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Abstract

Consider the interior of a black hole or the very early universe: matter is so densely
localized that neither the effects of gravity nor those of quantum theory can be ignored.
But this entails that neither general relativity nor quantum theory on its own can fully
describe such a situation, for some of the most fundamental principles inhering in
these two theories are haunted by the specter of incompatibility. Quantum gravity is
the name for the bewildering penumbra of theories that seek to exorcise this demon.
But it turns out that the metrical variables of general relativity constitute a lamp too
narrow to bottle the phantom, and loop quantum gravity is a fascinating enterprise that
seeks the Aladdin who does possess the required lamp. This is achieved by recasting
general relativity as a theory of connections, rather than that of metrics. This shift of
emphasis allows one to use a number of mathematical tools that make it possible to
arrive at a fully consistent, almost background-independent theory of quantum gravity.
This thesis endeavours to probe these ideas in detail.
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Preface

The term ‘quantum gravity’ carries a number of connotations. To a student of physics,
it seems to convey the idea of a mathematical framework that describes gravity with
recourse to quantum theory. But such a characterisation begets more questions than
it answers. What is quantum theory? Is it the quantum mechanics of non-relativistic
particles? Or is it the quantum theory of relativistic fields? Or is it yet some other
physical theory whose name contains the word ‘quantum’? In any case, are there some
salient ‘quantum principles’ that undergird all these different incarnations of quantum
theory? If so, does gravity as we understand it lack those principles, so that we are
interested in garbing it in quantum-theoretical clothes? But what is gravity in the first
place? Is there something inherently and conceptually non-quantum about it or is its
non-quantum nature simply an artefact of how we typically describe it mathematically?

Let us make an attempt to broach these questions. Consider the second end of
the devil’s horn, namely gravity. Since Einstein’s general relativity, we have a fairly
precise idea of what gravity is. We imagine the universe around us as a four-dimensional
manifold called spacetime, and gravity is understood as a set of fields that characterise
the geometry of this manifold. Thus, as these fields change, the geometry of spacetime
changes, which in turn influences the dynamics of matter contained in the universe.
Furthermore, this influence is not a totalitarian rule where only gravitational fields
determine the fate of matter. It is a democratic calculus: matter, which can also be
described via fields on spacetimes, also monitors the behaviour of gravity. This two-way
street is paved with the Einstein field equations,

Gαβ = 8πTαβ,

which are dynamical equations with spatial and temporal derivatives of the gravita-
tional fields on the left-hand side, and those of the matter fields on the right-hand side.
We refer to this duel between geometry and matter as background independence, which
is meant to convey the message that there is no background arena in nature determined
by fixed gravitational fields that are inert to the machinations of matter fields. In the
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time-honoured words of John Wheeler, “Spacetime tells matter how to move; matter
tells spacetime how to curve.”

Thus, in a nutshell, gravity could be envisioned as a background-independent field.
This characterisation lets us confront the remaining end in the devil’s horn of ‘quan-
tum gravity’. Since the modern understanding of gravity is in terms of a field theory,
to make an appropriate comparison with quantum theory, we must invoke relativistic
quantum field theories, such as Klein-Gordon scalar field theory, quantum electrody-
namics, and so on. What are the features of these field theories that make them
fundamentally different from general relativity? The first point to notice is that in
relativistic quantum field theories, the relevant fields have a very different structure
from the fields in general relativity. Unlike gravitational fields, they are represented as
operators with possibly non-vanishing commutators. It is this property of ‘quantum’
fields that differentiates them from classical fields such as gravity in general relativity,
and it has nontrivial empirical consequences, such as the manifestation of the uncer-
tainty principle, probabilistic amplitudes, and so on. Indeed, this signals the need to
modify general relativity, for it assumes matter fields to be non-quantum along with
gravitational fields, whereas the stunning empirical achievements of particle physics
tell us that matter is undoubtedly quantum.

The other salient feature of relativistic quantum field theories is that they are typi-
cally formulated as dynamical theories of matter fields living on the fixed background of
Minwkowskian spacetime – hence the name relativistic. Thus, they are not background
independent. In fact, since the geometry of Minkowski spacetime is flat, gravity is al-
together absent from these theories. From an empirical standpoint, this is justified, for
general relativity dictates that small masses localised in small regions of spacetime are
immune to the effects of the geometry of spacetime at large, and relativistic quantum
field theories are used to understand the microscopic world of particle physics, which
deals with small masses localised at laboratory scales.

However, there might be realistic scenarios in which huge amounts of masses may
be localised in small regions of spacetime, such as for instance, the interior of a black
hole or the very early universe. In such circumstances, the effects of spacetime ge-
ometry become non-negligible. Thus, it would be incorrect to describe the behaviour
of particles through quantum fields on an inert background. Here one could smuggle
gravity into the the theory by changing the background spacetime from Minwkowskian
to one with nontrivial geometry. This is the paradigm of quantum field theory on
curved spacetime, and has been successful, for example, in formulating the inflationary
model of the expansion of the universe. However, this is still a background-dependent
scheme, for the background geometry, despite being nontrivial, is still fixed; quantum
fields are affected by it, but do not in turn influence it. To really develop a background-
independent theory of quantum fields, one will have to somehow construct a framework
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in which quantum matter fields influence gravitational fields. Thus, no matter how we
contrast quantum field theory and general relativity, we arrive at the need to develop
a background-independent theory of gravity in which matter is necessarily quantum,
a task beyond the conceptual framework of both these theories. This is how the term
‘quantum gravity’ is interpreted in this thesis.

Broadly speaking, there are two ways to realise such a vision of quantum gravity.
One way is to keep treating gravity as a classical field, while somehow trying to describe
how quantum matter fields may be able to influence the classical gravitational fields.
This approach is called semiclassical gravity, and involves a penumbra of schemes, rang-
ing from modifying the Einstein field equations to employing path-integral methods.
But we will be interested in the other second approach to our problem. It consists in
treating gravity on an equal footing with matter. All fields, whether matter or gravita-
tional, are considered quantum, and thus represented as operators on a Hilbert space.
In this thesis, we will delve into the gravitational aspect of this approach, namely the
description of gravity in vacuum in terms of quantum fields.

How are we to proceed with such a task? Typically, quantum theories are con-
structed from classical theories via a specific scheme of quantisation, such as canonical
quantisation, path-integral methods, and so forth. In the case of gravity, this observa-
tion translates to the quantisation of general relativity, which is a classical field theory
of gravity. In the canonical quantisation of a field theory, one begins by passing to
the Hamiltonian formulation of the classical theory. One then applies a well-defined
procedure to convert the dynamical fields and observables involved in the Hamiltonian
formulation into operators on a Hilbert space. In contrast, path-integral quantisation
proceeds from the Lagrangian formulation of a classical field theory, and directly ob-
tains amplitudes related to quantum fields by integrating over all classical histories.
This thesis will only explore only the canonical quantisation of gravity.

Regardless of which scheme of quantisation one wishes to use, in general, there
are two ways to quantise a classical field theory: perturbative and non-perturbative.
Perturbative methods are motivated from standard relativistic quantum field theory
with interactions, in which we describe interacting fields as perturbations whose ef-
fects manifest in amplitudes and scattering cross sections. This method applied to
gravity entails that we split the classical gravitational fields into two parts, one of
which is considered as a fixed background upon which the second part is a pertur-
bation; then we subsequently quantise this perturbation. However, this is anathema
to the spirit of background-independence, for the non-perturbed part of the gravita-
tional fields furnishes an inert background. Indeed, perturbative quantum gravity along
the lines of perturbative quantum field theory is known to be non-renormalisable, i.e.
riddled with incurable divergences, an indication, perhaps of our carelessness concern-
ing background independence. However, this does not mean that there are no viable
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perturbative frameworks of quantum gravity – the most famous example is string the-
ory. We will, however, insist upon background-independence and accordingly, focus
on non-perturbative methods of quantisation, which seek to fully quantise classical
gravitational fields.

Thus, our central aim in this thesis is to study non-perturbative canonical quanti-
sation of general relativity. As we shall repeatedly see, walking down this road forces
us to forgo some of our most cherished ideas about gravity and spacetime. Chapter 1
will spell trouble for the idea of quantising gravity using a mathematical framework in
which general relativity is traditionally conceived, i.e. the description of gravitational
fields via a metric on a Lorentzian spacetime. We will formulate a Hamiltonian theory
of metrical variables, and find that an attempt at quantising it faces a plethora of
insurmountable difficulties. Notice, however, that we were decisively vague when we
described gravity above as a theory of fields that characterise the geometry of space-
time. This suggests that perhaps, the metric is not the only field that accomplishes this
task. Indeed, Chapter 2 will be devoted to elucidating this point. We shall formulate
alternative, equivalent versions of canonical general relativity, which demote the met-
ric to a secondary character, according primary importance, instead, to connections
on local sections of the tangent bundle of spacetime. This is where the name of the
thesis comes from, and this approach of sacralising connections in favour of the met-
ric is the starting point of one of the most refined and sophisticated non-perturbative
frameworks of quantum gravity – loop quantum gravity. Chapter 3 – the longest one
– shall delve into this vast theory and develop a rigorous framework to quantise the
connection formulations of canonical general relativity at the kinematic level. Chap-
ter 4 will elaborate some tantalising predictions of this new framework, such as the
discreteness of spatial geometry, which casts a shadow of doubt on the time-honoured
understanding of spacetime as a continuum. Finally, Chapter 5 shall be concerned
with implementing the dynamics of gravity at the quantum level.

It is worth pointing out that we will explore loop quantum gravity in its canonical
framework. There also exist path-integral versions of loop quantum gravity, but we
will not explore them. They are subsumed under the umbrella of spinfoam gravity,
also known as covariant loop quantum gravity [28]. Moreover, connections will be at
the forefront of all our constructions. Accordingly, we shall focus on the connection-
space representation of loop quantum gravity. An alternative formulation is in terms
of the so-called loop variables [27]. Both formulations are completely equivalent [16].
For a comprehensive overview of the various threads interspersed in the fabric of loop
quantum gravity, we refer the reader to Ref. [21].



Note to the Reader

This thesis is written with an advanced undergraduate audience in mind. It assumes
a background in general relativity and quantum field theory at the level of the first
part of Wald [1] and the first ten chapters of Srednicki [33]. In practice, this translates
to a thorough mastery over index gymnastics and familiarity with basic field-theoretic
and quantum-theoretical concepts such as Poisson brackets, canonical commutation
relations, functional derivatives, a Hilbert space, and so on. With such a background,
most of the contents of this thesis can be grasped through a patient perusal, provided
the reader possesses some mathematical sophistication to make sense of some technical
mathematical concepts introduced here and there. In fact, some of this mathematical
experience is certainly gained in one’s undergraduate journey in theoretical physics.
On this account, we assume at least a nodding acquaintance with some mathematical
terms that we do not define, such as isomorphism, diffeomorphism, algebra, group, and
so forth.

There is an exception to this general theme: Chapter 3 demands a fair amount of
prior mathematical expertise to be thoroughly understood. A grounding in undergrad-
uate analysis would certainly help, as would some basic familiarity with concepts from
measure theory and topology. Where possible, we have given references to books and
papers where the relevant concepts can be studied in more detail, and have intuitively
explained the import of technical theorems and results that we state without proof.
Unfortunately, it is not possible to do justice to the concepts involved in loop quan-
tum gravity without recourse to these mathematical preliminaries. In fact, contrary to
appearances, Chapter 3 still severely lacks in mathematical rigour, and brushes many
technical nuances under the carpet. Our aim there is to help the reader gain at least
some appreciation for the very beautiful mathematical structures and notions that
undergird the field of loop quantum gravity, without introducing so much technical
baggage as to scare even the most serious reader away. Such an approach is bound to
make both experts and non-experts unhappy, but even if one person found our cod-
diwomple through loop quantum gravity helpful in understanding the often severely
dense foundational papers in the field, our efforts would not have been in vain. To
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both the timid novice and the haughty expert, we apologise in advance.



Chapter 1

Spectres That Haunt ADM

One of the very successful ways of quantising classical systems is to pass to their Hamil-
tonian formulation, and then promote functions that are observables in the classical
phase space to self-adjoint operators in a Hilbert space by promoting the Poisson brack-
ets between those functions to commutators between operators. Since there exists a
well-worked-out Hamiltonian formulation of general relativity, namely, the ADM for-
malism (due to Arnowitt, Deser and Misner), it seems natural to ask whether it can be
subjected to the methods of Dirac quantisation. If such a task can be accomplished,
one will have a fully consistent non-perturbative theory of quantum gravity. It would
be an immensely satisfactory marriage of the principles of quantum mechanics and of
general relativity, for gravity would have become a quantum phenomenon that respects
background independence, which is a cornerstone of general relativity. However, as we
shall see, a straightforward quantisation of the ADM formalism leads to a morass of
intractable difficulties. To step into these murky waters, we shall first have to come to
grips with the ADM formalism itself.

1.1 The ADM Formalism of General Relativity

The Hamiltonian formulation of a field theory proceeds with the choice of a configura-
tion variable and its conjugate momentum, which involves a time derivative. Thus one
has to choose a time coordinate before one can even begin to write down a Hamiltonian
formulation. It seems rather perverse to do such a thing in the context of a theory that
boasts of general diffeomorphism invariance. The remedy, of course, is to demonstrate
that the formulation so constructed will be independent of the particular choice of the
time coordinate.

The spacetime manifold M is locally diffeomorphic to R4, which in turn can be
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described by a set of four coordinates. Reserving one of these coordinates for time
is thus equivalent to finding a diffeomorphism φ : M → R × Σ, where Σ is a three-
dimensional manifold and R is the abode of our time coordinate. Σ can be thought of
as a hypersurface in M . The picture that emerges is then of the spacetime being sliced
into three-dimensional hypersurfaces, where each hypersurface is the three-dimensional
space at a particular time t (Fig. 1.1). Now, any dynamical theory must have a well-
defined initial-value formulation, in the sense that specifying the initial values of the
dynamical fields must uniquely determine their values at all future times, the future
values being given by the relevant dynamical equations. In Hamiltonian general rela-
tivity, this amounts to there being a hypersurface at some initial time t = to such that
specifying the values of the dynamical fields on that hypersurface uniquely determines
a solution of Hamilton’s equations of motion. But to achieve this, the hypersurface
must be special: it must be spacelike and Cauchy. A spacelike hypersurface is one that
has an everywhere nonvanishing timelike normal vector field. Intuitively, this means
that locally, one cannot join any points on the surface with a timelike or null path, and
this makes sense with regard to the initial-value formulation being well-defined because
the existence of nonspacelike paths between two points makes them causally connected,
curtailing our freedom to freely specify initial values. However, the existence spacelike
hypersurfaces is not sufficient, for although all points on them are locally causally dis-
connected, they may not be so globally1. Thus we further require the hypersurfaces to
be Cauchy, which is to demand that every two points on the surface are achronal, i.e.
do not lie in each other’s causal future2. Intuitive though they seem, these conditions
are highly non-trivial – only globally hyperbolic spacetimes admit such a foliation into
spacelike Cauchy hypersurfaces3.

t = 0
t = 1
t = 2Σ

Figure 1.1: Foliation of spacetime into a set of spacelike hypersurfaces
1Imagine a spacelike hypersurface that spirals round and round. Then for small enough regions,

every two points are causally disconnected, but two points in different rings of the spiral can be
connected by a timelike path.

2Our account of the initial-value formulation of general relativity and the attendant concepts of
the causal structure of spacetime, such as spacelike Cauchy hypersurfaces, is quite heuristic. For a
more thorough treatment, see [1, 2]. Also, for an illuminating introduction to causal structure, see [3].

3Most physical spacetimes considered in relativity are globally hyperbolic, so this is not a partic-
ularly damning restriction.
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With these provisos, it should be clear that the Hamiltonian formulation of general
relativity will be a prescription that specifies how a particular hypersurface changes in
time, i.e. given the values of the configuration variable and its conjugate momentum,
both defined on Σ, at an initial time t = to, what will be their values at a later time.
Thus the first task we shall set ourselves up to is to define on Σ the relevant structures
and quantities that will realise this picture of evolution. To that end, we first observe
that since the dynamical quantity in relativity is the metric gαβ, the configuration
variable in the Hamiltonian formulation will be this metric restricted to Σ, i.e. the
pullback of g by φ, φ∗g. We shall call this the induced metric, denoted by4 qab. The
first virtue possessed by this induced metric is that it is Riemannian. That is, for any
nonzero vector v ∈ TpΣ, the tangent space of Σ at the point5 p,

gαβv
αvβ > 0. (1.1)

Thus the configuration space of Hamiltonian general relativity is the space of all
Riemannian metrics qab on Σ; it is denoted by Met(Σ) and called the superspace.

Next, since Σ is everywhere spacelike, we can find a timelike unit-vector field n that
is everywhere orthogonal to it, i.e.

gαβn
αnβ = −1, gαβn

αvβ = 0, (1.2)

for all v ∈ TpΣ. With the help of n, we can decompose any vector u ∈ TpM into a
component normal and a component tangent to Σ:

uα = −gµνuµnνnα + (uα + gµνu
µnνnα). (1.3)

In particular, we can decompose the metric as

gαβ = (gµνgρλgµρnνnλ)nαnβ + (gαβ − (gµνgρλgµρnνnλ)nαnβ)
= −nαnβ + (gαβ + nαnβ),

which allows us to write the metric induced on Σ as

qαβ = gαβ + nαnβ. (1.4)
4Greek indices (α, β, etc.) refer to coordinates in spacetime and thus range from 0 to 3, whereas

Latin indices (a, b, etc.) refer to the intrinsic coordinates on Σ and so range from 1 to 3.
5A point of clarification: since v lives on Σ, we should have used Latin indices to represent its

components. However, given the diffeomorphism φ, we can always transport objects in Σ to their
counterparts in M and vice versa, via pullbacks and pushforwards. Intuitively, this freedom stems
from the fact that Σ is a surface embedded in M , and thus anything that lives in the former lives, a
fortiori, in the latter as well. We shall exploit this freedom at whim.



1.1 The ADM Formalism of General Relativity 16

This induced metric allows us to project objects in M onto Σ, for given v ∈ M ,
nαq

α
βv

β = nαδ
α
βv

β + nαn
αnβv

β = nβv
β − nβv

β = 0. Also, the induced metric can be
used to raise and lower indices on objects in Σ.

We have already identified the induced metric as the configuration variable of the
Hamiltonian formulation. What will be the momentum conjugate to it? To answer
this question, it is worth observing that Σ is a hypersurface embedded in M . Thus
to get a complete picture of how Σ evolves in time, it is necessary to not only know
its intrinsic properties, which are encoded in the induced metric, but also how it is
embedded in M – its extrinsic properties. Therefore, we seek an object that describes
how Σ is curved in the embedding manifoldM . It then seems reasonable to expect that
the evolution of the induced metric will effect this object, which will thus be related to
the momentum conjugate to the induced metric. To look for this object, we take two
vectors u, v ∈ TpΣ and using Eq (1.1), see how the parallel transport of one along the
other will decompose into normal and tangential parts:

∇uv
α = −(∇uvβ)nβnα + (∇uv

α + (∇uvβ)nβnα). (1.5)

Consider the first term in this equation. Using the product rule and the fact that
vβn

β = 0 (since vβ is tangent to Σ), we get nα(∇unβ)vβ = nαuγ(∇γnβ)vβ, which,
being the projection onto vβ of the result of parallel-transporting nβ along uα, describes
how much nβ rotates in the direction of vβ when it is parallel-transported along uα
– gauging nβ along Σ gives us a measure of how Σ is curved in M (Fig. 1.2). This
suggests that we should define a quantity ∇αnβ, which would describe the so-called
extrinsic curvature of Σ. However, ∇αnβ evidently has components both in M and Σ,
and we had promised initially to define quantities living solely in Σ. Thus we use the
induced metric to project ∇αnβ onto Σ and thereby define the extrinsic curvature:

Kαβ ≡ qγαq
λ
β∇γnλ

= qγα∇γnβ.
(1.6)

Σ
vα

nα

Figure 1.2: The effect of parallel-transporting nα along uα.
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To flesh out the relationship between Kαβ and the momentum conjugate to qαβ, we
now hark back to R in the splitting of spacetime into space and time, φ :M → R×Σ.
The pullback of the time coordinate τ ∈ R will give rise to a time coordinate t in
M , i.e. t = φ∗τ . Similarly, the pushforward of the vector field ∂τ will give rise to a
vector field tα ≡ φ∗∂τ . This vector field ‘points forwards in time’ in M , and it is the
Lie derivative along this vector field that shall be associated with the time derivative
in M . Like any object of interest, we first decompose tα into normal and tangential
components:

tα = Nnα +Nα, (1.7)
where, in accordance with Eq (1.1),

N = −gαβtαnβ (1.8)
Nα = tα + (gµνtµnν)nα. (1.9)

N is called the lapse and Nα is called the shift vector. Their physical interpretation
and importance will become clear later.

We will now show that Kαβ is a function of the Lie derivative of the induced metric.
To this end, we first prove that Kαβ is symmetric. Take u, v ∈ TpΣ. Since the spatial
projection of the parallel transport of one vector along the other should result in a
vector that is still tangent to Σ, we have that

0 = nα(qγβuβ∇γv
α − qγβv

β∇γu
α)

= −vαuβqγβ∇γnα + uαvβqγβ∇γnα

= uβvα(qγα∇γnβ − qγβ∇γnα),

which establishes the symmetry of Kαβ. Next, we observe that

Lnqαβ = nγ∇γqαβ + qγβ∇αn
γ + qαγ∇βn

γ

= nγ∇γ(gαβ + nαnβ) + (gγβ + nγnβ)∇αn
γ + (gαγ + nαnγ)∇βn

γ

= nγ∇γ(nαnβ) +∇αnβ +∇βnα + nγnβ∇αn
γ + nαnγ∇βn

γ

= nγ∇γ(nαnβ) +∇αnβ +∇βnα

= (δγα − nαn
γ)∇γnβ + (δγβ − nβn

γ)∇γnα

= 2Kαβ.

(1.10)

In the last step above, we used the symmetry ofKαβ. Next, we use Eq (1.7) in Eq (1.10)
to conclude that

Kαβ = 1
2NLt−Nqαβ = 1

2N (Ltqαβ − LNqαβ).
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Since Kαβ already lives in Σ, we can contract it with qαβ as many times as we like.
This allows us to recast the preceding equation as

Kαβ = qγαq
λ
βKγλ =

1
2N (qγαqλβLtqγλ − qγαq

λ
βLNqγλ) (1.11)

We define the first term to be the time derivative of the induced metric, q̇αβ. Consider
the second term. We get

qγαq
λ
βLNqγλ = qγαqµβ∇γN

µ + qµαq
λ
β∇λN

µ + qγαq
λ
βN

µ∇µqγλ

= qγαqµβ∇γN
µ + qµαq

λ
β∇λN

µ,
(1.12)

where the third term in the first line becomes zero because

qγαq
λ
β∇µqγλ = qγαq

λ
β∇µgγβ + qγαq

λ
β∇µ(nγnλ)

= qγαq
λ
β∇µ(nγnβ)

= qγα∇µ(qλβnγnλ)− qγαnγnλ∇µq
λ
β = 0.

(1.13)

Incidentally, this last calculation shows that the covariant derivative of the induced
metric projected onto Σ is compatible with the induced metric. That is, we are natu-
rally led to define a covariant derivative on Σ:

Dαv
β ≡ qµαq

β
ν∇µv

ν (1.14)

for all v ∈ TpΣ. Eqs (1.12–1.14) now make us able to write Eq (1.11) as

Kαβ = 1
2N (q̇αβ −DαNβ −DβNα). (1.15)

As advertised, Kαβ is a function of the time derivative of the induced metric.
The covariant derivative on Σ immediately gives rise to a Riemann curvature tensor

on Σ:
(3)Rα

βµνVα ≡ [Dβ, Dµ]Vν . (1.16)

We have set up all the mathematical machinery necessary to perform a Legendre
transform of the Einstein-Hilbert action,

S =
∫
d4x

√
gR, (1.17)

whose variation with respect to the metric yields the Einstein field equations. We seek
to cast Eq (1.17) in the form

∫
dt

∫
d3x(pabq̇ab−H)), where pab is the momentum conju-

gate to qab and H is the Hamiltonian. To that end, it is necessary to decompose √
gR

into objects living solely in Σ. We shall now perform this so-called 3+1 decomposition.
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Since our final expressions will be manifestly coordinate invariant, it will be harm-
less to work in a convenient set of local coordinates. To this end, in a neighbourhood of
any p ∈ Σ, we choose local coordinates xα such that x0 = φ∗τ , ∂0 = tα∇α = ∇φ∗∂τ and
the spatial vector fields ∂a are tangent to Σ at p6. These virtuous coordinates afford
the simplification that only the spatial components of tensors in M that are tangent
to Σ are nonzero.

Let us begin with the decomposition of √g. Recalling that tα points in the direction
of time, we write dxα = tαdt+ qαβdx

β and thus, using Eq (1.7),

ds2 = gαβ[(Ndt)nα + (Nαdt+ qαγdx
γ)][(Ndt)nα + (Nβdt+ qβλdx

λ)]
= −N2dt2 + gαβN

αNβdt2 + gαβN
αqβλdx

λ + gαβN
βqαγdx

γ + gαβq
α
γq

β
λdx

γdxλ,

where use was made of the orthogonality of n to any objects living on Σ. Now, by
virtue of our chosen coordinates, except gαβ, all the tensorial terms above have nonzero
components only for spatial indices, for which the metric g is equivalent to the induced
metric. Therefore, we can recast the preceding equation as

ds2 = −N2dt2 + qab(dxa +Nadt)(dxb +N bdt), (1.18)

which admits the following matrix interpretation:

gαβ =
Å

−N2 +NaNa Nb

Na qab

ã
. (1.19)

Now suppose tα = nα, so that Nα = 0. Then the equation above guarantees

g = −N2q, (1.20)

which, being coordinate invariant, holds for arbitrary tα as well.
Eq (1.18) furnishes the physical interpretation of the lapse and the shift, namely,

that displacements in spacetime are determined by the metric induced on the spatial
slice one happens to be on, as well as by the deformations of neighbouring slices,
encoded in N and Na, with respect to each other. In particular, under time evolution,
the lapse measures how much a slice Σ is pushed in the normal direction, while the
shift specifies a push in the tangent direction.

Now, let us decompose R. For this, we need to find the normal and tangential
projections of the Riemann curvature tensor. These are given by the Gauss-Codazzi
equations:

qγαq
λ
βq

µ
ρq
ν
σR

σ
γλµ = (3)Rν

αβρ +KαρK
ν
β −KβρK

ν
α , (1.21a)

6Choosing such local coordinates is always possible. Indeed, since the diffeomorphism φ is arbitrary,
we are free to set x0 = φ∗τ . Further, to get the desired ∂a, we can use Eq (1.1) to extract the tangential
components of the vector fields ∂x, ∂y, ∂z of coordinates (x, y, z) in Σ.
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qαµq
β
νq

γ
λRαβγρn

ρ = DµKνλ −DνKµλ, (1.21b)

Rαβγλn
βnλ = −LnKαβ +KαγK

γ
β +D(αn

γ∇|γ|nβ) + (nγ∇γnα)(nλ∇λnβ) (1.21c)

Using them, we find (up to total derivatives7)

R = (3)R +KαβKαβ − (Kα
α)2,

= (3)R +KabKab − (Ka
a)2,

= (3)R + tr(K2)− (trK)2.
(1.22)

Note that in the second line above, we switched the spacetime indices to purely spatial
indices, since the extrinsic curvature has no components normal to Σ and thus, in our
chosen coordinates, its temporal components are zero. We are now ready to perform a
Legendre transform on the action (Eq (1.17)), which now becomes

S =
∫
dt

∫
Σ
d3xL(pab, qab), (1.23)

where
L = √

qN((3)R + tr(K2)− (trK)2) (1.24)

is the Lagrangian density, now canonically decomposed. We immediately identify the
momentum conjugate to qab:

p̃ab := ∂L
∂q̇ab

= √
q(Kab − tr(K)qab), (1.25)

where the tilde over p indicates the fact that the conjugate momentum is a tensor
density of weight 1, i.e. comes with one factor of the square-root of the metric. Using
the preceding equation, we can recast L in terms of p̃ab and then finally perform the
Legendre transform to find the Hamiltonian of general relativity:

H :=
∫
Σ
d3x(p̃abq̇ab − L),

=
∫
Σ
d3x

√
q(NC +NaCa),

(1.26)

where
C = −(3)R + 1

q

Å
tr(p̃2)− 1

2tr(p̃)
2
ã

(1.27)

7Since our purpose here is more illustrative than pedantic, we shall content ourselves with ignoring
any boundary terms in the action.
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and
Ca = −2Db

Ç
1
√
q
p̃ab

å
. (1.28)

We pause here to point out a peculiar feature of this Hamiltonian. Using the Gauss-
Codazzi equations, it is possible to show that

C = −2Gαβn
αnβ, Ca = −2Gαan

α. (1.29)

But this, via the vacuum Einstein equations, implies that C and Ca vanish, and thus
the Hamiltonian of general relativity is zero! This seems to be a puzzling fact, for
it would appear that the dynamics of general relativity is trivial. However, one can
explicitly work out the (rather complicated) Poisson brackets of p̃ab and qab with H
to confirm that they do evolve nontrivially in time. In fact, the vanishing of the
Hamiltonian in a generally diffeomorphism invariant theory like general relativity is to
be expected, for otherwise, one would be left with the unsatisfactory conclusion that
there is an absolute time with respect to which a non-vanishing Hamiltonian generates
evolution. Therefore, as promised, the canonical decomposition performed above is
independent of the choice of the diffeomorphism φ. It is worth mentioning here that
standard quantum mechanics is not invariant with respect to reparametrisations of its
time parameter. This fundamental disjunction between how these two theories treat
time is the origin of the infamous problem of time, which we shall return to later.

The vanishing of C and Ca is a pleasing conclusion from another standpoint as
well, since it lends credence to the fact that the initial-value formulation of general
relativity is well posed. This is so because explicitly writing out Eqs (1.29) shows that
they contain, at most, the first time derivatives of the metric – thus, they encapsulate
nothing but constraints on the initial values of the metric and its first-order time
derivatives, and this is to be expected of the initial-value formulation of a theory
described by a system of second-order partial differential equations, as general relativity
is.

But what is the physical meaning of the constraints? It turns out that there is a
precise sense in which the constraints can be thought of as generating deformations of
the spatial slice Σ in time. To understand this geometric meaning of the constraints,
it is essential to study the Poisson-bracket structure of general relativity.
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1.2 The Poisson-bracket Structure of Hamiltonian
General Relativity

Let us begin by recalling the formal definition of the Poisson bracket between any two
functions f(q, p̃) and g(q, p̃) on the phase space:

{f, g} =
∫
Σ

√
q d3x

Å
δf

δp̃ab(x)
δg

δqab(x)
− δf

δqab(x)
δg

δp̃ab(x)

ã
(1.30)

It is straightforward to verify that Poisson brackets are Lie brackets.
Eq (1.30) readily yields the Poisson brackets between the canonical variables:{

p̃ab(x), qcd(y)
}
= δ(ac δ

b)
d δ

3(x− y) (1.31a){
p̃ab(x), p̃cd(y)

}
= 0 (1.31b)

{qab(x), p̃cd(y)} = 0 (1.31c)

Next, as indicated earlier, one could evaluate the brackets {H, qab} := q̇ab and
{
H, p̃ab

}
:=

˙̃pab to find how the canonical variables evolve in time, but neither are their complicated
expressions particularly illuminating, nor will we need them in the subsequent discus-
sion. Our essential motive in using Poisson brackets is to obtain the brackets between
the canonical variables and analyse the nature of the constraints so as to be able to
understand their geometric meaning. We focus on this second task now.

To start with, as noted earlier, the lapse N and the shift Na are a measure of how
much time evolution pushes the surface Σ in the normal direction and the tangent
direction, respectively. Now, in the Hamiltonian, the former occurs with C and the
latter with Ca. Therefore, we expect that the part of the Hamiltonian containing8 C,

CN :=
∫
Σ
d3x

√
qNC, (1.32)

generates time evolution in a manner that corresponds to nudging Σ in the normal
direction. On the other hand, the part of the Hamiltonian containing Ca,

CN⃗ :=
∫
Σ
d3x

√
qNaCa, (1.33)

should generate time evolution that corresponds to deformations of Σ tangent to itself.
Both of these expectations can be made precise. In particular, we can show that for
any phase-space function f(q, p̃),

{f, CN⃗} = LN⃗f (1.34a)
8Eq (1.32) is what is called the smeared version of the constraint C. Smearing the constraints is

important on two accounts: (1) it reveals a clear physical interpretation of the constraints, and (2)
the Poisson brackets between unsmeared constraints are ill-defined, involving Dirac deltas.
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{f, CN} = (· · · ) + LNnf (1.34b)

where (· · · ) indicates terms proportional to CN⃗ and the Einstein field equations, and
n is the unit normal to Σ. In other words, the flow of Na, which spans Σ, is a one-
parameter family of diffeomorphisms of Σ; thus, according to Eq (1.34a), CN⃗ generates
transformations of the physical phase space (the subspace on which Ca = 0) correspond-
ing to diffeomorphisms of Σ. For this reason, CN⃗ (or Ca) is called the diffeomorphism
constraint of general relativity. Similarly, provided that the Einstein equations and the
diffeomorphism constraint are in force, Eq (1.34b) tells us that CN , called the Hamilto-
nian constraint, generates transformations of Σ in the normal direction. We will derive
Eq (1.36a) below; Eq (1.36b) requires a fairly involved calculation, for which we refer
to Ref. [58].

It is worth emphasising that owing to the presence of Lie derivatives in Eq (1.34), we
interpret CN and CN⃗ as generators of infinitesimal transformations. To generate finite
transformations, one will have to exponentiate these constraints. In general, this is only
possible for the diffeomorphism constraint, since the Hamiltonian constraint involves
the nontrivial (· · · ) terms as well. For the diffeomorphism constraint, exponentiating
yields the flow generated by N⃗ , i.e. the integral curves φt : R → Σ of the differential
equation

dφt(x)
dt

= N⃗(φt(x)). (1.35)

Note that the one-parameter family of maps φt forms a group under the operation
φs · φt = φs+t. It is called the spatial diffeomorphism group.

Having understood the physical meaning of the constraints, we now derive the
Poisson brackets between them. We find:

{CM⃗ , CN⃗} = CL
M⃗
N⃗ , (1.36a)

{CN⃗ , CN} = CL
N⃗
N , (1.36b)

{CM , CN} = Cqab(M∂bN−N∂bM). (1.36c)

A number of comments are in order here. First, the constraints are closed under taking
Poisson brackets – the bracket of two constraints is again a constraint. Such constraints
are said to be first class, and Eqs (1.36) form what is called a Dirac algebra. As we shall
see, the first-class nature of the constraints is important in finding physical quantum
states in Dirac quantisation. Second, due to the presence of qab in Eq (1.36a), the Dirac
algebra is not a Lie algebra. If it were, the task of quantisation would be significantly
simpler, for one would then simply have to look for the representations of the group of
which the Dirac algebra would be a Lie algebra.
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Derivation – Eqs (1.34a) and (1.36)

(i) We head straight into the calculation:

{CM⃗ , CN⃗} =
∫
d3z
»
q(z)
ï
δCM⃗
δp̃ab(z)

δCN⃗
δqab(z)

− (M⃗ ↔ N⃗)
ò

=
∫
d3z
»
q(z) δ

δp̃ab(z)

[∫
d3x
»
q(x)M cCc(x)

]
× δ

δqab

[∫
d3y
»
q(y)NdCd(y)

]
− (M⃗ ↔ N⃗)

= 1
2

∫
d3xd3y

»
q(x)q(y)M c δCc(x)

δp̃ab(y)q
abNdCd(y)

+
∫
d3zd3xd3y

»
q(x)q(y)q(z)M c δCc(x)

δp̃ab(y)N
d δCd(y)
δqab(z)

− (M⃗ ↔ N⃗)

In the fourth line, we applied the product rule on the derivatve in the third
line and used the identity δq(x)/δqab(y) = q(x)qab(x)δ3(x− y). The term in
the second-last line above cancels the corresponding term in (M⃗ ↔ N⃗). On
the other hand, ignoring total derivatives,

Nd(y)
δCc(x)
δp̃ab(y)q

ab(y) =
ñ
− 2√

q(x)
Nd(y) δ

δp̃ab(y)D
(x)
l p̃cl(x)

ô
qab(y)

= 2√
q(x)

(DlNd)δ(ca δ
l)
b q

ab(y)δ3(x− y)

= 2√
q(x)

(DcNd)δ3(x− y),

which upon substitution into its parent equation yields

{CM⃗ , CN⃗} =
∫
d3x

√
q[Mc(DcNd)Cd − (M⃗ ↔ N⃗)] =

∫
d3x

√
qLM⃗NdC

d.

(ii) We begin by writing the diffeomorphism constraint in the following way [30].

CN⃗ = −2
∫
d3xN bDap̃ab = 2

∫
d3x p̃abD

aN b = 2
∫
d3x p̃abD

(aN b)

=
∫
d3x p̃ab LN⃗q

ab
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= −
∫
d3x qab LN⃗ p̃

ab

It is then easy to see that

δCN⃗
δp̃ab

= LN⃗qab,

δCN⃗
δqab

= −LN⃗ p̃
ab,

which at once yields validates Eq (1.34a). It is also not difficult to find that

δCM
δp̃ab

= q−1/2M [2p̃ab − qabtr(p̃)].

Next, consider the identity

δR(x)
δqab(y)

= −Rab(x)δ3(x− y) + qabDkDkδ
3(x− y)−D(aDb)δ3(x− y),

which, via two successive integrations-by-parts, entails that∫
d3xN

δR(x)
δqab(y)

= −Rab −D(aDb)N + qabDkDkN.

This, along with the fact that traces are metric-dependent and δq(x)/δqab(y) =
q(x)qab(x)δ3(x− y), yields

δCN
δqab

=
∫
d3xN

δ

δqab(y)

ï
−q1/2R(x) + q−1/2

Å
tr(p̃2)− 1

2 tr(p̃)
ãò

= Nq1/2
ï
Rab − qabR

2

ò
+
î
D(aDb)N − qabDkDkN

ó
+ 2Nq−1/2

ï
p̃(anp̃

b)n − 1
2 tr(p̃) p̃ab

ò
− Nq−1/2

2 qab
ï
tr(p̃2)− 1

2 tr(p̃)
ò
.

Finally, then, some integrations-by-parts and rearrangements yield the de-
sired result.

(iii) Using the derivatives of CN as found in (ii), we get

{CM , CN} =
∫
d3z
»
q(z)
ï
δCM
δp̃ab(z)

δCN
δqab(z)

− (M ↔ N)
ò
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=
∫
MN(· · · )

+
∫
d3x q−1/2M [2p̃ab − qabtr(p̃)][D(aDb)N − qabDkDkN ]

− (M ↔ N)

=
∫
d3x q−1/2[2Mp̃abD

aDbN − 2M tr(p̃)DkD
kN

− tr(p̃)DkD
kN + 3 tr(p̃)DkD

kN ]− (M ↔ N)

= 2
∫
d3x q−1/2Mp̃abD

aDbN − (M ↔ N)

= −2
∫
d3x q−1/2(DaM)(DbN)p̃ab − 2

∫
d3x q−1/2MDbNDap̃ab

− (M ↔ N)

= −2
∫
d3x q−1/2(MDbN −NDbM)Dap̃ab,

which is the desired result.

