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Abstract

Recent developments in quantum materials with emergent properties are opening

alternative avenues for materials engineering on demand. In quantum materi-

als, collective electrons demonstrate various macroscopic behavior, typically in the

presence of external stimuli i.e., electromagnetic fields. The main theme of this

thesis is to explore magneto-optic phenomena in two-dimensional quantum mate-

rials which show promise for optical communication technology, remote sensing of

magnetic fields, and other laser applications.

The central body of this work explores magneto-optic effects and mechanical beam

shifts in these 2D quantum materials. For the sake of clarity, we have divided the

thesis into three parts. First, we focus on some basic concepts of condensed matter

physics which are important for understanding this thesis. The theoretical pursuit

involves topological band theory, topological invariants, the description of the clas-

sical and quantum Hall effects, time-reversal symmetry, and introduction to 2D

and 3D topological insulators. We discuss the electronic properties of graphene and

silicene by studying their low-energy Dirac physics using tight-binding approxima-

tions. We also derive the energy dispersion in the presence of a magnetic field. To

drive topological quantum phase transition between trivial and non-trivial states,

we utilize the electric and magnetic fields as a control knob. Furthermore, we focus

on the transport properties providing the theoretical framework.

Second, we focus on the magneto-optic responses of 2D silicene and hybridized

topological insulators. The behavior of these quantum materials under the in-

fluence of external fields, for example, electric and magnetic fields, is dictated in

a highly non-trivial manner including the possibility of topological phase transi-

tions. The presence of strong spin-orbit interaction in silicene and its analogues,



germanene and tinene, also leads to the opening of a gap in the energy spectrum

and spin-splitting of the bands in each valley. We use a semiclassical treatment to

describe the Faraday rotation (FR) and magneto-optic Kerr effect (MOKE) which

can be modulated both electrically and magnetically. We derive analytical expres-

sions for the valley and spin-polarized FR and MOKE for arbitrary polarization

of incident light in the terahertz regime. All in all, very large FR and MOKE can

be achieved.

We also discuss the magneto-optic response of topological insulator (TI) thin films

exposed to quantizing, external magnetic fields. We theoretically investigate quan-

tum phase transitions from topologically non-trivial to trivial states and vice versa

in three-dimensional hybridized topological insulators ultra-thin films. The inter-

play between the hybridization of the top and bottom surface states (SSs) and

Zeeman energy also gives rise to topological and normal insulating phases. There-

fore, by tuning the Zeeman energy, we can drive the phase transition between

these two phases. Furthermore, we impinge a Gaussian beam on the surface of

the 3D TI to study FR MOKE in the presence of an external magnetic field, while

explicitly taking into account the hybridization between the top and bottom Dirac

SSs of the TI film.

The third part of the thesis is devoted to Goos-Hänchen and photonic spin Hall

shifts for light beams impinging on the surface of 2D quantum material-substrate

systems in the terahertz regime. We show that giant positive and negative quan-

tized spatial and angular beam shifts can be obtained by tuning the angle of

incidence in the vicinity of the Brewster angle. We demonstrate that the in-plane

and transverse spatial spin-dependent shifts are quantized due to the Landau level

(LL) quantization of the magneto-optic conductivities.
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Organization of thesis

The current thesis is organized as follows. In Chapter 1, we present some basic con-

cepts which are important for understanding this thesis. We briefly introduce the

quantum materials that we study, which are graphene, silicene, two-dimensional

transition metal dichalcogenides, topological insulators, etc. We also present the

basic band theory and topology. We furtherly enhance the discussion by connect-

ing the topology and the integer quantum Hall effect via the Berry curvature and

the Chern number. We also explore several novel phenomena e.g., time reversal

symmetry and spin-orbit coupling for the two and three-dimensional topological

insulators.

In Chapter 2, we discuss the lattice structure and derive the low energy Hamil-

tonian using a tight-binding approximation for quantum materials, in particular

the energy spectrum of the graphene and silicene in the presence of electric and

magnetic fields. In Chapter 3, we develop the description of magneto-optical con-

ductivities for the 2D quantum systems admitting the Hamiltonian already derived

in Chapter 2. Particularly, we explore spin and valley-polarized longitudinal and

Hall conductivities with particular attention to the topological quantum phase

transitions which can be tuned by an external electric field.

Subsequently in the following chapters, the magneto-optical conductivities are

utilized for the investigation of the spin and valley-polarized magneto-optic re-

sponses in 2D quantum materials. In Chapter 4, we describe the physics under-

lying the spin and valley-polarized magneto-optic rotation and ellipticity in the

silicene and 3D hybridized topological insulators. In Chapter 5, we investigate

the Goos-Hänchen (GH) phenomenon in the staggered 2D quantum materials and

hybridized topological insulators in the presence of perpendicular electric and mag-

netic fields. Finally, Chapter 6 is devoted to an analysis of the photonic spin Hall

effect (PSHE) in these fascinating and versatile low dimensional quantum systems.
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Chapter 1

Introduction

1.0.1 A brief introduction to quantum materials

With rapid advancement in contemporary technologies over the last decades, tra-

ditional systems such as nanostructures, thin films have been exhausted in terms

of their maximum tunability, the potential for miniaturization, and device manu-

facturing. This in turns influenced and shifted the focus of the physics and mate-

rials science communities to search for materials with exotic yet flexible properties

at unprecedented dimensions and time scales, leading to the burgeoning fields in

condensed matter physics e.g., valleytronics, spintronics, magnonics, and optoelec-

tronics to name a few. Quantum materials offer a similar prospect for the future

technology with broad functionalities. Owing to the quantum mechanical interac-

tions at play at sub-atomic levels, it would not be wrong to say that all materials

are quantum in nature, yet it is believed that there are certain conditions that

must be met for a material to be qualified as a ‘quantum’ material.

According to Ref. [1], a material is deemed quantum when the wavefunctions of

electrons are wrapped up like a complicated knot. Furthermore, novel emergent

phenomena are often seen due to the interaction of electronic states. The term

emergent is used to evoke cooperative behavior of a large number of microscopic

constituents, like charges and atoms resulting in phenomena that are qualitatively

different than the behaviors of the individual constituents. In other words, a sys-
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Figure 1.1: The hexagonal cobweb for the quantum materials’ family.

tem with strongly correlated electrons, the rich variety of topologically ordered

states, the existence of Dirac fermions or interactions between electrons, spins,

magnons, polariton, phonons, etc. are also considered to be defining characteris-

tics for a material to be quantum.

These interactions between excitations lead to the emergence of new properties.

Quantum materials give rise to exotic and often remarkable properties like relativis-

tic spin-orbit interaction, electron-electron interactions [2], quantum confinement

[3, 4], quantum fluctuations [5], quantum entanglement [6], quantum coherence

[7] and the topology of wavefunctions [8]. Examples of these unusual quantum

properties include high-temperature superconductors (SCs) [9, 10], triplet super-
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Figure 1.2: The classification of various type of 2D quantum materials based
on their structures and topology. Here TMD=Transition metal dichalcogenide,
BP=Black phosphorus and H-BN=Boron nitride.

conductivity [11, 12], integer and fractional quantum Hall effects [13, 14], the

quantum spin Hall effect in 2D materials [15, 16], quantized quantum anomalous

Hall effects [17] in quantum topological insulators [17, 18], quantum spin liquids

[19], superfluid transport and spin superfluidity [20], to name just a few. Examples

of some quantum materials are outlined in Fig 1.1.
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Over the past decades, two-dimensional (2D) quantum materials have attracted

much attention, both experimentally and theoretically. This paradigm shift began

with the discovery of the integer quantum Hall effect and the physical realization

of quantum semiconductor devices and structures (quantum wells, quantum wires,

quantum dots, and superlattices) in 1980 [13, 14]. These wonder materials display

the exclusive hallmarks of topological order, including dissipation-less quantum

transport and the observation of the fractional quantum Hall effect [21]. These

2D materials include a wide range of new quantum materials, originally discovered

in condensed matter physics systems, for example, graphene, staggered 2D semi-

conductors (i.e. silicene, germanene, stanene) [22, 23, 24, 25], 2D transition metal

dichalcogenides (TMDCs) [26, 27], topological insulators and topological semimet-

als [21, 28], Dirac-Weyl semimetals [29, 30], and their artificial analogs [31, 32].

Probably one of the most celebrated quantum materials is graphene, also called a

“wonder material” [33, 34]. While graphene has already been identified as a po-

tential superstar by the electronics industry due to its distinguished electrical and

optical properties, the discovery has also sparked a growing scientific interest to

search for Dirac physics in materials other than graphene, which also demonstrate

versatile performances and potential applications in electronic [35], spintronic [36],

valleytronic [37], spinoptronic [38], optoelectronic [38], and plasmonic [39] devices.

