotion detection,” in Neural Engineering Techniques for

Autism Spectrum Disorder, pp. 287–313, Elsevier, 2021.

• DBE2 : The second generation DNN based processor was designed and developed

using a 180 nm CMOS process. The DBE2 utilizes an area and classification en-

ergy of 16 mm2, and 10.13µJ/prediction, respectively. The processor provides the

classification accuracy of 85.4%, and was validated using DEEP and SEED data sets

[116]. This work was published in the following top international conference and book

chapters:-

1. IEEE Custom Integrated Circuits Conference (CICC), 2020

– Abdul Rehman Aslam, Talha Iqbal, Mahnoor Aftab, Wala Saadeh, and

Muhammad Awais Bin Altaf, “A10.13uj/classification 2-channel deep neural

network-based soc for emotion detection of autistic children,” in 2020 IEEE

Custom Integrated Circuits Conference (CICC), pp. 1–4, 2020.
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2. IEEE Transactions on Biomedical Circuits and Systems (TBioCAS),

2021

– Abdul Rehman Aslam and Muhammad Awais Bin Altaf, “A 10.13j/clas-

sification 2-channel deep neural network based soc for negative emotion out-

burst detection of autistic children,” IEEE Transactions on Biomedical Cir-

cuits and Systems, vol. 15, no. 5, pp. 1039–1052, 2021.

• LSFE Analysis : A large-scale feature selection analysis was conducted for best

suitable channels and feature selection in emotion and ASD prediction. This work

was published in the following top international conference and journal:-

1. IEEE International Conference on Artificial Intelligence Circuits and

Systems (AICAS), 2021

– Abdul Rehman Aslam, Nauman Hafeez, Hadi Heidari, and Muhammad

Awais Bin Altaf, “An 8.62 uw processor for autism spectrum disorder classi-

fication using shallow neural network,” in 2021 IEEE 3rd International Con-

ference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–4,

2021.

2. Frontiers in Neuroscience (Front. Neurosci), 2022

– Abdul Rehman Aslam, Nauman Hafeez, Hadi Heidari, and Muhammad

Awais Bin Altaf, “Channels and feature identification with large scale feature

extraction for emotions and asd classification,” Frontiers in Neuroscience, p.

1094, 2022.

7.2 Future Work

I believe that the DBE processors for real-time emotional prediction targeting ASD children

would provide promising assistance for ASD patients. However, several areas including

binary neural networks, low power AFE, data set collection for ASD patients, and the

utility of MMG signals for negative emotions prediction is worth exploring.
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Binary Neural Networks

The DNN and deep learning have shown high effectiveness to solve complex machine-

learning problems and achieve highly accurate results. Complex DNNs including Con-

volutional Neural Networks, Long term Short term Memory Networks, Recurrent Neural

Networks, Generative Adversarial Networks, RBF networks, Multilayer Perceptrons, Self

Organizing Maps, Deep Belief Networks, Auto-encoders, etc. have shown great results for

emotions or ASD prediction [117]. But the main bottleneck in their hardware implementa-

tions especially wearable SoC devices is the area, power, and energy constraints. A bulky

device with a large area with 100% classification results would perish the real objective of

miniaturized wearable SoC devices. Similarly, an SoC device with high energy dissipation

would not only drain the battery abruptly but also generate too much heat which would

make the patients highly uncomfortable.

The binary neural networks are DNNs with binary or 1-bit weights, biases, and acti-

vation functions. Binary neural networks have recently shown great potential for complex

classification problems. The design and development of a DBE processor using binary neural

networks would be highly suitable for low-power and energy SoC devices [118].

Ultra Low Power Analog Front End

The design and development of an ULP AFE is a key element for wearable SoC devices for

biomedical applications. The high noise, low signal-to-noise ratio, and high electrode skin

impedance are major problems for AFE devices targeting wearable applications. An EEG

signal with minimum noise and artifacts is required for high precision emotions prediction

or ASD prediction SoC devices.

Electrode Skin Impedance impedes the EEG signal generated by the surface between

the skin contact and EEG electrodes. High electrode skin impedance is a major noise

factor in the EEG signals. The design and development of an AFE with minimum noise

factor, minimum electrode skin impedance and ULP is required to be integrated with a high

precision DBE processor for a fully integrated wearable SoC device for emotions prediction,

ASD prediction, or other similar biomedical applications.
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Physiological Signals Data Bank for ASD Patients

Limited physiological signals are a major challenge faced by researchers targeting the design

and development of solutions for the diagnosis and assistance of ASD patients. The sensitive

nature of ASD patients and the requirements to fulfill the ethical approvals are major

barriers in the data sets collection. I would target the collection of physiological (EEG)

signal data set of ASD patients after necessary ethical approvals with the aid of neurologists.