1.3 An Attempt at Quantisation

We will now attempt to canonically quantise general relativity. Rather than give a
general algorithm for quantising any constrained system and subsequently apply it to
general relativity, we shall take the less abstract route of building such an algorithm by
way of quantising general relativity. It is worth emphasising that our algorithm will be
one among many nonequivalent ones that can be used to quantise different constrained
systems. Our choice is motivated by its transparency in highlighting the fundamental
issues in quantising general relativity – in particular the ADM formulation of the theory
– and by its success in being applied to loop quantum gravity. For details regarding
different quantisation schemes and their application to several examples, the reader is
referred to Ref. [12, 16].

1.3.1 A home for general quantum states

To begin with, as in usual quantum mechanics, our first task is to find a representation
of the Poisson algebra between the canonical variables (Eqs (1.31)) on some complex
vector space V , which shall be the home of our quantum states. In other words, we
wish to promote qab and p̃ab to operators9 on V that satisfy the following commutation

9In a field theory, variables defined at a single point are singular, as evidenced by the appearance
of the Dirac delta in Eqs (1.31) and (1.37). This leads to infinities in the quantum theory. To remove
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relations.

[ ˆ̃pab(x), q̂cd(y)] = −iδ(ac δ
b)
d δ

3(x− y), (1.37a)
[ ˆ̃pab(x), ˆ̃pcd(y)] = 0, (1.37b)
[q̂ab(x), q̂cd(y)] = 0. (1.37c)

To accomplish this task, we first define V to be the space of all complex-valued smooth
scalar functions on Met(Σ). Then at every x ∈ Σ we define the operators q̂ab(x) and
p̂ab(x) to be such that for all ψ ∈ V and for all q ∈ Met(Σ),

(q̂ab(x)ψ)(q) = gab(x)ψ(q), (1.38a)

(p̃ab(x)ψ)(q) = −i δ

δqab(x)
ψ(q), (1.38b)

where g is a three-metric in Σ. As can be verified, the operators so defined satisfy
Eqs (1.37).

Now, we must recall that (q, p̃) are not the only objects to be promoted to opera-
tors on V : we have in the classical theory various observables each of which ought to
have an unambiguous quantum analogue. In general, these observables are functions
of the phase-space variables. Therefore, in order to consistently promote all the ob-
servables to operators, we need a set S of elementary classical variables composed of
the phase-space variables; promotion of these elementary variables to operators should
automatically guarantee the promotion of all suitable functions of the phase-space vari-
ables to operators. These considerations require that S is in general a subspace of the
vector space of all smooth, complex-valued functions on the phase space such that

(a) it is sufficiently large, so that any function on the phase space can be expressed in
terms of the sums of products of the elementary variables;

(b) the elementary variables are closed under certain operations, such as Poisson brack-
ets and complex conjugation, i.e. ∀F, G ∈ S, {F,G} ∈ S and F ∗ ∈ S.

For instance, consider a particle moving in three dimensions. Its phase space is coor-
dinatised by its position (x, y, z) and momentum (px, py, pz). S can be identified with
complex linear combinations of these six variables.

these, one should instead work with smeared versions of the classical variables, i.e. integrating these
variables using some test functions that probe the structure of the variables in some local region of
the underlying manifold (Cf. Note 7 above). This is not difficult to do in any field theory and sheds
no light on the difficulties that a quantisation of the ADM variables faces, and thus we will not pursue
this issue here. However, in the interests of rigour, we will return to this point when formulating loop
quantum gravity proper (Cf. Section 3.2).
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Once S is identified, we need to do two things. First, associate with each F ∈ S
an abstract operator F̂ by constructing a free associative algebra B on S. This can
be done by imposing (1) canonical commutation relations [F̂, Ĝ] = i{‘F,G}, and (2)
(possibly though not necessarily) anti-commutation relations that capture any non-
trivial algebraic relations between the elementary variables. Second, construct a ⋆-
algebra B⋆, where ⋆ denotes an involution10, on B by requiring that if two classical
variables are related by F ∗ = B, then F̂ ⋆ = B̂. From this and the properties of the
involution, it follows that the ⋆-algebra serves to mimic Hermitian conjugation. In fact,
if V were a Hilbert space, we could find a linear representation of B⋆ on V via linear
operators, i.e. a map R : B⋆ → L(V), L(V) being the set of all linear operators on V ,
such that R(Â⋆) = R(Â)† for all Â in B⋆, where † stands for Hermitian conjugation
with respect to the inner product on V 11.

1.3.2 A home for physical states

The next step in the process is to realise that not all states ψ ∈ V are physical. The
reason is simple: in the classical theory, only those points in the phase space (q, p̃) that
satisfy the constraints Ca and C are physically allowed. Therefore, these constraints
need to be somehow incorporated in the quantum theory. There are at least three
(non-equivalent) ways of doing this [27]. We describe each of them below.

1. Dirac quantisation

Since physical states ought to be quantum, and V is the home of general quantum
states, in this framework, we demand that physical states are those that lie in the null
space of all the constraint operators, i.e. Vphy = {ψ ∈ H : Ĉψ = Ĉaψ = 0}. Thus two
tasks need to be performed: (1) promote the classical constraints to operators on V ,
and (2) find the null space of these operators. However, there are serious obstructions
to carrying out both these tasks in the ADM formalism of general relativity.

To start with, a glance at Eqs (1.36) will shed light on the enormity of the task of
10An involution is a map ⋆ : B → B that satisfies the following conditions.

(i) anti-linearity: (αA+ βB)⋆ = α∗A⋆ + β∗B⋆ for all α, β ∈ C and A, B ∈ B.

(ii) (AB)⋆ = B⋆A⋆.

(iii) self-inverse: (A⋆)⋆ = A.

11This round-about way of arriving at Hermitian conjugation via ⋆-algebras is not an exercise in
pedantry, since we shall find it necessary for a rigorous construction of the Hilbert space of loop
quantum gravity.
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promoting the constraints to operators. These constraints are highly non-polynomial
functions of the canonical variables. In particular, it is not even clear how to define a
“square-root” operator corresponding to the square-root of the metric determinant. Is
a regularisation procedure required? If so, will it be compatible with the regularisation
of the other terms in a particular constraint?

Moreover, any operator representation of the constraints will necessarily have a non-
unique commutator algebra. This is so because the commutator between the canonical
variables (Eq (1.37)a) is non-trivial, and thus different ways of ordering these variables
in the classical constraint functions will yield different commutators between the con-
straint operators. This is a particularly severe problem, since consistency requires that
the constraint operators be weakly closed under commutation, which is to say that the
commutator between any constraint operators yields an operator that has a constraint
on the extreme right, so that the action of the commutator on states in Vphy is again
zero; otherwise, on the one hand, Ciψ = 0 would imply [Ci, Cj]ψ = 0, and on the other
hand, [Ci, Cj] = (· · · )f(q, p) for some f(p, q) ̸= Ci would imply the exact opposite.

Finally, it is worth noting that this approach works only if the constraints are first
class, for otherwise, weak closure could not be achieved even at the classical level.
This point highlights the importance of always working with a formulation of general
relativity that has first-class constraints, because in their absence, one would not even
know where to begin. That is, given first-class constraints, we can at least hope to
find an operator ordering that yields commutation relations that are analogous to the
Dirac algebra:

[ĈM⃗ , ĈN⃗ ] = −iĈL
M⃗
N⃗ , (1.39a)

[ĈN⃗ , CN ] = −iĈL
N⃗
N , (1.39b)

[ĈM , ĈN ] = −iĈqab(M∂bN−N∂bM). (1.39c)

One could then invoke Occam’s razor and pretend to brush other operator orderings
under the carpet. Thus the lessons to be learnt from the failure of this approach to
quantising the constraints are the intractability of non-polynomial constraints and the
importance of working with first-class constraints only. As to the second point, we
shall keep it in mind in formulating alternative Hamiltonian formulations of general
relativity in the next chapter. As to the first point, we will see that these alternative
formulations have constraints that are, at most, quadratic polynomials in the canonical
variables (or derivatives thereof).

Since, as the discussion above makes clear, there is no satisfactory way of promot-
ing the constraints to operators in the ADM variables, the question of solving these
constraints becomes moot.
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2. Reduced phase space quantisation

In this scheme, one solves the constraints at the classical level, reducing the uncon-
strained phase space to its physical subspace on which the constraints vanish. This
is done by finding classical functions of the phase space variables that have vanishing
Poisson brackets with the constraints either identically or only on the constraint sur-
face (i.e. the Poisson brackets are again constraints). In the former case, the functions
are called strong observables and in the latter, weak observables. The name observable
comes from the fact that since the constraints of general relativity encode the diffeomor-
phism invariance of the theory, these functions are the only diffeomorphism-invariant
and hence, physically observable quantities.

Now, we need not find all such observables, but only a representative set of ele-
mentary observables such that any function on the reduced phase phase space can be
expressed as (possibly a limit of) a sum of products of the elementary functions. These
elementary observables can then be promoted to operators in a consistent manner,
so that all functions on the reduced phase space are also automatically promoted to
operators.

In this scheme, it is necessary that the constraints be first class, for otherwise no
unique physical subspace of the unconstrained phase space will be picked out by the
constraints, and the notion of observables as functions with vanishing Poisson brackets
with the constraints would become ambiguous. Thus once again, that the constraints
be first class is a crucial factor in successfully quantising any Hamiltonian formulation
of general relativity. If there are second-class constraints, they must be solved before
proceeding with any quantisation scheme.

Reduced space quantisation is difficult to implement in any Hamiltonian formula-
tion of general relativity. This is because, owing to the highly complicated nature of
the constraints (the Hamiltonian constraint, for instance, involves the Ricci scalar, an
object composed of second-order partial derivatives of the metric), the task of finding
functions that have vanishing Poisson brackets with the constraints is highly non-
trivial. In fact, no such functions are known in the case of vacuum general relativity
on a spatially compact spacetime. When matter is included, only certain diffeomor-
phism invariant functions describing matter are known, but no such functions for the
gravitational field are known. It is only for asymptotically flat spacetimes that 10 such
functions are known; these are the ADM charges given by the generators of Poincare
transformations at spatial infinity [31]. But these, of course, will not be enough obtain
all the observables of the theory.
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3. A group-theoretic approach

As explained above, the constraints of general relativity generate the full diffeomor-
phism group of the theory. Thus one natural avenue for dealing with constraints would
be to find a representation of the diffeomorphism group on V and then identify the
quantum constraints as generators of this representation. Physical states would then
be those left invariant under the action of the elements of the chosen representation.

This method of solving the constraints requires a reasonable degree of control on
the constraint algebra. The first issue is, again, the highly non-polynomial nature of
the constraints. Thus, once more, the ADM variables turn out to be ill-suited for
quantisation, and the polynomiality of the new formalism that will developed in the
next chapter will enable us to deal with at least the diffeomorphism constraint in this
group-theoretic framework.

However, the Hamiltonian constraint, whether it is polynomial or not, poses prob-
lems in any formalism. This is because the appearance of the metric in the Poisson
algebra (Eq 1.36c) of the Hamiltonian constraint makes it difficult to find its represen-
tations in a background-independent way. Thus, while some progress has been made
in taming this constraint in loop quantum gravity, it is still an open problem.

1.3.3 Going physical: the need for a Hilbert space

Even if the foregoing problems that a quantisation of ADM formalism faces are solved
by some miracle, the quantum theory will be incapable of making any physical predic-
tions. For this task, one would have to have a finite inner product on the space Vphy
of physical states obtained by solving the constraints (by any one of the above three
methods or a combination thereof). Classical observables will then be represented as
operators on Hphy that are self-adjoint with respect to this inner product.

The central concern here, then, is to convert Vphy into a Hilbert space Hphy. There
are two ways to proceed here. The first is to begin with the space V of general quantum
states and seek to introduce an inner product on it. In the Dirac method of solving the
constraints, the physical space Vphy, being the null space of the constraint operators,
turns out to be a subspace of V . One would thus expect the inner product on V to
project down to an inner product on Vphy. However, there is no guarantee that this
will be the case. Moreover, depending on the method used to solve the constraints,
Vphy might not even be a subspace of V . Thus, the second approach, which seeks to
directly endow Vphy with a Hilbert space structure seems better equipped to deal with
the problem at hand.

In any case, it is nonetheless true that Vphy will in some sense be constructed from
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V12. Now recall that V is the space of complex-valued functions on the configuration
space Met(Σ) of the ADM formalism. Thus it is necessary to develop a theory of
integration on the configuration space. Unfortunately, there is no known way of doing
that in Met(Σ), which is infinite-dimensional. This is in contrast to finite-dimensional
configuration spaces, which usually come equipped with Lebesgue measures, which can
be used to define finite L2 norms on V and thus convert it into a Hilbert space H. For
example, the configuration space of a particle moving in three dimensions is R3, which
has measure d3x – thus H = L2(R3, d3x).

This does not mean that infinite-dimensional configuration spaces cannot have a
well-defined analogue of a Lebesgue measure. One routinely encounters the problem
of defining precisely such measures in, for instance, the path-integral formulation of
quantum field theory. One can construct well-defined Borel measures in such situations
using a variety of different techniques. However, there is no general recipe for doing this;
one needs to proceed on a case-by-case basis to see what kind of a measure a particular
configuration space admits (see [14] and Chapter 3 for details). For example, in the
Klein-Gordon scalar field theory, the configuration space is the space of all scalar field
configurations, {φ(x)}, on spacetime. Here, one can extend the Gaussian measure on
finite-dimensional subspaces of {φ(x)} to its topological dual. As another example,
consider Yang-Mills theory, where the configuration space is the space of all smooth
SU(N) connections on Σ. In this case, the natural Haar measure on SU(N) can
serve as a candidate measure. However, it is not at all clear how to carry over these
techniques to Met(Σ).

The absence of a well-defined inner product is perhaps the most unsalvageable
lacuna that riddles the quantisation of the ADM formalism, and thus the need for an
alternative framework becomes indispensable. As we shall see in the following chapters,
loop quantum gravity provides a viable solution to fill this huge gap.

1.3.4 The problem of time

Unfortunately, even solving all the manifestations of the inner product problem does
not exorcise all the spectres that haunt canonical quantum gravity, because there is
one – perhaps the most troubling – problem that remains. Recall that the Hamilto-
nian vanishes on Hphy. Therefore, any operator on Hphy trivially commutes with the
Hamiltonian, and thus does not change in time:

dÂ

dt
= i[Ĥ, Â] = 0. (1.40)

12See Chapter 3 for a detailed account of how this works in loop quantum gravity.
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Time has disappeared from the theory! We stumble upon the notorious problem of
time. One might retort that the disappearance of the dynamics of the classical theory
is not a problem, because unlike (qab, p̃ab), which describe the states of classical gravity
at a particular time, the states of Vphy just encode the information about the state of a
system that is invariant under all spacetime diffeomorphisms. However, the observables
that we know of in the classical theory do not exhibit this peculiar behaviour, and we
are thus left clueless as to what candidate observables ought to be represented as
self-adjoint operators on Hphy.

The problem of time persists in loop quantum gravity as well. However, some
of the solutions suggested to it in the traditional canonical framework, such as the
introduction of a universal scalar field that keeps track of time, work equally well in
loop quantum gravity too. Furthermore, there is a rather satisfactory solution to the
problem in the linearised theory that results from taking the weak-field limit of loop
quantum gravity [12]. This, combined with the fact that loop quantum gravity almost
solves the other three problems that riddle the traditional framework, is reason enough
to embark upon a careful study of the former.



Chapter 2

Virtues of Gauge

In the preceding chapter, we saw the ADM formalism of general relativity and surveyed
the problems that occur when one attempts to quantise it. It is quite evident that the
most troubling of these problems are the non-polynomiality of the ADM constraints,
and the absence of control over the infinite-dimensional space of all three-metrics.
Therefore, in this chapter, we shall consider the possibility of reformulating general
relativity with a view to eliminating these two problems. We will find that each of
these problems can be gotten rid of, but only at the expense of the other one.

2.1 The Tetrad Formulation of General Relativity

2.1.1 The spirit of Lorentz lives on

Let us start with the simple observation that the spacetime manifold M is locally
diffeomorphic to R4. From this it follows that at every x ∈ M , there exists a basis of
vectors eI in which the metric gαβ on M becomes the Minkowski metric:

gαβe
α
Ie
β
J = ηIJ , (2.1)

where eαI are the components of eI , called tetrads or frame fields. We will begin by
studying the structure of these triads.

Consider the trivial vector bundle M ×R4. Since M is locally diffeomorphic to R4,
there exists a local trivialisation of its tangent bundle TM . That is, for every x ∈M ,
there exists an open set U containing x and a local vector bundle isomorphism

e : U × R4 → TM |U
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that takes each fiber {x}×R4 of M ×R4 to the tangent space TxM at x 1. Since each
fibre {x} × R4 can be thought of as a function from M to R4, i.e. a section, e can be
conceived of as mapping sections in M × R4 to vectors in TM . Conversely, e−1 is a
map from vectors in TM to sections in M × R4.

The idea of the tetrad formalism is to use M × R4 as a substitute for M , and this
is possible because we can go back and forth between the two using e. Let us see how
this can be precisely done.

To begin with, we equip M ×R4 with the Minkowski metric. That is, we define the
inner product between two sections s and r of M × R4 by

s · r = ηIJs
IrJ .

With this, the isomorphism e becomes precisely the transformation described in Eq (2.1).
That is, given vectors v and w ∈ TpM and sections s and t at {p} × R4, g(v, w) =
η(e−1(v), e−1(w)) and η(s, t) = g(e(s), e(w)).

R4 is called the internal space, which we distinguish from M by the use of internal
indices I, J,K, etc., which can be raised and lowered using the Minkowski metric. We
can now raise and lower indices on objects with mixed indices as well, e.g. eIα. For
instance, we define the cotetrad2

eIα = ηIJgαβe
β
J . (2.2)

Multiplying this equation on both sides by eαK and using Eq (2.1), we get

eαIe
β
J = δIJ , (2.3)

which in turn allows us to express the metric in M in terms of the Minkowski metric:

gαβ = ηIJe
I
αe

J
β. (2.4)

Next, just as in M , we need a connection on M ×R4 to parallel-transport sections on
it. We thus define

Dαs
I = ∂αs

I + A I
α Js

J . (2.5)
In analogy with the Levi-Civita connection on M , we demand that A be metric-
preserving, i.e. DαηIJ = 0, which entails that

A IJ
α = −A JI

α . (2.6)
1For simplicity, henceforth, we will take M to mean a small enough subset of M such that the

tangent bundle restricted to the subset, TM |U , is trivial in the above sense.
2Formally, we have e−1(∂α) = eIαλI , where ∂α are elements of the coordinate basis of vectors at

every point in M and λI = e−1(eI).
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Consider Λ = eia
αA I

α J . To first order in A, we find, using Eq (2.6), that ΛTηΛ = η.
Thus the connection lives in the Lie algebra so(3, 1) of the Lorentz group 3. We
call A a Lorentz connection. As we shall soon see, the Lorentz connection will be
one of the configuration variables for gravity in the tetrad formulation. We thus see
here the beginnings of an analogy with gauge theories of particle physics, where the
configuration variables are g(N)-valued, g(N) being the Lie algebra of the gauge group
of the theory. In this sense, the gauge group of general relativity is seen to be SO(3, 1).
However, as opposed to the gauge theories of particle physics, such as the Yang-Mills
theory, where the gauge group is compact, SO(3, 1) is not a compact group. The
difficulty of developing an integration theory on the configuration space of gravity
can be traced back to this crucial difference: loosely speaking, while we know how to
integrate functions on compact spaces, the same is not true of noncompact ones.

With this important digression in mind, let us continue to build the tetrad formal-
ism. Just as in M , we can define a curvature corresponding to the Lorentz connection:

ΩIJ
αβ = 2∂[αA IJ

β] + [Aα, Aβ]IJ , (2.7)

which is also antisymmetric in the internal indices. The appearance of partial deriva-
tives in this equation means that the Lorentz connection must be smooth (i.e. A IJ

α (x)
are smooth functions of x ∈M).

2.1.2 Lagrangian formulation

We are now in a position to recast general relativity in the tetrad formalism. We define
the Palatini action:

S(A, e) =
∫
M
d4x(e)eαIe

β
JΩIJ

αβ. (2.8)

Here, e is the determinant of the triad. As we will soon see, the variation of this
action with respect to the tetrad and the Lorentz connection yields the Einstein field
equations. Therefore, the Palatini action is completely equivalent to the Einstein-
Hilbert action. The novelty in the tetrad formalism is that the dynamical variables
are the tetrad and the Lorentz connection, rather than the metric, which is to emerge
secondarily via Eq (2.4) once tetrads and Lorentz connections that solve the equations
of motion are found. We say that the emphasis has shifted from geometrodynamics to
connection dynamics.

What is the motivation behind the definition of the Palatini action? Recall that
in ordinary general relativity, the metric is the basic ingredient that defines all the

3There is a fancier way to see this in the language of fibre bundles. Since M is Lorentzian, it can
be thought of as the associated bundle to an SO(3,1)-principal bundle, and connections on the latter
are so(3, 1)-valued.
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relevant geometric objects in the theory, such the Levi-Civita connection, the Riemann
curvature tensor, the Einstein equations, and so on. In the tetrad formalism, we
proceeded by trading the metric for the tetrads. Thus it is only natural to expect
them to enter into the action of the theory. However, these tetrads have no relation
to the Lorentz connection, which is independently introduced as the Lorentz-metric-
preserving connection. Thus it should be incorporated into the action independently
of the tetrads.

We will now show that the variation of the Palatini action furnishes the Einstein
field equations. To that end, we first establish a correspondence between the structures
that enter the Palatini action and those that enter the Einstein-Hilbert action. First,
using tetrads and cotetrads enables us to transport the Lorentz connection fromM×R4

to the tangent bundle TM . We define

Dαv
β = ∂αv

β + Cβ
αγv

γ, (2.9)

where
Cβ
αγ = A J

α Ie
I
γe
β
J . (2.10)

Note that this allows us to parallel-transport objects with both spacetime and internal
indices. For instance, for V I

α , we extend the definition of the covariant derivative D as
follows.

DαV
I
β := ∂αV

I
β + A I

α JV
J
β − Cγ

αβV
I
γ . (2.11)

Next, we define a curvature tensor on M :

Rα
βγλ = F IJ

βγ e
α
IeλJ , (2.12)

which, as can be readily verified, is the curvature tensor of the connection in Eq (2.10).
With these definitions at hand, if one varies the Palatini action with respect to the
tetrad, one finds [4, 12]

Rαβ −
1
2Rgαβ = 0, (2.13)

which are almost the Einstein equations, except that the Ricci tensor and scalar appear-
ing above come from a curvature tensor that is not necessarily the Riemann curvature
tensor of the metric g. However, variation of the Palatini action with respect to the
Lorentz connection yields [4, 12]

Cγ
αβ = 1

2g
γλ(∂αgβλ + ∂βgαλ − ∂λgαβ), (2.14)

which imples that the connection in Eq (2.10) is metric compatible and thus, the
curvature in Eq (2.12) is nothing but the Riemann curvature tensor of the metric g.
Therefore, the Palatini formalism is completely equivalent to general relativity.
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2.1.3 Hamiltonian formulation

Now that we are in possession of an alternative Lagrangian formulation of general
relativity, the next natural vocation is to study the Hamiltonian theory that results
from it. In this section, we will perform a Legendre transform of the Palatini action
and analyse the phase-space structure of the resultant theory.

As explained in chapter 1 in detail, we start by foliating the spacetime into spacelike
hypersurfaces (φ : M → R × Σ) each of which is intersected by the integral curves of
the timelike vector field tα = φ∗∂τ , which can be decomposed into components tangent
and normal to each hypersurface via

tα = Nnα +Nα,

where nα is everywhere orthogonal to Σ, Nα is the shift vector, which is tangent to
Σ and N is the lapse. Let nI = nαe

α
I , and consider the spatial projection EI

α =
eβI (gαβ + nαnβ) of the tetrad. Using these and the fact that e = EN , where E is the
determinant of Eα

I , we can write

S =
∫
M
d4x(e)eαI e

β
JΩIJ

αβ

=
∫
d4xENEα

I E
β
JΩIJ

αβ − 2
∫
d4xENEα

I nJn
βΩIJ

αβ +
∫
d4xENnInJn

anbΩIJ
αβ. (2.15)

The last term above vanishes by virtue of the antisymmetry of Ω and the symmetry of
nInJ . Consider the second term. We get∫
d4xEα

I nJ(Nnβ)ΩIJ
αβ =

∫
d4xEEα

[InJ ]t
βΩIJ

αβ −
∫
d4xEEα

[InJ ]N
βΩIJ

αβ

=
∫
d4xEEα

[InJ ]
[
tβ∂αA

IJ
β − tβ∂βA

IJ
α + tβ[Aα, Aβ]IJ

]
−

∫
d4xEEα

[InJ ]N
βΩIJ

αβ

=
∫
d4xEEα

[InJ ]
[
−AIJβ ∂αtβ − tβ∂βA

IJ
α + ∂α(tβAIJβ ) + tβ[Aα, Aβ]IJ

]
−

∫
d4xEEα

[InJ ]N
βΩIJ

αβ

=
∫
d4xEEα

[InJ ]
[
−LtAIJα +Dα(tβAIJβ )

]
−

∫
d4xEEα

[InJ ]N
βΩIJ

αβ.

The action thus becomes

S =
∫
d4xE

î
NEα

I E
β
JΩIJ

αβ − 2n[IE
α
J ]Dα(AIJβ tβ) + 2n[IE

α
J ]LtAIJα + 2Nαn[IE

β
J ]Ω

IJ
αβ

ó
=

∫
dt

∫
Σ
d3xE

î
NEa

IE
b
JΩIJ

ab − 2(AIJβ tβ)Da(Ea
[InJ ])− 2Ea

[InJ ]LtAIJa + 2Nan[IE
b
J ]ΩIJ

ab

ó
.
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In the second line, we have relabelled some indices and replaced all the terms (except
one) in the first line with their pullbacks to Σ, since each term was a contraction with
purely spatial objects. Let N‹ = E−1N and

Ẽa
I = EEα

I , (2.16a)
α̃aIJ = Ẽa

[InJ ]. (2.16b)

We immediately have −4α̃aIKα̃bKJ ΩIJ
ab = Ẽa

I Ẽ
b
JΩIJ

ab . Hence, finally, the action canonically
decomposes as

S(A, α̃) = 2
∫
dt

∫
Σ
d3x tr

(
−2N‹α̃aα̃bΩab − (tαAα)Daα̃

a +Naα̃bΩab − α̃aLtAa
)
,

(2.17)
where the trace is over the internal indices.

Since the action above is now written in the form
∫
(pq̇ − H), we readily notice a

number of features. First, α̃aIJ is the momentum conjugate to AIJa , whence

{AIJa (x), α̃bMN(y)} = δbaδ
I
[Mδ

J
N ]δ

3(x, y). (2.18)

Second, Eq (2.17) does not contain the time derivatives of N‹, Nα, (tαAIJα ), which,
therefore are Lagrange multipliers, variation with respect to which yields the con-
straints of the theory:

S := tr α̃aα̃bΩab ≈ 0, (2.19a)
Va := tr α̃bΩab ≈ 0, (2.19b)
GIJ := Daα̃

a
IJ ≈ 0. (2.19c)

The Hamiltonian, being the sum of all constraints, is thus given by

H = 2
∫
Σ
d3x

(
2N‹S −NaVa + tr (tαAα)G

)
. (2.20)

A number of comments are in order. It seems that the constraints of general relativity
in the Palatini framework are polynomial. However, this is illusory, since Eqs (2.19) are
not all the constraints. We are ignoring the fact that we cannot choose the conjugate
momentum α̃aIJ arbitrarily; its form is constrained by (Eq (2.16a)). It can be shown
[12] that this constraint on the form of the conjugate momentum is equivalent to the
constraint

φab := ϵIJKLα̃aIJ α̃
b
KL = 0, (2.21)
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and this constraint is needed to show that {S(x), S(y)} vanishes on the constraint
surface. Thus the constraints in Eq (2.19) do not form a closed system by themselves.
Furthermore, the Poisson brackets between S(x) and φab(y) fail to vanish, giving rise
to a second-class constraint. It can be shown [12] that when these two (i.e. φab and
{S(x), φab(y)}) second class constraints are solved, the remaining first class constraints
reduce to the old ADM constraints. This fact, combined with the observation that
Lorentz connection in the tetrad formalism belongs to the Lie algebra of a noncompact
group, makes this formalism an unsuitable alternative to the ADM formalism. How-
ever, familiarity with the phase-space structure of the tetrad formalism paves the way
towards the introduction of other strategies that may alleviate one of the two foregoing
problems. It is the task of subsequent sections to explore these different strategies.

2.2 The Ashtekar Variables

In ordinary general relativity, the spacetime manifoldM is locally diffeomorphic to R4.
On the other hand, to introduce the Ashtekar variables, one needs to work with complex
general relativity, wherein M is locally diffeomorphic to C4. Is this not departing from
the general relativity that is known to be experimentally correct? The answer is no,
for at least classically, one can always impose suitable reality conditions on one’s basic
variables to recover real general relativity. In the quantum theory, dealing with the
reality conditions is a lot more complicated, but more on that later.

Let us spell out the changes that going to complex general relativity incurs in the
mathematical structures introduced so far. We define the complexified tangent bundle,
CTM , of M to be the vector bundle whose fiber at each x ∈ M is the vector space
C ⊗ TxM . Similarly, the trivial bundle M × R4 of the Palatini formalism becomes
M × C4, and the tetrads become vector bundle isomporhisms from the latter to the
complexified tangent bundle of M , i.e. e : M × C4 → CTM . The Lorentz connection
now becomes an so(3, 1)⊗ C-valued 1-form on M . This is itself a Lie algebra4.

Since the Lorentz connection is a 2-form with respect to internal indices, we define
an internal Hodge star operator, which is a map from 2-forms to 2-forms, given by

⋆T IJ = 1
2ϵ

IJ
KLT

KL. (2.22)

We say that a 2-form is self-dual if ⋆T IJ = iT IJ and anti-self-dual if ⋆T IJ = −iT IJ .
4Given a Lie algebra g, we define its complexification to be the vector space g ⊗ R. As is easily

verified, this vector is itself a Lie algebra, provided we define the Lie bracket of x⊗ α, y ⊗ β ∈ g⊗ C
by [x⊗ α, y ⊗ β)] = [x, y]⊗ αβ
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Any 2-form can be decomposed into its self-dual and anti-self-dual parts, i.e.

T IJ =+ T IJ +− T IJ ,

±T IJ = 1
2(T

IJ∓i ⋆ T IJ), ⋆±T IJ = ±i±T IJ .

We are now in a position to reformulate general relativity in terms of the Ashtekar
variables. As in the Palatini case, there are two dynamical variables, namely, the
tetrads and the Lorentz connection. However, now, instead of using any Lorentz con-
nection, we demand that it be self-dual. The rest of the framework is entirely similar.
That is, we write the action as

S(A, e) =
∫
M
d4x(e)eαI e

β
IF

IJ
αβ , (2.23)

where
F IJ
αβ = 2∂[αAIJβ] + [Aα, Aβ]IJ (2.24)

is the curvature of the self-dual Lorentz connection A, and, as can at once be seen from
its explicit form, is itself self-dual (self-dual 2-forms are closed under Lie brackets).

Once again, variation of the self-dual action with respect to the connection and the
tetrad yields the Einstein field equations (see [4, 12] for a derivation), but for complex
general relativity. To recover the real theory, as remarked earlier, one needs to impose
some reality conditions, which we shall discuss in the context of the Hamiltonian theory
of the self-dual formulation.

It is quite natural to inquire at this point why the Asthekar variables work at all?
First, using only the self-dual part of the curvature tensor in the action (Eq 2.24) seems
a little ad hoc. Second, the success of the new strategy in reproducing the Einstein
equations seems to rely on the curious coincidence that the curvature tensor, and hence
the Einstein equations resulting from it, are all self-dual. Is it possible to decipher some
more fundamental principle behind these two points? The answer is in the affirmative,
as we now demonstrate [4].

Given a real Lie algebra g, we can decompose its complexification g ⊗ C into a
direct sum of two of its Lie subalgebras:

g⊗ C = g+ ⊕ g−, (2.25a)

where
g± = {x⊗ 1± ix⊗ i : x ∈ g}. (2.25b)

We can show further that each of g± is isomorphic as a Lie algebra to g. Now recall that
a complexified Lorentz connection in the Asthekar formalism lies in so(3, 1) ⊗ C. On
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the other hand, we know that the space SL(2,C) of complex 2× 2 matrices with unit
determinant is a double cover of (the identity component of) SO(3, 1), whence so(3, 1)⊗
C is isomorphic to sl(2,C) ⊗ C. But by Eq (2.25), sl(2,C) ⊗ C can be decomposed
into two Lie subalgebras, each of which is isomorphic to sl(2,C). Objects living in
these two subalgebras are precisely self-dual and anti-self-dual forms, respectively. It
thus follows that self-dual (anti-self-dual) Lorentz connections lie in the self-dual (anti-
self-dual) subalgebra of sl(2,C)⊗ C or equivalently in sl(2,C). Thus, in the Ashtekar
formulation, sl(2,C) emerges as the gauge group for gravity. It is still a noncompact
group, and so offers no advantage over the Palatini formalism. However, it turns out
that in the Ashtekar formulation, the constraints of general relativity are polynomial
in canonical variables.

To see this, let us pass to the Hamiltonian formulation of the self-dual theory. The
Legendre transform can be performed quite analogously to what was done in the Pala-
tini framework. However, here we can additionally make use of the self-duality of the
curvature 2-form; that changes the form of the canonical momentum. More precisely,
in the second term in Eq (2.15), use the fact that F IJ

αβ is self-dual in the internal in-
dices to write F IJ

αβ = − i
2ϵ
IJ
KLF

KL
αβ and then repeat exactly the same subsequent steps,

except for the anti-symmetrisation over the internal indices in Eα
I nJ . We then find the

action in Eq (2.23) to reduce to that in Eq (2.17), except that each occurrence of the
term Ẽa

[InJ ] is replaced with P̃ a
IJ := −iẼa

MnNϵ
MN

IJ . Explicitly,

S = 2
∫
dt

∫
Σ
d3x tr

(
−P̃ aLtAa +NaP̃ bFab − (Aαtα)DaP̃

a −N‹P̃ aP̃ bFab
)
, (2.26)

where now the momentum conjugate to the self-dual connection AIJa is P̃ a
IJ . A direct

calculation reveals that P̃ a
IJ is self-dual, whence

{
AIJa (x), P̃ b

MN(y)
}
= δbaδ

3(x, y)
ï
δI[Mδ

J
N ] −

i

2ϵ
IJ

MN

ò
. (2.27)

This might suggest that AIJa and P̃ b
MN are not “true” canonically conjugate variables.

But we shall soon recast them in a way that makes the Poisson brackets between them
canonical.

The Hamiltonian is just a sum of the constraints, which, as in the Palatini case are

S := tr P̃ aP̃ bFab ≈ 0, (2.28a)
Va := tr P̃ bFab ≈ 0, (2.28b)
GIJ := DaP̃

a
IJ ≈ 0. (2.28c)
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However, unlike the Palatini case, there are no constraints on the form of the canonical
momentum; it can be any arbitrary self-dual one-form (self-duality is not a constraint,
but a defining assumption of the Ashtekar formalism). Therefore, Eqs (2.28) are the
only constraints, and can explicitly be checked to be first class [12]. Thus, the Ashtekar
constraints are polynomial in the basic variables, as we had promised. The first con-
straint is called the Gauss constraint. This is a new constraint in this formulation,
and arises from the use of tetrads, instead of metrics, as our dynamical variables, be-
cause the former have four more independent components than the latter, resulting
in our freedom to perform four rotations in the internal space; the Gauss constraint
describes this rotational freedom. The remaining two constraints are equivalent to the
diffeomorphism and Hamiltonian constraints of the ADM variables, respectively.

To confirm that we are still dealing with complex general relativity, let us count
the number of degrees of freedom. Each canonical variable, being self-dual, has 3
spatial and 3 internal degrees of freedom, giving a total of 9 degrees of freedom. The
constraints in the preceding equations are 1 + 3 + 3 = 7 in number. Therefore, the
physical degrees of freedom reduce to 2, which are the degrees of freedom of general
relativity.

This is all very good, but we must not lose sight of the fact that we are doing
complex general relativity. To make contact with physics, we must specify a way to
recover the real theory. This can be done by relating the Ashtekar variables to the old
ADM variables, which will now be complex. Then we impose certain reality conditions
on the Ashtekar variables so that the ADM variables obtained from them are real.
Before we describe this, let us first recast the canonical variables in a simpler and more
convenient form. To this end, note that our canonical variables AIJa and P̃ a

IJ are both
antisymmetric and self-dual in the internal indices. These conditions entail that for
each value of a, these variables have only 3 independent components. In other words,
we can replace the internal indices I, J with a single index i that runs from 1 to 3.
More precisely, let T IJi ∈ sl(2,C) be such that [12]:

[Ti, Tj] = ϵ k
ij Tk (2.29a)

trTiTj = −δij (2.29b)

TMN
i T iIJ = 1

2

Å
δM[I δ

N
J ] −

i

2ϵ
MN

IJ

ã
(2.29c)

These equations ensure that any such TMN
i form a basis of the self-dual subalgebra of

so(3, 1) ⊗ C, and are also antisymmetric in the internal indices. Thus they span the
phase space. Explicitly, any self-dual and antisymmetric SIJ can be written as

SIJ = (−trST i)T IJi . (2.30)
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This then lets us define

Aia := −trAaT i, (2.31a)
F i
ab := −trFabT i = 2∂[aAib] + ϵijkAbjAak, (2.31b)
Ẽa
i := −itr P̃ aTi, (2.31c)

where Aa, Fab, P̃ a are the self-dual connection, its curvature and its conjugate mo-
mentum, respectively, and the right-hand side of the second equation follows if we
choose a locally coordinate-independent basis, i.e. ∂aT IJi = 0, which is always possible.
What we have essentially done is to exploit the fact that the self-dual subalgebra of
so(3, 1) ⊗ C is isomorphic to sl(2,C) to write the canonical variables as matrix com-
ponents of sl(2,C) matrices. In the literature on loop quantum gravity, it is the pair
(Aia, Ẽa

i ) that is more often called the Ashtekar variables. In terms of these, the Poisson
brackets and constraints can be written as5

{Ẽa
i (x), Aib(y)} = −iδab δ

j
i δ

3(x, y), (2.32a)
{Ẽa

i (x), Ẽb
j (y)} = 0, {Aia(x), A

j
b(y)} = 0. (2.32b)

S = ϵijkẼa
i Ẽ

b
jFabk = 0, (2.33a)

Vb = Ẽa
i F

i
ab = 0, (2.33b)

Gi = DaẼ
a
i = 0. (2.33c)

Notice the striking resemblance to the gauge theories of particle physics that this
version of the constraints of general relativity affords. In Yang-Mills theory, for in-
stance, the configuration variable is a vector potential which is an su(N)-valued con-
nection, its ‘electric field’ being the conjugate momentum and satisfying the so-called
Gauss constraint, which looks exactly like Eq (2.33c). In the Ashtekar formulation
of general relativity, the configuration variable is an sl(2,C)-valued connection and
its conjugate momentum also satisfies a Gauss constraint. Moreover, in Yang-Mills
theory, the Gauss constraint generates internal SU(N) transformations. Similarly,
here the Gauss constraint generates internal rotations on the triads Ea

i . This is to
be expected, because the Ashtekar variables can be conceived of as an enlargement of
the ADM phase space in the following sense. The three-metric qab has six independent
components, whereas the spatial triad Ea

i has nine independent components; the Gauss
5The i in Eq (2.32a) comes from Eq (2.31c). This is done just for conformity with the standard

literature. Note that this choice forces us to include a factor of −i in the definition of the Poisson
bracket between two functions of Ai

A and Ẽb
j .
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constraint reflects our freedom in rotating the extra three components in the latter.
Since we know how to quantise Yang-Mills theory, which contains the Gauss constraint,
perhaps unsurprisingly, we will see that this constraint is the easiest to quantise in loop
quantum gravity.