Some representative 2D quantum materials are enlisted in Fig. 1.2.

It is pertinent here to review some basic concepts in condensed matter physics

which are recurrent throughout this thesis and will provide the necessary theoret-

ical background to the reader. We set up the discussion with a brief review of

quantum materials based on topology and the band theory of solids. The discus-

sion is furthered by developing a connection between the topology and the integer

quantum Hall effect (IQHE) through the Berry curvature and the Chern num-

ber. Finally, we will explore topological insulators in two and three dimensions.

Topological insulators are aptly described in the books [40, 41].
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1.0.2 Band theory and topology

The electronic band structure of a solid describes the range of energy levels that

can be occupied by an electron of a given momentum k. The gap between energy

levels is a region where no electronic states can exist. Materials can be classified

into different classes based on their band gaps. Three main categories: metals,

semiconductors, and insulators are shown in Fig. 1.3. Systems that display an en-

ergy gap in the electronic band structure (BS) between the highest level (filled) in

the valence band and the lowest energy band (empty) in the conduction band are

typically classified as insulators (often called band insulators) or semiconductors

depending on the size of their bandgap. Referring to the insulator in Fig. 1.3, to

excite one of the most energetic electrons from the valance band to the conduction

band a finite amount of energy (Eg) is needed.

The bandgap of a material is also one of the distinguishing features to classify

the system into topologically equivalent groups. Important information about the

system can be extracted from the topology of the wavefunctions constituting the

energy bands. In mathematical language, topology is concerned with geometrical

Figure 1.3: The band structures of metals, semiconductors and insulators, respec-
tively. Each blue dot represents two electrons with opposite spins.

31



properties of objects that are insensitive under continuous deformations [42]. A

simple example for explaining this concept is that of a sphere and a donut. It is

observed that the two surfaces are topologically different as one cannot be con-

tinuously transformed to the other. For example, one can deform smoothly the

sphere into the shape of a disc or a bowl but it cannot be smoothly deformed into

a donut without scooping material out of it. On the other hand, the donut can

be transformed into a coffee cup where the hole in the donut becomes the handle

of the cup. In the language of topology, the sphere and bowl are in the same

topological class while the donut and cup are in separate classes.

Furthermore, the sphere and a donut are distinguished by an integer topologi-

cal invariant based on the number of holes in the manifold. This quantity is a

topological invariant and is termed as genus. In the above example, the sphere

has a genus g = 0 and a donut has a genus g = 1. Both of these objects are shown

in Fig. 1.4. The associated topological invariants can be determined for geomet-

rical surfaces utilizing a beautiful theorem known as the Gauss-Bonnet theorem.

The Gauss-Bonnet theorem states that the integral of Gaussian curvature K over

Figure 1.4: Topologically different objects (a sphere and donut) can be classified
according to their genus (g).
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a closed 2D surface is

χ =
1

2π

∫
S

KdA, (1.1)

where χ is called the Euler characteristic, a global quantity describing the shape

of the topological space and this is also quantized. For a sphere χ = 2, where

K = 1/R2. The Euler characteristic of the surface is related to the genus by

χ = 2− 2g [43].

The question that arises here is: how can topology be utilized to distinguish dif-

ferent phases of matter? We will first discuss the topological classification of

insulators. For example, two insulators are topologically equivalent if one can be

smoothly transformed into the other by adiabatically tuning the bandgap such that

the system always remains in the ground state as depicted in Fig. 1.5. The bandgap

must be finite throughout the transformation. Figs. 1.5 (a) and (b) illustrate

smooth and unsmooth deformation of BSs in an insulator. Fig. 1.5(a), illustrates

the fact that two topologically inequivalent classes can be deformed smoothly in to

one another while in Fig. 1.5(b), we show that the bandgap changes from + to −,

which is not a smooth deformation. The occupied states of a band insulator can

be viewed from a topological perspective [21, 28]. To identify the topological order

of a material different classification scheme has emerged in the past few decades

[44, 45]. From this, it is understandable, that topologically inequivalent insulator

must involve a phase transition and the energy gap must vanishes (we will discuss

these phase transitions in the subsequent chapters in detail).

The idea of topology was first introduced in solid-state physics for describing the

integer quantum Hall effect (IQHE) [13] (which we discuss in detail in the follow-

ing Section). In IQHE, the two-dimensional electron gas (2DEG) forms discrete

Landau levels (LLs) which are spaced apart by the cyclotron frequency h̄ωc. The

IQHE shows band gaps and at the same time, exhibits non-zero transverse (or

Hall) conductivity which is quantized in integer values of e2/h. After the discovery

of the IQHE, scientists realized that insulators and semiconductors indeed require
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another sub-classification based on topology i.e., the fundamental origin of the

IQHE is due to the topological nature of the bulk states. Therefore, bulk states

can be distinguished by a topological invariant and different quantum phases are

characterized and classified by these topological invariants [45, 46, 47]. One such

topological invariant is the winding or the Chern number [21, 48]. This number is

related to the Berry phase of Bloch wave functions. In the following sections, we

will link Berry’s phase and the Chern number.

1.0.3 Berry’s phase

The Berry phase is an important concept of topological band theory and was first

proposed in 1980 by Berry for quantum systems undergoing cyclic evolutions [49].

It is a quantum mechanical effect that arises due to the cyclic evolution of quantum

Figure 1.5: (a) Smooth deformation, (b) not a smooth deformation.
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systems subjected to adiabatic disturbance. The adiabatic theorem states that if

a quantum system evolves in time from some initial state i to some final state f

and the evolution with time is very slow relative to the rate of transition, then the

quantum system starting off in an eigenstate remains in the instantaneous eigen-

state of the Hamiltonian. This problem can be casted in mathematical language.

Suppose a physical system with a general time-varying Hamiltonian depending

on a set of time-dependent external parameters (e.g. magnetic field, electric field,

flux and strain) labelled as R(t) = (R1, R2, ....) is initially in one of its eigen-

states |n (R(0))〉 [50]. Now if the system evolves adiabatically, then according

to the quantum adiabatic theorem [51, 52], the system evolution can be written

mathematically as

Ĥ (R(t)) |n (R(t))〉 = En (R(t)) |n (R(t))〉, (1.2)

showing that the system remains in the instantaneous eigenstate |n(t)〉 as we are

interested in the adiabatic evolution of the system, the evolution is sufficiently

slow in time. The system picks up a phase θ(t) which is derived next.

The total wave-function of the quantum system at time t is given by

|Ψn(t)〉 = e−iθ(t)|n (R(t))〉. (1.3)

The time evolution of the system can be described by the time-dependent Schrödinger

equation:

Ĥ|Ψ(t)〉 = ih̄
d

dt
|Ψ(t)〉, (1.4)

which can therefore be written with the help of the ansatz in Eq. (1.3) as

En (R(t)) |n (R(t))〉 = h̄
dθ

dt
|n (R(t))〉+ ih̄

d

dt
|n|R(t)〉. (1.5)

Assuming orthonormality 〈n (R(t)) |n (R(t))〉 = 1, we obtain

En (R(t)) = ih̄

〈
n (R(t)) | d

dt
|n (R(t))

〉
+ h̄

dθ

dt
, (1.6)
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whose solution is given by

θ(t) =
1

h̄

∫ t

0

En (R (t′)) dt′ − i
∫ t

0

〈
n (R (t′))

∣∣∣∣ ddt′
∣∣∣∣n (R (t′))

〉
dt′. (1.7)

The first term of the above represents the dynamical phase and the second part is

called the Berry phase γ. The total wave function can be written as

|ψ(t)〉 = exp

(
1

h̄

∫ t

0

En (R(t′))

)
exp(iγn)|n (R)〉. (1.8)

All in all, the Berry phase can be written as:

γn = i

∫ t

0

〈
n(R(t′))

∣∣∣∣ ddt
∣∣∣∣n(R(t′))

〉
dt
′
, (1.9)

It is convenient to remove the time and instead express the Berry phase in terms

of evolution in the particular space R,

γn = i

∫
C

〈n(R(t′))|∇R|n(R(t′))〉 · dR, (1.10)

where we have used d/dt′ = ∇R · dR/dt′ to re-express the above equation. Subse-

quently, we can define the Berry connection or Berry vector potential as follows

An(R) = −i 〈n(R)|∇R|n(R)〉 . (1.11)

The Berry phase can also be expressed as a path integral in the parameter space

as

γn =

∫
C

dR ·An(R). (1.12)

Obviously the Berry connection An(R) is gauge dependent. Therefore, under a

gauge transformation we can write

|n(R)〉 → eiξ(R)|n(R)〉, (1.13)

where ξ(R) is some smooth and a single-valued function. The Berry connection

transforms in the usual way as below

An(R)→ An(R)− ∂

∂R
ξ(R). (1.14)
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The Berry phase γn is modified by the gauge transformation through an additional

contribution

−
∫
C

∂

∂R
ξ(R) · dR = ξ[R(0)]− ξ[R(τ)], (1.15)

where τ is a long time (period) after the path C has been wholly traversed. Many

people concluded that through a smart choice ξ(R) could cancel the Berry phase

in Eq. (1.10), but that reasoning was incorrect.