Mechanomyogram Signals for Emotions Prediction

MMG signals are mechanical signals generated by the muscles’ contraction which are mea-

sured through mechanical vibrations on the skin surface [119]. It is recently investigated

that the MMG signals can be used to detect human emotions using forearm MMG sensors

[120]. Since MMG measures mechanical signals, it has several benefits over electrical signals

including chronic implants and environmental effects [121]. I, therefore, aim to explore the

utilization of MMG signals for emotional prediction SoC.
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ducci, R. Sardone, and P. Sorino, “Brain computer interface: Deep learning approach
to predict human emotion recognition,” in 2022 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 2689–2694, 2022.

[56] X. Shen, X. Liu, X. Hu, D. Zhang, and S. Song, “Contrastive learning of subject-
invariant eeg representations for cross-subject emotion recognition,” IEEE Transac-
tions on Affective Computing, pp. 1–1, 2022.

[57] J. W. Li, S. Barma, P. U. Mak, F. Chen, C. Li, M. T. Li, M. I. Vai, and S. H.
Pun, “Single-channel selection for eeg-based emotion recognition using brain rhythm
sequencing,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 6,
pp. 2493–2503, 2022.

[58] A. Menon, D. Sun, S. Sabouri, K. Lee, M. Aristio, H. Liew, and J. M. Rabaey,
“A highly energy-efficient hyperdimensional computing processor for biosignal clas-
sification,” IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no. 4,
pp. 524–534, 2022.

[59] S. M. Alarcão and M. J. Fonseca, “Emotions recognition using eeg signals: A survey,”
IEEE Transactions on Affective Computing, vol. 10, no. 3, pp. 374–393, 2019.

[60] B. S. Mashford, A. J. Yepes, I. Kiral-Kornek, J. Tang, and S. Harrer, “Neural-network-
based analysis of eeg data using the neuromorphic truenorth chip for brain-machine
interfaces,” IBM Journal of Research and Development, vol. 61, no. 2/3, pp. 7–1,
2017.

[61] W. Saadeh, M. A. Bin Altaf, and S. A. Butt, “A wearable neuro-degenerative dis-
eases detection system based on gait dynamics,” in 2017 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6, 2017.

[62] H. A. Gonzalez, R. M. George, S. Muzaffar, J. Acevedo, S. Hoeppner, C. Mayr, J. Yoo,
F. H. Fitzek, and I. Elfadel, “Hardware acceleration of eeg-based emotion classification
systems: A comprehensive survey,” IEEE Transactions on Biomedical Circuits and
Systems, 2021.

[63] C. E. Izard, “Emotion theory and research: Highlights, unanswered questions, and
emerging issues,” Annual review of psychology, vol. 60, p. 1, 2009.

[64] L. F. Barrett, B. Mesquita, K. N. Ochsner, and J. J. Gross, “The experience of
emotion,” Annual review of psychology, vol. 58, p. 373, 2007.

[65] L. F. Barrett, “Discrete emotions or dimensions? the role of valence focus and arousal
focus,” Cognition & Emotion, vol. 12, no. 4, pp. 579–599, 1998.

137



[66] A. R. Aslam, N. Hafeez, H. Heidari, and M. A. B. Altaf, “Channels and feature
identification with large scale feature extraction for emotions and asd classification,”
Frontiers in Neuroscience, p. 1094, 2022.

[67] M. A. Bin Altaf, C. Zhang, and J. Yoo, “A 16-channel patient-specific seizure onset
and termination detection soc with impedance-adaptive transcranial electrical stimu-
lator,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2728–2740, 2015.

[68] W.-L. Zheng, J.-Y. Zhu, and B.-L. Lu, “Identifying stable patterns over time for
emotion recognition from eeg,” IEEE Transactions on Affective Computing, vol. 10,
no. 3, pp. 417–429, 2019.

[69] A. Topic, M. Russo, M. Stella, and M. Saric, “Emotion recognition using a reduced set
of eeg channels based on holographic feature maps,” Sensors, vol. 22, no. 9, p. 3248,
2022.

[70] J. Wang, J. Barstein, L. E. Ethridge, M. W. Mosconi, Y. Takarae, and J. A. Sweeney,
“Resting state eeg abnormalities in autism spectrum disorders,” Journal of neurode-
velopmental disorders, vol. 5, no. 1, pp. 1–14, 2013.
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