However, this is as far as the analogy goes. There are no analogs of Eqs (2.33a)
and (2.33b) in Yang-Mills theory. As explained in Chapter 1, these equations encode
the background-independence of general relativity. They are, of course, not present in
Yang-Mills theory, which is formulated on flat Minkowski spacetime and hence, is not,
like general relativity, background independent. Moreover, it is also worth emphasising
once more that sl(2,C) is a noncompact group, whereas the SU(N), the gauge group
of Yang-Mills theory, is compact. These considerations mean that general relativity is
a gauge theory of a very different kind than Yang-Mills theory.

After this important digression, we can now make contact between the Ashtekar
variables and the ADM variables. Recall that the tetrads can be used to define the
metric on M (Eq (2.4)). Thus it is natural that the three-metric of the ADM variables
depends on the triads:

(q)qab = Ẽa
i Ẽ

bi. (2.34)
As for the canonical momentum in the ADM variables, we require more work. Start
with transforming a spatial index of the extrinsic curvature Kab to an internal index:

Ki
a := KabE

b
kδ
ik, (2.35)

where Eb
k := q−1/2Ẽa

i is the dedensitised triad. Next, recall that a Lorentz connection
ωIJα onM×C4 induces a connection onM (Eq (2.10)) that is the Levi-Civita connection
when the equations of motion hold – in particular, when Dαe

β
I = 0, where D is the

covariant derivative corresponding to ωIJα . If we now choose internal coordinates such
that

eα0 = −nα, (2.36)
where nα, recall, is the unit normal to the spatial slice Σ, it follows that the restriction
to Σ of the Lorentz connection is compatible6 with the triads, i.e. DaE

b
j = 0, which

allows us to write it in terms of the Christoffel symbols:

ω i
a j = −Eb

j (∂aeib − ΓcabEi
c). (2.37)

The choice in Eq (2.36) is harmless since we are always free to perform rotations on
the internal indices without changing any physics; this specific choice is called the time
gauge, and geometrically amounts to our arranging for the spatial components eαi of

6Dαe
β
I = 0 implies that DaE

b
I = 0. And Eq (2.36) means that Eb

0 = 0 (the spatial projection of
the unit normal is obviously zero), whence DaE

b
0 = 0.
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the tetrads to span the tangent space of Σ at each point. Now comes the punchline:
the self-dual connection Aia is related to the ADM variables via the following canonical
transformation.

Aia := ωia − iKi
a, (2.38)

where the identification ωia ∼= ω i
a j makes sense because the latter has only three inde-

pendent components (due to antisymmetry). Thus the perhaps elusive self-dual con-
nection is nothing but a consequence of a canonical transformation on the old ADM
variables.

Eqs (2.34) and (2.38) shed light on the reality conditions required to recover real
general relativity from the self-dual framework. Since the three-metric and the extrinsic
curvature are both real in the real theory, we require that

Ẽa
i be real and i(Aia − ωia) be imaginary. (2.39)

It turns out that classically, these are not hard to implement. But in the quantum
theory, their implementation is highly non-trivial and has not yet been achieved.

Eqs (2.34–2.39) specify how to recover the real ADM variables from the Ashtekar
variables. Incidentally, these equations also suggest a way to go in the opposite direc-
tion [53, 54, 55]. We begin with the real ADM variablesKab and qab. We then introduce
the triads eαI and the Lorentz connection ωIJα , and project these onto the spatial slice
Σ, whence we obtain eaI and ωIJa . From here, there are two ways to proceed. One way
is to pick the time gauge and then use Eqs (2.34) and (2.35) to replace Kab and qab
with Ẽa

i and Ki
a, which are themselves canonical phase-space variables, since

{Ki
a(x), Ẽb

j (y)} = δbaδ
i
jδ

3(x, y). (2.40)

Substituting these new phase-space variables into the ADM constraints (Eqs (1.27)
and (1.28)), we can express these constraints in terms of the new variables:

Ca = Ẽb
i ∂[aK

i
b] = 0 (2.41a)

C = √
qR + 2

√
q
Ẽ

[a
i Ẽ

b]
j K

i
aK

j
b = 0. (2.41b)

But now these are not all the constraints. Notice that Ki
a has nine components in

total, whereas Kab, owing to its symmetry, has six independent components only. This
imposes a further constraint on Ki

a and Ẽa
i , namely

Ki[aẼ
i
c] = 0, (2.41c)
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which follows from making use of Eqs (2.34) and 2.35 in K[ab] = 0. Thus, in going from
(qab, Kcd) to (Ki

a, Ẽ
b
j ), we have enlarged the ADM phase space the enlargement being

reflected in the internal gauge freedom provided by Eq (2.41). Finally, we introduce the
Ashtekar connection via the canonical transformation in Eq (2.38), where ωia, again,
is given by Eq (2.37), which follows from DaE

b
j = 0, which in turn is a consequence

of using the time gauge. The factor of i forces us into the arena of complex general
relativity. Substituting the Ashtekar connection into Eq (2.41) yields the polynomial
constraints in the Ashtekar formulation (Eq (2.33)).

But, as we mentioned above, there is also another way to proceed, and it avoids
any internal gauge fixing. This uses the fact that since we wish to introduce self-dual
connections and self-dual ‘triads’, all we need to do is to project the spatial projections
of the Lorentz connection and the tetrads to the self-dual subalgebra of so(3, 1) ⊗ C.
This can be achieved via [54]

Aia := T iIJω
IJ
a , (2.42a)

Eai = −ϵabcT iIJeIbeJc , (2.42b)

where T iIJ is the basis given by Eq (2.31), and the second equation above represents a
self-dual product of two tetrads.

Let us summarise our achievements so far. Up until now, we have seen two alterna-
tive formulations of general relativity, namely the Palatini and Ashtekar formulations.
In the first case, the constraints turn out to be non-polynomial as in the ADM case,
whereas in the second case, the constraints turn out to be polynomial. However,
the Ashtekar variables describe complex general relativity, and the reality conditions
required to recover the real theory seem too complicated to be implemented at the
quantum level. On the other hand, the polynomiality of constraints in the Ashtekar
formulation seems to arise from self-duality (since otherwise, as in the Palatini case,
the conjugate momentum is constrained, giving rise to second-class, non-polynomial
constraints), and self-duality in spacetimes requires the use of complex variables by def-
inition. Thus it seems necessary that we consider complex general relativity to achieve
polynomial constraints.

2.3 Barbero’s Insight

In either the Palatini or the Ashtekar formulation, the configuration variables are found
to lie in the Lie algebra of a noncompact group. In other words, the gauge group of
gravity is noncompact. In this section, we consider the possibility of altering this state
of affairs. On the face of it, this seems to be a silly question to entertain, for the
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Palatini framework has already established the noncompactness of the gauge group
of general relativity. But as we will see, there is a certain loose sense in which we
could regard the configuration variables for gravity as coming from the Lie algebra of
a compact group.

The ADM-Ashtekar canonical transformation (Eq 2.38) naturally prompts one to
consider more general canonical transformations of the same form. That is, rather than
i, we introduce a one-parameter family of canonical transformations,

(β)Aia = ωia + βKi
a, (2.43)

where β is an arbitrary parameter of our choosing; it is called the Barbero-Immirzi
parameter [53, 54]. Specifically, β = ±i yields the Ashtekar variables, sending one to
complex general relativity. However, if β is kept real, we remain within the confines
of real general relativity. We shall call the real-valued connection obtained in this way
the Barbero connection.

There are both advantages and disadvantages of using real β. Let us probe the
demerits first. The most obvious problem is that β is an arbitrary parameter in our
theory. At the classical level, there is no way to distinguish between different values
of β, since each one yields a theory equivalent to general relativity. At the quantum
level, each value of β may make unique predictions at the quantum level, which can
only be confirmed if one has access either to some independent means of arriving at
some β-independent version of the same predictions or to some experiments. There are
evidently no quantum-gravity experiments, so we are left with the former possibility
only. For instance, the Barbero-Immirzi parameter is a multiplicative factor in the
formula for the blackhole entropy derived via loop quantum gravity. One could thus
determine the value of β by comparing this formula with the already-known one derived
through semiclassical methods. But this is not very neat, since the whole point of
arriving at the blackhole entropy via loop quantum gravity is because one may not
trust the semiclassical result in the first place. Thus, the ambiguity introduced into
the theory by the use of β remains. We shall invoke simplicity to set β = 1 if we wish
to work with real canonical variables and β = −i if we wish to work with the complex
Ashtekar variables. In either case, we shall denote the transformed connection as Aia,
the context making it clear which variable we are referring to.

The second disadvantage of introducing the Barbero-Immirzi parameter concerns
the fact that the constraints are polynomial only when β = ±i. This deserves elabora-
tion. Recall from the end of the previous section that to apply transformations of the
form (2.43), one first needs to enlarge the ADM phase space by going from (qab, Kcd)
to (Ki

a, Ẽ
b
j ). This enlargement leads to the constraints in Eq (2.41). Now if we perform

the canonical transformation (2.43), keeping β arbitrary, we find, after some algebra
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[53, 54], that the constraints (2.41) become

S = ϵijk

Ẽ
Ẽa
i Ẽ

b
j
(β)Fabk − 2(β2 + 1)

β2Ẽ
Ẽa

[iẼ
b
j]((β)Aia − ωia)((β)A

j
b − ωjb) = 0, (2.44a)

Vb = Ẽa
i
(β)F i

ab = 0 (2.44b)
Gi = DaẼ

a
i = 0, (2.44c)

where Ẽ = E2 = q is the determinant of the (densitised) triads. As can be seen,
these constraints are polynomial7 only when β = ±i, i.e. for the Ashtekar variables.
Keeping β real, therefore, adds a non-polynomial term to the Hamiltonian constraint.
Once again, it seems that polynomiality of constraints is a special feature of self-dual
complex general relativity. Note, however, that the Hamiltonian constraint above is
still a little better than the ADM Hamiltonian constraint, which involves a factor of
the square-root of the three-metric, one of the most troublesome objects to quantise.

What are the advantages of keeping β real? One good thing about this choice is that
we have a formulation of Hamiltonian general relativity that prioritises connections as
the configuration variables over three-metrics, and that has first-class constraints which
are perhaps easier to quantise than the ADM constraints. But the real advantage of this
new scheme lies in the fact that we can now regard the configuration space of general
relativity as the Lie algebra of a compact group. To see how this comes about, notice
that in enlarging the ADM phase space to arrive at the new variables for8 β ̸= ±i,
we have to work in the time gauge. Since this gauge fixes the time component of
the tetrads, which encode our freedom to perform internal SO(3, 1) transformations
in real general relativity, for real values of β, we are effectively left with the freedom
to perform internal SO(3) transformations only. This means that (β)Aia can now be
regarded as taking values in so(3). Since SO(3) is a compact group, we may take this
to mean that the “gauge group” of gravity is compact in this new formulation.

But this is a heuristic argument at best. In fact, as shown by Samuel [55], for real
values of β, (β)Aia cannot be regarded as the pullback to Σ of the spacetime Lorentz
connection. Since it is the latter that determines the gauge group of general relativity,
the former does not belong to the Lie algebra of the gauge group of general relativity.
This is in striking contrast to the Ashtekar connection, which, in view of Eq (2.42),
can be regarded as the pullback to Σ of (the self-dual part of) the spacetime Lorentz
connection. What are we to make of the argument in the preceding paragraph, then?
The answer, again, is provided by Samuel [55]. Recall that we arrived at the Ashtekar

7It might appear that the constraint obtained thus is different from Eq (2.33a). The determinant
of the triad does not appear in Eq (2.33a) because we had already absorbed it in the lapse function
above Eq (2.16a); we can do the same thing here as well, recovering the Ashtekar constraint.

8For β = ±i, we always have the choice of using Eq (2.42) directly.
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phase-space variables from a manifestly covariant Lagrangian formulation. Incidentally,
such a passage to phase-space variables with arbitrary values of β is also available. This
is provided by Holst’s [56] modification to the Palatini action (2.8), namely

S = 1
2

∫
M
d4x(e)eαI e

β
J

Å
F IJ
αβ − 1

2β ϵ
IJ
MNF

MN
αβ

ã
. (2.45)

As can be readily verified, setting β = ±i recovers Ashtekar’s self-dual action (2.27).
If one follows Holst’s derivation [56, 55] of the Hamiltonian theory corresponding to
this action for arbitrary β, one finds that one has to “gauge away” part of the space-
time connection F IJ

αβ to derive the Barbero connection. In other words, the Barbero
connection is identified with certain components of the spacetime Lorentz connection,
and is not arrived at by pulling the latter back to Σ.

One would do well to keep the foregoing subtleties in mind. But it is also true that
the Barbero connection and Ẽa

i have canonical Poisson brackets among them. Thus,
in so far as these variables can be regarded as the phase-space variables for general
relativity, we are justified in using them to develop quantum general relativity. This is
highly desirable, since now the configuration space of the theory will be the Lie algebra
of a compact group, upon which, as hinted in Chapter 1, one can formulate a viable
integration theory – a precursor to constructing the Hilbert spaces of quantum theory.
On this account, we shall restrict our attention to real general relativity as defined by
the Barbero connection.

2.4 A Convenient Recasting of the New Variables

In this section, we will see that the variables (Aia, Ẽb
j ) of the previous two sections can

be recast as SU(2) spinors, which are very convenient for calculations. For simplicity,
we shall restrict our attention to real connections and triads; analogous results hold
for the complex case, since sl(2,C) is isomorphic to su(2)⊗ C.

Recall that Aia can be thought of as components of matrices in the Lie algebra of
SO(3). Now, this Lie algebra is isomorphic to su(2), which, essentially, is the space
M of traceless, anti-Hermitian 2 × 2 matrices, which are spanned by iτi, τi being the
Pauli matrices:

τ1 =
Å
0 1
1 0

ã
, τ2 =

Å
0 −i
i 0

ã
, τ3 =

Å
1 0
0 −1

ã
. (2.46)

We can thus introduce an isomporphism between the space of connections and M.
Most generally, we can set

A B
aA = ikAiaτ

B
iA
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for some constant k; the indices A, B refer to the component of a matrix in row
A and column B, and are called spinor indices. Analogously, we define Ẽa B

A =
ikẼa

i τ
i B
A . That these two equations define an isomorphism is fairly obvious. In fact,

by construction, distinct choices of Aia will contract with τi to give distinct matrices
in M, and so the map is injective. Thus the map restricted to its range is invertible.
Since addition and scalar multiplication are trivially preserved under the map, it is an
isomorphism.

We can fix the value of k by requiring that the isomorphism preserve the curvature
of the connection. That is, first, we define the curvature of the connection A B

aA :

F B
abA = 2∂[aA B

b]A + [Aa, Ab] B
A . (2.47)

We then require that F B
abA = ikF i

abτ
B

iA , where

F i
ab = 2∂[aAib] + ϵijkA

j
aA

k
b ,

is the curvature of Aia. Substituting the expressions for the two F ’s in F B
abA =

ikF i
abτ

B
iA and using the fact that

τ C
iA τ B

jC = iϵ k
ij τ

B
kA + δijδ

B
A , (2.48)

we obtain k = −1/2. Hence, we get the modified variables:

A B
aA = − i

2A
i
aτ

B
iA (2.49a)

Ẽa B
A = − i

2Ẽ
a
i τ

i B
A (2.49b)

Since Ẽa
i are vector fields on the spatial manifold Σ, Ẽa B

A is an isomorphism be-
tween the tangent space at a point in Σ and M. A fancy way of describing this is to say
that the objects Ẽa B

A “solder” M to the tangent space at every point. Accordingly,
they are called soldering forms. They contain as much information about the geometry
of Σ as does the spatial metric qab. In fact, Eq (2.48) implies that

tr ẼaẼb = Ẽa B
A Ẽb A

B = −2qqab. (2.50)

Thus the modified momenta are sufficient to reconstruct the spatial metric.
Furthermore, we can evaluate the Poisson brackets between the modified variables.

We find that all the brackets vanish except (derivation below)

{Ẽa
CD (x), A AB

b (y)} = −iδab δ
(A
C δ

B)
D δ3(x, y). (2.51)
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Therefore, the spinorial variables form a faithful set of canonical variables, which can
be used in place of the non-spinorial variables to describe canonical general relativity.
That they also preserve the particular advantages of the Ashtekar formulation is further
confirmed by the fact that they do not change the form of the constraints in Eq (2.33),
which now become

S = tr (ẼaẼbFab) = 0, (2.52a)
Vb = tr (ẼaFab) = 0, (2.52b)
Gi = DaẼ

a B
A = 0. (2.52c)

Derivation – Eq (2.52)
We have defined the spinorial variables with one index downstairs and one

upstairs, whereas Eq (2.51) contains spinors with both indices upstairs and down-
stairs. Therefore, we first need a way to raise and lower spinor indices. To this
end, we look for an object that is invariant under SU(2) transformations. This
is analogy to the Minkowski metric, which is invariant under Lorentz transforma-
tions, being used for index raising and lowering in Minkowski space. Now, for any
2× 2 matrix M B

A , we have that

det (M B
A ) = 1

2ϵABϵ
CDM A

C M B
D . (2.53)

where
ϵAB = ϵAB =

Å
0 −1
1 0

ã
(2.54)

is the two-dimensional Levi-Civita tensor, which satisfies

ϵABϵ
CD = 2δ(CA δ

D)
B . (2.55)

Since SU(2) matrices have determinant 1 and are Hermitian, Eqs (2.53) and (2.55)
entail that for an SU(2) matrix U B

A ,

U A
C ϵABU

B
D = 1. (2.56)

Thus the required object is ϵAB. Since it is antisymmetric, we need to fix a con-
vention for index positioning when raising and lowering indices. We choose

LA = ϵABLB, LB = LAϵAB, (2.57)
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which means that index raising (lowering) occurs by multiplication with ϵAB (ϵAB)
from the left (right).

With this, we are ready to evaluate the Poisson bracket between Ẽa and Ab.
Using Eqs (2.32) and (2.49), we obtain

{Ẽa
CD (x), A AB

b (y)} = i

4δ
a
b δ

3(x, y)τ iCD τ AB
i . (2.58)

Next, from the completeness of the Pauli matrices, i.e.

τ i B
A τ D

iC = 2δDA δBC − δACδ
BD, (2.59)

and Eqs (2.57) and (2.55), it follows that

τ iCD τ
AB
i = ϵEDϵ

AF τ i E
C τ B

iF (2.60)
= 2δBC ϵFDϵAF − ϵCDϵ

AB (2.61)
= −2δ(AC δ

B)
D , (2.62)

which upon substitution into Eq (2.58) yields the desired result.

A useful remark is in order. The symmetrisation in Eq (2.51) suggests that in
index gymnastics, one can take the connection and the associated momentum to be
symmetric in spinor indices if they are both upstairs or downstairs. This is indeed the
case, as we now verify. Consider any traceless, anti-Hermitian matrix M B

A . It can be
written as

M B
A = i

Å
a b
b∗ −a

ã
, (2.63)

which implies that
MAB =M C

A ϵCB = −i
Å
−b∗ a
a b

ã
(2.64a)

and that
MAB = ϵACM B

C = i

Å
−b∗ a
a b

ã
. (2.64b)



Chapter 3

Connections Go Quantum

In this chapter, we will embark upon a rigorous quantisation of gravity written in the
new (Barbero) variables. We will construct an the algebra of observables that are to be
promoted to operators during quantisation. Then we will see in detail how to construct
a quantum configuration space, and understand how it is different from the classical
configuration space. This shall allow us to obtain a Hilbert space of quantum states
satisfying the Gauss constraint; the other two constraints will be dealt with in the
next chapter. Finally, we will also derive an explicit orthonormal basis for this Hilbert
space.

3.1 A Brief Review of Canonical Quantisation

Let us begin by outlining a general algorithm for the quantisation of a fully constrained
Haimltonian theory, as exemplified in Section 1.3.

1. Let Γ be the classical phase space, coordinatised by configuration and momen-
tum variables. Choose a set S of elementary classical variables that consists of
complex-valued functions f : Γ → Γ subject to the following consistency condi-
tions:

(a) S should be sufficiently large, so that any function on the phase space can
be expressed as a sum of products of the elementary variables.

(b) Closure under Poisson brackets, i.e. for any F,G ∈ S, {F,G} ∈ S.
(c) Closure under complex conjugation, i.e. F ∗ ∈ S for all F ∈ S.

2. Promote all F ∈ S to operators F̂ that satisfy the free associative algebra B that
results from imposing (1) canonical commutation relations [F̂, Ĝ] = {‘F,G}, and
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(2) any anticommutation relations that capture the algebraic relations between
the elements of S.

3. Via an involution ⋆, introduce a ⋆-algebra B(⋆) on B such that for any F , G ∈ S,
if F ∗ = G, then F̂ ⋆ = Ĝ.

4. Construct a Hilbert space H that is in some sense an L2-normed vector space of
complex-valued functions on the classical configuration space (or an enlargement
thereof1).

5. Find a representation of B(⋆) on the space L(H) of (bounded) linear operators
on H via

R(A⋆) = R(A)†, (3.1)

where † denotes Hermitian conjugation.

6. Via step 1 and the properties of the involution, the constraints Ci of the classical
theory are now represented as self-adjoint operators Ĉi on H. Find the space
Vphy of solutions to these constraints (this step, as we will see below, may require
us to represent the exponentiated version of Ci as unitary operators Ûi on H).

7. Induce a Hilbert space structure on Vphy, obtaining the physical Hilbert space
Hphy.

In the subsequent sections, we shall see in detail how all these steps can be (almost)
implemented in loop quantum gravity. However, before proceeding, let us address a
possible technical objection to the steps above. We have required in step four that
the vector space of complex-valued functions on the configuration space be a Hilbert
space. One might retort that this is an unnecessary step, since for physical predictions,
all we require is the existence of a finite inner product on the physical Hilbert space.
This objection is certainly valid, but irrelevant. This is so because, as will be recalled
from Section 1.3, H arose in the context of defining a measure on the configuration
space. Since, as we will see, Hphy has to be in some sense constructed from H, the
definition of an inner product on the former at least requires a knowledge of how to
perform integrations on the latter, which thus needs to have a well-defined measure
on it. Thus, even though the relevant space for the introduction of inner products is
Hphy, in the framework that we shall use, constructing H can be conceived of as an
intermediate step in that very direction.

1See below for elaboration of this point.
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3.2 Loops, Holonomies, and All That

As outlined in the preceding section, the first task in the quantisation program is to
pick a space S of elementary classical variables that need to be quantised. Now, our
phase space is coordinatised by (Aia, Ẽb

j ). Which functions of these variables ought to
constitute S? Two considerations are germane to an answer to this question. First,
in view of rigour, whatever functions are used, they must smear (Aia, Ẽb

j ), and, in
the interests of consistency, do so in a background-independent manner. Second, as
explained in the first chapter, we need a way to integrate functions on the phase space,
and this requires the construction of well-defined measures on the domain space. In
the following sections, we shall keep both these points in mind.

3.2.1 Configuration variables

We shall start with Aia, which, it will be recalled, is an SU(2) connection on the
principal bundle associated to the tangent bundle of a spacelike hypersurface Σ in
M . Smearing a variable involves some kind of its integration. One natural avenue to
search for a suitable “integrating procedure" is the equation for the parallel transport
of sections in Σ × R3, since it is a differential equation involving the connection Aia.
This strategy also promises to cater to our measure-theoretic concerns. Recall that, as
mentioned in Chapter 1, one of the advantages of reformulating gravity as an SU(2)
gauge theory is that there exists the natural Haar measure on SU(2) (or on any compact
Lie group, for that matter), which can be used to construct a well-defined measure on
the configuration space. Notice, however, that the configuration space is the space
of all SU(2) connections, which take values in the Lie algebra of SU(2) and not,
directly, in SU(2). It thus seems natural to transport these connections to SU(2) in a
background-independent manner. Now, the parallel-transport of a vector along curves
in Σ involves the connection and is a way of moving across the tangent spaces of Σ at
different points. On the other hand, in view of the tetrad formalism, vectors at different
points in (sufficiently small regions of) Σ are related via SU(2) transformations. Thus
there is a one-one correspondence between connections and SU(2) elements via parallel
transport.

More precisely, let γ : [r, s] → Σ be an analytic2 curve in Σ. We say that a section
v on Σ× R3 is parallel-transported along γ if for all t ∈ [r, s],

Dγ̇(t)v(t) := v̇(t) + A(γ̇(t))v(t) = 0, (3.2)
2Analytic here means the existence of derivatives of all orders. This condition is required for purely

technical reasons pertaining to the application of standard measure-theoretic results in subsequent
sections.
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where the over-dot indicates a t-derivative, A(γ̇(t))v(t) = Aa(t)γ̇a(t)v(t), and v(t) :=
v(γ(t)) and Aa(t) := Aa(γ(t)). Integrating this equation, we obtain

v(t) = v(0)−
∫ s

r
dt1A(γ̇(t1))v(t1),

which, when substituted recursively into itself yields

v(t) =
∞∑
n=0

ï
(−1)n

∫
s≥t1≥···tn−1≥r

dtn · · · dt1A(γ̇(t1)) · · ·A(γ̇(tn))
ò
v(0) (3.3)

This sum can be shown to converge and be differentiable [4]. Thus we are in safe
territory. To recast the preceding equation in a more palatable form, we define a
permutation ρ(i), i ∈ {1, · · · , n} such that tρ(1) ≥ · · · ≥ tρ(n). Then, given a set
{K(ti) : i ∈ {1, · · · , n}}, the path-ordered product of the K(ti) is defined as

PK(t1) · · ·K(tn) := K(tρ(1)) · · ·K(tρ(n)).

The integral in Eq (3.3) can then be written as∫
s≥t1≥···tn−1≥r

dtn · · · dt1A(γ̇(t1)) · · ·A(γ̇(tn))

= 1
n!

∫
ti∈[r,s]

dtn · · · dt1PA(γ̇(t1)) · · ·A(γ̇(tn))

= 1
n!

(∫ s

r
dtA(γ̇(t))

)n
,

which allows us to rewrite Eq (3.3) as

v(s) = P exp
(
−

∫ s

r
dtA(γ̇(t))

)
v(r), (3.4)

where
P exp

(
−

∫ s

r
dtA(γ̇(t))

)
:=

∞∑
n=0

(−1)n
n!

(∫ s

r
dsA(γ̇(s))

)n
(3.5)

is a path-ordered exponential. It can also be thought of as a linear map from TpΣ to
TqΣ, p = γ(r) and q = γ(s) being two points in Σ. We call this map the parallel
propagator around γ and label as

Uγ(t)(s, r)[A],

where t is the parameter along the curve. Note that the propagator acts from right to
left, i.e. given γ : [t1, t2] → Σ,

v(t2) = Uγ(s)(t2, t1)v(t1). (3.6)
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We began with an analytic curve, but we can be more general. Consider a piecewise-
analytic path γ : [r, s]. We can break it up into maximal3 analytic pieces γi : [ti, ti+1] →
Σ, where 1 ≤ i ≤ n and t1 = r, tn = s. Then it is evident that we can parallel-transport
a vector along γ by transporting it along one analytic piece at a time:

Uγ(s, r) = Uγn(s, tn−1) · · ·Uγi(ti+1, ti) · · ·Uγ1(t1, r). (3.7)

If the path γ returns to itself, it is called a loop. In that case, the parallel propagator
is called a holonomy, and we will denote it as

Uγ(s)(t, t)[A] = Uγ(s)(t)[A],

γ(t) being the point where the loop starts and ends. We can also think of a loop as
a map γ : S1 → Σ, where S1 is the boundary of the unit circle. For each loop γ and
connection A, we define the so-called Wilson loop

T 0
γ(s)[A] = trUγ(s)[A], (3.8)

where the trace is evaluated in the fundamental representation of SU(2), namely the
algebra of the Pauli matrices. For a reason that will become clear below, we shall
identify the new configuration variables with the traces T 0

γ of holonomies of connections
around loops.

Since exponentiation of Lie-algebra elements generates Lie-group elements, as promised,
parallel propagators are elements of SU(2).

There are a number of other interesting properties that parallel propagators satisfy.
First, they require no background metric to be defined. Second, a substitution of
variables proves that they are reparametrisation invariant. That is, given a curve γ
parametrised by s, let t = f(s) for some smooth function f . Then it is easily seen
that Uγ(t) = Uγ(s). Thus one might as well write Uγ, dropping the parameter label,
without loss of generality. Third, a parallel propagator along a composition of smooth
paths that are joined end-to-end splits naturally into parallel propagators along each
separate, smooth path. In other words, let γ : [0, s] → Σ be a path from p to q, and
let λ : [0, t] → Σ be a path from q to r. Then we define the product λγ : [0, s+ t] → Σ
of the two paths by

(λγ)(u) :=
®
γ(u) if 0 ≤ u ≤ s

λ(u− s) if s ≤ u ≤ s+ t.

A direct substitution of this equation into Eq (3.5) reveals that

Uλγ(0, t) = Uλ(0, s)Uγ(s, t). (3.9a)
3That is, you break the path exactly at points of non-analyticity.
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Fourth, given a path γ : [s, t] → Σ from p to q, there is an inverse path γ−1 from q
to p given by γ−1(u) = γ(t− u). Moreover, for every point p we have an identity loop
1p : [s, t] → Σ, which is a path that stays at p, i.e. 1p(u) = p ∀u ∈ [s, t]. Again, a
direct substitution of these definitions into Eq (3.5) yields the following identities.

U IJ
γ (s) = −UJI

γ−1(s) (3.9b)
U1pγ = Uγ1p = Uγ (3.9c)
U1p = 1SU(2). (3.9d)

In the first equation, the superscripts label the matrix elements of a holonomy. Fifth,
parallel propagators transform in a simple manner under a gauge transformation. Given
Λ ∈ SU(2) (or whatever the relevant gauge group) and a connection A, we find

Uγ(s, t)[A′] = Λ(γ(s))Uγ(s, t)[A]Λ(γ(t))−1, (3.9e)

where A′ is the gauge-transformed connection. This can be verified as follows. Begin
with the parallel-transport equation. For a u(x) ∈ Tγ(x)Σ, we write

u̇(x) = −A(γ̇(x))u(x) = −γ̇a(x)Aa(γ(x))u(x).

Under a guage transformation Λ, we have u(x) → Λ(γ(x))u(x) := v(x). Now observe
that

v̇(x) = Λ̇(γ(x))u(x) + Λ(γ(x))u̇(x)
= γ̇a(x)(∂aΛ)Λ−1v(x)− γ̇a(x)AauΛ−1v(x)
= −γ̇a(x)(Λ∂aΛ−1 + ΛAaΛ−1)v(x),

where the last line follows from (∂aΛ) = ∂a(ΛΛ−1) − Λ∂aΛ−1 = −Λ∂aΛ−1. The term
in the parentheses in the last line above is nothing but the gauge transformation of
the connection. Therefore, under a gauge transformation, Dγ̇(x)u(x) → D′

γ̇(x)v(x) = 0,
where D′ is the covariant derivative associated with A′ = Λ∂aΛ−1 + ΛAaΛ−1. Since
Uγ[A] maps u(s) to u(t) and Uγ[A′] maps v(s) = Λ(γ(s))u(s) to v(t) = Λ(γ(t))u(t),
Eq (3.9d) follows.

Fifth, Eq (3.9e) unravels a peculiar characteristic of holonomies. Since a loop α
starting at p will eventually return to p, under a gauge transformation, Uα[A′] =
Λ(p)Uα[A]Λ(p)−1, which, via the cyclic invariance of the trace operation, implies that

trUα[A′] = trUα[A], (3.9f)

In other words, Eq (3.9f) tells us that the trace of a holonomy is gauge invariant!
Thus holonomies furnish a natural way to extract information about a system that is
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in principle physically observable. For example, consider quantum electrodynamics, in
which the vector potential is a U(1) connection, for which the path-ordered exponential
in Eq (3.5) reduces to an ordinary exponential (since U(1) is abelian), which is nothing
but the Aharanov-Bohm phase.

Finally, since connections give rise to parallel propagators and holonomies, it is
natural to inquire whether the converse is true. That is, using an SU(2)-valued function
of piecewise-analytic paths γ ⊂ Σ that satisfies Eq (3.9a), can we construct a connection
on Σ×R3? The answer is yes, provided the function satisfies some more properties. To
investigate these properties, let us remind ourselves that a connection A is smooth in
the sense that its components Aa(x) are smooth functions of x ∈ Σ. This smoothness
translates to certain smoothness conditions on the parallel propagators. This can most
easily be seen [41] by comparing parallel propagators for neighbouring paths. Let
xa(t) ∈ Σ be a piecewise-analytic path from xa(0) = ya to xa(1) = za, and let ua(t) be
a piecewise-analytic path such that ua(0) = ua(1) = 0. Then Xa(s, t) = xa(t) + sua(t)
is a one-parameter family of paths γs with endpoints ya and za. It follows from Eq (3.5)
that as s→ 0,

Uγs(z, y)[A] = Uγ0(z, y)[A] +O(s2), (3.9g)

where we have indulged in a slight abuse of notation by labelling the arguments of U
by points in Σ rather than by their corresponding parameter values. Furthermore, if
α is a straight-line path from ya to za, then as ya → za,

Uα(z, y)[A] = 1 + (za − ya)Aa(x) +O((za − ya)2). (3.9h)

In deriving these equations, smoothness of the connections is crucial, for the limits
taken would exist only if the connections were bounded, a fact which follows from the
smoothness of connections on the continuous image of [0, 1] under the paths (recall that
a continuous image of compact set is compact, and a smooth function on a compact
set is always bounded). We shall interpret these equations as smoothness conditions
on the parallel propagators. If an SU(2)-valued function of piecewise-analytic paths
satisfies Eqs (3.9a, g, h), we can use that function to reconstruct the connection A. In
particular, we have

Aa(x) = lim
ϵa→0

Uα(z + ϵ, ya)− 1
ϵa

, (3.9i)

since in the limit, any path α can be approximated via a straight line, warranting the
use of Eq (3.9h). In fact, approximating an arbitrary path γ from y to z by a large
number N of straight-line paths γn, we see that
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Uγ(z, y) = lim
N→∞

Uγn(z, xn−1) · · ·Uγ1(x1, y)

= [1 + (za − xan−1)Aa(x)] · · · [1 + (xa1 − ya)Aa(x)] = P exp
Å∫ z

y
dxaAa

ã
,

(3.9j)

which validates Eq (3.9i). Thus there is a one-to-one correspondence4 between smooth
connections and smooth SU(2)-valued functions U of piecewise-analytic paths γ. This
immensely useful result means that instead of the space of smooth connections, one
could equivalently regard the space of the maps U as the configuration space for grav-
ity. This fact will become very important when we shall have to obtain a precise
characterisation of the configuration space for the quantum theory in Section 3.4.2.

The gauge-invariance of the traces of holonomies explains our motivation in using
them, rather than holonomies directly, as configuration variables. Instead of working
in the space A of connections, we can now work in the space A/G of connections
modulo gauge transformations, which the traces of holonomies, being gauge invariant,
project down to5. Therefore, one need not worry about the Gauss constraint, which
generates internal SU(2) gauge transformations, which have been factored out in A/G;
upon quantisation, only the diffeomorphism and Hamiltonian constraints need to be
implemented. As per the typology enunciated in Section 1.3.2, the Gauss constraint
has been implemented via reduced phase space quantisation.

Henceforth, the classical configuration space will be A/G.

3.2.2 Momentum variables

Let us now turn to the momentum variables. To this end, recall that the central
motivation for constructing the set S of elementary variables is for us to be able to
write any well-behaved function on the phase space as (possibly a limit of) a sum of
products of elements in S. Therefore, it suffices to consider at most linear combinations
of suitably smeared phase-space (Aia, Ẽb

j ) variables. Now since the phase space forms
a cotangent bundle, via vector fields on the spatial manifold Σ, the conjugate variable
Ẽb
j admits a natural smearing that yields variables essentially linear in Ẽb

j . This is how
it works. Let f be a vector field on Σ and ϵabc be the Levi-Civita tensor. We can smear

4This correspondence can be made much more rigorous and elegant than our heuristic proof here.
See, for instance, the illuminating reconstruction theorems of Barret [52], which, among other things,
yield a completely novel reformulation of general relativity.

5More precisely, every equivalence class [A] of connections related by a gauge transformation cor-
responds to a unique function, which is the trace of the holonomy of any representative in [A].
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Ẽb
j over an arbitrary surface S ⊂ Σ as∫

S
dxa ∧ dxbϵabcf iẼc

i ,

where xa = (s, t) are coordinates on S.
Now, since Aia are su(2)-valued, and (Aia, Ẽb

j ) form a cotangent bundle, Ẽb
j must live

in the dual of su(2). Therefore, the structure of the preceding equation indicates that f
must also be su(2)-valued. Furthermore, a suitable surface S in Σ can be foliated by a
one-parameter family of loops, i.e. we can think of S as a map S : (0, 1)×S1 → Σ. We
call such surfaces ribbons or strips. Finally, we observe that on each loop in the family
is defined a holonomy, which is a function of su(2)-valued connections, and that since
we are now using connections modulo gauge transformations, for consistency, we want
the momentum variables to be gauge invariant as well. These considerations allow us
to introduce a strip functional:

T 1
S [A] =

∫
S
dxa ∧ dxbϵabcT cγs(t), (3.10a)

T cγs(t) = tr (Uγs(t)[A]Ẽc(s, t)), (3.10b)

where s labels loops within S and t is the starting point of a particular loop γs. In
other words, we insert Ẽc at the starting point t of a particular loop γs, obtaining
T cγs(t), which we then integrate over all possible starting points of all loops. Again,
to save clutter Ẽc(s, t) := Ẽc(γs(t)); here we use the spinor representation of the
triads, introduced in Section 2.4. As can be readily verified, strip functionals are gauge
invariant, and thus well-defined on the cotangent bundle over A/G. They are also
linear in Ẽa

i . Therefore, they are ideal candidates for being the momentum variables.
We call T 1

S [A] a strip functional or a T 1 variable.
In what follows, it will be important to keep in mind certain properties of the T c

variables occurring in the definition of the strip functionals. To start with, they are not,
unfortunately, reparametrisation invariant. However, under reparametrisations that
preserve the orientation of a loop, the T c are covariant. To see this, let γ′(t) = γ(f(t)),
with f ′(t) > 0. Then it is easily seen that

T cγ(f(t))(f(s)) = T cγ′(t)(s) (3.11)

On the other hand, if the orientation of a loop is changed, then from Eq (3.7b) and
the symmetry of Ẽa in the spinor indices, it follows that the T c variables change sign.
In view of these properties, one concludes that the T c variables depend on oriented,
unparametrised loops. This fact will become important later in calculations.
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3.2.3 The algebra of S

We will now show that the T 0 and T 1 variables defined above satisfy all the properties
for being identified with the set S of elementary classical variables.

First, as to the fact that the T 0 and T 1 variables (almost) span the gauge-invariant
subspace of the phase space, we refer the reader to Ref. [12]. However, there seems
to be a caveat here. As opposed to Ref. [12, 16], Rovelli and Smolin [27] argue that
the question of these variables spanning the (gauge-invariant) phase space is still open.
I have not been able to confirm which reference is right. However, it is nonetheless
agreed that these T variables can be extended to include a more general set of variables
(see [27]) that do span the whole gauge-invariant phase space. Therefore, for now, we
shall rest content with these variables only.

Second, the T variables are closed under complex conjugation. To see this, note
that upon complex conjugation, both the connection and its conjugate momentum pick
up a minus sign, since they are anti-Hermitian. In the T 1 variables, the two minus signs
cancel, while in the T 0 variables, the minus sign can be absorbed into a reversal of the
orientation of the loop around which the holonomy is taken, and we know that the T 0

variables are invariant under all loop reparametrisations.
Third, the Poisson brackets of these variables are also closed. This, however, will

require significant work to demonstrate. We shall embark upon this task now.
Let us first describe a general method of performing variational calculations with

path-ordered exponentials [26].