Consider a closed path C, such that R(0) = R(τ). Due to the single-valued

nature of our eigenstates basis, |n (R(τ))〉 = |n (R(0))〉. Gauge transformations

must also maintain this property, therefore

eiξ[R(0)]|n[R(0)]〉 = eiξ[R(τ)]|n[R(τ)]〉, (1.16)

which is only possible if ξ (R(τ))− ξ (R(0)) = 2πn, where n is an integer (n ∈ Z).

So, under a closed path, the Berry phase can be cancelled only if it is an integer

multiple of 2π.

1.0.4 Berry curvature

The curl of the Berry vector potential is known as the Berry curvature and is given

by

Ωαβ
n (R) = ∇×An(R) =

∂

∂Rα
Aβn(R)− ∂

∂Rβ
Aαn(R). (1.17)

The Berry curvature is just like a magnetic field in the momentum space. From

Eq. (1.11), we have

Aβ
n(R) = −i〈n(R)| ∂

∂Rβ
|n(R)〉, (1.18)

taking derivative with respect to Rα, we obtain

∂

∂Rα
Aβn(R) = i〈n(R)| ∂

∂Rβ
|n(R)〉+ i〈n(R)| ∂2

∂Rα∂Rβ
|n(R)〉. (1.19)
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In a similar manner, we can write

∂

∂Rβ
Aαn(R) = i〈n(R)| ∂

∂Rα
|n(R)〉+ i〈n(R)| ∂2

∂Rβ∂Rα
|n(R)〉. (1.20)

From the properties of partial derivatives, we can write

∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x
. (1.21)

Utilizing Eq. (1.21), the Berry cuvature in Eq. (1.17) can be re-written as

Ωαβ
n (R) = i〈 ∂

∂Rα
n(R)| ∂

∂Rβ
|n(R)〉 − i〈 ∂

∂Rβ
n(R)| ∂

∂Rα
|n(R)〉. (1.22)

Using the complete state
∑

n′ |n′(R)〉〈n′(R)| relation, this can be expressed as

〈 ∂

∂Rα
n(R) | ∂

∂Rβ
n(R)〉 =

∑
n′ 6=n

〈 ∂

∂Rα
n(R)|n(R)〉|n′(R)〉〈n′(R)| ∂

∂Rβ
n(R)〉.

(1.23)

Consider
∂

∂Rα
〈n(R)|Ĥ|n′(R)〉 = 0. (1.24)

〈n(R)| ∂
∂Rα

Ĥ|n′(R)〉 = −〈 ∂

∂Rα
n(R)|Ĥ|n′(R)〉 − 〈n(R)|Ĥ| ∂

∂Rα
n′(R)〉

= −En′〈
∂

∂Rα
n(R)|n′(R)〉 − En〈n(R)| ∂

∂Rα
n′(R)〉

= (En − En′)〈
∂

∂Rα
n(R)|n′(R)〉. (1.25)

From above we can write

〈 ∂

∂Rα
n(R)|n′(R)〉 =

〈n(R)| ∂
∂Rα

Ĥ|n′(R)〉
(En − En′)

. (1.26)

Similarly,

〈n′(R)| ∂
∂Rβ

n(R)〉 =
〈n′(R)| ∂

∂Rβ
Ĥ|n(R)〉

(En − En′)
. (1.27)

Finally, Eq. (1.22), can be written in more compact form as

Ωαβ
n (R) = i

∑
n′ 6=n

〈n| ∂
∂Rα

Ĥ|n′〉〈n′| ∂
∂Rβ

Ĥ|n〉 − 〈n| ∂
∂Rβ

Ĥ|n′〉〈n′| ∂
∂Rα

Ĥ|n〉
(En − En′)2

. (1.28)
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The advantages in writing the Berry curvature in summation form is that no dif-

ferentiation on the wave function is involved, therefore it can be evaluated under

any gauge-choice. Next, in the following Section, we systematically introduce the

classical and quantized versions of the Hall effect to begin with.

1.0.5 The classical Hall effect

Understanding the underlying physics of the Hall effect provides a convenient

platform for our discussion of the quantum Hall effect. Fig. 1.6, shows the setting.

A magnetic field B is applied perpendicular to the solid is shown and pointing out

of the page. The electrons are trapped in the two-dimensional (2D) plane of the

conductor and current I is made to flow in the x-direction. The trapped charge

carriers feel a magnetic force toward one side of the conductor and thus accumulate

a net positive charge on the other side of the sample. Due to the separation of

charge carriers, a Hall voltage is developed across the conductor. The inducing

of the Hall voltage VH in the y-direction is known as the Hall effect after Edwin

Hall, who discovered it in 1879. Due to the applied magnetic field, the electrons

undergo circular motion due to the Lorentz force in a direction perpendicular to

Figure 1.6: Classical Hall effect. Electrons move to the left in the conductor. The
magnetic field is directly out of the page, represented by black circles.
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the magnetic field. The charge polarization at both sides of the conductor builds

up until the electric force E acting on the electrons in one direction is balanced

by the magnetic force B on them in the opposite direction. In steady-state,

qE = qvB, (1.29)

where m is the mass, q is the charge and v is the drift velocity of the electron. The

relationship between the electric field E and Hall voltage is

EH =
VH
w
, (1.30)

where w is the width of the conductor. Solving Eq. (1.30), for the Hall voltage we

obtain

VH = Bwv. (1.31)

Consider that the conductor contains n mobile charge carriers per unit volume.

The total current flowing through the conductor can be written as

I = nevA. (1.32)

Here A is the cross-sectional area of the conductor. Utilizing Eqs. (1.29) and (1.30)

in Eq. (1.32) one finally obtains the following expressions for the Hall voltage

VH =
IBw

neA
(1.33)

From Eq. (1.29), it is straight forward to determine the cyclotron frequency with

which the electron goes around the circle;

ωc =
eB

m
. (1.34)
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1.0.6 Drude model

In order to understand some of the core ideas involved in the theory of the quantum

Hall effect, it is instructive to discuss the semi-classical Hall effect for a finite sized

two-dimensional electron gas (2DEG) subjected to a perpendicular external mag-

netic field B as shown in Fig. 1.7. For this purpose, we employ the Drude model

which considers the 2DEG as a gas of electrons, electromagnetically responding to

longitudinal electric and transverse magnetic fields and subject to particle scat-

tering. Due to the Lorentz force, the charge carriers are moving in circular orbits

having momentum ~p. The Lorentz force can be written as

d~p

dt
= −e

(
~E +

~p

m
× ~B

)
− ~p

τ
, (1.35)

where τ is the scattering rate, which captures the effect of the electron friction with

impurities. Eq. (1.35) is the simplest model of charge transport, in which we treat

the charge carriers as if they are classical billiard balls (ignoring electron-electron

interactions etc.).

The conductivity of the 2DEG system can be obtained from equilibrium solutions

of the equation of motion, d~p/dt = 0, as follows

eEx = −eBvy −
mvx
τ
, (1.36)

eEy = eBvx −
mvy
τ
. (1.37)

The current densities along the x and y directions are related to the velocities by

the following relations

Jx = nevx =
enτ

m
(eEx + eBvy) (1.38)

and

Jy = nevy =
enτ

m
(−eEy − eBvx) . (1.39)

The current flowing in the y direction is zero because the current cannot flow out

of the sample in the y direction. From (1.39), we can write

Jy = nevy =
enτ

m
(−eEy − eBvx) = 0. (1.40)
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Figure 1.7: Representation of 2DEG electrons in a magnetic field moving in circular
orbits with skipping trajectories. The diagram gives a classical picture.

We can write

Ey = Bvx = −eBτ
m

Ex. (1.41)

The Hall coefficient can be defined as

RH =
Ey
JxB

, (1.42)

where Jx = σ0Ex = ne2τEx/m and the Drude conductivity σ0 = ne2τ/m. Using

Eq. (1.41) in Eq. (1.42), the Hall coefficient in the standard form can be written

as

RH = − eBτEx/mc

ne2τExB/m
= − 1

ne
. (1.43)

We can re-write Eq. (1.38) and (1.39) relating the current density and the electric

field (
Jx
Jy

)
=

(
σ0 σ0ωcτ

−σ0ωcτ σ0

)(
Ex
Ey

)
, (1.44)

which is the tensorial form of Ohm’s law in a 2DEG. The explicit expression for

the conductivity tensor is given by
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σ =

(
σxx σxy
−σxy σyy

)
= σ0

(
1 ωcτ
−ωcτ 1

)
, (1.45)

with σxx = σyy = σ0 and σxy = σyx = ωcτ . The resistivity can be defined as the

inverse of the conductivity. From the above expression, one may immediately read

off the resistivity tensor as

ρ =

(
ρxx ρxy
−ρxy ρyy

)
(1.46)

The off-diagonal component of the resistivity tensor is called the Hall resistivity

and is given by

ρxy =
ωcτ

σ0

=
ωcτ

ne2τ/m
=
eBτ/mc

ne2τ/m
=

B

nec
, (1.47)

where ρxy is proportional to the magnetic field B. Similarly, the diagonal resistivity

is given by

ρxx =
m

ne2τ
(1.48)

showing that ρxx depends on the scattering time τ . In the limit τ →∞, ρxx = 0.

In the following section, we approach the 2D conductivity in a quantum mechani-

cal picture before we come back to the resistivity again.

1.0.7 Landau levels

Before we review the integer quantum Hall effect we will first look at a non-

relativistic 2DEG fermion in an external magnetic field. In order to understand

the quantum mechanical picture, we start with the Hamiltonian of the free electron

given by

Ĥ =
p̂2

2m
. (1.49)

Introducing the Landau gauge for the magnetic vector potential A = (−yB, 0, 0),

which is related to B through the relation B = ∇ × A and utilizing the Peierls

substitution, the mechanical momentum is replaced by the canonical momentum

in the following fashion [53],

h̄k → h̄k − e

c
A, (1.50)
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allowing the Hamiltonian to be written as

Ĥ =
1

2m

(
p̂x −

eBy

c

)2

+
p̂2
y

2m
. (1.51)

The Hamiltonian commutes with px so it is obivious that px is a good quantum

number. The trial wave-functions is

ψ(x, y) =
eikx√
L
χ(y), (1.52)

where L is the length of the 2DEG. The momentum along the x direction can be

defined as px ≡ hk. Making the usual substitution, we can express our Hamiltonian

as

Ĥψ(x, y) =

[
p̂2
y

2m
+

(hk − eBy/c)2

2m

]
eikx√
L
χ(y)

=

[
p̂2
y

2m
+
e2B2

2mc2

(
y − hkc

eB

)2
]
eikx√
L
χ(y)

=

[
p̂2
y

2m
+
e2B2

2mc2

(
y + kl2B

)2
]
eikx√
L
χ(y)

=

[
p̂2
y

2m
+
mω2

c

2
(y − y0)2

]
eikx√
L
χ(y), (1.53)

where ωc = eB/m is the cyclotron frequency, y0 = −h̄k/(eB) and lB =
√
h̄/eB is

defined as the magnetic length. From Eq. (1.53), we note that we are dealing with

a simple harmonic oscillator (SHM) with a shifted origin y0. The energy levels of

the non-relativistic fermions of 2DEG are discrete and given by

En = h̄ωc

(
n+

1

2

)
. (1.54)

where n is an integer denoting Landau quantum number. The energy dispersion is

therefore given by discrete Landau levels spaced apart by h̄ωc as shown in Fig. 1.8.

In the classical picture, the Lorentz force is responsible for the circular orbits

of electrons in a magnetic field and the trapped charge carriers at the edges trying

to move in circular orbits with skipping trajectories. It is obvious that the SHM
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Figure 1.8: (a) The quantum Hall state and equidistant Landau levels separated
by h̄ωc.

interpretation seems reasonable. For n = 0 LLs the wave function is a Gaussian

centered at y0 = −kl2B, given by

ψ(x, y) =
eikx√√
πLxlB

e
− 1

2l2
B

(y+l2B)2

=
eikx√√
πLxlB

e
− 1

2l2
B

(y−y0)2

. (1.55)

It is also useful to know the degeneracy of each LL as we have a largely degenerate

system. To do this effect, we restrict ourselves to a finite region of the xy-plane.

The rectangle have dimensions Lx and Ly in the x and y direction. The quantum

system can be described by a particle in a box with allowed momentum values

kx = 2πn/Lx. The number of degenerate states in each LL for a system of size

Lx × Ly is given by

N =
Lx
2π

∫ 0

−Ly/l2B
dkx =

LxLy
2πl2B

(1.56)

It is common to relate the degeneracy and more importantly the flux. The quantum

of flux is defined as

Φ0 =
2πh̄

e
=
h

e
, (1.57)

so the degeneracy can be expressed as

N =
LxLyB

Φ0

=
Φ

Φ0

. (1.58)
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Figure 1.9: (a) Illustration of longitudinal and transverse resistivities as functions
of the magnetic field. (a) Classical Hall effect behavior and (b) the IQHE. The red
color. shows the ρxx while the green line denotes the Hall resistivity ρxy, which
exhibits plateaus quantized in exact multiples of h/e2.

Similarly, the filling factor is defined by

ν =
Φ0n

B
, (1.59)

which is an important consideration in the IQHE and describes how many of the

lowest LLs are filled. Note that n = N/LxLy. After discussing the classical and

semiclassical Hall effect in 2DEG, we are now capable to derive the famous IQHE

for relativistic fermions.

1.0.8 The Integer quantum Hall effect and chiral edge states

In this section, we discuss the integer quantum Hall effect. The IQHE was discov-

ered in 1980 by Klaus von Klitzing for which he received a Nobel prize in 1985.

Klitzing found that the diagonal or longitudinal resistivity ρxx became very small

for certain values of the applied magnetic field for which the Hall resistivity ρxy

sits on a plateau before jumping suddenly to the next plateau. Furthermore, on
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each of these plateaus, the Hall resistivity ρxy takes the value

ρxy =
h

e2

1

ν
, (1.60)

where the prefactor the filling factor is an integer ν = 1, 2, .., known as the filling

factor [13]. This equation presents the quantization of the Hall resistivity. The

experimental results of the longitudinal ρxx and Hall resistivity ρxy are shown in

Fig. 1.9.

By looking again at the classical picture in Fig. 1.7, we notice that charges per-

form circular motion in the presence of a magnetic field. Some of the particles

move in circular closed orbits known as cyclotron orbits. On the other hand, some

of the charge carriers closer to the edge make open electron trajectories that hit

repeatedly the sample edge, because the electrons cannot exit the sample. These

are known as skipping orbits. The skipping orbits exhibit the formation of propa-

gating edge states in a magnetic field. The classical picture is thus incomplete and

unable to give us quantitative predictions. The picture needs quantum mechanical

consideration to explain the quantized Hall effect.

In order to determine the Hall conductivity in the quantum picture, we consider a

2DEG confined in the xy plane. The system is subjected to a static magnetic field

B and an electric field E in the z and y direction, respectively. The perturbation

potential for the electric field is given by

Ĥp = −eEy. (1.61)

In the standard way, the perturbed eigenstates are given by [48, 54]

|n〉E = |n〉+
∑
n6=m

〈m|Ĥp|n〉
En − Em

|m〉+ · · · = |n〉+
∑
n6=m

〈m|(−eEy)|n〉
En − Em

|m〉+ · · · , (1.62)

where En is the nth LL energy. The corresponding expectation value of the longi-

tudinal current density along the x direction due to the perturbation is

〈jx〉E =
e 〈vx〉
L2

, (1.63)
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where vx is the velocity of the electron in the x direction. The above equation can

be expressed as,

〈jx〉E =
∑
n

f (En)
〈
n|E

(evx
L2

)
| n
〉
E
, (1.64)

where fn = 1/(1 + e(En−µF )/kBT ) is the Fermi Dirac distribution function at tem-

perature T and chemical potential µF . To first order in E, the current density is

given by

〈jx〉E =
1

L2

∑
m

m 6=n

f (En)

(
〈n |evx|m〉 〈m|(−eEy)|n〉+ 〈n|(−eEy)|m〉 〈m |evx|n〉

En − Em

)
,

(1.65)

where have used the facts that 〈n |jx|n〉E=0 = 0, because the current is zero without

the perturbation field. From the Heisenberg equation of motion we can write

vy =
dy

dt
=

1

ih̄
[y, Ĥ], (1.66)

by taking the expectation value of the vy, we obtain

〈m |vy|n〉 =
1

ih̄
(En − Em) 〈m|y|n〉. (1.67)

Therefore, the current density can be expressed as

〈jx〉E =
−ih̄e2E

L2

∑
m6=n

f (En)

(
〈n |vx|m〉 〈m |vy|n〉 − 〈n |vy|m〉 〈m |vx|n〉

(En − Em)2

)
.