Variation of Path-ordered Exponentials [26]
One way to proceed is to try to vary Eq (3.5) by brute force with respect to

the connection. However, we will not pursue this strategy here. Instead, we start
by substituting Eq (3.5) into Eq (3.2):

∂Uγ(s)
∂s

+ γ̇a(s)Aa(s)Uγ(s) = 0. (3.12)

Now we vary this equation with respect to the connection.ï
∂

∂s
+ γ̇a(s)Aa(s)

ò
δUγ(s) = −γ̇a(s)(δAa(s))Uγ(s). (3.13)

This can be solved by the ansatz

δUγ(s) = Uγ(s)F (s). (3.14)
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Substituting this equation into Eq (3.13) and making use of Eq (3.12), we obtain
Uγ(s)∂F (s)/∂s = −γ̇a(s)(δAa(s))Uγ(s), which upon integration yields

δUγ(s)(t2, t1) = Uγ(s)(t2, t1)
ï
c−

∫ t2

t1
dsUγ(s)(t1, s)γ̇a(s)(δAa(s))Uγ(s)(s, t1)

ò
,

(3.15)
where c is a constant of integration, which we can at once set equal to zero, since
δUγ(s)(t1, t1) = 0. Let us now stop being sloppy and recall that Aa(s) = Aa(γ(s)).
Recall further that

δAABa (γ(s))
δACDb (x) = δbaδ

(A
C δ

B)
D δ3(γ(s), x). (3.16)

It is now prudent to reintroduce spinor indices in Eq (3.15). Then upon a substi-
tution of the preceding equation, we have

δUAB
γ(s)(t2, t1)
δACDa (x) =

∫ t2

t1
ds δ3(γ(s), x)γ̇a(s)Uγ(t2, s)A(CUγ(s, t1) B

D) , (3.17)

which in turn yields

δ trUγ
δACDa (x) =

∮ t2

t1
ds δ3(γ(s), x)γ̇a(s)Uγ(CD)(t2, t1), (3.18)

where, in view of Eq (3.7), we have used Uγ(t2, s)A(CUγ(s, t1)D)A = Uγ(CD)(t2, t1).

We are now ready to evaluate the Poisson brackets between the T variables. The
bracket between the T 0 variables is trivial, for they do not depend on the triads. Thus,
for two loops γ and η,

{T 0
γ , T

0
η } = 0. (3.19)

As for T 0 and T 1, we first find the bracket between T 0 and the T a variables of the
previous section.

{T aγ (s), T 0
η } = {tr (Uγ(s)Ẽa(s)), trUη}

= Uγ(s)AB{Ẽa
AB (γ(s)), trUη}

= −i
∫
Σ
d3xUγ(s)AB

δẼa
AB(γ(s))
δẼb

CD(x)
δ trUη(t)
δACDb (x)

= −iUγ(s)AB
∮
dt δ3(γ(s), η(t))η̇a(t)Uη(t)(AB). (3.20)

In the second line, we used {fg, h} = f{g, h} + {f, h}g; in the third, we used the
definition of the Poisson bracket, and in the last line, we employed Eq (3.18). Let us
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focus our attention on the term Uγ(s)ABUη(t)(AB). We have

2Uγ(s)ABUη(t)(AB) = Uγ(s)ABUη(t)AB + Uγ(s)ABUη(t)BA
= −Uγ(s)ABUη−1(t)BA + Uγ(s)ABUη(t)BA
= −tr (UγUη−1) + tr (UγUη), (3.21)

where in the second line, we used Eq (3.9b). Now, the product of the holonomies inside
the traces in Eq (3.21) can be interpreted as a single holonomy around a loop formed
by composing γ and η. On the other hand, due to the presence of the Dirac delta,
Eq (3.20) is nonzero only if γ(s) = η(t), i.e. the loops intersect. Therefore, it seems
natural to compose the two loops by breaking them at their points of intersection and
rejoining in such a way as to form a single loop. Let us pause here to describe how this
can be done.

Let α and β be two loops that intersect at finitely many points. Let x = α(s̄) = β(t̄)
be an intersection point. We construct a new loop, denoted as α#xβ

6, by starting
from x, going first around α and then around β. We now establish a convention for
parametrising such a composed loop. First, we will always assume that the parameters
of single loops are defined modulo 2π. Second, note that α(s + s̄) and β(t + t̄) are
parametrised loops that start and end at the intersection point x. Then it is easy to
see that

α#xβ(u) =
ß
α(2u+ s̄) for 0 < u < π,
β(2u+ t̄) for π < u < 2π. (3.22)

With these definitions, we see that tr (Uγ(s)Uη(t)) = T 0
γ#sη

if η intersects γ at the
latter’s starting point. Hence we obtain

{T aγ (s), T 0
η } = −i∆a[γ, η](s)

[
T 0
γ#η − T 0

γ#η−1

]
, (3.23)

where we have defined

∆a[γ, η](s) := 1
2

∮
dt δ3(γ(s), η(t))η̇a(t). (3.24)

Using our conventions for composing loops, Eq (3.23) lends itself to a very useful
graphical interpretation, which we will find extremely convenient for subsequent cal-
culations. Recall that the T 0 variables depend on unoriented, unparametrised loops,
while the T a variables depend on oriented, unparametrised loops. Thus we shall pic-
torially identify the former with arbitrary closed curves, and the latter with loops that
contain (1) an arrow indicating their orientation and (2) a marker signifying the loca-
tion of the loop’s starting point and hence the point where we have inserted a triad
(see Fig 3.1). We call the marker signifying the insertion of a triad a hand.

6We may frequently indulge in a slight notational abuse by also writing α#s̄β or α#t̄β, and by
omitting the subscript altogether when the context is clear.
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(a) (b)

T 0
γ T aγ (s)

a

(c)

Figure 3.1: (a) and (b) denote T 0
γ ; (c) denotes T aγ (s)

.

Now, Eq (3.23) is nonzero only if η and γ intersect at s, i.e. the triad is inserted at
the intersection point of the two loops or in other words, the loop γ starts right where
it intersects η. If that is so, we say that the loop γ sees the loop η, and describe the
contents of Eq (3.23) as follows. Fix an orientation on the loop η (γ has already a
fixed orientation, since it refers to T aγ (s)). We break the loops at the location of the
hand, and rejoin each resulting leg of one of the loops with that of the other. There
are two ways of doing this, one in which the orientations of the rejoined legs match
naturally, and the other in which they clash. In the first case, we obtain the loop
γ#η, and in the second case, we have to flip the orientation on η, thus obtaining the
loop γ#η−1. Evidently, the first of these loops refers to the variable T 0

γ#η, and the
second one refers to T 0

γ#η−1 . The Poisson bracket in Eq (3.24) is given by the difference
between the first loop and the second loop, multiplied by −i∆a[γ, η](s). The whole
process described here is called the grasp operation – we say that the hand on γ grasps
the loop η (Fig 3.2).

α β

−i∆a[γ, η] [ ]−

Figure 3.2: Action of the grasp operator.

Note that the final result is oblivious to the orientation which we give to η, since
a reversal of the orientation also reverses the direction of the tangent vector η̇a, and
hence the sign of ∆a, and this caters for the reversal in the order in which we subtract
the composed loops γ#η and γ#η−1. Thus the graphical calculation described in the
preceding paragraph can be represented as in Fig (3.3).

In accordance with Fig (3.2), we introduce the notation

(γ#η)>< := γ#η, (γ#η)∧
∨
:= γ#η−1. (3.25)
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{ , } : −i∆a[γ, η]

γ η

−

γ#η γ#η−1

Figure 3.3: Poisson bracket of T 0 and T a.

Furthermore, we define | >< | = 0 and | ∧
∨ | := 1, and let the symbol ♢ take the value

>< or ∧
∨. Then Eq (3.23) may be concisely written as

{T aγ (s), Tη} = −i
∑
♢

(−1)|♢|∆a[γ, η](s)T 0
(γ#η)♢ . (3.26)

With all the clutter out of the way, we are now ready to evaluate the Poisson bracket
between T 0 and T 1

S . To this end, we first observe that with T 1
S , we essentially integrate

T aγs(t) over the surface S formed by a congruence of loops γs : [s1, s2] × S1 :→ Σ (see
Eq (3.10a)). This surface integral, combined with the line integral in Eq (3.24), should
kill the delta function. Let us see how this precisely comes about. We begin with

{T 1
S , T

0
η } = − i

2

∫
S

∮
dudxadxbϵabcδ

3(γs(t), η(u))η̇c(u)
∑
♢

(−1)|♢|T 0
(γs#tη)♢ (3.27)

where xa = (s, t) ∈ [s1, s2]×S1. First, the integral over u gives a nonzero contribution
only when η intersects a curve γs at its starting point, namely t. But as the integrals
over s and t probe the surface S, every point of each loop becomes its starting point,
and we are thus led to consider all possible intersections of η with S; we denote the
composition of the loop η with a loop at the ith intersection point by S ◦i η. Second,
notice that the object dxadxbϵc is tangential to the surface S, and it is contracted with
η̇c, the tangent vector of the curve η. Therefore, if the curve intersects the surface
at right angles, the Poisson bracket must be zero, and for non-orthogonal transverse
intersections, we should get ±1, depending on which side of the surface η̇c points
to. This fact is captured by the function sgni(S, η), which takes values 0,±1 at each
intersection point i. Since the delta function is zero except at the intersections, we
finally have

{T 1
S , T

0
η } = −i

∑
i

sgni(S, η)
[
T 0
S◦iη − T 0

S◦iη−1

]
. (3.28)

Finally, we now turn attention towards the Poisson bracket between two strip func-
tionals. Again, as an intermediate step, we first find the bracket between T aγ (s) and
T bη (s). Let us first see what we expect from the graphical calculus we have developed.
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First, we now have two handed loops. In analogy with the bracket of T 0 and T a, we
expect the bracket between two handed loops to be nonzero only when the hands lie
at intersection points of the two loops. Second, we now have to take into account two
grasps, one that of the hand of γ over η and the other that of the hand of η over γ.
Each grasp should result in a loop with one hand, i.e. a T a variable, multiplied by ∆a.
Furthermore, given a fixed orientation on the two loops, it is not difficult to convince
oneself that the two grasps should yield results that differ by a sign. That is, if the
orientation of a leg of γ matches naturally with the orientation of a leg of η at the
location of one hand, then these orientations clash at the location of the other hand.
Thus we expect to have the situation shown in Fig (3.4).

{ , } :

γ η

−i∆a[γ, η]

−+i∆a[γ, η] a

b

a

b
−

Figure 3.4: Poisson bracket between two T a’s.

Our expectations are indeed borne out, as we now verify [27].

i{T aγ (s), T bη (t)} = Uγ(s)AB{Ẽa
AB(γ(s)), Uη(t)CD}Ẽb

CD(η(t))
+ Uη(t)CD{Uγ(s)AB, Ẽb

CD(η(t))}Ẽa
AB(γ(s))

= ∆a[γ, η](s)
(
tr
[
Uγ(s)Uη(t, u)Ẽb(η(t))Uη(u, t)

]
− tr

[
Uγ−1(t)Uη(t, u)Ẽb(η(t))Uη(u, t)

])
−∆b[η, γ](t)

(
tr
[
Uη(t)Uγ(s, v)Ẽa(γ(s))Uγ(u, s)

]
− tr

[
Uη−1(t)Uγ(s, v)Ẽa(γ(s))Uγ(u, s)

])
= −

∑
♢

(−1)|♢|∆b[η, γ](t)T a(η#tγ)♢((s− t)/2)

+
∑
♢

(−1)|♢|∆a[γ, η](s)T b(γ#sη)♢((t− s)/2). (3.29)

Eq (3.29) can now be substituted into {T 1
S , T

1
P} to find the Poisson bracket between

two strip functionals. However, we will not need it in subsequent sections, so we omit
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the expression. What is important to note is that the expression is nonzero only at
the intersection points of the two surfaces in the definition of the two strip functionals
come. This fact, together with Eqs (3.28) and (3.19), implies that the algebra of the
loop and strip functionals is closed. Hence, we have successfully constructed the set of
elementary variables to be quantised.

3.3 Interlude: Constructive Quantum Field Theory

We have successfully completed step 1 of the quantisation scheme outlined in Sec-
tion 3.1. The next step is to promote the loop and strip functionals to operators by
constructing a free associative and involutive algebra B(⋆) from the Poisson brackets
studied above (see steps 2 and 3 on p. 40 above). While straightforward in princi-
ple, this task is complicated by the fact that we eventually seek a representation of
B(⋆) on a suitable Hilbert space. Now, in analogy with standard quantum mechanics,
the intuitive expectation is that the required Hilbert space be the L2-normed space
of complex-valued functions on the classical configuration space, which in this case is
the space A/G of smooth connections modulo gauge transformations. However, since
the classical configuration spaces of field theories are infinite-dimensional, the exis-
tence of an L2 norm on the space of functions on these configuration spaces is far
from guaranteed; indeed, it may not even be possible. The essential difficulty lies in
the impossibility of constructing measures on certain infinite-dimensional spaces, and
one needs a suitable integration theory to define inner products and thence Hilbert
spaces. In this section, we will explore this problem in significant detail. To make the
discussion tractable, we shall focus on a similar problem in an unrelated area, namely,
constructive quantum field theory of a free scalar field.

There are many ways of probing the issue of making the standard textbook treat-
ment of quantum field theory mathematically more rigorous [32]. A convenient way to
begin is to anchor the discussion in the path integral formulation of a quantum theory.

3.3.1 A primer on path integrals

We will begin by first presenting the standard textbook treatment of path integrals.
Then, we will point out the mathematical lucanae in such a treatment and motivate
why they must be filled when doing quantum gravity.
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The standard treatment

Consider a general quantum system described by M number of canonical position and
momentum coordinates qi and pi, with a HamiltonianH(p, q). We write |q1, · · · , qN⟩ :=
|q⟩, and are interested in finding the amplitude of transition corresponding to an initial
state |qI⟩ evolving in a time T to a final state qF :

Z = ⟨qF |e−iHT |qI⟩. (3.30)

Feynman’s nifty idea was to essentially sum over all the possible ways of reaching |qF ⟩
from |qI⟩. This can be done as follows. Break the time interval T into N equal intervals
[tn, tn+1], n ∈ {0, N − 1}, each of duration ϵ, and write the state of the system at tn as
|qn⟩, with q0 := qI and qN := qF . Then we can write

e−iHT = e−iHϵ · · · e−iHϵ︸ ︷︷ ︸
N factors

(3.31)

and insert, in succession, a complete set of position states,

1 =
∫
dMqn|qn⟩⟨qn|, n ∈ {1, · · · , N − 1} (3.32)

between alternating terms in Eq (3.31). As a result, we have

Z =
N−1∏
n=0

∫
dMqn⟨qn+1|e−iHϵ|qn⟩

=
∫ N−1∏

n=0
dMqn⟨qn+1|e−iHϵ|qn⟩, (3.33)

where dMqn is shorthand for dq1ndq2n · · · dqMn . The integral over each qn encodes all
possible positions that the state could be in at time tn, and the "sum over all possible
paths" (or histories) from qI to qF is obtained in the limit as N → ∞ or ϵ → 0 (see
Fig (3.5).

As is stands, Eq (3.33) does not seem particularly revealing. But it can be massaged
into a very useful form. In the limit of small ϵ, assuming that H(p, q) = f(q) + h(p)
(i.e. the Hamoltonian does not depend on products of positions and momenta)7, and
inserting a complete set of momentum states, we find

⟨qn+1|e−iHϵ|qn⟩ = ⟨qn+1|(1− iHϵ)|qn⟩
7The derivation works for more general Hamiltonians as well, as a perusal of any standard textbook

on quantum field theory will reveal [33, 34]. We make this choice so that one does not lose the forest
for the trees.
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t0

t1

tN

ϵ {

|q0⟩ := |qI⟩

|qN⟩ := |qF ⟩

|q1⟩

The configuration space

Figure 3.5: A sum over histories.

= (1− iϵf(qn))⟨qn+1|qn⟩ − iϵ⟨qn+1|h(p)|qn⟩

=
∫ dMpn

2π (1− iϵH(qn, pn))eipn·(qn+1−qn)

=
∫ dMpn

2π e−iϵHeipn·(qn+1−qn), (3.34)

where in the second-last line we used the fact that ⟨q|p⟩ = eip·q, with q · p := qipi.
Substituting this last equation into Eq (3.33), we obtain

Z =
∫ N−1∏

n=0

dMpn
2π dMqn exp

(
iϵ
[
pn ·

qn+1 − qn
ϵ

−H(qn, pn)
])

=
∫ N−1∏

n=0

dMpn
2π dMqn

N−1∏
n=0

exp
(
iϵ
[
pn ·

qn+1 − qn
ϵ

−H(qn, pn)
])

=
∫ N−1∏

n=0

dMpn
2π dMqn exp

Ç
i
N−1∑
n=0

ϵ
[
pn ·

qn+1 − qn
ϵ

−H(qn, pn)
]å

. (3.35)

Now, in the limit that ϵ→ 0 and N → ∞, the sum inside the exponent is replaced by
an integral over time, (qn+1 − qn)/ϵ→ q̇. Therefore,

Z =
∫
DpDq exp

Å
i
∫ T

0
dt[p(t) · q̇(t)−H(q, p)]

ã
, (3.36)

where the functions q(t) are constrained by q(T ) = qF and q(0) = qI at the endpoints,
but the functions p(t) are not. We have suggestively written DpDq in the preceding
equation to refer to the measure that, if it exists, arises by taking the formal limit
N → ∞. Heuristically speaking, it can understood as the product of the (Lebesgue)
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measure dq(t)dp(t)/2π at each point in time, i.e.

DqDp =
∏

t∈[0,T ]

dMp(t)dMq(t)
2π . (3.37)

With this understanding, if we assume that the Hamiltonian is at most quadratic in p,
then we can complete the square in the exponent of Eq (3.36), perform the Gaussian
integral that results over Dp, and absorb the resulting constant into the definition of
Dq. When all is said and done, we obtain

Z =
∫
Dq ei

∫ T

0 dtL(q(t),q̇(t)) =
∫
Dq eiS, (3.38)

where L(q(t), q̇(t)) and S, respectively, are the Lagrangian and the action of the theory.
Let us now narrow the discussion to our main object of interest, namely, a free,

massive scalar field φ. The action is given by

S =
∫
RD
dDxL, (3.39a)

L = 1
2∂αφ(x)∂

αφ(x)− m2

2 φ(x), (3.39b)

where m is the mass of the field and D the dimension of spacetime. The classical
dynamics is governed by the equation of motion that results from varying the action
with respect to the field,

∂α∂
αφ(x) = −m2φ(x). (3.40)

On the other hand, the quantum dynamics inheres in the path integral for the transition
of a field configuration from φI(x, tI) to φF (x, tF ). In analogy with Eq (3.38), we have

Z =
∫
DφeiS[φ], (3.41)

where the integral measure Dφ for now is to be understood as being proportional to
the product of "Lebesgue measures", if they exist, on the infinite-dimensional space of
all possible field configurations at x,

Dφ ∝
∏

t∈[tI ,tF ]
φ(x, t). (3.42)

For future reference, we recall here that in quantum field theory, we are also in-
terested in calculating the amplitudes for scattering and collision processes. These
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amplitudes depend on the correlations between the field operators at different space-
time locations, computed by sandwiching the time-ordered product of those operators
at those locations between the vacuum state,

S(x1, . . . , xN) := ⟨0|T [φ(x1) · · ·φ(xN)]|0⟩. (3.43)

These correlations can be straightforwardly evaluated in the path-integral formalism.
One finds [33, 34]

S(x1, . . . , xN) =
∫ N∏

i=1
φ(xi)eiS[φ]Dφ. (3.44)

Thus, in essence, the path-integral formalism of a quantum field theory consists in
integrating functions of a field with respect to the measure

eiS[φ]Dφ. (3.45)

Finally, in anticipation of the rigorous mathematical setting in which we shall con-
sider a scalar field theory below, we will work with a slight modification of the scalar
field theory we considered above. In Eqs (3.39) through (3.41), we will replace the time
variable t with −it, passing from a scalar field on Minkowski space to a scalar field in
Euclidean space. This mathematical trick is called analytic continuation, and is per-
formed because we have a better control over the behaviour of the relevant functions
in Euclidean field theory. It can be rigorously shown that one can always go back to
the Minkowskian theory from its Euclidean counterpart (see [38] for how this can be
done in all its gory detail). Notice that in the Euclidean theory, Eqs (3.40) and (3.41)
become

∇2φ(x) = −m2φ(x), Z =
∫
DφeS[φ], (3.46)

where ∇2 := ∂0∂
0 + ∂i∂

i, in contrast to ∂α∂α = −∂0∂0 + ∂i∂
i.

Path integrals under scrutiny

Admittedly, the “derivations” presented in the preceding pages would torment a thor-
oughgoing mathematician. First, a fastidious perusal of these pages would have re-
vealed the subtle sleight-of-hand performed in interchanging the product and the in-
tegral in coming to Eq (3.33), since a limit of a sequence of integrals may very well
not be the integral of the limit of a sequence. Second, there is no guarantee that the
limits taken in going from Eq (3.35) to (3.36) even exist. Third, the mathematical
meaning of the measure in Eq (3.37) is entirely unclear. Is it a measure in the rigorous
measure-theoretic sense, i.e. is it countably additive? Is it a well-defined procedure to
multiply uncountably many Lebesgue measures? The answer to both these questions
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is no, for an infinite product of Lebesgue measures in R does not give us a countably
additive measure [35]. Third, is the analogical jump from Eq (3.38) to (3.41) justified?
Indeed, something must have gone wrong here, since the space of all field configura-
tions is infinite-dimensional, and there exists a theorem asserting that there exists no
non-trivial, locally finite and translation-invariant measure on an infinite-dimensional
(separable Banach) space8, whereas if the measure in Eq (3.41) is to be understood as
a product of Lebesgue measures, it must be translation invariant!

However, the kinds of calculations we have presented above are routinely used in
the literature on quantum field theory. Indeed, they are physically and conceptually
clean, and the motivation of a quantum field theorist in using path integrals is that they
enable us to empirically verify our theoretical predictions about the quantum world to
an extraordinary level of precision. Thus from an empirical standpoint, it does not
seem unjustified to indulge in the kind of mathematical imprecision that plagues the
standard treatments of path integrals.

Nonetheless, theoretical physics proceeds not only by constructing models in the
light of empirical results, but also by building careful models that predict phenomena
that have not been verified yet. Now, a paucity of experimental input in quantum
gravity thoroughly makes it an enterprise of the latter kind, and in such a situation, it
appears necessary to be mathematically as consistent as possible. It is on this account
that we find ourselves embroiled in the business of understanding the construction of
measures on infinite-dimensional configuration spaces, as exemplified in constructive
quantum field theorists’ attempts to make rigorous sense out of field-theoretic path
integrals.

3.3.2 Measures on infinite-dimensional spaces: the problem

At this point, one might feel that we have come quite far away from our initial goal
of illustrating how an infinite-dimensional classical configuration space needs to be
enlarged in order to realise quantum states as complex-valued functions on it. However,
witnessing the problem of making path integrals in quantum field theory rigorous
has introduced us to the question of constructing measures on infinite-dimensional
configuration spaces. It is in developing an integration theory on infinite-dimensional

8Here is the proof. Suppose that there is a locally finite translation-invariant measure on a separable
Banach space. Thus there exists an open ball of radius ϵ that has finite measure. Since the space
is infinite dimensional, by Riesz’s lemma, there exists a sequence of pairwise-disjoint open balls of
radius ϵ/4, all lying in the ϵ-ball. By translation invariance, each of the ϵ/4-balls must have the same
measure. Since the space is separable, it can be covered by a countable collection of such ϵ/4-balls, and
so by countable additivity, the measure of the union of these balls should be infinite – a contradiction
[37].
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configuration spaces that an enlargement of these spaces is required. We will now
illustrate this with the example of scalar field theory. The following discussion will
have significant input from measure theory on infinite-dimensional spaces, for a review
of which we refer the reader to Ref. [35]. We have based our discussion on Ref.
[13, 14]. It is worth pointing out that there are several ways of broaching the question
of constructing measures on infinite-dimensional spaces. The approach adopted here is
motivated by its appeal in illustrating the kind of constructions used in loop quantum
gravity.

Let us begin with a precise characterisation of the classical configuration space of
a free scalar field theory. Eq (3.40) suggests that our scalar field should be at least
a C2 function of x, and decrease rapidly at infinity. Thus we identify the classical
configuration space with the linear vector space of all C2 functions φ that rapidly
decrease at infinity. We shall call this space P . It is evidently infinite-dimensional. We
shall attempt to construct a countably additive measure on this space, and shall find
ourselves forced to enlarge it in order to have such a measure on it.

We wish integrate complex-valued functions on P , which is infinite-dimensional.
Now, we know very well how to integrate functions on finite-dimensional spaces, such
as RN . Thus one strategy to pursue for integrating functions on P is to first transport
fields to RN and then consider functions on this simpler space. Of course, this will
inevitably cause a good deal of information about P to be lost. Our task then is to
ensure that the measures we construct on the simpler structures we consider can be
consistently extended to P in order to include the lost information. We will see that
this cannot be done consistently unless we enlarge P .

Consider then the space of all infinitely differentiable functions on RD that fall off
sufficiently rapidly at infinity. More precisely, for f ∈ J ,

sup
x∈RD

∣∣∣∣∣xk11 . . . xkDD
∂j1

∂xj11
· · · ∂

jD

∂xjDD
f(x)

∣∣∣∣∣ <∞, ∀k1, . . . , kD, j1, . . . , jD ∈ Z+. (3.47)

J is called the Schwartz space. A function g in it can be used to probe the structure
of the fields φ in P in a neighbourhood of RD in which g is nonzero. To see this, for a
fixed g ∈ J , consider a linear function Fg : P → R such that

Fg(φ) :=
∫
RD
dDxφ(x)g(x). (3.48)

In view of this, then, let g1, . . . , gN be a set of linearly independent Schwartz functions.
Consider the projection

pg1,...,gN :P → RN

φ 7→ (Fg1(φ), . . . , FgN (φ)). (3.49)
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In this way, we can use finite-dimensional subspaces Vg1,...,gN of J that are spanned by
a finitely many {g1, . . . , gN} Schwartz functions to probe "parts" of P , i.e. subsets of
P of the form

{φ ∈ P : (Fg1(φ), . . . , FgN (φ)) ∈ RN}.
We will first describe a way to integrate complex-valued functions on such "parts" of
P . To this end, consider well-behaved functions f : P → C and f̃ : RN → C such that

f(φ) := p∗g1,...,gN f̃(φ) (3.50)
:= f̃(pg1,...,gN (φ)) = f̃(Fg1(φ), . . . , FgN (φ)). (3.51)

The functions f are called cylindrical with respect to Vg1,...,gN ⊂ J . Also, the notation
p∗ denotes the pullback of f̃ by p, i.e. in order to define functions on P , we can pullback
functions on RN .

Since cylindrical functions depend on only a finite number of independent param-
eters (see Eq (3.51)), integrating them is not difficult. For every Vg1,...,gN ⊂ J , we
pick a normalized Borel measure µN on RN and define, via Eq (3.50), the integral of a
cylindrical function f over P to be its integral over RN :∫

P
dµ(φ)f(φ) :=

∫
RN
dµN(η1, . . . , ηN)f̃(η1, . . . , ηN), (3.52)

where η1, . . . , ηN are coordinates on RN , given explicitly by Eq (3.49). However, as it
stands, Eq (3.52) may not be well-defined. To see this, notice that the definition of a
cylindrical function f with respect to a particular subspace V ∈ J depends on the basis
g1, . . . , gN chosen to span the subspace (see Eq 3.51). It may be that a subspace Vg1,...,gN
is also spanned by another set of linearly independent Schwartz functions h1, . . . , hN .
We must make sure that the integral of f is independent of the basis. More generally,
it is not difficult to see that a function cylindrical with respect to a subspace V is
also cylindrical with respect to another subspace V ′ if V ⊆ V ′. Therefore, in order
for Eq (3.52) to be well-defined, the finite-dimensional measures µN ought to satisfy
some consistency conditions that ensure that the integral of a cylindrical function is
independent of its representation. To flesh out these conditions, let VN and VM be N -
andM -dimensional subspaces of J , respectively, with bases g1, . . . , gN and h1, . . . , hM .
Consider the projection

πNM : RM → RN . (3.53)
If VN ⊆ VM , we require

µN = (πNM)∗µM := µM ◦ π−1
NM . (3.54)

(πNM)∗ is called the pushforward of the measure µM to µN . Loosely speaking, we want
the measure on RN to be the same as the measure on RM .
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When the consistency conditions (3.54) are satisfied, P is said to be equipped with
a cylindrical measure, denoted by dµ(φ) in Eq (3.52). However, this measure is not
countably additive, and this brings us to the essential problem: without enlarging
P , there is no way to extend a cylindrical measure to a genuine countably additive
measure.

To explore this issue in detail, we need to analyse the support of cylindrical measures
as we have defined them. Recall that the measures µN are defined on Borel sets in RN .
For any Borel set B ⊂ RN , the preimage of the projections in Eq (3.49)

p−1
g1,...,gN

(B) = {φ ∈ P : (Fg1(φ), · · · , FgN (φ)) ∈ B ⊂ RN}, (3.55)

yields a set in P . Such a set is called a cylindrical set. A cylindrical measure is defined
on a family of cylindrical sets. Explicitly, given Vg1,...,gN and the family B of Borel sets
in RN , let

C = {p−1
g1,...,gN

(B) : B ∈ B} (3.56)

be the corresponding family of cylindrical sets in P . Then for every C ∈ C, the
cylindrical measure µ is given by

µ(C) = µN(pg1,...,gN (C)), (3.57)

where pg1,...,gN (C) is the image of C under pg1,...,gN .
Now recall that in a set M, countably additive measures are defined on a σ-algebra,

which is a collection of subsets of M that are closed under complements and countable
unions. Unfortunately, cylindrical sets fail to satisfy this last property, i.e. while a
finite union of cylindrical sets is again a cylindrical set, a countably infinite one may
not be9. On the other hand, the cylindrical measure constructed above is defined only
on cylindrical sets. This is not a problem in itself, for it could be the case that one
could use arbitrary unions of cylindrical sets to construct a family of non-cylindrical sets
that forms a σ-algebra and hence, is measurable. Then one could perhaps extend the
cylindrical measure to this family. For instance, if one can find an increasing sequence
of cylindrical sets, then the cylindrical measure can be extended to a countably additive
measure by the following standard result in measure theory.

Theorem 3.1. Let µ be a countably additive finite measure and A1 ⊂ A2 ⊂ · · · be an
increasing sequence of measurable sets (i.e. those that belong to a σ-algebra). Then

µ (∪nAn) = lim
n→∞

µ (An) (3.58)
9See this link for such a counterexample.

https://math.stackexchange.com/questions/1279824/show-that-collection-of-finite-dimensional-cylinder-sets-is-an-algebra-but-not?rq=1
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Regrettably, such constructions are, in general, not possible for P . They are, how-
ever, possible for the dual space of P , namely, the set of all linear functionals on the
Schwartz space J 10. Since P is infinite-dimensional, its dual space is "larger" than
it. It is in this sense that an enlargement of P is required to develop a well-defined
integration theory on it.

There are many ways to understand why dual spaces of infinite-dimensional spaces
admit convenient measure-theoretic constructions. One such way is to recognise that
these dual spaces can naturally be regarded as the projective limit of a family of their
subspaces. A digression on projective limits is thus in order.

3.3.3 A digression on projective limits

Let us begin with some preliminary definitions.

Definition 3.1. (Partially ordered set) A set L is said to be partially ordered if it is
equipped with a binary relation, denoted ≥, such that

(1) (reflexivity) L ≥ L,∀L ∈ L;

(2) (transitivity) for all L,L′, L′′ ∈ L, if L ≥ L′ and L′ ≥ L′′, then L ≥ L′′;

(3) (anti-symmetry) for all L,L′ ∈ L, if L ≥ L′ and L′ ≥ L, then L = L′.

Definition 3.2. (Directed set) A partially ordered set L is called a directed set if for
all L′, L′′ ∈ L, there is some L ∈ L such that L ≥ L′ and L ≥ L′′.

Definition 3.3. (Projective family) Let {ML}L∈L be a family of sets, where L is a
directed index set. Suppose that for every L,L′ ∈ L such that L′ ≥ L, the (necessarily
surjective) projections

pL,L′ :M ′
L →ML (3.59)

satisfy
pL,L′ ◦ pL′,L′′ = pL,L′′ , for L′′,≥ L′ ≥ L. (3.60)

Then the collection {ML, pL,L′}L,L′∈L of such sets and projections is called a projective
family.

We will be interested in the Cartesian product of the sets ML,

ML :=
∏
L∈L

ML. (3.61)

10There is a potential for confusion here. Strictly speaking, the dual of P is the set of all linear
functionals on P, not on J . However, observe that J ⊂ P, which implies that the dual of P is
contained in the dual of J . Thus we can work with the latter without loss of generality.
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An element in ML is denoted as (xL)L∈L, where xL ∈ML. These definitions enable us
to introduce the very useful notion of a projective limit.

Definition 3.4. (Projective limit) The projective limit of a projective family {ML, pL,L′}L,L′∈L
is the subset of ML defined as

M∞ := {(xL)L∈L : L′ ≥ L⇒ pL,L′(x′L) = xL} . (3.62)

In words, if L′ ≥ L, then xL′ ∈ML′ is sufficient to determine xL ∈ML.
We wish to develop an integration theory on the projective limit of a projective

family. This requires us to put more structure on the setsML of the family. Accordingly,
for every ML, we consider a σ-algebra BL of its subsets. This makes (ML,BL) a
measurable space for every L. Furthermore, recall that given two measurable spaces
X and Y with σ-algebras BY and BX respectively, a function f : X → Y is said to be
measurable if the preimage of a measurable set is also measurable, i.e. f−1(B) ∈ BX
for every B ∈ BY . This allows us to define a measurable projective family.

Definition 3.5. (Measurable projective family) A family {(ML,BL), pL,L′}L,L′∈L is said
to be a measurable projective family if each (ML,BL) is a measurable space and if
{ML, pL,L′} is a projective family such that every projection pL,L′ is a measurable func-
tion.

These definitions make it possible to first turn the product space ML in Eq (3.61)
into a measurable space, and thence, render the projective limit measurable as well.

To begin with, consider the projections PL,L : ML → ML and the collection of
subsets of ML of the form

A :=
⋃
L∈L

P−1
L,L BL, (3.63)

where P−1
L,L BL := {P−1

L,L(BL) : BL ∈ BL}. It is easily seen that the collection (Eq (3.63))
is closed under complements and countable unions, and thus forms a σ-algebra on ML.
Therefore, it is also the case that the projections PL,L are measurable. We define the
smallest σ-algebra containing A such that all projections are measurable, and denote
it as

BL := B
Ç⋃
L∈L

P−1
L,L BL

å
(3.64)

It thus follows that (ML,BL) is a measurable space. It can be shown [35] that given
normalised, countably additive measures µL in each (ML,BL), one can construct a
normalised, countably additive measure in (ML,BL). However, our main motivation
in constructing the foregoing structures is to convert the projective limit M∞ into a
measurable space and construct a measure thereon. We now proceed with this task.
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Consider the collection of subsets of M∞ of the form

B∞ := BL ∩M∞ := {B ∩M∞ : B ∈ BL}. (3.65)

This collection forms a σ-algebra, as we now verify.

Lemma 3.1. The collection B∞ (Eq (3.65)) forms a σ-algebra on M∞.

Proof. Since for every Bn ∈ BL, n ∈ Z+,

∪n(Bn ∩M∞) = (∪nBn) ∩M∞,

B∞ is closed under countable unions. Furthermore,M∞, B∩M∞ ⊂ML for any B ∈ BL.
Since ML is measurable, we have

M∞ \ (B ∩M∞) =M∞ ∩ (ML ∩ (B ∩M∞))
=M∞ \ ((ML \B) ∩ (ML \M∞))
=M∞ ∩ (ML \B) ∈ B∞.

Hence, B∞ is also closed under complements.

Thus, (M∞,B∞) forms a measurable space – we christen it as the measurable pro-
jective family. In fact, B∞ is the smallest σ-algebra on M∞ in a certain sense, which
we now express.

For every projection PL,L :ML →ML, consider its restriction to M∞, given explic-
itly by

pL := PL,L ◦ i∞, (3.66)
where i∞ : M∞ → ML is the inclusion of M∞ in ML (it is just the identity map on
M∞). Since PL,L and i∞ are both measurable functions, pL is also11 measurable for all
L ∈ L. Moreover, the consistency conditions that define M∞ (Eq (3.62)) can be recast
as

pL = pL,L′ ◦ p′L, ∀L,L′ ∈ L such that L′ ≥ L. (3.67)
This lets us establish the following lemma.

Lemma 3.2. The collection of sets

F∞ :=
⋃
L∈L

p−1
L BL, (3.68)

where p−1
L BL = {p−1

L (BL) : BL ∈ BL}, forms an algebra.
11Note that these projections also allow us to see the projective limit as the ”largest” subset of ML

in the sense that one can unambigiously project down from it to any set ML in the projective family.
That is, pL((x′L)L∈L) = (xL). Thus the name projective limit is quite apt.
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Proof. Closure under complements can be demonstrated in the same way as in Lemma
3.1. As for closure under finite unions, consider ⋃N

n=1 p
−1
Ln
(BLn). In view of Definition

3.2, there exists12 L ∈ L such that L ≥ Ln for all n ∈ {1, · · · , N}. From Eq (3.67), we
then get ⋃

n

p−1
Ln
(BLn) = p−1

L (p−1
Ln,L

(BLn))

= p−1
L

Å⋃
n

p−1
Ln,L

(BLn)
ã

The set in the round brackets in the second line above clearly belongs to BL.

The sets p−1
L (BL) are called cylindrical sets (compare with Eq (3.55)). As we re-

marked earlier, one can always construct (finitely) additive measures on the collection
(Eq (3.68)) of cylindrical sets. Eqs (3.54)–(3.57), mutatis mutandis, apply here. That
is, suppose we have a collection of measures {µL}L∈L on the projective family, where
µL : BL → R. Suppose further that these measures satisfy the self-consistency condi-
tions

µL = (pL,L′)∗µL′ , ∀L,L′ such that L′ ≥ L. (3.69)
Then we get a cylindrical measure µ on every cylindrical collection p−1BL of sets by

µ = p∗LµL, i.e. µ(p−1(BL)) = µL(BL), ∀BL ∈ BL. (3.70)

This measure, as noted in the previous section, lets us integrate cylindrical functions
on M∞. In current notation, these functions are pullbacks by pL of functions on ML

that are integrable with respect to µL. More precisely, let FL be an integrable function
on ML. Then

f := p∗LFL = FL ◦ pL (3.71)
is a cylindrical function on M∞, in view of the preceding two equations, can be inte-
grated as ∫

M∞
dµf =

∫
d(p∗LµL)f =

∫
dµL(pL)∗f =

∫
ML

dµLFL. (3.72)

The self-consistency conditions (Eq 3.69) guarantee that we get a well-defined answer
above, i.e. the answer does not depend on the choice of L, since if L′ ≥ L and FL, FL′

represent the same cylindrical functions, we have∫
ML

dµLFL =
∫
d((pL,L′)∗µL′)FL =

∫
dµL′(p∗L,L′FL) =

∫
ML′

dµL′FL′ ,

12Evidently, such an L would not exist if the collection {Ln} were countable. This is another way
to understand why cylindrical sets are not closed under arbitrary unions.
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where the last equation follows from the definition of the projective limit.
But our goal, of course, is to introduce countably additive measures on the σ-algebra

B∞ that we defined above (Eq 3.65). The fundamental advantage of working with a
projective limit is that one can use arbitrary unions of cylindrical sets to construct
σ-algebras on M∞ – this was precisely the question posed at the end of the preceding
section. In particular, we have the following lemma [35].