(1.68)

Now consider that the system potential is periodic in the absence of the electric

field E, then according to Bloch theorem the eigenstates can be expressed as the

Bloch states |unk〉. The expectation value of the velocity can be expressed in terms

of the Bloch states as

〈unk |vµ|umk′〉 =
1

h̄
〈unk|

∂Ĥ

∂kµ
|umk′〉. (1.69)

Employing the product rule, the term on the right hand side can be expressed as

〈unk |vµ|umk′〉 =
1

h̄
〈unk|

∂

∂kµ

(
Ĥ |umk′〉

)
+

1

h̄
〈unk|Ĥ

∂

∂kµ
|umk′〉. (1.70)
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Therefore, from Eq. (1.70), the product rule lead us to the identity

〈unk |vµ|umk′〉 =
1

h̄
(Emk′ − Enk) 〈unk|

∂

∂kµ
|umk′〉, (1.71)

which allows us to re-write Eq. (1.68) in the form

σxy =
ie2

h̄L2

∑
n,k,k′

f (Enk) 〈unk|
∂

∂kx
|umk′〉〈umk′|

∂

∂ky
|unk〉 (1.72)

− ie2

h̄L2

∑
n,k,k′

f (Enk) 〈unk|
∂

∂ky
|umk′〉〈umk′|

∂

∂kx
|unk〉.

Expanding the first term in the above equation we obtain

∑
m,k′

〈unk|
∂

∂kx
|umk′〉〈umk′|

∂

∂ky
|unk〉

=
∑
m,k′

[
∂

∂kx
〈unk | umk′〉 −

(
∂

∂kx
〈unk|

)
|umk′〉

]
〈umk′|

∂

∂ky
|unk〉. (1.73)

The first term on the right hand side is zero as the sum is restricted to m 6= n.

Performing the sums over m and k′, we obtain

−
(

∂

∂kx
〈unk|

)
∂

∂ky
|unk〉 =

− ∂

∂kx

〈
unk

∣∣∣∣ ∂∂ky
∣∣∣∣unk〉+

〈
unk

∣∣∣∣ ∂2

∂kx∂ky

∣∣∣∣unk〉 . (1.74)

By interchanging kx and ky in the above expression, the second term in Eq. (1.72)

can be obtained. We can express the Hall conductivity in terms of Bloch states as

σxy =
ie2

h̄L2

∑
n,k

f (Enk)

[
− ∂

∂kx

〈
unk

∣∣∣∣ ∂∂ky
∣∣∣∣unk〉+

∂

∂ky

〈
unk

∣∣∣∣ ∂∂kx
∣∣∣∣unk〉] . (1.75)

The Hall conductivity can be easily reduces to

σxy = ν
e2

h̄
, (1.76)

where ν ∈ Z which is the Landau levels (LL) filling fraction. Which is in agree-

ment with Klitzing et. al well known formula of conductivity [13].

49



Figure 1.10: (a) The formation of a chiral extended edge state. (b) Representation
of the Landau levels.

It must be noted that σxy and ρxy is independent of sample parameters. Now

the question is how does the confining potential V (y) affect the energy eigenvalues

of the system? In the bulk of the sample, away from the edges, the confining

potential is flat, i.e. V (y) = 0 as shown in Fig. 1.10 (a). In the bulk region of

the sample, we get flat LLs, which are equally spaced by h̄ωc. In the classical

regime, we have shown these bulk states corresponding to the cyclotron orbits

in Fig. 1.7. From Eq. (1.76), it is crystal clear that the periodic charge carrier

motion is quantized. The skipping orbits transform into a one-dimensional edge

channel encircling the interior of the sample as a result of the strong magnetic

field as illustrated in Fig. 1.10 (a). The topological edge states give rise to an

edge current that characterizes the IQHE. The topological edge states are very

sensitive to the confining potential, so their LLs dispersion will be affected. The

original LLs energies increase by an amount proportional to the confining potential.

If we place the chemical potential µF in between two LLs in the bulk gap as

shown in Fig. 1.10 (b), there are states crossing it at the edges and cutting where

the number is equal to the number of occupied levels. As a result, the number
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of occupied LLs is exactly equal to the integer quantization of the Hall effect. It

must be noted that for each edge, there are as many topological edge states as

there are filled LLs in the bulk of the system.

In the quantum regime, we applied the electric field E is in the y-direction, so

the directions of the current flow and electric field are perpendicular to each other,

and thus the electric current produces no resistive heating. The chiral edge states

are therefore responsible for dissipationless quantum Hall transport and the cur-

rent is flowing without scattering. In any realistic system disorder created by

randomly distributed ionized impurities is inevitably present that tends to induce

elastic momentum scattering with resulting in ~p 7→ −~p. Due to the topological

edge states, such backscattering is rigorously not allowed as there is no counter-

propagating state available. The robust directiveness of the topological edge states

is called chirality. In the next section, we will develop a relationship between the

IQHE and topology.

1.0.9 Topological invariants and the quantum Hall effect

Our next goal is to introduce the notion of a topological invariant. An example of

one such invariant is the Chern number. The Chern number allows us to classify

topological phases of matter, which are preserved under continuous deformations

of the band structure. In 1982, Thouless, Kohmoto, Nightingale, and den Nijs

(TKNN) for the first time proposed that the quantized Hall conductivity is related

to a topological invariant [45]. Following Eq. (1.75), the Hall conductivity can be

written in terms of the Berry curvature as

σxy =
e2

h̄

∑
n

∫
BZ

d2k

(2π)2
∇k ×An(k), (1.77)

where the Berry connection is given by Eq. (1.11) when |n(R)〉 represents the

Bloch states |unk〉:
An(k) = −i 〈unk|∇k|unk〉 . (1.78)
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The Chern number can be defined in term of Berry connection as

νn =

∫
BZ

d2k

(2π)2
∇k ×An(k) (1.79)

=

∮
∂BZ

dk

(2π)
·An(k) (1.80)

=
1

2π
γn. (1.81)

The Chern number νn is determined solely by the electronic band structure. The

Hall conductivity can be linked with propagating edge states by the following

equation

σxy =
e2

h̄

∑
n∈occ

νn. (1.82)

This formula is the statement that σxy is a topological invariant of the quantum

system and the Hall conductivity is topological. The system wave-function is sin-

gle valued in nature, therefore the change in Berry’s phase can only be an integer

multiple of 2π after encircling the BZ. Thus, νn must be an integer and known as

the TKNN invariant.

1.1 Topological insulators

This thesis also deals with topological insulators (TIs). This section highlights

some of the most important characteristics of TIs.

1.1.1 Time-reversal symmetry and Kramers’s theorem

Before we discuss time-reversal symmetric topological insulators, we first need to

understand what we actually mean by time reversal symmetry, and how it leads to

Kramers’ degeneracy. Symmetries play a crucial role in condensed matter physics.

Commonly, the fundamental microscopic laws of nature are said to be invariant

under time reversal transformations. In quantum mechanics, time reversal is a

transformation that reverses the arrow of time, and mathematically, we can define
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it as [40]

t 7→ −t. (1.83)

Consider a particle having momentum p and spin s placed at position r, then time

reversal (TR) implies

r 7→ r, p 7→ −p, s 7→ −s. (1.84)

Under TR the position operator r is unchanged as TR commutes with any spatial

symmetry. However, it flips the sign of the momentum operator p and spin operator

s. The Hamiltonian of a physical system is said to be TR invariant if under TR

transformations it is also preserved. Now consider an interesting example of the

TRS Hamiltonian for non-relativistic particle

Ĥ = vσ · p =
2v

h̄
s · p, (1.85)

where s = h̄σ/2 and σ = (σx, σy, σz) consists of 2 × 2 Pauli matrices. Here v is

the velocity of the moving particle. The massles spin-1/2 particle Hamiltonian is

odd in both momentum and spin. We would like to find the representation of the

TR operator irrespective of the details of the physical system. Now TRS can be

formally defined through the time reversal operator T as

T ĤT −1 = Ĥ, (1.86)

T Ĥ = ĤT , (1.87)

under the following constraints

T rT −1 = r, (1.88)

T pT −1 = −p, (1.89)

T sT −1 = −s. (1.90)

From the preceding equations with p = −ih̄∇, we notice that the TRS operator

T involves complex conjugation, C, which can be written as

T = UC, (1.91)
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where U = ±iσy. To preserve the norm of the quantum state U must be a unitary

matrix. The anti-unitary operator that represents TRS can be written as

T = iσyC, (1.92)

where the TRS operator has the property (for a spin 1/2 system)