Lemma 3.3. B∞ := B(F∞), where B(F∞) is the smallest σ-algebra on M∞ such that
all projections pL :M∞ →ML are measurable.

Thus, we have effectively reduced our problem to that of extending cylindrical mea-
sures on F∞ to countably additive measures on B(F∞). Of course, the existence of the
σ-algebra B∞ does not, in itself, guarantee the existence of a measure on (M∞,B∞).
There does exist a general theorem characterising the extendability of cylindrical mea-
sures to non-cylindrical measures in a projective family [36], but we shall not need it.
For our purposes, it is sufficient to note that under suitable topological conditions on
the projective family, extendability is ensured. For example, a regular Borel measure
on the projective family formed by compact Hausdorff spaces spaces can be extended
to a regular Borel measure on the projective limit. Incidentally, this situation will
occur in the enlargement of the configuration space A/G of connections modulo gauge
transformations! We defer a detailed discussion of this important point to later.

3.3.4 Measures on infinite-dimensional spaces: resolution of
the problem

Now that we have understood projective limits and the measure-theoretic gymnastics
that they are amenable to, we can return to the problem of constructing a countably
additive measure on the configuration space of free scalar field theory. As argued at
the end of Section 3.3.2, rather than the space P of all rapidly-falling-at-infinity C2

functions on RD, the algebraic dual of P , by virtue of its being a projective limit, is
more suitable for measure-theoretic constructions. In this section, we will show that the
algebraic dual of an infinite-dimensional vector space is indeed a measurable projective
limit. Then we shall see how to make use of this important fact in scalar field theory.

Let V be a real infinite-dimensional vector space and let Ṽ be its algebraic dual,
i.e. the space of all linear functionals on V . Let L be the set of all finite-dimensional
subspaces of V . It is not difficult to verify that the binary operation ‘⊂’ on the elements
L is reflexive, transitive and anti-symmetric. Thus L is partially ordered, with

L′ ≥ L⇔ L′ ⊃ L, ∀L′, L ∈ L. (3.73)
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Furthermore, there always exists a subspace greater than any other two subspaces.
Therefore, L is a directed set. Next, let {L̃ : L ∈ L} be the collection of the algebraic
duals of all L ∈ L. For each L′, L ∈ L such that L′ ≥ L, let pL,L′ : L̃′ → L̃ be the linear
transformation such that every element in L̃′ is mapped to its restriction to L̃. Since
any linear functional in L̃ can be trivially extended to a linear functional in L̃′ if L′ ≥ L,
pL,L′ are all surjective. Finally, it is straightforward to show that for L′′ ≥ L′ ≥ L,

pL,L′′ = pL,L′ ◦ pL′,L′′ . (3.74)

Hence, by Definitions 3.1–3.3, the collection {L̃, pL,L′}L,L′∈L forms a projective family.
Let Ṽ∞ be the corresponding projective family. We will now show that it is isomporphic
to Ṽ .

Since all maps pL,L′ are linear, Ṽ∞ is a subspace of the direct product of all the
subspaces L̃, i.e. Ṽ∞ ⊂ ∏

L∈L L̃. Further, recall that an element in Ṽ∞ is written as
(φL ∈ L̃)L∈L. Now for any φ ∈ Ṽ , let φ ↾L be its restriction to L̃; clearly, φ ↾L= φL.
Also, if L′ ≥ L, we have that

φ ↾L= pL,L′(φ ↾′L),

from which it follows that the linear map

ω : Ṽ → Ṽ∞

ω(φ) = (φ ↾L)L∈L (3.75)

is injective. Moreover, since Ṽ∞ contains linear functionals by definition, the map above
is also surjective. Therefore, Ṽ and Ṽ∞ are isomorphic.

If we have a measurable projective family {Ṽ∞,B∞}, B∞ being the σ-algebra on
Ṽ∞, then the map ω also renders the dual space Ṽ measurable. We simply define the
σ-algebra B̃ on Ṽ to be the collection of the preimages of the elements of B∞ under ω,
i.e.

B̃ := ω−1B∞ (3.76)

Thus the (Ṽ, B̃) and (Ṽ∞,B∞) are also isomorphic as measurable spaces.
We can also explicitly see how the σ-algebra B̃ (or B∞) looks like. For any φ ∈ Ṽ

and v ∈ V , let fv : Ṽ → R be the function such that fv(φ) = φ(v). Then B̃ is the
smallest σ-algebra such that all the maps fv are measurable. In other words,

B̃ = B
Ç⋃
v∈V

f−1
v B(R)

å
, (3.77)

where B(R) is the collection of all Borel sets in R.
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With this, we are well-equipped to deal with the construction of measures on the
dual space Ṽ . The fundamental reason that salvages the dual space as opposed to the
original space lies in the following theorem, which, in general, does not exist for the
latter.

Theorem 3.2. Any self-consistent family of finite Borel measures µL on the subspaces
L̃ ⊂ Ṽ defines a countably additive measure on (Ṽ, B̃).

Proof. Since a detailed proof uses concepts that have not been introduced, we just
sketch the basic steps here.

Observe that since each subspace L̃ is finite-dimensional, it is isomorphic to Rn.
Thus the σ-algebra BL on each L̃ is nothing but the Borel σ-algebra on Rn. Now, Rn

is a compact metric space, and thus so is L̃. It can be shown [36] that a family of self-
consistent measures on a projective family of compact metric spaces can be uniquely
extended to a countably additive measure on the projective limit. Since the projective
limit here has been shown to be the dual space, the theorem is established.

On its own, Theorem 3.2 is not very useful, since it only guarantees the existence
of a measure and does not reveal how to construct one. However, there exists a very
useful characterisation of countably additive, finite measures on the dual space. It is
called Bochner’s theorem, which we now describe.

Let µ be a finite and countably additive measure on (Ṽ , B̃). The Fourier transform,
or the generating functional, of µ is a function χ : V → C given by

χ(v) =
∫
Ṽ
dµ(φ)eiφ(v) (3.78)

for every v ∈ V . Furthermore, a function f : V → C is of positive type if for all
c1, . . . , cn ∈ C and v1, . . . , vn ∈ V ,

n∑
k,l=1

ckc̄lf(vk − vl) ≥ 0. (3.79)

We now present the Bochner theorem [35].

Theorem 3.3. (Bochner theorem) A complex-valued function χ on an infinite-dimensional
vector space V is the Fourier transform of a finite and countably additive measure on
(Ṽ , B̃) if and only if it is of positive type and continuous on every finite-dimensional
subspace of V. Furthermore, the measure is normalised if and only if χ(0) = 1.

Let us now exemplify how to use Theorems 3.2 and 3.3 to construct measures on
the algebraic dual of an infinite-dimensional vector space.
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Gaussian measures
Let V be an infinite-dimensional vector space, and Ṽ its algebraic dual. Let L

denote the set of all finite-dimensional subspaces of V and for each L ∈ L, let L̃
be its (finite-dimensional) algebraic dual.

We begin by defining a self-consistent family of measures µL on finite-dimensional
subspaces L̃ ⊂ Ṽ . Let us recall the self-consistency conditions on µL. We require
that if L′ ⊃ L, then the measure µL on L̃ is related to the measure µ′

L on L̃′ by
(cf. Eqs (3.54) and 3.69))

µL = (pL,L′)∗µL′ , (3.80)

where pL,L′ is the projection map from L̃′ to L̃.
Now recall that if L̃ is n-dimensional, then it is isomorphic to Rn. Thus it

suffices to define a measure on the latter. For this purpose, we generalise the
(normalised) Gaussian measure in R,

dµ(x) = 1√
2π
e−x

2
dx, (3.81)

dx being the usual Lebesgue measure on R. Let C be a positive-definite symmetric
n×nmatrix (i.e. all eigenvalues of C are positive). We define the Gaussian measure
µnC of covariance C on Rn to be

dµnC(x) = (2π)−n/2
√
detC exp

Å
−1
2xiC

ijxj

ã
dnx, (3.82)

where dnx is the Lebesgue measure on Rn and x = (x1, . . . , xn). For computations,
we can simplify Eq (3.82) as follows. Since C is a symmetric matrix, its eigenvec-
tors span Rn. In particular, if all eigenvalues are distinct, the eigenvectors form
an orthonormal basis of Rn. If some of the eigenvalues are the same, then one
can pick an orthonormal basis of each eigenspace, and apply the Gram-Schmidt
decomposition to the resulting list of vectors to again obtain an orthonormal basis
of Rn. Thus, without loss of generality, we may assume that C has n distinct
eigenvalues λi and thus n distinct eigenvectors ei. Then x = xie

i for any x ∈ Rn.
Since detC = λ1 · · ·λn, we get

dµnC(x) = (2π)−n/2
n∏
i=1

√
λie

−
λix

2
i

2 dnx. (3.83)

In terms of finite-dimensional Euclidean spaces, the self-consistency conditions
on the measures mean that for m < n, the restriction of a Gaussian measure on Rn
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must be a Gaussian measure on Rm. Indeed, supposing that n−m = r, Eq (3.83)
readily yields

dµmC (x1, . . . , xm) =
∫
Rr
dµnC(x1, . . . , xm, xm+1, . . . , xn). (3.84)

To further confirm that the equation above is indeed equivalent to the self-consistency
conditions (Eqs (3.54) and (3.69)), one can check that if L̃ ⊂ L̃′, where L̃ ∼= Rm

and L̃′ ∼= Rn, the integral of a function on Ṽ that is cylindrical with respect to
both the subspaces is the same regardless of whether it is evaluated using dµmC or
dµnC . Therefore, Gaussian measures on finite-dimensional subspaces of Ṽ consti-
tute a self-consistent family of measures. Since they are also normalised (and thus
finite), Theorem 3.2 guarantees the existence of a countably additive measure µ
on Ṽ .

To see the precise form of the measure µ on Ṽ , we will first study the Fourier
transform of finite-dimensional Gaussian measures and then make use of the Bochner
theorem. Since the dual of Rn is Rn itself, using Eqs (3.78) and (3.82), for x ∈ Rn,
we get

χ(x) =
∫
Rn
dµnC(x)eix

iyi

= (2π)−n/2
n∏
i=1

∫
R
dny
√
λi exp

Å
ixiyi −

1
2λiy

2
i

ã
(no sum over i!)

=
n∏
i=1

e
− (xi)2

2λi , (3.85)

where we completed the square in the exponent in the second line and subsequently
evaluated the resulting Gaussian integral. Now, C, being symmetric, has an inverse
C−1, which has eigenvalues 1/λi. Therefore, C−1φ = ∑

i(xi/λi)ei and so x ·C−1x =∑
i((xi)2/λi), which yields

χ(x) = exp
Å
−1
2x · C

−1x

ã
(3.86)

We can further check that
χ(0) = 1, (3.87)

confirming that Gaussian measures are normalised. Furthermore, the function
defined by Eq (3.86) is continuous on Rn, and is always non-negative due to the
positivity of C. Therefore, the conditions of the Bochner theorem are at least met
on the finite-dimensional vector space Rn.
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We are now in a position to conjure a Fourier transform corresponding to the
measure µ on the infinite-dimensional Ṽ . We observe that because C is symmetric
and positive definite, it actually defines an inner product on Rn. Indeed, armed
with Eq (3.86), we can recognise that every inner product on a finite-dimensional
vector space determines a Gaussian measure on its dual space. With this insight
and the Bochner theorem, we can characterise the measure µ on Ṽ . Fix an inner
product C : V × V → R, which we symbolically denote as

C(u, v) = ⟨u,Cv⟩ (3.88)

for every u, v ∈ V . Then we assert that there is a unique Gaussian measure µC on
Ṽ with covariance C. Indeed, let

χ(v) = exp
Å
−1
2x · Cx

ã
. (3.89)

As has been verified, this function is continuous on every finite-dimensional sub-
space of V , and is of positive type in virtue of C being positive definite. The
conditions of the Bochner theorem are satisfied, and thus Eq (3.89) is the Fourier
transform of a unique measure µC on Ṽ . This reveals the strength of the Bochner
theorem: it lets us define a measure on the dual space without ever having to
worry about its explicit form; insofar as computations are concerned, we have the
explicit form of the Fourier transform at our disposal.

This last point about computations using the explicit form of the Fourier trans-
form deserves some explanation. Eq (3.89) is far from being computationally ex-
plicit. But if we know what precisely is the vector space V , we can be more vivid.
For instance, suppose V is the Schwartz space J on RD. Then, of course,

⟨u,Cv⟩ =
∫
dDxdDx′u(x)C(x, x′)v(x′), ∀u, v ∈ J . (3.90)

The fancy C bears its own name: the kernel of C. It will soon become importanta.
aOne might as well gasp at the hint of Green functions implicit in this equation.

Let us summarise the mathematical apparatus we have introduced so far in the
context of scalar field theory. We started by identifying P as the classical configuration
space. Detailed considerations revealed that quantum fields cannot be satisfactorily
realised as elements of P . Thus we were lead to consider the algebraic dual P̃ of P ,
which is the space of all linear functionals on the Schwartz space J , and is much larger
than P . Theorems 3.2 and 3.3 help us construct countably additive measures on P̃ .

However, while P is too small to be considered as the configuration space of the
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quantum theory, the algebraic dual P̃ is too large for the same purpose. This is because
physically, there must be at least some continuity conditions on our quantum fields,
but P̃ , being the space of all linear functionals on J , provides virtually no control
over its elements. Therefore, one should expect a physical configuration P̄ space to be
somewhere between P and P̃ , i.e. P ⊂ P̄ ⊂ P̃ . For infinite-dimensional topological
vector spaces, there is indeed such a space, namely the topological dual, which is the
space of all continuous functionals on the vector space. Thus P̄ will be the topological
dual of J . It is called the space of tempered distributions, and continuity of linear
functionals in it is meant in the sense of being continuous in the topology defined by
the sequence of seminorms13 defined by Eq (3.47).

The question that we should then ask is whether the Bochner theorem is valid also
for the topological dual. Intuitively, one should expect so, for in the Bochner theorem,
the Fourier transform of the measure is required to be continuous on finite-dimensional
subspaces of the vector space V . This is equivalent to saying that the Fourier transform
is continuous in the topology defined by finite-dimensional subspaces of V . Thus, it
is plausible to suggest that continuity of the Fourier transform in a weaker topology
on V should shrink the support of the corresponding measure, i.e. a smoother Fourier
transform should yield a measure supported on a proper subspace of the algebraic dual
P̃ . This intuitive expectation is indeed true, and is realised in the Bochner-Minlos
theorem, which in one of its myriad incarnations is as follows [35, 14].

Theorem 3.4. (Bochner-Minlos theorem) Let V be a real nuclear space and µ be a
measure on (Ṽ , B̃). If the Fourier transform of µ is continuous in the nuclear topology,
then the measure is supported on the topological dual V̄ ⊂ Ṽ. Thus, every continuous
and positive-type function on V̄ defines a measure on (V̄ , B̄), where B̄ = B̃ ∩ V̄.

We have broken character above by referring to new concepts (nuclear space, nuclear
topology, etc.) without introducing them first. But provided that we restrict attention
to the spaces in scalar field theory, we shall not need the full machinery of nuclear
spaces. Accordingly, we need only focus on the Schwartz space J and its topological
dual P̄ introduced earlier. To apply the Bochner-Milnos theorem, we need only note
that the nuclear topology on J coincides with the topology induced by the sequence
of seminorms defined by Eq (3.47) [35].

The example of the Gaussian measure above easily adapts to the topological dual.
In particular, the continuity of the Fourier transform (Eq (3.89)) in the nuclear topology
can be ensured by imposing conditions on the inner product C (see [35] for example).

Thus finally, we have picked the physical configuration space for scalar quantum
field theory. It is the topological dual P̄ of the Schwartz space J . It is larger than the

13A seminorm is just like a usual norm, except that it need not be positive definite.
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classical configuration space P and the existence of measures on it is ensured by the
Bochner-Minlos theorem.

3.3.5 Quantum field theory regained

It might seem at this point that the goal we had set ourselves up to, namely, making
the path-integral formalism of free scalar field theory more rigorous, has been buried
in the bewildering haystack of definitions, theorems and mathematical constructions
presented above. However, we are now precisely in a position to discuss the rigorous
construction of a free quantum scalar field.

Let us for a moment forget about path-integral and canonical quantisation (and
any other textbook quantisation scheme for that matter). We instead ask ourselves the
question: what are the salient physical features we desire in a quantum field theory?
We recall that the observable content of a quantum field theory is encoded in its
correlation functions (Eqs (3.43) and 3.44). The physical principles underlying this
observable content are those of special relativity and quantum mechanics. Accordingly,
we require that our correlation functions be Lorentz covariant, our fields be local 14

and the vacuum state of our theory be unique. We can thus take these conditions to be
the axioms of a theory and then find mathematical objects that satisfy these axioms.
For Minkowskian free scalar field theory, these axioms are called the Wightman axioms
and are realised by treating quantum field as functionals in the topological dual of the
Schwartz space [38, 32, 39]. For Euclidean scalar field theory, there is an analogous
list of axioms, called the Osterwalder-Schrader (OS) axioms, that yield a theory which
upon analytic continuation yields a theory consistent with the Wightman axioms15. It
is here that are our involved constructions above become fruitful: the OS axioms are
essentially conditions on measures on the topological dual of J [38]!

For our purposes, it is not necessary to state the OS axioms in detail. Our essential
motive was to understand the need for realising fields as functionals in the topological
dual of the classical configuration space rather than as functions on that space itself.
The preceding sections ought to have convinced us of that need. Here, it suffices to
note that the Gaussian measure µC defined above satisfies the OS axioms if [38]

C = (−∇2 +m2)−1, (3.91a)
µC = (−∇2 +m2)−1/2, (3.91b)

C(x, x′) = 1
(2π)D

∫
dDp

eip·(x−x
′)

m2 + p2
, (3.91c)

14That is, the commutator of field operators must vanish at spacelike separations.
15The question of the equivalence of the two schemes is a delicate one. In general, the OS axioms

are more general than the Wightman axioms. See [38, 32] for details.
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where p is the four-momentum. These equations ought to evoke some memories! In-
deed, Eq (3.91c) is nothing but the Green function of scalar field theory! In fact,
what is more, one can go on to calculate the correlation functions of the fields using
Eq (3.82). We find [38, 40] that for any covariance C and functions f1, . . . , fn ∈ J ,

∫ N∏
i=1

φ(fi)dµC(φ) =
∑

all pairs

N∏
i=1

⟨fmi , Cfni⟩, (3.92)

which, when C = (−∇2+m2)−1, is precisely the time-honoured Wick’s theorem found
in any standard textbook on quantum field theory (e.g. [33, 34])! Very convincingly,
the integral on the left-hand side above is as well-defined as anything can be – the
mathematical spectres haunting path integrals have all been exorcised. This is but a
glimpse of constructive quantum field theory; more details can be found in the sources
cited in the bibliography.

3.4 Quantum Configuration Space for Gravity

Now that we have understood that the quantisation of a field theory requires an en-
largement of the classical configuration space, we can return to gravity proper, and ask
the question: what kind of an enlargement of the space A/G of (smooth) connections
modulo gauge transformations will be required in quantum gravity? It is important
to note here that quotienting A by G results in a nonlinear space, and therefore, a
straightforward application of the results of the preceding section will not work. That
is, we do not have access to a linear vector space, which is the essential ingredient in the
Bochner and Bochner-Minlos theorems. Therefore, new concepts and techniques will
need to be introduced to seek a suitable enlargement of A/G. However, in achieving
this goal and appreciating the inevitability of the route taken towards it, the rather
lengthy discussions of the previous section will be essential.

Although SU(2) is the group that primarily concerns us, most of the subsequent
discussion would only make use of the fact that SU(2) is a compact Lie group. Thus
from now on, G refers to any compact Lie group, unless otherwise stated.

3.4.1 The holonomy algebra and its completion

Since the original motivation for enlarging the classical configuration space is to obtain
a Hilbert space on which the elementary T variables have to be represented as operators,
we proceed by harking back to the structure of the algebra of the T variables. To this
end, let us first focus on the T 0 variables.
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Let HA be the algebra generated by finite linear combinations of the T 0 variables
with complex coefficients. We call this the holonomy algebra. As demonstrated in
Section 3.2.3, the Poisson brackets between the T 0 variables vanish – thus HA is
abelian. Furthermore, we also have closure under complex conjugation, and this implies
that complex conjugation induces an involution ⋆ on HA. In other words, HA is
automatically a ⋆-algebra. Finally, we invoke the so-called Giles theorem [41]. It states
that one can construct any complex-valued, continuous, bounded function onA/G from
the traces of holonomies. Therefore, stated precisely, HA is the abelian ⋆-subalgebra
of the algebra of the set C0(A/G) of continuous and bounded complex-valued functions
on A/G.

We wish to find a representation of HA on a Hilbert space. Such a question is
generally considered and answered in the representation theory of something called C⋆-
algebras16, studied, among others, by von Neumann, Gelfand, Mazur and Segal [42]. It
will be worthwhile to introduce a bare minimum of concepts required to understand the
results from the theory of C⋆-algebras that we will have to inevitably employ below.
In what follows, all algebras will be assumed to be unital, i.e. containing the identity
element.

Let us first recall what a Banach space is, namely, a complete normed vector space,
where by completeness we mean that every Cauchy sequence in the space converges
to a point in the space, and the definition of convergence, of course, uses the metric
induced by the norm. This allows us to introduce a

Definition 3.6. (Banach algebra) An associative algebra K that is also a Banach space
and satisfies ||xy|| ≤ ||x|| ||y|| for every x, y ∈ K, || · || being the norm on K,

and thence a

Definition 3.7. (C⋆-algebra) A ⋆-algebra K that is also a Banach algebra and satisfies
||x⋆x|| = ||x||2 for every x ∈ K.

Next, recall that a homomorphism is a map between two algebras that preserves
vector addition and multiplication, scalar multiplication and the identity element, and
that an isomorphism is a bijective homomorphism. If the algebras are ⋆-algebras,
and we further impose the condition of ⋆-preservation, i.e. φ : K1 → K2 such that
φ(x⋆) = φ(x)⋆, then the map is a ⋆-homomorphism or ⋆-isomorphism, as the case may

16C⋆-algebras are not only extremely powerful mathematical tools, but their use in physics offers a
number of illuminating insights regarding otherwise obscure physical theories. For instance, the seem-
ingly counterintuitive principles that underlie quantum mechanics, such as the uncertainty relation,
the superposition principle, and so on, can be recast in a rather palatable and tangible form using
C⋆-alebraic tools. See, for instance, Ref. [44, 43].
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be. Next, a homomorphism from an algebra K to linear operators on a Hilbert space H
is called a representation of K on H, and a ⋆-representation if the algebra is a ⋆-algebra
and the map is ⋆-preserving. Finally, we introduce the notion of a cyclic representation.

Definition 3.8. (Cyclic representation) Given a C⋆-algebra K and a Hilbert space H,
a representation π : K → B(H), where B(H) is the set of bounded linear operators on
H, is called cyclic if there exists a cyclic vector, namely, a unit vector v ∈ H such that
the set {π(x)v : x ∈ K} is dense17 in H.

With this, we can introduce the following theorems [42, 16, 17].

Theorem 3.5. (Gelfand-Naimark theorem) Every C⋆-algebra K is ⋆-isomorphic to the
C⋆-algebra of all continuous bounded functions on a compact Hausdorff space called the
Gelfand spectrum of K. Furthermore, the Gelfand spectrum can be constructed directly
from K: it is the set Hom(K,C) of all ⋆-homomorphisms from K to the ⋆-algebra of
complex numbers.

Theorem 3.6. (Gelfand-Naimark-Segal (GNS) construction) Let K be a C⋆-algebra
and H a Hilbert space. Given a positive linear functional Γ of unit norm on K, there
exists a cyclic representation π : K → H with a cyclic vector Ω such that

Γ(x) = ⟨π(x)Ω,Ω⟩ (3.93)

for all x ∈ K.

Theorem 3.7. (Riesz-Markov Theorem) Let X be a compact Hausdorff space and
C0(X ) the space of continuous bounded (complex-valued) functions on it. For every
positive linear functional Ψ on X , there exists a unique regular Borel measure µ on X
such that

Ψ(f) =
∫
X
dµ(x)f(x) (3.94)

for all f ∈ C0(X ).

To witness the power of these theorems, we need to convert the holonomy algebra
HA into a C⋆-algebra. To this end, let us introduce a norm on HA. We set

||f || = sup
[A]∈A/G

|f([A])| (3.95)

17A subset is dense if its closure, or equivalently Cauchy completion, equals the parent set. Recall
the example of rationals as a dense subset of reals.
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for all f ∈ HA; [A] is an equivalence class of connections that give rise to the same T 0

variable for all loops. The Cauchy completion HA of HA with respect to this norm
gives rise to an abelian C⋆-algebra 18.

Now let A/G denote the Gelfand spectrum of HA. By the Gelfand-Naimark the-
orem, HA is ⋆-isomorphic to the C⋆-algebra of C0(A/G), i.e the set of continuous
bounded functions on the Gelfand spectrum. The punchline is this.

(1) The theorems stated above allow us to construct a measure µ on A/G and thus
convert C0(A/G) into the Hilbert space L2(A/G, µ), which will be the home for
general quantum states and the representation space for configuration operators.
Hence, A/G is the promised quantum configuration space.

(2) The classical configuration space A/G is densely embedded in A/G, which is, there-
fore, an enlargement of the former, as advertised.

(3) This enlargement is nontrivial, for it can be shown [45] that A/G has measure zero,
and in analogy with the classical configuration space of scalar field theory, additive
measures on A/G cannot be extended to countably additive measures on A/G.

We will now precisely see how Theorems 3.5–3.7 help us establish (1) and (2). The
significantly involved mathematical constructions that are to follow are inevitable in
view of the foregoing observations.

(2) A/G is densely embedded [46] in A/G
For every A ∈ A/G, define φA : HA → C such that φA(f) = f(A) for every

f ∈ HA. As can be readily confirmed, every φA is a ⋆-homomorphism from HA to
the ⋆-algebra of C and thus, by the Gelfand-Naimark theorem, lies in the Gelfand
spectrum A/G of HA.

Define j : A/G → A/G to be j(A) = φA for every A ∈ A/G. Now given
A1 ̸= A2 in A/G, there exists a loop γ such that T 0

γ (A1) ̸= T 0
γ (A2). This is so

because recall that A/G contains gauge equivalence classes of smooth connections,
and gauge-equivalent connections give rise to a unique T 0 variable for any loop.
Since the T 0 variables span H/A, it follows that φA1(f) ̸= φA2(f) for any f in

18Here is a sketch of the proof. Recall that a Cauchy completion M of a normed space M proceeds
as follows. Two Cauchy sequences (xn), (yn) ∈ M are said to be equivalent if ||xn − yn|| → 0. M
is identified with the equivalence classes [xn] of all Cauchy sequences (xn) in M , and the norm on
the latter induces a norm on the former, namely ||[xn]||M := limn→∞ ||xn||. Now by Eq (3.94) and
the properties of the absolute value function on complex numbers, it is easily verified that HA is a
C⋆-algebra. Note that the identity element in the algebra is simply the trace of a holonomy around
the identity loop.
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H/A. Thus j is an injection, which entails that A/G is isomorphic to the image
j(A/G); in other words, A/G ⊂ A/G. It will then suffice to show that j(X) is
dense in A/G.

To this end, suppose f is a continuous function on A/G that vanishes on
j(A/G). By the Gelfand-Naimark theorem, there exists an isomorphism I tak-
ing f to some element f̃ in HA. We thus have

f(φA) = I−1(f̃)(φA) = 0

for every φA = j(A/G). This means that f̃ is vanishes everywhere on A/G, and
so f is identically zero as well.

We have thus shown that every vanishing function on j(A/G) vanishes on A/G
as well. This ensures that j(A/G) is dense in A/G, for suppose that if it were not.
Then since A/G is compact Hausdorff (Gelfand-Naimark theorem), there would
exist a continuous function on A/G that vanished on the closure of j(A/G) in A/G,
but was nonzero on the complement of the closure.

(1) Converting C0(A/G) into a Hilbert space
Once again, we invoke the Gelfand-Naimark theorem. It guarantees that A/G

is compact. Thus by the Riesz-Markov theorem, there exists a unique regular Borel
measure µ on A/G. Using this measure, we define an inner product on C0(A/G),

⟨g, f⟩ :=
∫
A/G

dµ(A)g(A)f(A), (3.96)

which in turn yields an L2 norm ||f || :=
∫
dµ|f |2. The Cauchy completion of

C0(A/G) with respect to this norm begets the Hilbert space L2(A/G, µ).
Finally, we show that elements in HA can be realised as bounded linear oper-

ators on L2(A/G, µ). Now the GNS construction in Theorem 3.6 comes into play.
It ensures that there exists a cyclic representation π : A/G → B(L2(A/G, µ)) for
every positive linear functional Γ on HA such that

Γ(f) = ⟨π(f)Ω,Ω⟩

for any f ∈ HA, Ω being the cyclic vector. But sinceHA is isomorphic to C0(A/G)
by the Gelfand-Naimark theorem, every positive linear functional on HA can also
be regarded as a positive linear functional on C0(A/G). Now, by the Riesz-Markov
theorem, positive linear functionals on C0(A/G) are in one-to-one correspondence
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with regular Borel measures on A/G. This entails that

Γ(f) =
∫
A/G

dµ(A)f̃(A) (3.97)

where f̃ is the image of f under the ⋆-isomorphism of the Gelfand-Naimark
theorem. Comparing the preceding two equations, we see that for every ψ ∈
L2(A/G, µ),

(π(f)ψ)(A) = f̃(A)ψ(A). (3.98)

In other words, in every cyclic representation of the configuration operators, quan-
tum states can be realised as square-integrable functions on A/G on which the
operators act by multiplication, as they should. This also entails that the config-
uration operators are self-adjoint, as they should be.

To summarise, we wished to enlarge the classical configuration spaceA/G of smooth
connections modulo gauge transformations. In order to look for the required enlarge-
ment, we studied the algebra of configuration variables. This we found was naturally
extendible to an abelian C⋆-algebra, which in turn was amenable to the powerful re-
sults of Gelfand representation theory, which allowed us to enlarge A/G and thereby
arrive at a suitable Hilbert space.

Much remains to be done, however. In particular, we need to find the representa-
tion of the algebra of the momentum variables on L2(A/G, µ) as well. Moreover, the
measure µ so far is at most a mathematical curiosity without any physical significance.
Physically, we require a measure that is invariant under diffeomorphisms of the spa-
tial manifold Σ, since a change of coordinates should not change the Hilbert space of
quantum states19. To cater to the first concern, it is essential to develop differential
calculus on A/G, whereas the second concern requires a proper understanding of func-
tional integration on A/G. Either way, it is indispensable to broach the structure of
A/G. This is the task we take up next.

3.4.2 Characterisation of A/G

There are a number of equivalent characterisations of A/G in terms of projective limits.
All have been explored and described in detail in the literature on loop quantum gravity
[13, 14, 15, 16, 17, 18] (see [16] in particular for a concise and relatively self-contained
summary). To get a flavour for these rather lengthy constructions, we will describe one
such characterisation [18] in this section. It will be important in that it will allow us to

19This has nothing to do with solving the diffeomorphism constraint.
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construct a diffeomorphism-invariant measure on A/G and represent the T 1 variables
as “momentum” operators on L2(A/G, µ).

We have seen thatA/G is a dense subset ofA/G. Now, the former consists of smooth
connections. This suggests that A/G contains connections that are not smooth, over
and above those that are. This is reminiscent of the situation in scalar field theory, for
instance. There, the classical configuration space comprised of smooth functions on
spacetime, whereas the quantum configuration space consisted of distributions, which
may not be smooth.

These observations provide hints as to how A/G may be realised as a projective
limit. We begin by making precise the notion of a general connection which may or may
not be smooth. For this purpose, it is instructive to abstract the properties one wishes
to see in an object that can regarded as a connection. Recall that smooth connections
serve to parallel transport sections on (local regions of) Σ × R3. Harking back to our
excursion into parallel propagators in Section 3.2.1, we see that smooth connections
can be completely characterised as SU(2)-valued functions on Σ that satisfy Eqs (3.9a,
b, g, h), where the second two equations are smoothness conditions on the functions.
Armed with this insight, we can define a generalised connection as a map from curves
in Σ to SU(2) that satisfies only Eqs (3.9a, b). This strategy is essentially correct, as
we will see. But before that, we need to introduce some definitions and notation.

Two analytic20 curves e1, e2 : [a, b] → Σ are said to be equivalent if they are related
by a reparametrisation. The equivalence class of all such curves will be called an
analytic edge, and an oriented analytic edge if we demand the stronger condition that
reparametrisations must be orientation-preserving. For notational simplicity, we shall
use the same label e for an equivalence class and its representatives. The composition
of two edges, denoted by e1e2, is simply the composition of two representatives in each
edge (such an operation is evidently well-defined). The endpoints of an edge e are called
its vertices, and the set of all oriented analytic edges will be denoted by E . Finally, a
(oriented) graph γ is a finite subset of E containing (oriented) analytic edges satisfying
the following properties (see Fig 3.6):

(i) if e ∈ γ, then e−1 ∈ γ, e−1 being the same edge but with opposite orientation;

(ii) if e1 ̸= e2 and e1 ̸= e−1
2 , then e1 ∩ e2 is contained in the set of vertices of e1, e2;

(iii) each vertex of an edge in γ must be connected to a vertex of another edge in γ.

20We had hinted earlier that analyticity is necessary in our constructions. We will precisely see in
this section why that is so.



3.4 Quantum Configuration Space for Gravity 97
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Figure 3.6: An oriented graph with four edges.

The set of all graphs in Σ will be denoted by L. We show that it is a directed set.
To this end, we decree that given two graphs γ′, γ,

γ′ ≥ γ (3.99)

if γ′ contains all the vertices of γ and each edge in γ can be written as composition of
edges in γ′. Clearly, this is a partial order. Furthermore, since each edge is analytic,
any two graphs γ1 and γ2 intersect at most at finitely many points21. Break the edges
of the two graphs at these intersection points, and define γ to be the graph containing
the new edges thus obtained plus the nonintersecting edges of γ1 and γ2. Evidently,
γ ≥ γ1 and γ ≥ γ2. Thus L is a directed set.

Next, we introduce the space A of generalised connections on Σ as the space of all
maps A : E → SU(2) from the set of all oriented analytic edges to the gauge group,
such that

A(e−1) = [A(e)]−1 and A(e1e2) = A(e1)A(e2), (3.100)

where A(e1e2) is defined only if the composition e1e2 is another edge (i.e. is analytic).
Eq (3.100) defines a general connection that may not be smooth. This is so because
one could identify connections with the set of all parallel propagators associated to an
edge in Σ. Now parallel propagators for smooth connections are essentially smooth
maps from an edge to SU(2) that satisfy Eq (3.100) or Eq (3.9a, b). Thus they can be
regarded as a subset of all maps from an edge to SU(2); such maps, by definition, are
a subset of A.

A itself is essentially homemorhpic to a subset of infinitely many copies of SU(2).
To see this, for each edge e ∈ E , let Ae denote the set of all maps from the one-point
set {e} to SU(2). Clearly, A ⊂ ∏

e∈E Ae. However, Ae = {e} × SU(2), i.e. Ae and
21It is here that analyticity is essential. If we relax it to smoothness of edges, L will fail to be a

directed set, for smooth edges may intersect infinitely many times.
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SU(2) are homeomorphic, hence topologically equivalent. This entails that

A ⊏
∏
e∈E

SU(2), (3.101)

where ⊏ denotes a topological embedding.
Associated to A we define a generalised group G of gauge transformations as the

set of all maps g : Σ → SU(2), or equivalently as the Cartesian product

G :=
∏
x∈Σ

SU(2). (3.102)

For every A ∈ A, we define the action of a g ∈ G on A via

[g(A)](eyx) = (gy)−1A(eyx)gx, (3.103)

where eyx is an edge from x to y in Σ, and gx is the group element assigned to x by
the map g.

We will now show that the spaces A and G can be regarded as projective limits
of some projective families. Given a graph γ, define Aγ to be the set of all maps
Aγ : γ → SU(2) satisfying Eq (3.100). Clearly, Aγ ⊂ A, and

A ⊂
∏
γ∈L

Aγ. (3.104)

Thus there exists a natural projection pγ : A → Aγ which sends each A ∈ A to some
Aγ ∈ Aγ. By construction, this projection is surjective. Similarly, for each graph γ,
we define

Gγ = {gγ|gγ : Vγ → SU(2)}, (3.105)
where Vγ is the set of vertices in γ. Again, we clearly have Gγ ⊂ G ⊂ ∏

γ∈L Gγ, and
so there is a natural surjective projection22 pγ : G → Gγ that restricts g ∈ G to some
gγ ∈ Gγ. These projections allow us to render {Aγ}γ∈L and {Gγ}γ∈L into projective
families whose projective limits are A and G, respectively. We demonstrate below the
essential steps for A; G admits exactly the same treatment.

For any two graphs γ′ ≥ γ, define the map pγγ′ : Aγ′ → Aγ by

pγ = pγγ′ ◦ pγ′ (3.106)

This equation is precisely the condition that a projective limit should satisfy (see
Eqs (3.62) and (3.67)). Thus it suffices to show that the maps pγγ′ are surjective and

22We use the same symbols for both projections since both are amenable to exactly the same
manipulations and there is no risk of confusion.
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satisfy Eq (3.60), so that {Aγ, pγγ′} is a projective family. Surjectivity follows from the
surjectivity of the projections pγ, for let Aγ ∈ Aγ. Then since pγ is surjective, there
exists A ∈ A such that pγ(A) = Aγ. But then Eq (3.105) implies that pγ(A) = Aγ =
pγγ′(pγ′(A)) = pγγ′(Aγ′) for some Aγ′ ∈ Aγ′ . To verify Eq (3.60), pick three graphs
γ′′ ≥ γ′ ≥ γ. From Eq (3.105), pγγ′′ ◦ pγ′′ = pγ = pγγ′ ◦ pγ′ = pγγ′ ◦ pγ′γ′′ ◦ pγ′′ , and so
pγγ′′ = pγγ′ ◦ pγ′γ′′ .

It is instructive to observe the structure of the spaces Aγ and Gγ. From Eqs (3.101)
and (3.102), we see that Aγ ⊏

∏
e∈γ SU(2) and Gγ =

∏
x∈Vγ SU(2). Since γ and Vγ are

finite sets, these products contain finitely many copies of the three-dimensional group
SU(2). Therefore, the members of our projective family are finite-dimensional spaces.
Hence, if n is the number of edges in γ, and for each edge, we identify its two vertices
with a two-point set, we may write

Aγ ⊏ SU(2)n and Gγ ∼= SU(2)n.

In fact, the finitude of γ allows us to show further that SU(2)n ⊏ Aγ. In other words,
Aγ and SU(2)n are homeomorphic. This is easy to see. Denote by γk a graph containing
k edges e1, . . . , ek. We already know that Aγ1

∼= SU(2). But we also know that any
Aγk ∈ Aγk can be written as (Ae1 , . . . , Aek), where Aγi ∈ Aei for all i ∈ {1, . . . , k}.
Induction23 on k then establishes the assertion. We thus conclude

Aγ
∼= SU(2)n and Gγ ∼= SU(2)n. (3.107)

An immediate consequence of this equation is that Aγ and Gγ are compact Hausdorff
topological groups, since SU(2) (and hence SU(2)n) is compact Hausdorff.