T 2 = −1 ⇐⇒ T −1 = −T . (1.93)

After discussing TRS, we are now in a position to prove the Kramers’ theorem

which has important implications for TR-invariant quantum systems. Kramers

theorem was constructed by the Hendrick Anton Kramers in 1930. The Kramers

degeneracy theorem states that each energy level of a time-reversal symmetric

system with non-integer spin is at least doubly degenerate [48]. Lets spell it out

further. Consider an electric charge flowing in opposite directions, e.g. charge

currents admissible on the edge of a 2D Hall sample. The quantum system has

right and left-moving states |+〉 and |−〉. These states are related to each other

by the following TR operation:

|+〉 = T |−〉 (1.94)

The states |+〉 and |−〉 must have the same energy, if T is an invariant symmetry

of the Hamiltonian. Our goal is to prove that |+〉 and |−〉 are two independent

orthogonal states, i.e,

〈+|−〉 = 0. (1.95)

Using above equations, we can re-write the product 〈+|−〉 as

〈+|−〉 = 〈−|T †T −1|+〉 = −〈−|T †T |+〉 = −〈−|+〉∗ = −〈+|−〉. (1.96)

From this one can conclude that the product 〈+|−〉 vanishes identically, which

proves the Kramers’ theorem.
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Before introducing two and three-dimensional topological insulators, we will dis-

cuss the spin-orbit coupling which is a fundamental concept in spin transport

properties of 2D materials and topological insulators.

1.1.2 Spin-orbit coupling

Before we discuss the role of spin-orbit coupling in 3D and 2D topological in-

sulators in details, it is helpful to recapitulate, the derivation of the spin-orbit

coupling (SOC) term through the Dirac equation which is the defining equation

in relativistic quantum mechanics [55]. The SOC is a relativistic effect between

electrons and a local internal or external electric fields. Mobile electrons sense an

effective magnetic field Beff in their rest frame even when they are exposed to

electric fields. We will start the derivation of the SOC from Dirac equation. In

the presence of EM couplings, the relativistic Dirac equation can be written as(
∂

∂xµ
− ie

hc
Aµ

)
γµψ +

mc

h̄
ψ = 0, (1.97)

where −ih̄ (∂/∂xµ) = −ih̄ (∂/∂xµ) − eAµ/c. It must be noted that Aµ is time

independent. The wave function ψ is known as a bispinor or Dirac spinor and is

given by

ψ =

(
ψ↑
ψ↓

)
= ψ(x, t)|t=0 e

−iEt/h̄, (1.98)

yielding the two coupled equations[
σ ·
(

p− eA

c

)]
ψB =

1

c

(
E − eA0 −mc2

)
ψA, (1.99)

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c

(
E − eA0 +mc2

)
ψB. (1.100)

From Eq. (1.100), we can eliminate ψA to obtain

ψB =
1

(E − eA0 +mc2)

[
σ ·
(

p− eA

c

)]
ψA, (1.101)
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which can be substituted back into Eq. (1.99) to yield[
σ ·
(

p− eA

c

)][
c2

E − eA0 +mc2

] [
σ ·
(

p− eA

c

)]
ψA =

(
E − eA0 −mc2

)
ψA.

(1.102)

We now assume that

E ≈ mc2, |eA0| � mc2, (1.103)

and define the energy difference measured from mc2 by introducing the variables,

Ẽ = E −mc2. (1.104)

With this rescaling the denominator on the left-hand side of Eq. (1.102) can be

expanded as

c2

E − eA0 +mc2
=

1

2m

[
2mc2

2mc2 + Ẽ − eA0

]
=

1

2m

[
1− Ẽ − eA0

2mc2
+ · · ·

]
, (1.105)

and considering only the leading term in Eq. (1.105), we can write Eq. (1.102) as

1

2m

[
σ ·
(

p− eA

c

)][
σ ·
(

p− eA

c

)]
ψA =

(
Ẽ − eA0

)
ψA (1.106)

The term on the left-hand side can be further simplified as

1

2m
σ ·
(

p− eA

c

)
σ ·
(

p− eA

c

)
=

1

2m

(
p− eA

c

)2

+
i

2m
σ ·
[(

p− eA

c

)
×
(

p− eA

c

)]
=

1

2m

(
p− eA

c

)2

− eh̄

2mc
σ ·B,

where we have used the identity

p×A = −ih̄(∇×A)−A× p, (1.107)

recalling the formula (σ ·A)(σ ·B) = A ·B + iσ · (A×B). Eq. (1.106) eventually

transforms to (
1

2m
σ ·
(

p− eA

c

)
− eh̄

2mc
σ ·B + eA0

)
ψA = ẼψA. (1.108)
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From Eq. (1.100), we noted that ψB is smaller than ψA by approximately |p −
eA/c| ≈ v/2c based on the condition that Eq. (1.103) is valid. For this reason ψA

and ψB are known as the large and small components of the Dirac spinor wave

function, respectively.

Now we consider the second term in Eq. (1.105) and set A = 0 for simplicity.

The Schrodinger equation for the non-relativistic case is given by

H̃AψA = ẼψA, (1.109)

where

H̃A = (σ · p)
1

2m

(
1− Ẽ − eA0

2mc2

)
(σ · p) + eA0. (1.110)

The probabilistic interpretation of the Dirac theory implies that∫ (
ψ†AψA + ψ†BψB

)
d3x = 1 (1.111)

where ψB is already of the order of v/c. We cannot identify ψA with the full wave

function ψ anymore even if we consider the first and second term in Eq. (1.105),

because a fraction of the probability density∫
ψ†A

(
1 +

p2

4m2c2

)
ψAd

3x ∝ (v/c)2, (1.112)

has flowed into ψ†BψB. According to Eq. (1.100),

ψB ≈
σ · p
2mc

ψA (1.113)

This suggests that we should replace ψA by a new two-component wave function

define by

Ψ = ΩψA, (1.114)

where

Ω = 1 +
(
p2/8m2c2

)
, (1.115)
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which is correctly normalized to order (v/c)2 since∫
Ψ†Ψd3x ≈

∫
ψ+
A

[
1 +

(
p2/4m2c2

)]
ψAd

3x. (1.116)

Multiplying Eq. (1.109) from the left by Ω−1 = 1− (p2/8m2c2) , we obtain

Ω−1H̃AΩ−1Ψ = ẼΩ−2Ψ. (1.117)

We obtain from Eq. (1.117), up to order (v/c)2

[
p2

2m
+ eA0 −

{
p2

8m2c2
,

(
p2

2m
+ eA0

)}
(σ · p)

2m

(
Ẽ − eA0

2mc3

)
(σ · p)

]
Ψ

= Ẽ

(
1− p2

4m2c2

)
Ψ. (1.118)

Now we can write, Ẽp2 as 1
2

{
Ẽ,p2

}
, we obtain

[
p2

2m
+ eA0 −

p4

8m3c2
− 1

8m2c2

({
p2,
(
Ẽ − eA0

)}
− 2(σ · p)

(
Ẽ − eA0

)
(σ · p)

)]
Ψ

= ẼΨ. (1.119)

Generally, for operators A and B, we have the commutation{
A2, B

}
− 2ABA = [A, [A,B]]. (1.120)

Setting σ · p = A and Ẽ − eA0 = B, we can define[
σ · p,

(
Ẽ − eA0

)]
= −ieh̄σ · E (1.121)

and

[σ · p,−ieh̄σ · E] = −eh̄2∇ · E − 2eh̄σ · (E× p), (1.122)

which are valid as ∇ ·A0 = −E and ∇× E = 0. Using Eqs. (1.120)–(1.122), we

finally obtain[
p2

2m
+ eA0 −

p4

8m3c2
− eh̄σ · (E× p)

4m2c2
− eh̄2

8m2c2
∇ · E

]
Ψ = ẼΨ, (1.123)
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where the first and second terms represent the usual parts of the non-relativistic

Hamiltonian. The third term captures the relativistic correction to the kinctic en-

ergy, the fourth term represents the SOC, and the final part is a potential-induced

energy shift. In following sections, we will be more concerned with the SOC term.

1.1.3 Quantum spin Hall effect

There exist different states of matter in the quantum world, for example, crystalline

solids, ferromagnets, and superconductors. As we already discussed in Sec. 1.0.8,

that a new topological state of quantum matter in condensed matter systems was

discovered in the 1980s called the integer and fractional QHE. Both of these ef-

fects exist only in the presence of large magnetic fields. The search for topological

states of matter that do not require magnetic fields has become a central goal for

condensed matter physics. Most recently, a new class of topological states has

emerged, called quantum spin Hall (QSH) states. The quantum spin Hall effect

(QSHE) is topologically distinct from all other known states of quantum matter

and in contrast to the QHE, the QSHE can exist without any external magnetic

field and TR invariant. The QSH originates from the coupling of the charge and

spin currents due to spin-orbit interaction. More details about the QSHE are com-

ing in the following section.

1.1.4 Topological insulators in two dimensions

Topological insulators (TIs) are quantum materials that behave like bulk insula-

tors (BIs) in their bulk but there exist topologically protected metallic surfaces

with massless Dirac-type band structures that are responsible for the most unique

and exotic electronic and optical properties [21, 28, 48]. The existence of the

topological robust edge states in the IQHE is one of the most dominant points

of view in condensed matter physics. The topological classifications of matter
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Figure 1.11: Representation of helical edge states in a two-dimensional topological
insulator.

triggered physicists to search for other theoretical models which could give rise

to exotic topological edge states. For the first time in 1988 Haldane proposed a

model, which states that, unlike the quantum Hall systems, there may also exist

topological edge states even in a zero magnetic field, that is without breaking the

TRS. This effect is known as the quantum anomalous Hall effect (QAHE). It is

anomalous because no external magnetic field is required for the existence of edge

states. Such a system is an example of a topological insulator.

In 2005, Kane and Mele proposed in a model [15] originally meant for graphene

that the existence of topological edge states in a zero magnetic field is due to the

intrinsic spin-orbit coupling (SOC) in TI materials, and the SOC in the system

can be viewed as an intrinsic effective magnetic field Beff that points in the op-

posite directions for the spin up and spin down species, as illustrated in Fig. 1.11.

Furthermore, the SOC opens up an energy gap ∆ at the Dirac points in the band

structure. Another perspective is that the QAHE is a consequence of non-zero

Berry curvature in momentum space and having non-zero Chern numbers. In
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other words, the quantum system behaves like bulk insulators (BIs) in their bulk

but there exists a topologically gapless spectrum of chiral edge states with massless

Dirac-type band structure.

The two spin subsystems can be viewed as two copies of the Haldane Hamilto-

nian with a gapless edge mode and having different signs of the mass term for

the two spin species as shown in Fig. 1.12. The two counter-propagating edge

states of an opposite spin result in zero Chern number and preservation of TRS.

As depicted in Fig. 1.12, the locking between the spin and momentum directions

is referred as helicity. The pair of helical edge modes gives rise to a spin current at

the boundary and form a Kramers doublet with the energy-momentum dispersions

crossing in the bulk band gap for different topological systems. Such type of a sys-

tem is called quantum spin Hall insulator (QSHI) and represents a 2D topological

insulator (TI).

In 2D TIs, the helical edge modes are available in both directions that is a spin-

up fermion cannot backscatter into the counter-propagating channel without a

spin-flip. In other words, the scattering between them is forbidden for any single-

particle scattering and these edge modes are robust against TRS preserving im-

purities. The backscattering is only permissible in the presence of a magnetic

impurity. This helical protection leads to robustness against deformations, which

is a hallmark of topological states. The topological Chern number of the bulk 2D

topological material tells us how many such 1D, chiral spin currents there have to

be at the surface of the quantum spin Hall system. A remarkable property of a TI

is that the total Chern number must be zero for the system.

Now to distinguish the TI (non-trivial) from an ordinary band insulator (trivial)

another topological index can be used. The topological index is a Z2 classification,

which is non-zero for the non-trivial and vanishes for trivial. If there is an even

61



Figure 1.12: Representation of helical edge states in quantum spin Hall system.

(odd) number of band crossings at the edge then the system is trivial (non-trivial).

In other words, the topological index ν takes the values 0 and 1 for the trivial and

non-trivial phases, respectively.

1.1.5 From two to three dimensions

Topological protected helical edge states are one of the hottest topics in condensed

matter physics right now. Even though we have introduced a 2D QSHI as an ex-

ample of a TI. The term topological insulator was first introduced with reference

to the 3D systems [56]. After the discovery of 2D TIs, theorists realized that the

formalism for 2D topological phases with broken TRS could be extended to 3D

systems as well [15, 57]. Three-dimensional topological insulators (TIs) are quan-

tum materials that behave like band insulators (BIs) in their bulk but there exist
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Figure 1.13: (a) The conduction and valence bands of a 3D solid. The shaded
regions represent the bands in the bulk while the black lines are the bands at the
surface of the 3D solid. The conduction (valence) band is symmetric (antisym-
metric). (b) The degeneracy of the electron spins is lifted due to the SOC. The
conduction band becomes antisymmetric and the valence band becomes symmet-
ric (+). The red and blue lines are the edge states at the boundary of the bands.
Here backscattering is not possible. (c) Further increasing the SOC leads to more
changes and the electrons at the edges can be backscattered. The purpose of the
Möbius strips indicates the number of topological twists in the band structure.

topologically protected metallic surfaces with massless Dirac-type band structures

that are responsible for most unique and exotic electronic and optical properties

[21, 48].

In Fig. 1.13(a), we depict the conduction and valence bands of a typical 3D solid.

The red and green shaded regions represent the bands in the bulk and the black

lines are the bands at the surface of the solid. The conduction band is symmet-

ric while the valence band is anti-symmetric. As already mentioned, the SOC

opens up a gap and lifts the degeneracy of the electron spins as illustrated in

Fig. 1.13(b). The conduction band becomes antisymmetric (−) and the valence

band becomes symmetric (+) for positive momenta. At boundaries, the changes
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produced by SOC can be even more dramatic and as a result, the conduction and

valence bands cross over once (or an odd number of times). The flow of charge

is dissipationless as it is not possible for electrons to be backscattered, which is a

distinguishing characteristic of the odd states.

To characterize 3D TI, we require four topological Z2 invariants namely (ν0; ν1; ν2; ν3).

A TI can be classified on the bases of ν0, if ν0 = 1 (ν0 = 0), then the 3D TI is

strong (weak). On the other hand, ν2 = 1 corresponds to a TI, whereas ν2 = 0

corresponds to a trivial insulator. Further, increasing the strength of the SOC

result in more changes. If we look at Fig. 1.13(c), it is clear that electrons can

be backscattered without flipping their spin in this system as the conduction and

valence bands cross over twice or there may exist an even number of twists.

1.1.6 Three dimensional hybridized topological insulator

Three-dimensional hybridized topological insulators support protected electronic

states characterized by an integer topological Z2 invariant for the topological elec-

tronic structure in momentum space on the surface of bulk material as shown

in Fig. 1.14. The Dirac-like band structure of the surface states is robust against

perturbations of the system parameters, as they are protected by topological prop-

erties of the bulk quantum mechanical wave functions. Time-reversal symmetry

(TRS) in these 3D TI materials guarantees the pairing of top and bottom Dirac

surface states (SSs) [21, 57]. These characteristic SSs have a topological origin

and are potentially useful for the design of nano-scale devices in spintronics and

practical applications in quantum computations [58, 59]. The topologically pro-

tected SSs of a TI thin film has a finite decay length (also called the penetration

depth of the SSs) over which the SSs decay into the bulk region. As the thickness

L of the TI thin film becomes comparable to, or smaller than, the penetration

depth, quantum tunneling between SSs occurs due to which the top and bottom

SSs hybridize to open up an energy gap ∆H at the Dirac points [60, 61]. This
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Figure 1.14: Schematic of a 3D TI with the top (Red) and bottom (Blue) surface
states Dirac systems and of its quasi-2D counterpart (right).

can happen for 1 to 5 quintuple layers with a thickness of the order of L =5 nm

[62, 63]. In Chapter 3, we will introduce the model Hamiltonian for the hybridized

topological insulator thin films in the presence of a magnetic field to explore the

magneto-optic response.

1.1.7 Concluding remarks

In this chapter, we briefly discussed quantum materials which is a broad term

in condensed matter physics. To set the stage for the 2D quantum materials

which is the main theme of this thesis, we started with the band topology. We

found that the key role players in topological band theory are the Berry phase and

topological invariant. We started from the classical Hall effect and finally derived

the quantized Hall resistivity ρxy and connected it to the topological invariant. In

the next chapter, we will discuss the tight-binding Hamiltonian of the graphene
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family and will derive the energy dispersion relation of these materials. We will use

the low energy Hamiltonian and will find out the quantization of Landau levels

in the presence of a magnetic field in graphene, silicene, and three-dimensional

hybridized topological insulator thin films.
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Chapter 2

Electronic properties of 2D
quantum materials

With the brief introduction to some basic concepts in condensed matter physics

presented in the preceding chapter, we are ready to explore the interesting physics

of several low-dimensional systems. In this chapter, we will discuss the electronic

properties of the graphene family. We will describe how the topological phase

transitions can be modulated by external electric or irradiating circularly polar-

ized light. We will also derive the energy dispersion relations and eigenstates,

which are useful for the determination of optical conductivity. Finally, we show

how the magnetic field modifies the dispersion relations.