The proof in the preceding paragraph provides a very useful insight. Note that for
an edge e, the homeomorphism between Ae and SU(2) holds even if we restrict the
maps in Ae to be smooth SU(2)-valued functions (in the sense of Eq (3.9h, i)). But
such smooth maps define the holonomy of smooth connections. We thus arrive at the
following result.

Lemma 3.4. Given any generalised connection A ∈ A and a graph γ, there exists a
smooth connection A whose holonomy around each edge e ∈ γ equals A(e). That is,

A(e) = Ue[A] = Pe−
∫
e
A

for every e ∈ γ.
23Note that this induction only works works for finite graphs. It is on this account that Eq (3.101)

only holds in one direction; its converse is false.
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This lemma provides a one-to-one correspondence between Aγ and smooth connec-
tions. We shall have occasion to use this result later. Note that this result only holds
for the edges of a particular graph and not for arbitrary edges. Note also that the
A above is not unique; one A may correspond to multiple smooth connections in this
way. However, for all such smooth connections, their parallel propagators along each
edge of the graph will, of course, be the same. Thus the use of this lemma would pose
no ambiguities.

We now have two projective limits, namely A and G, at our disposal. How are they
related to the quantum configuration space A/G? We will now answer this question,
and will find thatA/G, too, can be regarded as a projective limit. For this, we construct
two new projective limits.

The first is simply the quotient A/G. Its elements are equivalence classes of gen-
eralised connections that are related by Eq (3.103) for some generalised gauge trans-
formation. Such equivalence classes have a special name in mathematical parlance:
conjugacy classes of a group.

Let us obtain the second promised projective limit. By construction, it is obvious
that the group Gγ defined in Eq (3.105) naturally acts on Aγ through Eq (3.103), since
it is defined on vertices of graphs, and gauge transformations act on vertices of edges
in Eq (3.103). Consider now the space Aγ/Gγ. It contains equivalence classes of maps
Aγ : γ → SU(2) that satisfy Eq (3.100) and are related by Eq (3.103) for some gγ ∈ Gγ
– in other words, the conjugacy classes of Aγ with respect to Gγ. Moreover, in view of
Eq (3.107), we have

Aγ/Gγ ∼= SU(2)n/Ad, (3.108)
where n is the number of edges in γ. We note further that since gauge transformations
act at vertices of edges in Eq (3.103), if A ∈ A is restricted to a graph γ, then any
gauge transformation g ∈ G acting on A will also be restricted to γ. In other words,
for each A ∈ A and g ∈ G,

pγ(gA) = gγAγ (3.109)
for some gγ ∈ Gγ and Aγ ∈ Aγ. We say that the action of G on A is equivariant with
respect to the projections pγ. This fact ensures that each projection pγγ′ defined above
descends unambiguously to a projection

pγγ′ : Aγ′/Gγ′ → Aγ/Gγ, (3.110)

which satisfies exactly the same properties. It follows that {Aγ/Gγ, pγγ′} is a projective
family. Let fiA/G denote its projective limit. The fundamental result of this section is
the fact that

A/G ∼= fiA/G ∼= A/G. (3.111)
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In words, the quotient of projective limits, the projective limits of quotients, and the
Gelfand spectrum of the holonomy C⋆-algebra are all equivalent. This is a very rich
characterisation of the quantum configuration space, and will be indispensable for the
tools developed in the rest of this chapter.

That Eq (3.111) holds is a highly nontrivial fact. It does not hold for any general
spaces. The essential ingredient that makes it possible is the fact that all three spaces
in the equation are compact Hausdorff topological spaces. We already know that A/G
is compact Hausdroff. The compact-Hausdorff-ness of the other two spaces deserves
to be thoroughly investigated. It essentially depends on the fact that the projective
limits at our disposal arise from projective families of compact Hausdorff spaces. In
particular, we have the following theorem [48].

Theorem 3.8. The projective limit ‹X of a projective family {Xγ, pγ,γ′}γ,γ′∈L of compact
Hausdorff spaces is compact.

Proof. We will have to make use of the following two well-known results from topology
[47].
Lemma 3.5. An arbitrary product of Hausdorff spaces is Hausdorff.
Lemma 3.6. (Tychonoff theorem24) An arbitrary product of compact spaces is compact.

We have that ‹X ⊂
∏
γ∈L

Xγ,

which, together with Lemma 3.4 and the fact that Xγ are all Hausdorff, entails that ‹X
is Hausdorff.

Next, we show that ‹X is, in fact, a closed subset of ∏γ∈LXγ, which being a product
of compact spaces, is compact by the Tychonoff theorem. Since every closed subset of
a compact space is compact [47], ‹X is compact as well.

As for the fact that ‹X is closed, assume that it is not. Let (Xγ)γ∈L ∈ ∏Xγ\‹X . Then
since ‹X is the projective limit, there exist γ1, γ2 with γ2 ≥ γ1 such that pγ1γ2(Xγ2) ̸=
Xγ1 for some Xγ1 , Xγ2 ∈ Xγ1 ,Xγ2 . Since Xγ1 is Hausdorff, we can pick in it disjoint
neighbourhoods U and V of Xγ1 and pγ1γ2(Xγ2), respectively, and also arrange for them
to have empty intersection with ‹X . Furthermore, let V ′ be a neighbourhood of Xγ2

such that pγ1γ2(V ′) ⊂ V . Then the open set ∏
γ Bγ ⊂ ∏

γ Xγ with Bγ1 = U,Bγ2 = V ′

and Bγ = Xγ for all γ ̸= γ1, γ2 is a neighbourhood of (Xγ) that is disjoint from ‹X .
Thus the complement of ‹X is open, and so the set is closed.

24That this theorem has a name and the preceding one has not is because of its highly nontrivial
character and proof. See any standard text on topology, for instance [47].
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Let us now establish the correspondence in Eq (3.111). We will proceed in three
steps.

(1) First, we will show that the projective limit fiA/G is the Gelfand spectrum of the
C⋆-algebra of cylindrical functions on fiA/G.

(2) Second, we will find that this C⋆-algebra is isomorphic to the holonomy C⋆-algebra
HA, and so fiA/G is nothing but the Gelfand spectrum A/G of HA.

(3) Finally, we will see that A/G and fiA/G are homeomorphic as topological spaces.

As with Theorem 3.8, in proving (1) and (3), the only relevant property of the projec-
tive families under consideration will be their being compact Hausdorff. Thus, where
possible, we will be more general and work with any projective family of compact
Hausdorff spaces.

(1) Let {Xγ, pγγ′}γ,γ′∈L be a projective family with projective limit ‹X and C0(Xγ)
be the set of all continuous bounded functions on Xγ. Then, as will be re-
called from Section 3.3.3, the set Cyl(‹X ) of cylindrical functions on ‹X con-
tains functions f such that f = p∗γ(fγ) for some γ ∈ L and fγ ∈ C0(Xγ), where
pγ : ‹X → Xγ.

Cyl(‹X ) gives rise to a C⋆-algebra. To see this, we first note that the repre-
sentation of a cylindrical function is independent of γ. This is so because if
γ′ ≥ γ, then since a function f ∈ Cyl(X̃ ) cylindrical with respect to γ is also
cylindrical with respect to γ, it follows from the definition of a projective limit
that

fγ′ = p∗γγ′fγ, (3.112)

provided we restrict attention to only those Xγ′ ∈ Xγ′ that come from some
(Xγ)γ∈L ∈ ‹X (and this will always be the case so long as we remain in the
space ‹X ). This in turn implies that if γ′′ ≥ γ′ ≥ γ, then

p∗γγ′′fγ = p∗γ′γ′′fγ′ , (3.113)

which allows us to define addition and multiplication on Cyl(‹X ), as follows.
Let f, g ∈ (‹X ). By definition, there exist some γ1, γ2 ∈ L such that f = p∗γ1fγ1
and g = p∗γ1gγ1 . But since L is a directed set, we can find some γ ≥ γ1, γ2.
This, in view of Eq (3.113), means that we can always arrange for any f and
g to be represented on the same space Xγ. Then it is clearly well-defined to
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set

f + g =p∗γ(fγ + gγ), fg = p∗γ(fγgγ), (3.114a)
af = p∗γ(afγ), f ∗ = p∗γ(f ∗

γ ). (3.114b)

Here, a ∈ C, and the star on f indicates complex conjugation. These equations
render Cyl(‹X ) into a ⋆-algebra, upon which we can put a norm by

||f || = sup
xγ∈Xγ

|fγ(xγ)|, (3.114c)

which is again well-defined due to Eq (3.113). Since ||f ∗|| = ||f ||, the com-
pletion of Cyl(‹X ) under this norm yields a C⋆-algebra, which we denote by
Cyl(‹X ). Next, we show that Cyl(‹X ) is isomorphic to the set C0(‹X ) of contin-
uous bounded functions on the projective limit. Then by the Gelfand-Naimark
theorem, ‹X is the Gelfand spectrum of Cyl(‹X ).
To establish the required isomorphism, we note that any cylindrical function
is essentially a continuous bounded function on some member of our projective
family. Thus any cylindrical function is by definition a continuous bounded
function on the projective limit. Moreover, C0(‹X ) is complete in its sup norm,
which in turn coincides with Eq (3.114c) for cylindrical functions. Therefore,
any function in the closure Cyl(‹X ) also belongs to C0(‹X ). This shows that
Cyl(‹X ) ⊂ C0(‹X ). All we need to do then is to show the converse, i.e. that
every continuous bounded function on ‹X can be realised as the pullback of a
continuous bounded function on Xγ for some γ ∈ L. This we now do in the
specific case for which Xγ = Aγ and ‹X = A; the other two projective families
admit a similar treatment a.
(Could not be completed due to lack of time)

(2) (Could not be completed due to lack of time)

(3) (Could not be completed due to lack of time)
aThe same result can be shown, using a different, albeit more technical, argument for any

compact Hausdorff projective family; see [17]

3.5 Quantum Kinematics

We have probed the structure of the quantum configuration space A/G in detail. We
are now in a position to answer the concerns raised at the end of Section 3.4.1.
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3.5.1 The Ashtekar-Lewandowski measure

As we have seen in Section 3.4.1, one can realise quantum states as functions on A/G
that are square-integrable with respect to a measure µ whose existence is ensured by the
Riesz-Markov theorem. We were also then able to realise the T 0 variables as operators
on L2(A/G, µ). In particular, we found that one could define

(T̂ 0
α)ψ(A) := T 0

α(A)ψ(A), (3.115)

where ψ ∈ L2(A/G, µ) and T 0
α(A) is the trace of the holonomy of A around the loop α.

By construction, these operators are self-adjoint. In the language of standard quantum
mechanics, we have constructed configuration/position operators. Note that in this
construction, only the existence of the measure µ was required; we did not need to
choose a particular one. But of course, to carry out computations, such as calculations
of inner products, one needs to specify a particular measure on A. In this section, we
will explicitly construct a specific measure on A/G called the Ashtekar-Lewandowski
measure. Its virtue lies in the fact that it is invariant with respect to diffeomorphisms
of the spatial manifold Σ. Furthermore, there exists a theorem, called the LOST
theorem [49], which states that under mild assumptions, the Ashtekar-Lewandowski
representation of loop quantum gravity is unique upto unitary equivalences; this is
quite reminiscent of the highly important Stone-von-Neumann theorem in quantum
mechanics.

We are now squarely in the situation we encountered when constructing a measure
on the quantum configuration space of scalar field theory in Section 3.3. There, we
saw that the configuration space can be realised as a projective limit of its finite-
dimensional subspaces, on which we know how to construct explicit measures (e.g. the
Gaussian measure), and Theorem 3.2 guaranteed the extension of these measures to
the configuration space. Here, we have also realised the quantum configuration space
A/G as a projective limit, albeit of finite-dimensional compact Hausdorff topological
spaces Aγ/Gγ. Does some extension theorem exist for such spaces as well? The answer,
as hinted towards the end of Section 3.3.3, is yes. In particular, we have the following
theorem [17, 35, 36].

Theorem 3.9. Any self-consistent family of regular Borel measures on a projective
family of compact Hausdorff spaces can be extended to a unique regular Borel measure
on the projective limit.

Proof. Let {µγ} be a family of regular Borel measures on {Xγ} satisfying (c.f. Eq (3.69))

µγ = (pγγ′)∗µγ′ ∀γ′ ≥ γ. (3.116)
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Let f ∈ C0(‹X ). As shown in the previous section, f = p∗γfγ for some γ ∈ L and
fγ ∈ C0(Xγ). Then it follows from Eqs (3.116) and (3.113) that the following functional
on C0(‹X ) is well-defined:

Γ(f) =
∫
Xγ

dµγfγ. (3.117)

If f ≥ 0, then Γ(f) ≥ 0. Thus the functional is positive on C0(‹X ). It is also linear.
Since ‹X is compact Hausdorff, by the Riesz-Markov theorem, there exists a unique
regular Borel measure µ on ‹X such that

Γ(f) =
∫‹X dµf. (3.118)

Comparing the preceding two equations, we further see that

µ = p∗γµγ. (3.119)

That is, µ is nothing but the pullback of the measure µγ by the projection pγ. Thus
the moral of Theorem 3.9 is that we can virtually forget about ‹X and instead define
measures, functions, integrals, and so on, on finite-dimensional spaces Xγ and just work
in them.

Let us now focus on our particular spaces {Aγ} and {Aγ/Gγ} and their associated
projective limits. Physically, only the latter are relevant for us. However, as we will
repeatedly see, it is often convenient to introduce gauge-invariant objects on Aγ (A);
gauge-invariance would then ensure that such objects project down unambiguously to
Aγ/Gγ (fiA/G). The first instance of this fortuitousness will be seen in our deriva-
tion of the diffeomorphism-invariant Ashtekar-Lewandowski measure on our projective
limit(s).

Recall that in scalar field theory, the Gaussian measure emerged as the natural
measure to be defined on the finite-dimensional subspaces of the quantum configuration
space. Physical considerations such as Lorentz invariance then fixed the explicit form
of the covariance of that measure. Here the situation is even better, for the choice
of a natural measure on the relevant finite-dimensional spaces automatically satisfies
our physical constraints, namely diffeomorphism and gauge invariance. The finite-
dimensional spaces Aγ are essentially homeomorphic to finitely many copies of SU(2)
(see Eq (3.107)), which are compact Lie groups. Now, there exists the so-called Haar
measure on any compact Lie group. It is both left- and right-invariant with respect
to the group action. Therefore, it is gauge-invariant. Finally, since no background
structures (e.g. metrics, connections, volume forms, etc.) are required in its definition
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(see the next Section), it is diffeomorphism-invariant (for free!). By Eq (3.119), it
thus extends uniquely to a diffeomorphism-invariant measure µAL – the sought-after
Ashtekar-Lewandowski measure – on our projective limits.

A little more explicitly, let γ be a graph with n edges, and let µH be the Haar
measure on SU(2). Then we define a measure µ(n)

H on Aγ ⊏ SU(2)n by

µ
(n)
H := µH ⊗ · · · ⊗ µH (3.120)

Let q : SU(2)n → SU(2)n/Ad be the quotient map between the mentioned spaces.
This means that a measure on µ̃(n)

H induces a measure on Aγ/Gγ ⊂ SU(2)n/Ad:

µ̃
(n)
H = q̃µH ⊗ · · ·µH , (3.121)

where q̃ is the induced map, i.e. q̃f = f ◦ q̃. Finally, in accordance with Eq (3.118),
we obtain the Ashtekar-Lewandowski measure µAL on fiA/G or A/G by a pullback:

µAL = p∗γµ̃
(n)
H . (3.122)

We shall refer to L2(A/G, dµAL) as Hkin, the kinematical Hilbert space of a loop quan-
tum gravity.

Now that we have an explicit measure on the configuration space, we can begin
asking how to perform explicit calculations with quantum states, such as computing
integrals on our function spaces. For this, we first need to study the as-yet elusive Haar
measure in more detail. This we now do.

3.5.2 The Haar measure

As we briskly mentioned in the preceding section, the Haar measure is a left- and
right-invariant measure that exists on any compact Lie group; it is also normalised. In
this section, we shall establish these claims, and see the explicit form of the measure
for some simple groups, such as U(1) and SU(2).

Let G be a compact Lie group. We wish to prove the existence and uniqueness of
a measure dg on G such that for all h, g ∈ G,∫

G
dg = 1, (3.123a)∫

G
dgf(hg) =

∫
G
f(g),

∫
G
dgf(gh) =

∫
G
dgf(g), (3.123b)

where f is a complex-valued function on G. The first equation equation is the condition
of normalisation, which we can always achieve because G is compact. The crux of
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the matter lies in demonstrating left and right invariance, as demanded in the next
two equations. We shall follow the informal route taken in Ref.[50] by deriving an
expression for the measure under the assumption of existence, and then showing that
the expression works.

Let n be the dimension of G, and consider an arbitrary parametrisation of the group
elements of G in terms of a set of parameters αi, where αi belongs to some subset D of
Rn and i ∈ {1, · · · , n}. For instance, SU(2) is diffeomorphic to the ∂S3 boundary of a
unit three-sphere, and can thus can be parametrised by {θ, φ, χ|−π ≤ θ ≤ π, 0 ≤ φ, χ ≤
2π}. Thus we can write G = {g(α) ∈ G|α ∈ D}, and represent the multipilication of
two group elements as g(β)g(γ) = g(α(β, γ)) for some α, β, γ ∈ D, α being a function
of the other two parameters. The advantage of working with a parametrisation is
that one can now write integrals of functions on the group as ordinary n-dimensional
integrals over D, ∫

G
dgf(g) =

∫
D
dα1 · · · dαnJ(α)f(g(α)), (3.124)

where J(α) is a parametric representation of the measure we seek. Our task is thus
reduced to finding a J(α) that meets the constraints in Eq (3.123). To achieve this
goal, we first note that the right-invariance property of the measure now looks like∫

D
dβJ(β)f(g(β)) =

∫
D
dβJ(β)f(g(α(β, γ))) (3.125)

where γ is the parameter on which h in Eq (3.123b) depends. Since α, β, γ ∈ Rn, we
can perform a change of variables from β to α(β, γ), obtaining

∫
D
dβJ(β)f(g(β)) =

∫
D
dα

∣∣∣∣∂α(β, γ)∂β

∣∣∣∣−1

J(β)f(g(α)), (3.126)

where |∂α/∂β| is the Jacobian of the variable transformation. Since the preceding
eqution is true for any f , it follows that

J(α) =
∣∣∣∣∂α(β, γ)∂β

∣∣∣∣−1

J(β). (3.127)

Now if β tends towards the parameter corresponding to the identity element e, then
α(β, γ) tends to γ up to a trivial multiplicative factor which can be absorbed into K.
We then arrive at

J(γ) = K

∣∣∣∣∂α(β, γ)∂β

∣∣∣∣−1

β=e
, (3.128)

where K = J(e) is a trivial normalisation factor to be determined by Eq (3.123a), and
β = e symbolically stands for the value of the parameter corresponding to the identity
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element. Thus, a left-invariant measure, if it exists, is determined by a Jacobian (3.128).
Hence, assuming the existence of the relevant transformations in the parameter space,
a left-invariant measure on a compact group exists.

We now show uniqueness of this measure. For this, we ought to show that Eq (3.127)
holds for any β and γ. Accordingly, let η(β, γ) be an arbitrary function of β and γ. In
view of Eqs (3.127) and (3.128), we wish that

J(η(β, γ)) = K

∣∣∣∣∂α(δ, η(β, γ))∂δ

∣∣∣∣−1

δ=e
= K

∣∣∣∣∂η(β, γ)∂β

∣∣∣∣−1 ∣∣∣∣∂α(β, γ)∂δ

∣∣∣∣−1

δ=e
. (3.129)

But this is indeed the case, because the associativity of group multiplication warrants

α(δ, η(β, γ)) = α(η(δ, β), γ), (3.130)

which upon differentiation with respect to δ and an application of the chain rule yields
Eq (3.129). This establishes the uniqueness of the left-invariant measure.

Finally, it remains to be seen that our measure is also right-invariance. To see this,
let Dg be a measure on G which satisfies∫

G
Dgf(g) =

∫
G
dgf(g−1

o ggo)

for some fixed but arbitrary go ∈ G; dg is the unique left-invariant measure constructed
above. Then it follows that∫

Dgf(hg) =
∫
dgf(hg−1

o ggo) =
∫
dgf(g−1

o ggo) =
∫
Dgf(g),

where the second equality follows from left invariance. Thus Dg is left invariant. But
since the left-invariant measure is unique, Dg = dg. Now the left invariance of Dg
implies that ∫

Dgf(g−1
o ggo) =

∫
Dgf(ggo) =

∫
Dgf(g).

That is, Dg and hence dg is right-invariant as well.
To make the integrals with respect to the Haar measure computationally tractable,

we introduce a metric on G, namely

Mij = tr
Å
g−1 ∂g

∂αi
g−1 ∂g

∂αj

ã
(3.131)

for all g ∈ G. Then differential geometric wisdom decrees that∫
G
dgf(g) = K

∫
D
dα

√
detMf(g(α)). (3.132)
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Let us now discuss specific examples. Suppose G = U(1). A simple parametrisation
of this group is

U(1) = {eiθ|0 ≤ θ < 2π}. (3.133)

We find using Eqs (3.131) and (3.132) that∫
U(1)

dgf(g) = 1
2π

∫ 2π

0
dθf(eiθ). (3.134)

More relevant to our purposes is SU(2), which it will be recalled, has the following
parametrisation in the fundamental representation:

SU(2) = {ao + aiτ
i|a2 := a2o + δijaiaj = 1}. (3.135)

We find ∫
SU(2)

dgf(g) = 1
π2

∫
d4a δ(a2 − 1)f(g). (3.136)

For further details as to how to efficiently compute integrals of explicit functions on
SU(2), see Ref. [50].

3.5.3 Construction of momentum operators

So far, we have rigorously constructed a Hilbert space Hkin for quantum states, and
have represented the configuration variables T 0 as operators on this space. It is now
time to promote the momentum variables T 1 to operators on Hkin. We now turn
to this task. As we shall see, the fairly complicated characterisation of the quantum
configuration space presented in the previous section will be immensely useful.

It will be instructive to recall how momentum variables are promoted to operators in
standard quantum mechanics. For a particle moving in three dimensions, for instance,
we have p̂ = −iℏ∇. This is a vector field25 on R3, the domain space of quantum states.
This suggests that the T 1 variables are to be represented as vector fields on A/G, the
domain space of quantum states in loop quantum gravity. In addition, we will want
the commutator between the configuration and momentum operators to agree with the
Poisson brackets between their classical counterparts (see Eq (3.28)). To accomplish
this task, we will have to cleverly construct suitable vector fields on A/G, as we shall
see in detail below.

25Recall that a (smooth) vector field on a manifold M is a linear map X : C∞(M) → C∞(M) that
satisfies the Leibniz rule: for every f, g ∈ M , X(fg) = X(f)g + fX(g). Also, at every x ∈ M , X
defines a tangent vector by vx(f) for every f ∈ C∞(M), where vx ∈ TxM , thought of as a map from
C∞(M) to R.
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As should be evident by now, we will first introduce a consistent family of relevant
objects on the finite-dimensional spaces Aγ and consistency will ensure their extension
to A; furthermore, we will ensure that the objects are gauge invariant, whence they
will consistently project down to A/G. Note that this is possible only because of the
detailed characterisation of A/G in terms of projective limits, condensed, as it were, in
Eq (3.111).

Vector fields on a Lie group

Let us begin with a simple problem. Consider an edge e and the associated space of
maps Ae. From the results of the previous section, we know that Ae

∼= SU(2). We wish
to obtain a simple characterisation of vector fields on SU(2). In fact, we can be more
general, and study vector fields on any Lie group. Associated to every Lie group G is
its Lie algebra g, which, recall, is the tangent space of G at the identity element. We
will show that in a certain sense, any vector field on G can be completely determined
by its action “near” the identity, i.e. in terms of the Lie algebra g.

Before proceeding, we will require some definitions and notation. Adding another
recalling to our endless list of recallings, recall that a diffeomorphism between smooth
manifolds is a bijection whose inverse is differentiable as well. For any diffeomorphism
φ : G → G, we define the differential dφg of φ at every g ∈ G to be the map from
TgG to Tφ(g)G such that for every f ∈ C∞(G), dφg(v)(f) = v(f ◦ φ) for all v ∈ TgG;
this definition makes sense because f ◦ φ ∈ C∞(G). A differential satisfies the Leibniz
rule – hence its name. Note further that a differential can also be thought of as the
pushforward φ∗ of v ∈ TgG by φ.

Now let Vect(G) be the space of all vector fields on G. We say that two vector
fields X, Y ∈ Vect(G) are φ-related if for every g ∈ G, dφg(Xg) = Yφ(g). In terms of
pushforwards, we can write Y = φ∗(X), which is related to the definition in terms of
differentials via (φ∗X)h = dφφ−1(h)(Xφ−1(h)) for every h ∈ G (it will be helpful to draw
some pictures).

For a given g ∈ G, the left translation of G by g is a diffeomorphism Lg : G → G
such that Lg(h) = gh for all h ∈ G. Analogously, we have the notion of right translation
Rg. We say that a vector field X ∈ Vect(G) is left invariant if it is invariant under all
left translations. In other words, it is Lg-related to itself for every g ∈ G,

d(Lg)h(Xh) = Xgh, ∀g, h ∈ G. (3.137)

More succinctly, (Lg)∗(X) = X. A similar definition, mutatis mutandis, holds for
right-invariant vector fields too. Since (Lg)∗(aX + bY ) = a(Lg)∗(X) + b(Lg)∗(Y ), the
set LG of left-invariant vector fields on G is a linear subspace of Vect(G). Again, a
similar statement holds for right-invariant vector fields.
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We are now ready to drop the punchlines: (1) any vector field can be written as a
linear functional combination of left-invariant (or right-invariant) vector fields, and (2)
LG is isomorphic (as a vector space) to the Lie algebra g of G. We shall now prove
these claims [51].

Define a map ε : LG → ToG such that ε(X) = Xo for all X ∈ LG, o being the
identity element in G. Clearly, ε is linear over R. We show that it is also bijective and
hence, an isomorphism between LG and TeG, or equivalently between LG and g.

To show injectivity, suppose ε(X) = ε(Y ) for some X, Y ∈ LG. Then linearity
implies ε(X−Y ) = (X−Y )o = 0, and the left-invariance of X−Y entails (X−Y )g =
d(Lg)o(X − Y )o = 0 for all g ∈ G. Thus X − Y = 0, yielding injectivity.

Next, we show surjectivity. For this, define a vector field V L on G via

V L
g = d(Lg)o(V ) (3.138)

for every V ∈ ToG. V L so defined is a left-invariant vector field, since

d(Lh)g(V L
g ) = d(Lh)g(d(Lg)e(V )) = d(Lhg)o(V ) = V L

hg

where the second-last equality follows from Lh ◦ Lg = Lhg. Now observe that ε(V L) =
V L
o = d(Lo)o(V ) = V ∈ ToG, which means that ε is surjective. This completes the

proof that LG ∼= ToG.
Next, we establish that any vector field can be written as a linear combination of

left-invariant vector fields. This is straightforward to exhibit. Let {e1, . . . , en} be a
basis of ToG. Then {d(Lg)o(e1), . . . , d(Lg)o(en)} is a basis of TgG for any g ∈ G, but
as already noted, the vector fields defined by d(Lg)o(ei) are all left invariant.

Finally, let us describe a perhaps more intuitive way of writing left- and right-
invariant vector fields. Given any Λ ∈ g, we know that etΛ ∈ G. Then in view of
Eq (3.138), given any function f : G→ R we can write

ΛLg (f) = d(Lg)o(Λ)(f) = Λ(f ◦ Lg) =
d

dt
(f(Lg(eΛt)))

∣∣∣∣
t=0

= d

dt
(f(geΛt))

∣∣∣∣
t=0

.

In this way, we can associate a left-invariant vector field to any element of the Lie
algebra. Furthermore, since it is immaterial whether we choose etΛ or e−tΛ, we can
choose one for left-invariant fields and the other for right-invariant fields. That is, for
any Λ ∈ g, we associate the following left- and right-invariant vector fields, respectively:

ΛL(f(g)) = d

dt
f(geΛt)

∣∣∣∣
t=0

, ΛR(f(g)) = d

dt
f(e−Λtg)

∣∣∣∣
t=0

. (3.139)

For what it’s worth, this equation can also be taken as the definition of left- and right-
invariant vector fields. Ugly as it may seem, it offers the advantage of seeing that these
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two fields are close cousins, in the sense that pushforward of a left-invariant field by
the map i : G→ G, i(g) = g−1 yields a right-invariant field. For,

i∗(ΛL(f(g))) =
d

dt
f(i(geΛt))

∣∣∣∣
t=0

= d

dt
f(e−Λtg−1)

∣∣∣∣
t=0

= ΛR(f(g−1)). (3.140)

We are now ready to tackle the problem of constructing suitable vector fields on
the quantum configuration space.

Enter momentum operators

Recall that the T 1 variables were defined as integrals of the T a variables over a surface
S embedded in the spatial manifold Σ, and we chose to foliate S by a one-parameter
family of loops (see Eq (3.10)). Thus, it will be convenient to first introduce an operator
corresponding to a single loop in the foliation. In other words, we shall first find a
representation of T aα(t) = tr (Uα(t)Ẽa(t)) (Eq (3.10), where α is an arbitrary loop in
the foliation.

To this end, consider an analytic loop α in Σ. Note that α can be thought of
as a graph with one edge. Thus, it is well-defined to consider a space Aγ of general
connections with γ ≥ α. We wish to define vector fields on Aγ. These will, of course,
act on functions fγ ∈ C∞(Aγ). And we want, in particular, vector fields associated
with tr (Uα(t)Ẽa(t)), where Uα(t) is the holonomy of a connection and Ẽa(t) is a triad.
Let us break our task into two parts. First we will focus on promoting Uα(t) to things
that act on functions fγ ∈ C∞(Aγ), and then we will do the same for Ẽa(t).

As for Uα(t), we can promote it to a map Uα : C∞(Aγ) → C∞(Aγ) such that for
every fγ ∈ C∞(Aγ) and Aγ ∈ Aγ,

Uα(fγ)(Aγ) := Uα[A] = tr
(
P exp

∫
α
A
)
, (3.141)

where A is a smooth connection whose parallel propagator along each edge e γ equals
Aγ(e) (cf. Lemma 3.4).

Next, consider Ẽa. We invoke three facts. First, at x ∈ Σ, Ẽa = iBa
i (x)τ i, where

Ba
i (x) ∈ TxΣ (recall that as originally conceived, triads were the spatial projection

of tetrads, which are essentially vector fields on the spatial manifold Σ). Second,
Aγ

∼= SU(2)n, where n is the number of edges {e1, . . . , en} in γ. Third, a triad is
inserted at α at a particular point. The first and second facts suggest that we represent
Ba
i (x) as a collection of vector fields on SU(2), where each field in the collection

corresponds to the group associated with a particular edge in γ. Furthermore, the iτ i
in the decomposition of Ẽa form a basis for su(2) and thus naturally invite us to use
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the left- and right-invariant fields corresponding to iτi. The third fact provides us with
the hint that one ought to get nonzero contributions from the action of our fields only
when the edges intersect α at the point where a triad is inserted. This further gives
rise to a number of subtleties. First, the only meaningful points to consider on an
edge are its endpoints. Second, since α and the edges are all oriented, their relative
orientations at the intersection points also matter. This in turn means that it matters
whether an intersection occurs at the beginning point of an edge or its ending point, for
one could have a closed edge, in which case it will depend on the particular endpoint
under consideration whether the corresponding edge is “incoming” or “outgoing” at an
intersection point. To cater to this, we can associate left-invariant vector fields to the
beginning points of edges, and right-invariant fields to the ending points. Finally, we
also need to take into account the orientations of α and the edges relative to the tangent
spaces from which the Ba

i come. Now these tangent spaces are three-dimensional, and
since Σ is also three-dimensional, no extrinsic orientation can be conferred upon them.
It will also not do to consider the two-dimensional subspaces of these tangent spaces,
since in the end, the momentum variables are defined on two-dimensional surfaces.
Thus we will consider one-dimensional subspaces of the tangent spaces. With these
considerations in mind, we conjure a clever guess for the vector fields that will represent
the T aα variables as operators.

Fix a point p on α, and consider a one-dimensional subspace W of the tangent
space at p. We define [16] the vector field Xα,W : C∞(Aγ) → C∞(Aγ) such that for all
fγ ∈ C∞(Aγ),

Xα,W (fγ) = −itr (Uα(fγ)τ i)
∑
e∈γ

[
k−(e)XL

e,i(fγ) + k+(e)XR
e,i(fγ)

]
, (3.142a)

k±(e) =
®
0 if e± ̸= p,
1
4 [sgn(ė

±, α̇+,W ) + sgn(ė±, α̇−,W )] if e± = p.
(3.142b)

Let us subdue this monstrous equation. Uα is the vector field defined by Eq (3.141). τ i
are the Pauli matrices. XL

e,i and XR
e,i are the left- and right-invariant vector fields that

come from the Pauli matrices via Eq (3.139), defined on the copy of SU(2) associated
with the edge e. e+ and e−, respectively, are the beginning and ending points of
the edge e, and α+ and α−, respectively are the ingoing and outgoing segments of
α at p. The overdots indicate tangent vectors to the respective curves, and serve to
specify their orientations. Finally, sgn(ė±, α̇±,W ) = 0,±1, depending on the relative
orientations of ė±, α̇± and W – the precise prescription is given in Fig 3.7. We call
k±(e) the orientation factor associated to the edge e.

So far, we have promoted the T a variables to vector fields on Aγ. The transition
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W

α− α+ α+
α−

W

α+
α−

W

α+
α−

We+

(+)(−)(−) + (+)(+)(+) = 2

(a) (b)

e−

e−

e+

(−)(−)(−) + (−)(+)(+) = −2

(c) (d)

Figure 3.7: If an edge lies entirely inside α, then k(e) = 0. Otherwise, there are
four possible relative orientations, as shown above. For each configuration, we move
down along e, and pass into W and α. If the orientation of a component encountered
during the traversal is the same as the direction of traversal, we assign a positive sign
to that component; otherwise, we assign a negative sign. The first term in each sum
corresponds to traversal along α− and the second to that along α+. It is easy to see
that if one starts traversing along some component other than e, the same results are
obtained. Thus the assignments above are well-defined.



3.5 Quantum Kinematics 115

to the T 1 variables is now straightforward. Given a surface S ∈ Σ foliated by a one-
parameter family loops, we set

T̂ 1
S =

∑
x∈S

Xαx,Wx , (3.143)

where αx is a loop in S passing through x, andWx is a one-dimensional subspace of the
tangent space Σ at x. The uncountable number of loops in the sum above may appear
uncomfortable, but appearances can be illusory! Since any graph γ has finitely many
edges, which will thus intersect S only finitely many times, according to Eq (3.142),
the action of T̂ 1

S on any fγ ∈ C∞(Aγ) will have only finitely many nonzero terms.
We now have vector field representations of the momentum variables on the pro-

jective family {Aγ} labelled by graphs in Σ. Let us now see how one can consistently
extend these vector fields to vector fields on A. In other words, we know how our
fields act on fγ ∈ C∞(Aγ). We must now ask whether those fields can be consistently
extended to act on functions in C∞(A). To begin with, note that the results of the
previous section entail that C∞(A) is isomorphic to Cyl∞(A), i.e. the space of smooth
cylindrical functions on A. This lets us precisely say what it means to consistently ex-
tend vector fields defined on a projective family to the corresponding projective limit.
Given two graphs γ′ ≥ γ, and two vector fields Xγ and Xγ′ defined, respectively, on Aγ

and Aγ′ , if two functions fγ ∈ C∞Aγ and fγ′ ∈ C∞Aγ′ represent the same cylindrical
function f ∈ Cyl∞(A), we want the action of the two fields on the respective functions
to coincide. That is, Xγ(fγ) = Xγ′(fγ′). Now if Xγ = Xα for all γ, this consistency con-
dition of ours is always met, for suppose Aγ, Aγ′ comes from a particular (Aγ)γ∈L ∈ A.
Then by Eq (3.112),

Xα(fγ′(A′
γ)) = Xαfγ(pγγ′(Aγ′)) = Xα(fγ(Aγ)).

Thus, the momentum vector fields are well-defined on A.
Finally, we must extend these fields to A/G. For this, they must be invariant under

G. But this is true by construction, since gauge transformations do not change the
location of the vertices of a graph, and the factor of tr (Uατ i) involved in the definition
(3.142) is manifestly gauge invariant. Therefore, we have consistently promoted the
momentum variables to operators on Hkin = L2(A/G, dµAL). Finally, it is possible to
show [16, 18] that all the operators constructed above are self-adjoint on their respective
domains; thus step 5 of the quantisation scheme sketched in Section 3.1 is complete.
In fact, all the steps except for the last two are almost complete – what remains to
be done is to ensure that the commutator algebra of the configuration and momentum
operators mimics their classical Poisson algebra, as demanded in step 2. This we shall
verify in the next subsection.
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A remark is in order. The discussion in this section has been much less rigorous than
that in the previous sections. In particular, most of the arguments presented above
for the consistent extension of vector fields from the projective family to its projective
limit are rather heuristic. For a more thorough treatment, we refer the reader to Ref.
[18].

3.5.4 Canonical commutation relations

We have clearly ventured deep into the waters of mathematical niceties. Lest the den-
sity of our abstractions suffocates us, we must find a way back to the surface and
breathe in the air of physics. Thus, in this subsection, we shall test the faithfulness
of our toilsome construction of the configuration and momentum operators by inves-
tigating whether or not these operators satisfy commutation relations that mimic the
Poisson brackets between their classical counterparts.

The operators T̂ 0
α are abelian by construction, and hence their commutator vanishes,

as expected.
Next we consider the commutation relations between the configuration and mo-

mentum operators. Let α and β be two loops in Σ. For any ψ ∈ Hkin and A ∈ A/G,
we find

[Xα,W , T̂
0
β ]ψ(A) = Xα,W (T 0

β (A)ψ(A))− T 0
β (A)Xα,W (ψ(A))

= Xα,W (T 0
β (A))ψ(A) + T 0

β (A)Xα,W (ψ(A))− T 0
β (A)Xα,W (ψ(A))

= Xα,W (T 0
β (A))ψ(A), (3.144)

where we made use of the product rule. Thus all we need to do is to evaluate the action
of Xα,W on T 0

β (A), trace of the holonomy of A around β. This is fairly straightforward.

Xα,W (T 0
β (A)) = −itr (Uα(A)τ i)

ï
k−(β) d

dt
tr (Uβ(A)eitτi)

∣∣∣∣
t=0

+ k+(β) d

dt
tr (e−itτiUβ(A))

∣∣∣∣
t=0

ò
= (k−(β)− k+(β))tr (Uα(A)τ i)tr (τiUβ(A))
= (k−(β)− k+(β))Uα(A)ABτ iBA τ CD

i Uβ(A)DC
= −2(k−(β)− k+(β))Uα(A)ABδ(CB δ

D)
A Uβ(A)DC

= −(k−(β)− k+(β))(Uα(A)DCUβ(A)DC + Uα(A)CDUβ(A)DC)
= −(k−(β)− k+(β))(−T 0

α#β−1 + T 0
α#β). (3.145)

According to Fig 3.7, whenever the factor (k−(β)− k+(β)) is nonzero, it has the value
+1. Thus, except for the factor of the delta function, Eq (3.145) reduces to −i times
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Eq (3.23), and if we substitute Eq (3.145) into Eq (3.143), we get exactly −i times
Eq (3.28) – precisely what we wish.

Finally, we turn towards the commutator of the momentum operators. Let ψγ be
the representation of ψ ∈ Hkin on a graph γ. For two loops α and β, we have

[Xα,V , Xβ,W ]ψ(A) = Xα,V [−itr(Uβ(A)τ i)
∑
e∈γ

{k−(e)XL
e,i(ψγ(A)) + k+(e)XR

e,i(ψγ(A))}︸ ︷︷ ︸
Ki(e,β,W )

]

+
Ç
α ↔ β

V ↔ W

å
= −tr(Uα(A)τ j)

∑
e′∈γ

ñ
k−(e′)XL

e′,j

Ç
tr(Uβ(A)τ i)

∑
e∈γ

Ki(e, β,W )
å

+k+(e′)XR
e′,j

Ç
tr(Uβ(A)τ i)

∑
e∈γ

Ki(e, β,W )
åô

− tr(Uβ(A)τ i)tr(Uα(A)τ j)
∑
e,e′∈γ

[
k−(e′)XL

e′,j(Ki(e, β,W ))

+ k+(e′)XR
e′,j(Ki(e, β,W ))

]
+
Ç
α ↔ β

V ↔ W

å
= −itr(Uα(A)τ i)tr(Uα(A)τjτ i)

∑
e,e′∈γ

(k−(e′)− k+(e′))Ki(e, β,W )︸ ︷︷ ︸
Mi(e,α,β,V,W )

= −i
[
tr(Uα−1#β(A)τ i)− tr(Uβ−1#α(A)τ i)

]
Mi(e, α, β, V,W ).

(3.146)

The factor Mi(e, α, β, V,W ) is nonzero only if α, β, V , W and e all intersect. Thus,
substituting the preceding equation into Eq (3.143), we see that the commutator of
two momentum operators is nonzero only when their corresponding surfaces intersect
– once again, precisely our expectation.

This shows that the commutator algebra of the configuration and momentum op-
erators mimics the classical Poisson algebra. We are in safe territory.

3.6 Spin Networks

A fastidious perusal of the preceding sections ought to have revealed that until now, we
have completed the first five steps of the quantisation program outlined in Section 3.1.
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Moreover, the Gauss constraint introduced in the previous chapter has also been dealt
with, since the states in Hkin = L2(A/G, dµAL) are by construction gauge invariant.
What remains to be done is the implementation of the diffeomorphism and Hamiltonian
constraints at the quantum level. But to do so, we first need to see how the states in
Hkin look like. Thus in this section, we will derive [16, 17, 24] an orthonormal basis
of Hkin. States written in this basis are called spin network states. We will find this
basis to be extremely convenient for explicit calculations, and for finding solutions to
the diffeomorhpism and Hamiltonian constraints in the next chapter.

For any graph γ, let Hγ = L2(Aγ/Gγ, dµH), i.e. the space of square-integrable
functions on Aγ/Gγ. Since the union of Hγ over γ is dense26 in Hkin = L2(A/G, dµAL),
a basis of the former is also a (not necessarily orthonormal) basis of the latter. We will,
therefore, derive an orthonormal basis for Hγ and then show how it can be converted
into an orthonormal basis for Hkin.

3.6.1 Peter-Weyl theorem

Let us start with the simplest kind of problem that is similar to the behemoth that
currently stands in front of us. Consider a Lie group G and the space L2(G, dµH) of
complex-valued functions on G that are square-integrable with respect to the Haar
measure. How to construct an orthonormal basis for L2(G) (the Haar measure is
implied, so we won’t bother writing it any longer)? The answer is provided by the
celebrated Peter-Weyl theorem, proven by Hermann Weyl and his student Fritz Peter.
To understand the import of this theorem, an important digression into representation
theory of Lie groups is in order.

Recall that a representation of a group G on a vector space V is a group homo-
morphism from G to GL(V ), i.e. ρ : G → GL(V ) such that ρ(gh) = ρ(g)ρ(h) for
all h, g ∈ G. Here, GL(V ) is the set of all bijective linear transformations from V to
itself, i.e. invertible operators on V , which form a group under functional multiplica-
tion. If V is finite-dimensional, then GL(V ) is simply GL(n), the set of all invertible
n× n matrices, where n is the dimension of V ; since we shall only be concerned with
finite-dimensional representations, we will make this identification once and for all.

A subspace W ⊂ V is said to be G-invariant if ρ(g)w ∈ W for all g ∈ G and
w ∈ W . The restriction ρ|W of ρ to W is called a subrepresentation. Note that V
itself and the empty set are trivial G-invariant subspaces. If a representation admits
no nontrivial subrepresentation, it is called irreducible. Conversely, if there is at least

26This follows from the results of Section 3.4. Recall that the µAL-completion of the sup-norm
completion of Cyl(A/G) is L2(A/G, dµAL). On the other hand, the µH -completion of C0(Aγ/Gγ) is
L2(Aγ/Gγ , dµH), and the union of C0(Aγ/Gγ) over γ is Cyl(Aγ/Gγ).
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one nontrivial subrepresentation, then we have a reducible representation. In terms
of matrix representations, reducibility of a representation ρ translates to there being
a similarity transformation S that transforms every matrix ρ(g) into upper-triangular
form, i.e. ρ′(g) = S−1ρ(g)S is upper triangular for every g ∈ G.

Now let H be a Hilbert space. Then a representation ρ : G → H is called unitary
if ρ(g) is a unitary operator on H for all g ∈ G. The Peter-Weyl theorem is concerned
with the unitary representations of a compact Lie group G on a complex Hilbert space
H. It has multiple parts [57]. The parts that we will be interested in pertain to the
unitary representations of G on L2(G). In particular, they give a recipe for constructing
an orthonormal basis for L2(G) in terms of finite-dimensional unitary representations
of G.

This is how it works. To begin with, the theorem asserts that every irreducible
unitary representation of G is finite-dimensional. Now let Γ be the set of all irreducible
unitary representations of G; for convenience, we may write Γ = {ρj : j ∈ Λ}, where
Λ is some indexing set. For each ρj ∈ Γ, let the associated (finite-dimensional) vector
space be denoted by Vj. The theorem further says that L2(G) can be decomposed as
the (closure of) the direct over all inequivalent irreducible unitary representations of G
. More precisely, we have

L2(G) =
⊕

j∈ΛVj ⊗ V ∗
j , (3.147)

where V ∗
j is the dual of Vj. Finally, given this decomposition, the theorem constructs an

explicit orthonormal basis of L2(G); it is essentially a mutually orthonormal collection
of orthonormal bases of Vj ⊗ V ∗

j .
To see how this works in practice, let dj be the dimension of Vj. For each j ∈ Λ,

choose an orthonormal basis {em : m ∈ (1, . . . , dj)} of Vi, and let φm denote the
corresponding dual basis of V ∗

j . Then for every g ∈ G, ρj(g) can be thought of as a
matrix with elements given by

ρjmn(g) := φm(ρj(g)en). (3.148)

Notice that ρjmn are complex-valued functions on G. They form a basis of Vj ⊗V ∗
j . We

thus define27 functions |ajmn⟩ : G → C such that

⟨g|ajmn⟩ :=
√
djρ

j
mn(g). (3.149)

The |ajmn⟩ form an orthonormal basis for Vj ⊗ V ∗
j , and by Eq (3.147), {|ajmn⟩ : j ∈ Λ}

forms a collection of orthonormal vectors in L2(G). The utility of the Peter-Weyl
27The use of bras and kets here is purely for notational convenience, and is offered to assuage the

alienating effects upon the reader of the intensely mathematical journey she must have undertaken
while ruminating over the contents of this chapter – the sight of a tool from the physicist’s toolkit
may well be refreshing.
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theorem consists in its showing that this collection also forms a basis28 of L2(G):

⟨ajpq|akrs⟩ =
∫
G
dµH(g)

√
dj
√
dk ρ

j
pq(g)ρkrs(g) = δjkδprδqs, (3.150)

where µH is, of course, the Haar measure and the overline indicates complex conjuga-
tion. In summary, the Peter-Weyl theorem gives us an orthonormal basis of L2(G) in
terms of the matrix elements of finite-dimensional irreducible unitary representations
of G. This, as we shall see, will be of immense use to us.

3.6.2 Spin network functions

Consider now29 L2(Aγ) for an arbitrary graph γ with, say, N edges. It is obvious from
the results of Sections 3.4 and 3.5 that

L2(Aγ) ∼= L2(SU(2)N) ∼=
⊗
e∈γ

L2(SU(2)). (3.151)

We can thus use the results of the previous subsection to construct an orthonormal
basis of L2(Aγ). Since now we have a tensor product of Hilbert spaces over SU(2),
we can decompose each space into irreducible unitary representations of SU(2). Then
we can use the associativity of the tensor product to rewrite the whole L2(Aγ) as a
direct sum of tensor products of Hilbert spaces. More precisely, let {ρj} be the set of
irreducible unitary representations of SU(2). To each edge e in γ, we associate a set
of representations ρje , and for each value of je, we define an orthonormal basis ρjemene

of L2(SU(2)) in the manner of Eq (3.149). Collecting all the labels {je1 , . . . , jeN} := j,
{me1 , . . . ,meN} := m and {ne1 , . . . , neN} := n, we introduce the so-called spin-network
basis |sjγ,m,n⟩ : Aγ → C such that for all A ∈ Aγ

⟨A|sjγ,m,n⟩ =
√
dje1 · · ·

√
djeN ρ

je1
me1ne1 (A(e1)) · · · ρ

jeN
meN neN

(A(eN)). (3.152)

From Eq (3.147) and (3.151), and the associativity of the tensor product, it follows
that these spin-network states are a basis for L2(Aγ). Indeed, we can write

L2(Aγ) ∼=
⊕
j

N⊗
i=1

Vjei ⊗ V ∗
jei
. (3.153)

28One may worry here about Λ being possibly uncountable. But this may be avoided (see here) by
the very fact that we have an orthonormal basis for our Hilbert space. This is because for any |h⟩ ∈
L2(G), the set B = {j ∈ Λ : ⟨ajmn|h⟩ ̸= 0} is countable, and we may write |h⟩ =

∑
j∈B⟨a

j
mn|h⟩|ajmn⟩,

for otherwise, there would be infinitely many nonzero terms in |⟨h|h⟩|2 =
∑

j∈Λ |⟨h|ajmn⟩|2. Therefore,
without loss of generality, we may identify Λ = Z+.

29Here and in future, we will omit explicit reference to the measures on the spaces we are dealing
with. They will be clear from the context: for a graph, we will always have copies of the Haar measure,
and for A/G, the Ashtekar-Lewandowski measure is always implied.

https://math.stackexchange.com/questions/524203/uncountable-orthonormal-system-in-hilbert-spaces
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To make some contact with familiar territory, recall that the irreducible unitary rep-
resentations of SU(2) are typically labelled by their ‘spin’ j = 0, 1/2, 1, 3/2, . . ., the
dimension of the spin-j representation being dj = 2j + 1. The 2j + 1 basis states of
each representation are labelled by m, where m ∈ (−j,−j + 1, . . . , j − 1, j). Thus we
are doing nothing but labelling each edge of γ with spins j and in effect, generalising
the concept of spin representations to finitely many copies of SU(2); this is where the
spin-network basis gets its name from.

However, this is barely half the work required of us. We have constructed an
orthonormal basis of L2(Aγ), but our eventual goal is to do the same for L2(Aγ/Gγ)
and subsequently for L2(A/G). Now recall that gauge transformations in Gγ act only
at the vertices of edges in γ (see Eq (3.103)). To see how this action translates to
L2(Aγ) as decomposed in Eq (3.153), we must actually decompose it further. To this
end, for a graph γ with N edges, let us define

Hγ,j :=
N⊗
i=1

Vjei ⊗ V ∗
jei
, (3.154)

so that L2(Aγ) ∼=
⊕

j Hγ,j. Focus on one particular set of representations j. Note that
we label each edge e in γ with a particular representation je ∈ j. In other words, we
identify different edges of a graph with reference to the representations they correspond
to. Now, different edges begin and end at different vertices in the graph, and so, we
may alternatively think of labelling the vertices of a graph with representations. Thus,
let V (γ) be the vertices of the graph γ. For each vertex vi ∈ V (γ), let E(vi) be the
set of edges intersecting at vi. Then the tensor product over edges in Eq (3.154) may
be decomposed into two parts, the first part being a product over vertices rather than
edges, and the second part being a product over edges intersecting at a vertex – this will
evidently be an equivalent way of keeping track of all the edges in the decomposition.
Therefore, we arrive at

Hγ,j =
M⊗
i=1

Hvi , (3.155a)

Hvi :=
⊗

e∈E(vi)
Vje ⊗ V ∗

je , (3.155b)

where M is the number of vertices in γ. Thus, the spin-network basis in Eq (3.152)
can be rewritten as

⟨A|sjγ,m,n⟩ =
∏

v∈V (γ)

∏
e∈E(v)

√
2je + 1ρjemene

(A(e)). (3.156)

What is the advantage of this convoluted reformulation? As we shall now see,
decomposition along vertices allows us to construct an orthonormal basis of L2(Aγ/Gγ).
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Recall again that gauge transformations in Gγ act on Aγ along the vertices in γ. That
is, given A ∈ Aγ and g ∈ Gγ, we have (see Eq (3.103))

gA(e) = g(e(a))A(e)g−1(e(b)) (3.157)

for every edge e ∈ γ, e(a) and e(b) being the beginning and ending points of e, re-
spectively. Since group representations ρje are homomorphic, their matrix elements
transform as

gρjemene
(A(e)) =

∑
ke,le

ρjemeke
(g(e(a)))ρjekele(A(e))ρ

je
lene

(g−1(e(b))). (3.158)

Clearly, finding an orthonormal basis for L2(Aγ/Gγ) amounts to finding a Gγ-invariant
subset of the spin-network basis states {|sjγ,m,n⟩}. In view of the preceding consider-
ations, this is equivalent to finding subspaces of Hvi for every vertex vi ∈ V (γ) such
that they are invariant under the transformation (3.158). To facilitate this task, we
define bases of the space Hvi . Since each Hvi is a tensor product over, say, k spin
representations, one for each edge coming in or going out at vi, we may denote an
arbitrary basis of Hvi as a (0, k) tensor tin1···nk

. Similarly, we define bases t̃n1···nk
i of

the dual spaces H∗
vi
. A dual space carries the dual ρ̃ of a representation ρ, where ρ̃

is defined by ρ̃(g) := ρ(g−1)T for all group elements g. In particular, we pick t̃i to be
dual bases:

t̃i(tj) = t̃n1···nk
i tin1···nk

= δij, (3.159)
where summation over repeated indices is implied. Being tensors, these bases have a
natural action of Gγ on them:

g · t̃n1···nk
i = ρje1 (g(vi))n1

m1 · · · ρ
jek (g(vi))nk

mk
tm1···mk
i , (3.160a)

g · tin1···nk
= ρje1 (g−1(vi)) m1

n1 · · · ρjek (g−1(vi)) mk
nk

tim1···mk
. (3.160b)

Here we have defined ρjmn(g(v)) := ρj(g(v))mn to make use of the summation conven-
tion. Using these bases, we can construct arbitrary tensors in Hvi . For instance, a
(1, 0) tensor V will be given by V = V ntin.

Next, we substitute Eq (3.158) into Eq (3.156) to find the transformation properties
of the spin-network basis:

⟨gA|sjγ,m,n⟩ =
∏

v∈V (γ)

∏
e∈E(v)

√
2je + 1ρje(g(e(a)))me

qeρ
je(A(e))qereρ

je(g−1(e(b)))rene

(3.161)
This can be massaged into a more illuminating form. Observe that for a particular
vertex v, the second product above contains edges that intersect at v. Thus for each
edge in the product, v is either its starting point, ending point or both. Therefore,
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either one or both of the factors among ρ(g(e(a))) and ρ(g−1(e(b))) can be replaced
with ρ(g(v)). If only one of the factors, say ρ(g(e(a))), is so replaced, the other factor
can be replaced by ρ(g−1(v′)), where v′ is some other vertex which is the beginning
or ending point of the edge in question; and we are eventually going to consider the
products over edges intersecting at v′ as well, since the first product above runs over
all vertices. This suggests writing Eq (3.156) in a different manner. Notice that if an
edge begins at v, it can be thought of as going out at v, and if it ends at v, we can take
it to be coming in at v. Thus, for each vertex v, we break the set E(v) into two parts,
namely E+(v) and E−(v), which contain, respectively, the outgoing and ingoing edges
at v. Then we may write

⟨A|sjγ,m,n⟩ =
∏

v∈V (γ)

∏
e+∈E+(v)

∏
e′∈E−(v)

√
2je + 1

√
2je′ + 1ρje(A(e))me

ne
ρje′ (A(e′))me′

ne′
.

(3.162)
Substituting Eq (3.161) into the preceding one reveals transformations occurring at
every outgoing and ingoing edge at every vertex:

⟨A|sjγ,m,n⟩ =
∏

v∈V (γ)

∏
e+∈E+(v)

∏
e′∈E−(v)

√
2je + 1

√
2je′ + 1

× ρje(g(v))me
qeρ

je(A(e))qereρ
je(g−1(v))rene

× ρje′ (g(v))me′
qe′
ρje′ (A(e′))qe′re′ρ

je′ (g−1(v))re′ne′
. (3.163)

To obtain a gauge-invariant state, we ought to cancel the factors of ρ(g(v)) and
ρ(g−1(v)) occurring above at each vertex v. This can be done by constructing ap-
propriate (k, l) tensors using the bases and dual bases of the spaces Hvi introduced
above. Suppose that the vertex vi ∈ V (γ) has k outgoing edges and l ingoing edges.
Consider an arbitrary (k, l) tensor at vi, i.e. a tensor I in

l⊗
p=1

(Vjp ⊗ V ∗
jp)

∗ ⊗
k⊗
q=1

(Vjq ⊗ V ∗
jq). (3.164)

By construction, I is invariant under gauge transformations, its components In1···nk
i,m1···ml

transforming inversely as the bases ti and t̃i transform (Eq 3.160). In other words,
each upper index of In1···nk

i,m1···ml
transforms with factors of ρ(g(vi)) and each lower index

transforms with factors of ρ(g−1(vi)). Therefore, we can contract the corresponding
indices in In1···nk

i,m1···ml
and the factors of ρ(A(e)) and ρ(A(e′)) in the product over edges

at the vertex vi. If we do this for all vertices, we will have obtained a gauge-invariant
state. Explicitly, we define the gauge-invariant spin-network basis |sjγ,I⟩, where I =
{Iv : v ∈ V (γ)}, as

⟨A|sjγ,I⟩ =
∏

v∈V (γ)
Iv ·

∏
e∈E(v)

√
2je + 1ρje(A(e))
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=
∏

v∈V (γ)

√
2je1 + 1 · · ·

√
2jek + 1 · · ·

»
2jek+l

+ 1

× In1···nk
v,mk+1···mk+l

ρje1 (A(e1))m1
n1 · · · ρ

jek (A(ek))mk
nk

× ρjek+1 (A(ek+1))mk+1
nk+1

· · · ρjek+l (A(ek+l))mk+l
nk+l

, (3.165)

where we have split the product over edges at a vertex v into outgoing and ingoing
edges in such a way that e1, . . . , ek are outgoing edges and ek+1, . . . , ek+l are ingoing
edges at v. Thus, we have constructed an orthonormal basis of L2(Aγ/Gγ). The tensors
I are called intertwiners. We will write

L2(Aγ/Gγ) ∼=
⊕
j

⊗
v∈V (γ)

Inv
( ⊗
e∈E(v)

Vje ⊗ V ∗
je

)
, (3.166)

where Inv
(⊗

e∈E(v) Vje ⊗ V ∗
je

)
denotes the gauge-invariant part of ⊗e∈E(v) Vje ⊗V ∗

je , ob-
tained via the intertwining procedure described above.

Finally, it remains to be seen how to extend the Gγ-invariant orthonormal basis
|sjγ,I⟩ to an orthonormal basis of Hkin = L2(A/G). At first sight, it might appear
that one could obtain an orthonormal basis for L2(A/G) from simply the direct sum
over all graphs, each term in the sum being an orthonormal basis of a particular
graph. However, recall that L2(A/G) contains cylindrical functions, and a function
cylindrical with respect to a graph is also cylindrical with respect to every larger graph.
Therefore, the spaces L2(Aγ/Gγ) and L2(Aγ′/Gγ′) belonging to different graphs γ and
γ′ may not be orthogonal. Thus, even though one may extend the orthonormal bases of
{L2(Aγ/Gγ)} to a basis of L2(A/G), but the basis so obtained will not be orthogonal.
To resolve this difficulty, we introduce some new Hilbert spaces corresponding to each
graph [24, 13]. To each graph γ, let H′

γ be the subspace of L2(Aγ/Gγ) := Hγ that is
orthogonal to the space Hγ̃ associated with every graph γ which is strictly contained
in γ. That is, every vertex of γ̃ is contained in γ, and every edge in γ̃ can be written
as a composition of edges in γ, and the converse of these two statements is false. As
can at once be verified, this definition ensures that if f ∈ H′

γ, then f /∈ H′

λ for any λ
distinct from γ. Therefore, we may write

Hkin =
⊕
γ∈L

H′

γ. (3.167)



Chapter 4

Demise of the Continuum

In this chapter, we will finally use the machinery constructed in Chapter 3 to obtain
a prediction of loop quantum gravity, namely, that spatial geometry is discrete at the
Plank scale. This prediction, if it is true, is truly paradigm-shifting, since it rings a
death knell for our preconceived notion of the space we inhabit as a continuum.

But what exactly does it mean to say that spatial geometry is discrete? Recall
that in classical general relativity, certain geometric quantities, such as the area of
a two-surface or the volume of a three-surface, are physical observables. Since such
quantities are functions of the phase-space variables, for which we now have unambigu-
ous operators in the quantum theory, it makes sense to define appropriate operators
corresponding to these functions as well, and study their spectra. We will perform
precisely this task for the area of a two-surface, and shall find that the spectrum of the
resulting operator in the quantum theory comes out to be discrete. This is the sense
in which spatial geometry is understood to be discrete. Thus, for instance, if one could
measure the area of a surface to an extraordinary precision (i.e. at the Plank scale),
in principle, one should find that the values of area are discretely spaced, in analogy
to the discretely spaced energy levels of, say, a quantum harmonic oscillator.

This chapter is primarily based on the rigorous construction of the area operator
presented in Ref. [19]. The derivation of the area functional in terms of the triads is
adapted from Ref. [24].

4.1 Area Operator Derived

Let S be a finite, analytic two-surface embedded in the three-dimensional spatial man-
ifold Σ. Let Xa, a ∈ {1, 2, 3}, be the coordinates of S in Σ, and let ui, i ∈ {1, 2}, be
coordinates intrinsic to S. The ADM three-metric qab on Σ induces a two-metric hij
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on S:

ds2 = qabdX
adXb

= qab
∂Xa

∂ui
∂Xb

∂uj
duiduj := hijdu

iduj, (4.1)

where
Xa
,i :=

∂Xa

∂ui
(4.2)

are vector fields tangent to S. Denoting the determinant of the induced metric hij by
h, we can express the area of S as

AS =
∫
S
d2u

√
h. (4.3)

This is the classical area observable in general relativity. We wish to quantise it. In
order to do that, we first need to re-express it in terms of the new (real) variables
introduced in Chapter 2. In particular, h depends on q, which in turn depends on the
triads (cf. Eq (2.34)). Thus Eq (4.2) is to be written in terms of the triads.

To this end, define an everywhere normal one-form na on S:

na := ϵabcX
b
,1X

c
,2, (4.4)

and recall that the inverse qab of qab can be written as

qab = 1
2q ϵ

acdϵbefqceqdf , (4.5)

whence

q nanbq
ab = q nanb

1
2q ϵ

acdϵbefqceqdf

= 1
2ϵaklX

k
,1X

l
,2ϵbmnX

m
,1X

n
,2ϵ

acdϵbefqceqdf

= h11h22 − h12h21 = h, (4.6)

where the last line follows from properties of the Levi-Civita symbol and Eq (4.1).
Finally, comparing Eqs (4.1) and (2.34), we see that

AS =
∫
S
d2u
»
nanbẼa

i (u)Ẽbi(u). (4.7)

We now wish to promote Eq (4.7) to an operator on the Hilbert space Hkin. At first
sight, this seems to be a formidable task, since there is a square-root involved, and it
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is not always possible to give any sense to the notion of the square-root of an operator;
special cases in which this can be done are possible, but may be too restrictive for us,
such as the fact that if an operator is normal, its square root exists. But this does not
mean that we are in completely uncharted territory. Inherited field-theoretic wisdom
tells us that when transition to the quantum theory involves the risk of treading ill-
defined paths, it is best to regularise one’s classical expressions to obtain better control
over them. Regularisation consists in smearing one’s classical variables over a region,
promoting the smeared variables to operators and then take a limit to remove the
smearing. More precisely, since the Ẽa

i in the integrand above depend on points u in a
two-dimensional surface, we use a two-dimensional smearing function to define smeared
triads. Accordingly, let fϵ(x, y) be a one-parameter family of functions on S that tend
to δ2(x, y) as ϵ→ 0. Then we can write

[Ẽi]f (u) =
∫
S
d2vfϵ(u, v)naẼa

i (v), (4.8)

and thus

[AS]f =
∫
S
d2u

[∫
d2vfϵ(u, v)naẼa

i (v)
∫
S
d2wfϵ(u,w)nbẼbi(w)

]1/2
=

∫
S
d2u

[
[Ẽi]f (u)[Ẽi]f (u)

]1/2
. (4.9)

These are the regularised triads and area functionals, and the smearing fields are called
regulators.

The advantage of smearing lies in our hope that if one promotes the non-smeared
variables (in this case the triads) to operators on the quantum mechanical Hilbert space,
substitutes the operator versions of those variables into the smeared equations (4.9)
that contain products and square-roots of operators, and then finally takes the limit
ϵ → 0, one obtains a well-defined operator. Experience with Minkowskian quantum
field theory tells us that this expectation is usually realised, and this is the reason we
employ the smearing trick here.

However, there is a potential caveat that is present in quantum gravity but not
in Minkowskian quantum field theory. Notice from Eq (4.8) that since Ẽa

i are vector
densities of weight 1 in the variable v, and the integral is two-dimensional, whence the
integrand must be of density weight 1, it follows that the regulator fϵ(u, v) must be
a vector density of weight 1 in the variable u. But the definition of a vector density
involves factors of the determinant of the metric on the spatial manifold, and thus the
smearing fields are background dependent1. On the other hand, we want operators in

1The triads are not background-dependent in this way, even though they are also vector densities
of nonzero weight. This is so because they are themselves the fundamental canonical variables from
which other objects, including the metric, have to constructed.
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loop quantum gravity to be background-independent, in virtue of our regarding the
background-independence of general relativity as a fundamental physical fact about
gravity that must be preserved in a correct theory of quantum gravity. On this ac-
count, we should require further that once the regulators are removed after passage to
the quantum theory, the resulting operators must not depend on the smearing fields
or any other background-dependent fields introduced in any intermediate step of the
regularisation procedure. This is not a requirement in Minkowskian field theory, since
it is by definition a background-dependent theory, the geometry of spacetime being
assumed to be flat Minkwoskian.

With these considerations in mind, let us proceed to promote the regularised triads
and area functional to operators on Hkin. In principle, it is possible to follow a con-
struction along the lines of Section 3.5.3 to represent Ẽa

i as vector fields on the space
of cylindrical functions of generalised connections, and thence to obtain the operator
analogues of the regularised variables. However, here we will use the fact that since the
triads are conjugate momenta of smooth connections, one can perhaps more intuitively
replace the triads with functional derivatives with respect to smooth connections, just
as we do in ordinary quantum mechanics? That is, we set

ˆ̃Ea
i (x) = i

δ

δAia(x)
, (4.10)

Since we seek operators onHkin, which essentially contains cylindrical functions, we will
begin by considering the action of Eq (4.10) on cylindrical functions. For convenience,
we will first consider cylindrical functions on A and only at the end promote all our
constructions to the physically relevant A/G. Thus let γ be a fixed graph with N
edges, and consider a cylindrical function ψ on A. For all A ∈ A, we have that

ψ(A) = ψγ(A(e1), . . . , A(eN)), (4.11)

where e1, . . . eN are the edges in γ, and ψγ is a smooth complex-valued function on
SU(2)N ; here we have exploited the isomorphism between Aγ and SU(2)N . Now, it
seems a rather silly idea to act Eq (4.10) on such a function as above, for the former
contains smooth connections, while the latter has generalised connections. Indeed,
one might even be tempted to regard this seemingly ill-define procedure as the reason
behind our not using Eq (4.10) in Section 3.5.3. However, this is not really a difficulty,
for we could invoke Lemma 3.4 to find a smooth connection A whose parallel propagator
along each edge e of γ equals A(e),

A(eI) = P exp
Å
−

∫
eI
A

ã
:= UI(1, 0)[A], (4.12)
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where we have parametrised the edges using the interval [0, 1]. Then, we have

ˆ̃Ea
i (x) · ψ(A) = i

δ

δAia(x)
ψγ(U1, . . . , UN) = i

N∑
I=1

δUI
δAia(x)

∂ψγ
∂UI

, (4.13)

where we have made use of the chain rule. To evaluate the right-hand side above, we
note that using Eqs (3.17) and (2.49), it is not difficult to obtain

δUI
δAia(x)

= 1
2

∫ 1

0
ds δ3(eI(s), x)ėa(s)UI(1, s)τiUI(s, 0), (4.14)

whence

ˆ̃Ea
i (x) · ψ(A) =

1
2
∑
I

∫ 1

0
ds δ3(eI(s), x)ėaI(s)UI(1, s)τiUI(s, 0)

∂ψγ
∂UI

. (4.15)

Owing to the presence of the Dirac delta functions, this is a badly divergent quan-
tity. But this is where regularisation helps. Substituting the preceding equation into
Eq (4.8), we have

[“̃Ei]f (u) · ψ(A) =
1
2
∑
I

∫
S
d2v fϵ(u, v)

∫ 1

0
ds δ3(eI(s), v)naėaI(s)UI(1, s)τiUI(s, 0)

∂ψγ
∂UI

.

(4.16)
Is this well-defined? It indeed is, but to verify this, we must massage the equation
above into a more convenient form. To this end, we make the following assumptions
[19] on the graph γ:

(i) If an edge of γ contains a segment lying in the surface S, then the entire edge lies
in the closure of S.

(ii) Otherwise, each edge of γ intersects S at most once, and we call such an inter-
section point an isolated point.

(iii) The isolated points of intersecting edges and the surface S must all be at the
vertices of γ.

These conditions engender no loss of generality, for we can replace a graph γ that
does not satisfy them with one that does by subdividing the edges of γ to add more
vertices until the conditions are met, and the new graph so obtained will be greater
than γ, whence ψ will also be cylindrical with respect to the new graph. We can now
significantly simplify Eq (4.16). If an edge does not intersect S, the delta function is
obviously zero, and so there is no contribution to the sum. If an edge lies in S, then its
tangent vector ėa is orthogonal to na, and thus again, there is no contribution to the
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sum. Therefore, only edges intersecting S at isolated points give nonzero contributions.
Such edges are of two types: those that are outgoing at the intersection point, and
those that are ingoing. For outgoing (ingoing) edges, the intersection points are their
beginning (ending) points, and so the parameter s = 0 (s = 1), yielding UI(s, 0) = 1

(UI(1, s) = 1). Furthermore, supposing that na points outwards from S, and both
na and ėaI have unit norm, for outgoing (ingoing) edges, naėaI = +1 if ėaI also points
outwards, which is to say that eI lies above (below) S; on the other hand, naėaI = −1
if eI lies below (above) S. In other words, the contributions to the sum of outgoing
and ingoing edges are of opposite parity. These considerations entail that

[“̃Ei]f (u) · ψ(A) =
1
2

ñ
N∑
I=1

kIfϵ(u, vI)XI,i

ô
· ψ(A(e1), . . . , A(eN)), (4.17a)

where

kI =


0 if eI lies inside S or does not intersect it
+1 if eI has an isolated intersection with S and lies above it
−1 if eI has an isolated intersection with S and lies below it

(4.17b)

and XI,i are vector fields assigned to a vertex vI of γ by the following formula:

XI,i =

 (A(eI)τi) B
A

∂ψγ

∂(A(eI)) A
B

when eI is outgoing
−(τiA(eI)) B

A
∂ψγ

∂(A(eI)) A
B

when eI is outgoing.
(4.17c)

It is interesting to observe that

(A(eI)τi) B
A

∂ψγ

∂(A(eI)) A
B

= −i d
dt
ψγ(A(e1), . . . , A(eI)eitτi , . . . , A(eN))

∣∣∣∣
t=0

,

(A(eI)τi) B
A

∂ψγ

∂(A(eI)) A
B

= i
d

dt
ψγ(A(e1), . . . , e−itτiA(eI), . . . , A(eN))

∣∣∣∣
t=0

.

That is, these are nothing but left- and right-invariant vector fields on the space of
smooth cylindrical functions! As a bonus, we have derived another way of deriving the
momentum operators in loop quantum gravity; perhaps this alternative construction is
more intuitive, since Eq (4.10) is what we do in ordinary quantum mechanics (compare
this with the construction presented in Section 3.5.3).

We have successfully promoted the regularised triads (4.8) to operators on L2(Aγ).
We now do the same to the area functional (4.9). Let the integrand in the functional
be denoted by gf . Eqs (4.9) and (4.17) yield

ĝf (u) · ψγ =
1
4

ñ∑
I,J

kIkJfϵ(u, vI)fϵ(u, vJ)XI,iX
i
J

ô
· ψγ (4.18)
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for all ψγ ∈ L2(Aγ). This sum can simplified by choosing ϵ small enough to ensure
fϵ(u, vI)fϵ(u, vJ) = 0 unless vI = vJ . Then we can regroup the sum with respect to the
vertices of γ that lie in S:

ĝf (u) · ψγ =
1
4

[ ∑
v∈V (γ)

(fϵ(u, v))2
∑
Iv ,Jv

kIvkJvXIv ,iX
i
Jv

]
· ψγ, (4.19)

where V (γ) is the set of vertices in S and Iv, Jv denote the edges arriving at or leaving
the vertex v. Next, we take the square root (which we are allowed to do since the
operators XI,i are self-adjoint on L2(Aγ) (see [19])) of the expression above and choose
ϵ to be sufficiently small so that fϵ(u, v) is nonzero for at most one vertex at each point
u ∈ S, whence we can take the sum over v outside the square root. Hence,

[ÂS]f (u) · ψγ =
1
2

∑
v∈V (γ)

fϵ(u, v)
ñ∑
Iv ,Jv

kIvkJvXIv ,iX
i
Jv

ô1/2
· ψγ. (4.20)

This is a cute expression, for the dependence on the coordinates of S lies entirely
outside the square root – a phenomenon referred to as point-splitting. This is fortunate
because taking the limit ϵ→ 0, we see that

lim
ϵ→0

[ÂS]f (u) · ψγ =
1
2

∑
v∈V (γ)

δ2(u, v)
ñ∑
Iv ,Jv

kIvkJvXIv ,iX
i
Jv

ô1/2
· ψγ, (4.21)

from where we can finally read off the area operator:

ÂS · ψγ =
1
2

∑
v∈V (γ)

ñ∑
Iv ,Jv

kIvkJvXIv ,iX
i
Jv

ô1/2
· ψγ. (4.22)

This operator is consistent in the sense described in Section 3.5.3, and can thus be ex-
tended unambiguously to L2(A). Since it is also manifestly gauge invariant (contracted
internal indices), it also projects down to Hkin = L2(A/G).

It is worth pointing out that the area operator is not (spatially) diffeomorphism in-
variant, because diffeomorphisms of Σ will change the intersection points of the surface
S and a graph. However, this does not mean that diffeomorphism-invariant geometric
operators do not exist. The operator corresponding to the volume of a region in Σ is,
in particular, diffeomorphism covariant. But we will not construct the volume operator
in this thesis; the interested reader is referred to [20]. It is also important to note that
if one includes matter fields in the theory and uses them to define areas of surfaces,
one does actually get diffeomorphism-invariant area operators [16].
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4.2 Spectrum of the Area Operator

In this section, we calculate the eigenvalues of the area operator. To begin with, let us
recast Eq (4.22) in a more elegant form. Observe that the structure of this equation is
of a single sum of operators, each of which is associated to a vertex of a graph γ. In
other words, we may write

ÂS · ψγ =
1
2

∑
v∈V (γ)

√
∆S,v · ψγ, (4.23)

where
∆S,v :=

∑
Iv ,Jv

kIvkJvXIv ,iX
i
Jv (4.24)

is an operator corresponding to the vertex v of γ lying in the surface S; we call it a vertex
operator. Since we have assumed that each edge of γ intersects S at most once, the
edges arriving at or leaving two different vertices must be distinct. Therefore, vertex
operators corresponding to two different vertices must commute. It then suffices to
work out the spectrum of one vertex operator at a time.

Consider then a particular vertex operator ∆S,v. Motivated from Eq (4.17b), we
can divide the edges of γ that intersect S at v into three categories: (1) the edges
e1, . . . , ed that lie below S; (2) the edges ed+1, . . . , eu that lie above S, and (3) the
edges eu+1, . . . , et that are tangential to S. For want of a better name, let us call the
edges in (1) and (2) edges of type ‘down’ and ‘up’, respectively. We then define the
following operators:

J
(d)i
S,v := −i(X i

1 + · · ·+X i
d), J

(u)i
S,v := −i(X i

d+1 + · · ·+X i
u), (4.25a)

J
(t)i
S,v := −i(X i

u+1 + · · ·+X i
t), J

(d+u)i
S,v := J

(d)
S,v + J

(u)
S,v , (4.25b)

where X i
1, X

i
2, etc. are the vector fields (4.17c) in su(2) assigned to vertices v1, v2,

etc. of γ. The next step is to specify the operators X i
1, X

i
2, etc. Since they belong

to the Lie algebra of SU(2) and are mutually commuting, we can identify them with
distinct angular momentum operators. That is, for each vertex v, fix a representation
of su(2) and identify −iX i

I with the ith component of the angular momentum operators
associated with that representation. Then J

(d)i
S,v , J

(u)i
S,v and J

(t)i
S,v can be thought of as

total ‘down’, ‘up’ and ‘tangential’ angular momentum operators in the ith direction at
the vertex v. For instance, suppose we work in the fundamental representation, which
is given in terms of the Pauli matrices τ i. Then

X i
n = 1SU(2) ⊗ · · · ⊗ 1SU(2) ⊗ τ i ⊗ 1SU(2) ⊗ · · ·1SU(2), (4.26)



4.2 Spectrum of the Area Operator 133

where τ i occurs at the nth position in the tensor product, which is over all the edges
intersecting at v.

In terms of the J operators (Eq (4.25)), we can express the vertex operators as

∆S,v = (J (d)i
S,v − J

(d)i
S,v )((J

(d)
S,v,i − J

(d)
S,v,i))

= 2(J (d)
S,v)2 + 2(J (u)

S,v )2 − (J (d+u)
S,v )2, (4.27)

where J2 := J iJi, and the second line follows from the commutativity of J (u)
S,v and J (d)

S,v;
note that the tangential operators do not occur in the preceding equations by virtue of
Eq (4.17b). Elementary quantum mechanics now immediately yields the eigenvalues
of ∆S,v:

λS,v = 2j(d)(j(d) + 1) + 2j(u)(j(u) + 1)− j(d+u)(j(d+u) + 1), (4.28a)

where j(d), j(u) and j(d+u) are half-integers subject to the condition

j(d+u) ∈ {|j(d) − j(u)|, |j(d) − j(u)|+ 1, . . . , j(d) + j(u)}. (4.28b)

Thus the eigenvalues aS of the area operator, which is a sum over (square roots of)
commuting vertex operators, are given by

aS = 1
2

∑
v∈V (γ)

»
2j(d)v (j(d) + 1) + 2j(u)v (j(u)v + 1)− j

(d+u)
v (j(d+u)v + 1), (4.29)

where jv denotes the spin representation associated with the vertex v. As advertised,
the spectrum of the area operator is manifestly discrete.

Let us consider the special case of there being only one vertex at which γ and S
intersect. Inspecting Eq (4.29), we see that the smallest eigenvalue ap occurs either
when j(u)v = 0 and j(d)v = 1/2 or vice versa. Restoring SI units, we find that

aP = l2p

√
3
4 , (4.30)

where l2p is the Plank length2. This is the smallest quantum of area as predicted by loop
quantum gravity. The appearance of the Plank length indicates that the discreteness
of spatial geometry manifests only at extremely small scales.

2We have been working in natural units so far. Thus restoring them means that we have to multiply
by appropriate factors of ℏ, c and G so as to obtain a quantity with the SI units of area, namely m2.
The Plank length is the only such combination.



Chapter 5

The Apocalypse of Constraints

At long last, we squarely confront the constraints of general relativity at the quantum
level. The Hkin constructed in the previous chapter is by construction gauge invariant.
Thus all we now need to do is to solve the other two constraints of general relativity.
But as we shall see, this task is easier said than done. In this chapter, we will provide
a full solution to the diffeomorphism constraint, and a partial, unsatisfactory solution
to the Hamiltonian constraint. In fact, there is no completely non-controversial way of
solving the Hamiltonian constraint in loop quantum gravity to this day.

Our treatment of the diffeomorphism constraint follows that of Ref. [16, 59], while
that of the Hamiltonian constraint is adapted from Ref. [13].

5.1 Diffemorphism Constraint

5.1.1 Finite vs. infinitesimal diffeomorphisms

For convenience, let us recall the expression of the spatial diffeomorphism constraint
(Eq (2.44b)):

Va = F i
abẼ

b
i ≈ 0. (5.1)

For reasons that must now be obvious, we will be interested in the smeared version of
this constraint:

VN⃗ =
∫
Σ
d3xNaF i

abẼ
b
i (x) ≈ 0, (5.2)

where Na is a vector field on the spatial manifold Σ. As explained in Chapter 1,
physically, the diffeomosphism constraint (infinitesimally) deforms Σ along the one-
parameter family of (spatial) diffeomorphisms φt generated by Na.
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The first task that we wish to undertake is to promote VN⃗ to an operator on the
kinematical Hilbert space Hkin = L2(A/G, dµAL). To this end, consider first smooth
complex-valued functions on A/G. On A/G, we can define the operator analogue of
VN⃗ via (4.10). We then find that

V̂N⃗ · ψ =
∫
Σ
d3xNaF i

ab

δψ

δAib
= −{ψ, VN⃗} = LN⃗ψ (5.3)

for all ψ ∈ C∞(A/G) (the curly braces denote Poisson brackets). We now ask: can we
extend the operation of V̂N⃗ from C∞(A/G) to Hkin? Unfortunately, the answer to this
question is in the negative, as we now show [16]. Let us restrict our attention to traces
of holonomies around a loop α. From Eq (5.3), we have

V̂N⃗ · (Tα)(A) = lim
t→0

Tφt(α) − Tα
t

(A), (5.4)

where φt(α) is the image of α under the family φt of diffeomorphisms generated by Na,
and the limit is taken pointwise in A/G. Since A/G is obtained by the µAL-completion
of the holonomy algebra, the preceding equation suggests that for the action of V̂N⃗ to
be well-defined on A/G, we must require that

lim
t→0

||Tφt(α) − Tα||2 = lim
t→0

∫
A/G

dµAL(Tφt(α) − Tα)2 = 0. (5.5)

Let φt be such that it leaves α invariant and φt(φs(α)) = αu(s,t) for all s > 0. Then
since µAL is diffeomorphism-invariant, it follows that∫

A/G
dµALT

2
α =

∫
A/G

dµALT
2
φt(α) (5.6)

for all t, and that there exists to such that for all 0 < t < to∫
A/G

dµALTαTφt(α) = k, (5.7)

where k is a constant. Substituting Eqs (5.6) and (5.7) into Eq (5.5) reveals that
k =

∫
T 2
α, and thus,

Tφt(α) = Tα (5.8)
for all 0 < t < to. This means that if we represent Tα as an operator on Hkin, then
T̂φt(α) = T̂α for all 0 < t < to. However, since φt(α) is a loop distinct from α if t ̸= 0, as
elements of the holonomy algebra, Tα ̸= Tφt(α). This means that one cannot represent
the traces of holonomies as faithful operators on Hkin. Since we do not want this
pathological behaviour, we cannot extend the action of V̂N⃗ from A/G to A/G.
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We seem to have hit a roadblock. Since we cannot represent the diffeomorphism
constraint as an operator on Hkin, the first method of dealing with constraints outlined
in Section 1.3.2 becomes unavailable. However, this does not mean that all hope is
lost; we still have the group-theoretic approach at our disposal, and we shall see that
it saves the day.

Let us begin by recalling that VN⃗ is the generator of infinitesimal diffeomorphisms,
and so the preceding arguments at most establish the impossibility of representing
infinitesimal diffeomorphisms as operators in the quantum theory. We still have the
choice of considering finite diffeomorphisms. These are furnished by the flow φt gen-
erated by N⃗ . Accordingly, for each vector field N⃗ , we define an operator ÛN⃗(t) on
C∞(A/G) given by

ÛN⃗(t) · ψ := (φt)⋆ · ψ = ψ ◦ φt (5.9)
for every ψ ∈ C∞(A/G). Now we ask: can this operator be extended to Hkin? For-
tunately, the very property of µAL – namely, diffeomorphism invariance – that was
our bane in the infinitesimal case now becomes our salvation, for we find that for all
ψ1, ψ2 ∈ Hkin

⟨ÛN⃗(t)ψ1, ÛN⃗(t)ψ2⟩ =
∫
A/G

dµALψ1(φt(A))ψ2(φt(A))

=
∫
A/G

dµALψ1(A)ψ2(A) = ⟨ψ1, ψ2⟩. (5.10)

That is, ÛN⃗(t) is a unitary operator, whence it can be uniquely1 extended to Hkin, since
A/G is dense in A/G. Thus we can henceforth focus on finite spatial diffeomorphisms,
represented as unitary operators on the kinematical Hilbert space. Notice that the set
of all one-parameter family of finite diffeomorphisms φt forms a group. Therefore, we
are in the group-theoretic framework of solving the constraints; we shall refer to the
spatial diffeomorphism group as Diff(Σ).

5.1.2 Group averaging

Now that we have an operator representing spatial diffeomorphisms, the next step is
to find quantum states that are invariant under the action of this operator. These will
be the diffeomorphism-invariant states of the theory, spanning the diffeomorphism-
invariant Hilbert space.

1Here is some elaboration of this point. Unitarity of an operator on a dense subspace of a Hilbert
space can be used to obtain a unitary extension on the whole Hilbert space. Furthermore, a unitary
operator is by definition bounded. Now, every bounded linear operator on a normed vector space
is continuous. Finally, two continuous functions agreeing on a dense subspace of a topological space
agree on the whole space, and so we have uniqueness.
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The first avenue to look for diffeomorphism-invariant states is some suitable sub-
space of Hkin itself. However it is not difficult to see that no such nontrivial subspace
exists. Pick a cylindrical function in Hkin. It is determined by its value on a particular
graph in the spatial manifold Σ. Now, since spatial diffeomorphisms move points of
the manifold around, they must transform between different graphs by moving their
edges and vertices around. This entails that under a diffeomorphism, the value of a
cylindrical function on a particular graph may change. Since we allow all possible dif-
feomorphisms, and thus all possible transformations between graphs, the only function
left invariant under the action of all diffeomorphisms is the constant function. Thus,
unless one can perform the Herculean task of gleaning some physical insight from a
constant function, we are left with no choice but to abandon Hkin in our search for a
diffeomorphism-invariant Hilbert space.

In view of the preceding considerations, it is clear that we require a space larger
than Hkin to find a home for diffeomorphism-invariant Hilbert states. The dual H⋆

kin

of Hkin naturally lends itself to this task. The idea is to average over all the diffeo-
morphic images of a given state to obtain a nontrivial diffeomorphism-invariant state.
The resulting state cannot lie in Hkin, for otherwise, it would not be nontrivial and
diffeomorphism invariant. Our expectation is that it will instead lie in H⋆

kin. As we
shall see, this is indeed the case.

Thus, what we are after is a map η from Hkin to H⋆
kin that outputs diffeomorphism-

invariant dual states. In this context, diffeomorphism invariance translates to the
condition that for all ψ ∈ Hkin the action of η(ψ) ∈ H⋆

kin is invariant under diffeomor-
phisms. That is,

η(ψ)[Û(g) · ψ′] = η(ψ)[ψ′] ∀g ∈ Diff(Σ), ψ, ψ′ ∈ Hkin, (5.11)

where Û(g) is the unitary representation of g on Hkin. By linearity of dual vectors, the
range V of the map η will be a vector subspace of H⋆

kin, but not necessarily a Hilbert
space. To ensure the latter, we can restrict η to be real and positive, i.e.

η(ψ)[ψ′] = η(ψ′)[ψ] and η(ψ)[ψ] ≥ 0 ∀ψ, ψ′ ∈ Hkin. (5.12)

Then it is easily verified that

⟨η(ψ), η(ψ′)⟩V := η(ψ′)[ψ] (5.13)

provides an inner product2 on V/ ∼, where the quotient is taken over states with zero
norm. Completion of V/ ∼ under this inner product thus gives a diffeomorphism-
invariant Hilbert space, which we shall denote by Hdiff .

2The positions of ψ and ψ′ are switched on both sides of Eq (5.13) because η is an anti-linear map.
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The map η is called a group averaging map. To understand the rationale behind
this name, let us explicitly construct such a map. It will now be convenient to work
in a specific basis of Hkin. Let us thus pick the gauge-invariant spin-network functions
constructed in Chapter 3. We can identify a spin-network state |s⟩ ∈ Hkin with its pro-
jection onto Hγ, where γ is the smallest graph with respect to which |s⟩ is cylindrical.
We can thus write |s⟩ ∼= |sjγ,I⟩, where j = {je1 , . . . , jen} is the set of spin-j represen-
tations associated to the edges e1, . . . , en of γ, and I = {Iv : v ∈ V (γ)} is the set of
intertwiners corresponding to the vertices v ∈ V (γ) of γ. This simplification enables
us to see the unitary action of Diff(Σ) on spin-network states. A diffeomorphism
φ ∈ Diff(Σ) moves the edges and vertices of γ around in Σ, yielding a different graph
φ(γ). We thus simply have

Û(φ) |sjγ,I⟩ = |sφ(j)γ,φ(I)⟩ , (5.14)

where3 φ(j) := {jφ(e) : e ∈ γ} and φ(I) := {Iφ(v) : v ∈ γ} denote the spin and
intertwiner assignments to the edges and vertices of the graph φ(γ), respectively. Now
let [s] be the set of all distinct diffeomorphic images of |s⟩ under Diff(Σ); we call it
the orbit of |s⟩. We define [59] a map η : Hkin → H⋆

kin such that

η(|s⟩) = η[s]
∑

|s′⟩∈[s]
⟨s′| , (5.15)

where η[s] is a positive parameter, which we shall fix later. Since spin-network func-
tions corresponding to distinct graphs are orthonormal, the elements of [s] are all
mutually orthonormal. Thus the action of η(|s⟩) on an arbitrary spin-network state
either vanishes or equals η[s]. Combined with the fact that the sum is over all distinct
diffeomorphic images of |s⟩, this entails that the map η satisfies Eq (5.11). Further-
more, the positivity of η[s] implies that Eq (5.12) is also satisfied. Consequently, η
is a group averaging map. The reason for the name is clear now: we sum over all
diffeomorphic relatives of a state in Hkin to obtain a diffeomorphism-invariant state in
H⋆
kin.
While the preceding treatment may seem satisfactory at first sight, for we have

successfully constructed a set of diffeomorphism states, a closer inspection reveals a
glaring ambiguity, which arises from a subtle fact about how observables in the quantum
theory act on spin-network states corresponding to unequal graphs. Recall that in the
classical theory, phase-space functions that have vanishing Poisson brackets with the
constraints of the theory are identified with observables. When we promote these
observables and constraints to operators in the quantum theory, their commutators

3One might worry here about the possibility of there being an increase in the number of edges and
vertices in a graph under a diffeomorphism as a result of different edges crossing each other. But this
would never happen, for a diffeomorphism is by definition invertible, whence two different points of
the spatial manifold cannot be mapped to the same point.
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with each other must vanish. More precisely, in this context, for every diffeomorphism
φ, and every observable operator Ô,

ÔÛ(φ) = Û(φ)Ô. (5.16)

Now let |s1⟩ and |s2⟩ be two spin-network states corresponding to two graphs γ1 and γ2,
respectively, such that4 γ1 ̸= γ2. Consider a vector field on Σ that vanishes everywhere
on γ but is transverse to an open subset of γ2. The diffeomorphisms generated by this
vector field change |s1⟩ but leave |s2⟩ invariant. Thus there are infinitely many diffeo-
morphisms that affect |s1⟩ but do nothing to |s2⟩; let us denote such diffeomorphisms
by φ1. We then find that

⟨s2| Ô |s1⟩ = ⟨s2| ÔÛ †(φ1) |s1⟩ = ⟨s2| Û †(φ1)Ô |s1⟩ , (5.17)

where the second equality follows from Eq (5.16). In other words, the projections of
the state Ô |s1⟩ along the infinitely many states Û(φ1) |s1⟩ are all equal. Therefore,
⟨s2| Ô |s1⟩ = 0. That is, an observable cannot map between spin networks belonging to
unequal graphs. We say that such spin networks lie in different superselection sectors.

We can describe the ambiguity in our construction of diffeomorphism-invariant
states. If two spin networks are superselected, their group-averaged images are also su-
perselected unless their underlying graphs are diffeomorphic. Thus there exist infinitely
many sectors of diffeomorphism-invariant states that cannot be mapped to each other
by any observable. Which one of these infinitely many sectors is physically relevant?
One answer to this question is that we treat each distinct sector as a physically dif-
ferent realisation of diffeomorphism-invariant quantum gravitational systems, leaving
the specification of the sector which we inhabit up to experiment. However, in order
to adopt this interpretation consistently, we must fix the value of the parameter η[s]
in Eq (5.15) in a diffeomorphism-invariant manner. This we shall now do. We will
show that the imposition of another condition on a group averaging map fixes η[s] in
the desired manner. The condition is the following:

η(ψ)[Ôψ′] = η(Ô†ψ)[ψ′], ∀ψ, ψ′ ∈ Hkin. (5.18)

That is, we require a group averaging map to commute with all observables (again,
the appearance of the dagger on the right-hand side above is a consequence of the
anti-linearity of η).

To make use of this condition, let us first introduce some essential concepts and
definitions. Given a group G, an element g ∈ G, and a subgroup H of G, the left (right)

4Since we are considering the smallest graphs corresponding to each spin network, inequality in
this context excludes the possibility that one graph is greater or smaller than the other; both are
simply not comparable.
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coset of H in G by g is the subgroup gH := {gh : h ∈ H} (Hg := {hg : h ∈ H}).
If all the left and right cosets of H equal, H is called a normal subgroup. Then the
binary relation on G defined by identifying elements belonging to a normal subgroup
N is an equivalence relation. We denote the set of all equivalence classes under this
relation as G/N , and can check that it is also a group in its own right. It contains the
left (or right) cosets of N in G. For example, consider the additive group of integers
Z = {0,±1,±2, . . .}. All subgroups in it normal, since the group is abelian. For
illustration, consider the subgroup 3Z := {0,±3,±6, . . .}. The distinct (left) cosets of
this subgroup are 3Z, 1+3Z = {1,±3+1,±6+1, . . .}, 2+3Z = {2,±3+2,±6+2, . . .}.
Thus Z/3Z = {3Z, 1 + 3Z, 2 + 3Z}.

Now consider a fixed spin-network state |s⟩ with the smallest underlying graph being
γ. Let Syms be the subset of Diff(Σ) that leaves |s⟩ invariant. Since a diffeomorphic
image of |s⟩ must also be invariant under Syms, it follows5 that Syms is a normal
subrgoup of Diff(Σ). Furthermore, since the states in the orbit [s] of |s⟩ are related
by distinct diffeomorphisms, we can identify these states with the cosets of Syms in
Diff(Σ). We can then rewrite Eq (5.15) as

η(|s⟩) = η[s]
∑

φ∈Diff(Σ)/Syms

⟨s| Û †(φ). (5.19)

This was warm-up for what is ahead. We next define Sym0
s to be the subset of Syms

that preserves the edges of γ, i.e.

Sym0
s = {φ ∈ Diff(Σ) : φ(e) = e ∀e ∈ γ}. (5.20)

Evidently, Sym0
s is a normal subgroup of Syms. Moreover, the groupDs := Syms/Sym

0
s

of cosets of Sym0
s in Syms is finite, since it contains diffeomorphisms that involve only

permutations of the edges of γ. Let |Ds| denote the cardinality of Ds; It is worth noting
that since |Ds| = |Ds′| for all s′ ∈ [s], |Ds| is a diffeomorphism-invariant number.

We are now ready to evaluate [59] the parameter η[s] for the group averaging map
η defined in Eq (5.15). Let |s1⟩ and |s2⟩ be two spin networks corresponding to graphs
γ1 and γ2 that are diffeomorphic. Given an observable Ô, we impose Eq (5.18) on η:

η(Ô |s1⟩)[s2] = η(|s1⟩)[Ô† |s2⟩]. (5.21)

We will evaluate both sides of this equation to determine η[s]. We begin by observing
that we can expand the state Ô |s1⟩ as

Ô |s1⟩ =
N∑
i=1

λiÛ(φi) |s2⟩+ |χ⟩ , ⟨s2| Û †(φ) |χ⟩ = 0∀φ ∈ Diff(Σ). (5.22)

5Û(χ)Û(φ) |s⟩ = Û(φ)Û(χ) |s⟩ for all χ ∈ Syms and φ ∈ Diff(Σ).
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The sum is over all the components of Ô |s1⟩ along the orbit of |s2⟩; without loss of
generality, we may take the terms in the sum to be mutually orthogonal. |χ⟩, on the
other hand, represents the components of Ô |s1⟩ that are orthogonal to [s2]. Thus,
substituting Eq (5.22) into Eq (5.15) yields the left-hand side of Eq (5.21):

η(Ô |s1⟩)[s2] = η[s2]
N∑
i=1

λi. (5.23)

Next, let us focus on the right-hand side. Define a map η0 : Hkin → H⋆
min such that

η0(|s⟩) = η[s]
∑

φ∈Diff(Σ)/Sym0
s

⟨s| Û †(φ). (5.24)

Comparing this equation with Eq (5.19) and recalling the relationship between Syms

and Sym0
s, we find that

η0(|s⟩) = |Ds| η(|s⟩), (5.25)
which, combined with Eq (5.16), entails that

η(|s1⟩)[Ô† |s2⟩] = η[s1]
N∑
i=1

λixi, (5.26)

where
xi =

1
|Ds1|

∑
φ∈Diff(Σ)/Sym0

s1

⟨s2| Û(φ)Û(φi) |s2⟩. (5.27)

It can be shown [59] that there only |Ds2| number of nonzero terms in the preceding
sum, and thus xi = |Ds2|/|Ds1|. Thus, equating Eqs (5.23) and 5.26 reveals that

η[s] = C|Ds|, (5.28)

where C is some unimportant positive constant. As promised, η[s] is indeed diffeomor-
phism invariant.

5.2 Hamiltonian Constraint

Finally, we confront the mother of all constraints, without which there is no sense in any
talk about quantum dynamics. Unlike the Gauss and diffeomorphism constraints, we
will not be able to solve the Hamiltonian constraint in a fully background-independent
manner. Nonetheless, as will become abundantly clear, what we will achieve shall be
a significant improvement over the situation encountered in the canonical quantisation
of the ADM variables, where the Wheeler-DeWitt equation remains, at best, a formal
device and thus the dream of understanding quantum dynamics stays ever so elusive.
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5.2.1 Taming the constraint

Let us start by observing that, unlike the diffeomorphism constraint, a group-theoretic
approach is hard to imagine in order to deal with the Hamiltonian constraint. This is
because, as hinted in Section 1.2, the finite canonical transformations generated by the
Hamiltonian constraint are not very well understood – the essential difficulty can be
traced back to the appearance of the nontrivial (· · · ) terms in Eq (1.34b), which prohibit
one to describe the finite transformations generated by the Hamiltonian constraint as
a one-parameter group of maps that are integral curves of a differential equation like
Eq (1.35). Therefore, we have to proceed in the footsteps of Dirac (see Section 1.3.2)
by promoting the Hamiltonian constraint to an operator on Hkin (more ideally, on
Hdiff ) and then seeking its null space. This is the method we shall currently employ.

Let us countenance our constraint afresh (cf. Eq (2.44a)):

S = ϵijk

Ẽ
Ẽa
i Ẽ

b
jFabk −

4
Ẽ
Ẽa

[iẼ
b
j]K

i
[aK

j
b]. (5.29)

Remember that we are keeping the Barbero-Immirzi parameter β to be 1. We shall
only solve the first term in the constraint above, since it will suffice to elucidate the
main ideas and both the merits and demerits of the full approach. Accordingly, we
define the smeared version of the constraint:

SN =
∫
Σ
d3xNϵijk

Ẽa
i Ẽ

b
j

Ẽ
Fabk, (5.30)

where N is the lapse function, introduced in Chapters 1 and 2. It might appear that the
decision to not absorb Ẽ into N (as we did in the Palatini and Ashtekar formulations
in Chapter 2) may pose problems, but on the contrary, it will allow us to recast the
constraint in a form that is much more tractable in terms of being promoted to an
operator. To see this, we recall that the volume V of Σ (if assumed to be compact) is
given by

V =
∫
Σ
d3x

√
q =

∫
Σ
d3xE =

∫
Σ
d3x
√
Ẽ, (5.31)

where q is the determinant of the three-metric on Σ and E is the determinant of the
de-densitised triads Ea

i . Next, observe that

ϵijk
Ẽb
j Ẽ

c
k

Ẽ
= ϵ̃abcEEi

a, (5.32)

where ϵ̃abc is a Levi-Civita density of weight 1. Finally, we note that

δV

δẼa
i

= 1
2

√
ẼẼi

a =
1
2E

2Ei
a. (5.33)
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Combined, these equations yield Thiemann’s identity:

2ϵ̃abc{Aia, V } = ϵijk
Ẽb
j Ẽ

c
k

Ẽ
, (5.34)

whence the smeared constraint becomes

SN = 2
∫
Σ
d3xN(x) ϵ̃abc tr (Fab(x){Ac(x), V }) . (5.35)

As we will see, this expression is much easier to promote to an operator in the quantum
theory.

5.2.2 Taming it more

Passage to the quantum theory is facilitated by thinking about the operator analogue
of the curvature Fab. It turns out that Fab can be approximated by connections up to
first order. More precisely, if α is a loop that bounds a coordinate P place of area ϵ2,
then ∫

P
F = 1

2
[
A(α−1)− A(α)

]
+O(ϵ2), (5.36)

where A(α) denotes the holonomy of the connection A around α. Similarly, if s is a
line segment of length ϵ, then one can show that{∫

s
A, V

}
= −A(s)−1{A(s), V }+O(ϵ), (5.37)

A(s) being the parallel propagator of A along s. Now, connections have well-defined
quantum analogues in terms of SU(2)-valued maps. As for the volume functional V ,
we briskly mentioned in Chapter 4 that their operator analogues also exist. Let us
see how these look like. Any region R in Σ has a volume operator V̂R that acts on an
arbitrary cylindrical function ψγ as

V̂R · ψγ =
∑

v∈V (γ)

»
|q̂v| · ψγ, (5.38a)

where
q̂v · ψγ =

1
48ϵijk

∑
Iv ,Jv ,Kv

k(Iv, Jv, Kv)X i
IvX

j
Jv
Xk
Kv

· ψγ. (5.38b)

All the terms above are familiar from the previous chapter, except k(Iv, Jv, Kv), which
is an orientation factor that is 0 if the tangent vectors of the three edges eIv , eJv and
eKv arriving at or leaving v are linearly dependent or do not intersect R, and ±1 if they



5.2 Hamiltonian Constraint 144

intersect R at v, and are linearly independent and oriented positively or negatively with
respect to a fixed orientation on Σ [20]. One could now exploit the preceding three
equations in extending SN to an operator by approximating the integral in Eq (5.35)
by a sum over small regions of dimensions ϵ and replacing the curvature, the Poisson
brackets and the volume functionals in each region by those equations. This is the
general idea which we shall now implement in detail.

Partition the spatial manifold Σ into cells △ of arbitrary shape and of spatial extent
not exceeding ϵ in any direction – such a partition is called a triangulation. In each
cell, fix a point v△ and define edges eI , I = 1, . . . , ne, and loops αi, i = 1, . . . , nα, that
all start at v△ and lie entirely within △. We shall denote this whole structure of cells
and the objects they contain by Rϵ, and call it a regulator. From Eqs (5.36) and (5.37),
we see that within each cell △, the Hamiltonian constraint (5.35) can be approximated
as

SRϵ,△
N = N(v△)

∑
i,I

CiItr
([
A(αi)− A(α−1

i )
]
A(eI)−1{A(eI), V△}

)
, (5.39)

where CiI is a fixed constant that depends on the shape of the cell but not on ϵ.
Furthermore, depending on the regulator, the sum

SRϵ
N =

∑
△
SRϵ,△
N (5.40)

approaches SN as ϵ→ 0:
lim
ϵ→0

SRϵ
N = SN . (5.41)

Regulators that satisfy this condition are called permissible regulators. We shall pro-
mote such permissibly regulated to operators and then take the limit ϵ → 0 to obtain
the quantum version of the Hamiltonian constraint. This is quite analogous to the
what we did with area functionals in the previous chapter, the difference being that
now, the more complicated structure of the Hamiltonian constraint calls for a more
involved regularisation procedure.

As an example of a permissible regulator, consider a triangulation of Σ by cubic
cells of side length ϵ. Let v△ be a corner of the cube △, take the three sides of the cube
meeting at this corner to be the edges associated with △, and let the loops associated
with △ be the boundaries of the three faces shared by these three sides. Then the
constants CiI are all 1, and we indeed recover SN in the limit ϵ→ 0.

Transition to the quantum theory now seems straightforward. We simply replace
the holonomies in Eq (5.39) with generalised connections applied to the edges and
loops, V△ with the operator V̂△ defined in Eq (5.38), and the Poisson brackets with −i
times the corresponding commutator. We thus obtain

ŜRϵ
N =

∑
△
ŜRϵ,△
N , (5.42a)
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ŜRϵ,△
N = −iN(v△)

∑
iI

CiItr
Ä[
π(Ā(αi))− π(Ā(α−1

i ))
]
π(Ā(eI)−1)[π(Ā(eI)), V̂△]

ä
,

(5.42b)
where Ā denotes a generalised connection, and π(Ā) is the corresponding SU(2) el-
ement in the representation π. This yields a well-defined operator on the space of
cylindrical functions in Hkin, and it is self-adjoint, since V̂ is self-adjoint. However,
here we encounter a nontrivial issue. In order that the Hamiltonian constraint operator
be physically meaningful, we must require it to be diffeomorphism covariant, in the
sense that under diffeomorphisms of a graph, the action of the constraint operator on
cylindrical functions should transform covariantly. This in turn amounts to finding an
appropriate transformation condition on the regulators. We will now formulate this
condition.

Notice first that the definition of the volume operator (5.38) entails that the action
of ŜRϵ,△

N on a cylindrical function ψγ is nonzero only when one of the edges eI in
△ intersects a vertex of the graph γ. This means that we need only determine how
those cells of a regulator that contain vertices of γ transform under diffeomorphisms.
Moreover, for a fixed graph, we can always choose ϵ small enough that every vertex is
contained in exactly one cell – we will call such regulators refined. We can now formulate
the transformation condition on regulators. To each graph γ, we associate a refined
and permissible regulator Rϵ,γ. We then define a diffeomorphism-covariant quantum
regulator to be a family {Rϵ,γ : ϵ > 0, γ ∈ L} of refined and permissible regulators
that satisfy the following condition: if (γ, v) is diffeomorphic to (γ′, v′), where v, v′
are vertices of γ, γ′, then for every ϵ and ϵ′, (γ, v,△, (eI), (αi)) is diffeomorphic to
(γ′, v,△′, (e′I), (α′

i)), where △ and △′ are the cells corresponding to Rϵ,γ and Rϵ′,γ′ , and
containing v and v′, respectively. Such diffeomorphism-covariant regulators exist (see
[13] and the references therein for examples).

Diffeomorphism-covariant quantum regulators give rise to diffeomorphism-covariant
regulated constraint operators (5.42). The final step now consists in removing the
regulators to obtain well-defined Hamiltonian constraint operators on Hkin. It turns
out, however, that the operators ŜRϵ,γ ,∆

N do not converge in Hkin as ϵ → 0. To see
this, consider the action of these operators on spin-network states. Since ŜRϵ,γ ,∆

N are
linear operators on L2(Aγ), they map a spin-network state on γ to a different spin-
network state on γ. Now, if ϵ ̸= ϵ′, then a regulator of dimensions ϵ must, in general,
contain a different set of edges in each cell than a regulator of dimensions ϵ′. These two
observations imply that the actions of ŜRϵ,γ ,∆

N and Ŝ
Rϵ′,γ ,∆
N on the same spin-network

state |sγ⟩ should yield distinct spin-network states. But by construction, distinct spin-
network states on the same graph are orthonormal, whence ⟨sγ| ŜRϵ,γ ,∆

N Ŝ
Rϵ′,γ ,∆
N |sγ⟩ = 0,

which implies that limϵ→0 Ŝ
Rϵ,γ ,∆
N does not exist.

Have we hit a roadblock? Certainly not, for just as in the case of the diffeomorphism
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constraint, we have recourse to the dual space H⋆
kin. We extend the action of regulated

constraint operators (5.42) to H⋆
kin in the obvious fashion. For each ρ ∈ H⋆

kin, we define

(ŜRϵ
N · ρ)(ψ) := ρ(ŜRϵ

N · ψ) (5.43)

for every ψ ∈ H. This allows us to remove the regulator by defining

ŜN = lim
ϵ→0

ĈRϵ
N (5.44)

via
(ŜN · ρ)(ψ) := lim

ϵ→0
ρ(ŜRϵ

N · ψ), (5.45)

and identify the domain of ŜN in H⋆
kin as the set of states ρ for which the limit above

exists; it can be shown that this domain is nonempty (see [13, 59]). Thus, we have suc-
cessfully constructed a quantum version of the Hamiltonian constraint as an operator
on H⋆

kin. Physical states are elements of H⋆
kin that lie in the null space of this operator.

But before ambition gets the better of us, let us pause here to highlight some problems
with the foregoing constructions.

To begin with, it is obvious that the action of the constraint operators, even after
the regulators are removed, depends on the choice of the regulators. This is because,
as already explained, owing to the different arrangements and numbers of edges and
loops per cell in different regulators, the action of differently regulated constraints on
the same state in Hkin yields possibly different states. Since the limit in Eq (5.45) is
taken pointwise, this implies that different regulators give rise to different states inH⋆

kin

for the same state in Hkin. Therefore, the final constraint operator carries a memory
of the classical background space on which the regulators were constructed. Not only
does this leave open the question of which regulator ought to be considered physical,
but it also means that our constructions run afoul of full background independence,
contrary to one of the central aims of non-perturbative quantum gravity.

Another ambiguity associated with our approach is the one that features in any
approach to implementing the constraints on the quantum level via Dirac quantisation
(see Section 1.3.2). This is the problem of operator ordering, which manifests itself
in our choice of writing the curvature, connection and the volume functional in the
specific order in which they appear in Eq (5.35). How can we be sure that this is the
correct ordering? As we discussed in Section 1.3.2, modulo empirical input, there is
no fully satisfactory answer to this question, except perhaps concerns pertaining to
simplicity.

Nevertheless, there is a justification for our approach that offers some immunity
against the foregoing concerns. To access it, let us probe the domain of the Hamilto-
nian constraint operator in H⋆

kin. Generally, this domain will depend on the choice of
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regulators, but there is a distinguished subspace of it that is independent of that choice:
it is precisely the diffeomorphism-invariant Hilbert space Hdiff ⊂ H⋆

kin constructed in
the preceding section! To see this, notice that for a fixed regulator Rϵ, cells correspond-
ing to different, unequal choices of ϵ differ in terms of their shape. In other words, the
regulators Rϵ corresponding to different values of ϵ are related by a diffeomorphism.
This implies that up to diffeomorphisms, for every regulator Rϵ, the operator ŜRϵ

N is
independent of the choice of ϵ, i.e. for every ϵ, ϵ′, there exists a diffeomorphism φ such
that

ŜRϵ
N · ψ = Û(φ) · [ŜRϵ′

N · ψ] (5.46)

for every ψ ∈ Hkin and every lapse function N . Now suppose ρ ∈ Hdiff . Then
Eqs (5.11) and (5.46) imply that

ŜRϵ
N · ρ = Ŝ

Rϵ′
N · ρ (5.47)

for all ϵ, ϵ′ and N . Therefore, the action of ŜRϵ
N on Hdiff is independent of ϵ, whence

the limit in Eq (5.45) becomes trivial. We conclude that irrespective of the choice
of regulators, all diffeomorphism-invariant states lie in the domain of ŜN . This fact
provides some justification for according at least some physical relevance to our par-
tially background-dependent construction, and offers hope for finding the solutions to
all the constraints of general relativity simultaneously. Recalling the shortcomings of
the ADM quantisation program from Chapter 1, this is an improvement by leaps and
bounds.

5.3 Quantum Gravitational States

In this section, following Ref. [13], we will provide an algorithm to find solutions to both
the diffeomorphism and Hamiltonian constraints simultaneously, i.e. diffeomorphism-
invariant states that are also annihilated by the Hamiltonian constraint operator con-
structed in the previous section.

As we explained earlier, obtaining explicit solutions to the Hamiltonian constraint
requires that we make a choice of diffeomorphism-covariant quantum regulators. We
will make the following choice, due originally to Thomas Thiemann [13]. Let Rϵ,γ be a
regulator associated with a graph γ. We restrict the edges (sI) and loops (αi) assigned
to each cell △ of Rϵ,γ containing a vertex v of γ as follows. First, every edge sI must
be a proper segment of an edge of γ that is outgoing at v. Next, to every pair of graph
edges eI , eJ , assign a triangular loop αi subject to the following conditions: (1) αi
contains v but no other point of γ; (2) αi lies in a 2-plane that contains eI , eJ and
is defined up to diffeomorphisms that preserve the edges of γ, and (3) αi is oriented
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clockwise with respect to the orientation defined in the 2-plane by the ordered pair of
segments (sI , sJ). We call loops such as αi extraordinary. Finally, the constants CiJ

in the regulated operators (5.42) are 0 or ±k, depending on the relative orientation of
the tangent vectors to the segments sI , sJ and sK at v with respect to the background
orientation on Σ, k being a fixed constant.

Now let η(|sjγ,I⟩) be a group-averaged diffeomorphism-invariant state inH⋆
kin. There

can be two possibilities: either γ itself contains an extraordinary loop or it does not.
In the former case, ŜNη(|sjγ,I⟩)) = 0, so that any group-averaged spin networks corre-
sponding graphs that do not have any extraordinary loops are solutions to the Hamil-
tonian constraint. But these are not very interesting. Let us, therefore, focus on graphs
containing extraordinary loops.

Let γ be a fixed graph with extraordinary loops, and let j be the set of spin-j
representations of SU(2) associated with the edges of γ. Consider the set Γ(n)

(γ,j) of all
spin-labelled graphs (γ′, j′) that can be obtained from (γ, j) by diffeomorphisms and by
creating n extraordinary loops labelled by j(π), where π is the SU(2) representation
used in the definition of the constraint operator (5.42). Let D(n)

(γ,j) be the set of of all
group-averaged spin-network states coming from group-averaging the elements of Γ(n)

(γ,j).
The spaces D(n)

(γ,j) are finite-dimensional and satisfy the following property:

Γ(n)
(γ,j) ̸= Γ(n′)

(γ′,j′) ⇒ D(n)
(γ,j) ∩ D(n′)

(γ′,j′) = ∅, (5.48)

which implies that every ψ ∈ Hdiff ⊂ H⋆
kin can be uniquely decomposed as

ψ =
∑
γ,j,n

ψ
(n)
(γ,j), where ψ

(n)
(γ,j) ∈ D(n)

(γ,j). (5.49)

We can thus conclude that

ŜN · ψ = 0 ⇔ ŜN · ψ(n)
(γ,j) = 0 ∀n, (γ, j). (5.50)

In other words, any general solution to the Hamiltonian constraint can be found by
finding solutions in finite-dimensional subspaces of Hdiff , a task which amounts to
solving a finite set of linear equations – a computer-programmable problem! Analogous
results hold for the part of the Hamiltonian constraint (5.30) that we have not solved.



Epilogue

What are we to make of our coddiwomple through quantum gravity? Compared with
the situation described in Chapter 1 with respect to the geometrodynamical variables,
we indeed have made astonishing progress. To begin with, we have obtained a fully
consistent version of general relativity quantised via a well-defined prescription in an al-
most (modulo a fully satisfactory treatment of the Hamiltonian constraint) background-
independent manner. In the final picture, there is no memory of any metric-dependent
objects defined on the spacetime manifold. In fact, through the area operator of Chap-
ter 4, the quantum theory ends up punching holes in the spacetime continuum that we
began with in the classical theory:

Oh these scissors from the quantum attic,
Ripping to shreds the spacetime fabric,
Ruining ten years of Einstein’s painful toil,
What a spoil, cries the continuum, what a spoil!

But this comes at a price. Having reached the lofty heights of the divine quantum
theory, how are we to descend to the mundane classical world we left behind? Why is
that important, one might ask? Well, in the absence of empirical input, all we have at
our disposal to physically justify the bold and terrifying mathematical hitchhiking that
we have committed ourselves to is the certainty that under a suitable approximation,
we recover the classical theory that fueled our journey in the first place. But a fabric
so severely mutilated as we have butchered the spacetime fabric is hardly capable
of being mended back to its original condition. Indeed, semi-classical and classical
approximations of loop quantum gravity and whether or not they yield the correct
physical theories at the relevant scales are still open problems. Some progress has been
made, but are still a long way from achieving the end goal (see, for instance, Ref. [22]
for some idea of how one may attack the problem in the connection representation of
loop quantum gravity). A very active area of research in this context is the spinfoam
formalism of loop quantum gravity [27, 21].
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In addition to this, one of our ultimate goals was to find a home for physical
quantum states, which are states satisfying a suitably quantised version of general
relativistic constraints. We have not fully achieved this goal. In particular, the Hamil-
tonian constraint has not been quantised in a fully background-independent manner.
Nonetheless, both a completely satisfactory solution to the diffeomorphism constraint
and the tight matching between diffeomorphism-invariant states and the support of the
Hamiltonian constraint operator are highly nontrivial facts. Furthermore, there is also
the so-called “master constraint” approach to the constraints that was pioneered by
Thomas Thiemann [58] and that we have not been able to visit. These considerations
hold promising hopes for future progress.

Another area that we have not explored is the application of the theory developed
here to quantum cosmology. This is also a very active area of research in which loop
quantum gravity has a number of achievements to its name, such as a derivation of
the blackhole entropy and the removal of spacetime singularities. Again, these are
enviable virtues of the formalism developed in this thesis, and provide justification for
our central theme, namely that connections of a compact “gauge group” constitute
perhaps a much better arena to explore the terrain of canonical quantum gravity. For
further details about loop quantum cosmology, we refer the reader to Ref. [13, 21, 23].
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