2.1 Introduction

Carbon is the most important and second-most abundant element on earth. Three-

dimensional structures of carbon consist of diamond and graphite while the lower

dimensional allotropes of carbon are fullerenes, nanotubes, and graphene. In a

remarkable experimental feat back in 2004, Novoselov et.al successfully isolated

a monolayer of graphite [33] which further catalyzed an ever-expanding research

field.
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The discovery of 2D materials has also stimulated growing interest in silicene [64],

the silicon analog of graphene. Stable silicene can be experimentally synthesized

[24]. There are many electronic and physical similarities between graphene and

silicene as both are found in the same group of the periodic table. The major dif-

ference is that silicene has a large SOI with an electrically tunable bandgap. Just

like silicene, germanene and tinene also possess stable honeycomb lattice structures

[24, 25]. Due to the relatively large SOI, these materials have buckled structures,

providing a mass to the otherwise massless Dirac fermions. In silicene [65], ger-

manene [66] and tinene [67], the values of ∆so have been predicted to lie in the

range 1.55–7.9 meV, 24–93 meV, and 100 meV respectively. Subsequently, the

interaction of an external electric field with silicene, germanene, and the tinene-

substrate system renders the Dirac mass controllable at the K and K ′ points,

which leads to various topological phase transitions [68].

Throughout this chapter, our primary interest will be on low-energy Dirac physics

of 2D quantum material systems based on the graphene Hamiltonian. We start

from the tight-binding Hamiltonian and derive the low energy dispersion relation

of graphene and silicene. We also will explore the Landau levels quantization in-

side these materials. This Chapter will serve as a prelude to our theoretical studies

and magneto-optic simulations in subsequent chapters.

2.2 Electronic properties graphene

Graphene is a single layer atomic sheet of carbon atoms that are periodically ar-

ranged in a honeycomb lattice structure. In graphene carbon atoms are connected

in a hexagonal structure with sp2 hybridized C-C covalent bonding, as shown in

Fig. 2.1. There are six electrons in each carbon atom in which the two electrons in

the s shell are inert for electronic interactions. From the four outer-shell electrons,

three electrons occupy sp2 orbitals forming three σ bonds as shown in the diagram.
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The σ bonds are strong covalent bonds that impart to the material’s structural

rigidity and energetic stability. The remaining outer-shell electron of each carbon

atom which occupies a pz orbital forms a π bond.

We investigate the low energy dynamics of graphene by assuming the tight-binding

approximation and taking into account the nearest-neighbor hopping. The Hamil-

tonian in the second quantized form is then given by,

HTB = −|t|
∑
j

3∑
δ=1

(
a†j+δbj + b†jaj+δ

)
, (2.1)

where a†j and aj denote the fermion creation and annihilation operators for the

electron, respectively in the sublattice A whose position is demonstrated by δj,

where j = 1, 2, 3. Similarly b†j and bj are the fermion creation and annihilation

Figure 2.1: The basis vectors in the hexagonal lattice of graphene with primitive
vectors a1 and a2 (a = 1.42 A) and the position vectors δ1, δ2 and δ3 are position
vectors. On the right, we also show the three sp2 orbitals forming σ bonds and a
pz orbital forming a π bond across neighbours.
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operators in the sublattice B located at the site δj. Fourier expanding the creation

and annihilation operators to the reciprocal space, we obtain

aj =
1√
N

∑
k

eik·jak, bj =
1√
N

∑
k

eik·jbk, (2.2)

where N denotes the number of unit cells. Let’s consider the first term,

−|t|
∑
j

3∑
δ=1

(
a†j+δbj

)
= −|t|

∑
jkk′

3∑
δ=1

(
eik·(j+δ)e−ik

′·ja†kbk′
)

= −|t|
∑
jkk′

3∑
δ=1

(
ei(k−k

′)·jeik·δa†kbk′
)
. (2.3)

Similarly, the second term of the Hamiltonian after Fourier transormation assumes

the form

−|t|
∑
j

3∑
δ=1

(
b†jaj+δ

)
= −|t|

∑
jkk′

3∑
δ=1

(
eik·je−ik

′·(j+δ)b†kak′
)

= −|t|
∑
jkk′

3∑
δ=1

(
ei(k−k

′)·je−ik
′·δb†kak′

)
. (2.4)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.1), we obtain

HTB = −|t|
∑
jkk′

3∑
δ=1

(
ei(k−k

′)·jeik·δa†kbk′ + ei(k−k
′)·je−ik

′·δb†kak′
)
. (2.5)

By making use of following useful identity∑
j

ei(k−k
′)·j = δkk′ , (2.6)

the Hamiltonian can be rewritten as

HTB = −|t|
∑
k

3∑
δ=1

(
αa†kbk + α∗b†kak

)
= −|t|

∑
k

3∑
δ=1

(
αa†kbk

)
+−|t|

∑
k

3∑
δ=1

(
α∗b†kak

)
=

∑
k

(
a†k b†k

)(0 − |t|α
−|t|α∗ 0

)(
ak
bk

)
, (2.7)
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where we have suppressed the ~k dependence of α, i.e.,

α = α(~k) =
3∑
δ=1

eik·δ =
(
eik·δ1 + eik·δ2 + eik·δ3

)
. (2.8)

The eigenvalues of the matrix given in Eq. (2.7) are

E±(k) = ±|t|
√
α2, (2.9)

which provides the dispersion relation of the Dirac fermions in graphene, where +

and − signs denote the conduction and valence band, respectively. The position

vectors are

~δ1 =
a

2

(
1,
√

3
)

(2.10)

~δ2 =
a

2

(
1,−
√

3
)

(2.11)

~δ3 = −a (1, 0) , (2.12)

where a is lattice constant. Based on the unit cell translations ~a1 and ~a2, the

reciprocal lattice vectors are given by

b1 =
2π

3a

(√
3, 1
)

and b2 =
2π

3a

(√
3,−1

)
. (2.13)

Eq. (2.8) can therefore be written as

α (k) =
(
eik·δ1 + eik·δ2 + eik·δ3

)
=

(
ei(kx/2+

√
3ky/2)a + ei(kx/2−

√
3ky/2)a + e−ikxa

)
= e−ikxa

(
ei3kxa/2ei

√
3kya/2 + ei3kxa/2e−i

√
3kya/2 + 1

)
= e−ikxa

(
1 + 2ei3kxa/2 cos(

√
3kya/2)

)
, (2.14)

from which we can obtain the modulus square

|α (k)|2 =

(
1 + 2e

i3kxa
2 cos

√
3kya

2

)(
1 + 2e

−i3kxa
2 cos

√
3kya

2

)

=

(
1 + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+ 4 cos2

(√
3kya

2

))
. (2.15)
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Figure 2.2: Linear dispersion relation of graphene.: (a) Band structure of mono-
layer graphene. (b) Contour plot of band structure in (a).

The energy bands are therefore given by

E±(k) = ±|t|

√√√√1 + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+ 4 cos2

(√
3kya

2

)
. (2.16)

A plot of the low-energy band structure of the graphene around the first Brillouin

zone is shown in Figs. 2.2(a) and (b) showing three-dimensional (3D) and contour

plots respectively.

2.2.1 Momentum space description

The coordinates of the so-called K and K ′ Dirac points in the first Brillouin zone

(BZ) are given by

K =
2π

3a

(
1, 1/
√

3
)

, K ′ =
2π

3a

(
1,−1/

√
3
)
. (2.17)

At the Dirac points the energy bands cross and the gap closes as illustrated in

Fig. 2.3. These points in k-space refer to as the valleys. We will expand as this

concept in due course. To extract the low energy physics, we will expand the

Hamiltonian around K and K ′ points. Let’s look at the behavior of α (k) in the

72



vicinity of the Dirac point K. Defining the relative momentum q = k−K, we can

write αk in terms of q as

α (K + q) = e−iKxae−iqxa

[
1 + 2ei3(Kx+qx)a/2 cos

(√
3 (Ky + qy) a

2

)]

= e−iKxae−iqxa

[
1− 2e3iaqx/2 cos

(
π

3
+

√
3a

2
qy

)]
.

(2.18)

Expanding the above equation to first order about q = 0, we obtain

α (K + q) = −ie−iKxa3a

2
(ξqx + iqy) . (2.19)

For convenience, we ignore the phase ie−iKxa, as it carries no physical significance.

We thus have

α (K + q) = −3a

2
(ξqx + iqy) . (2.20)

About the Dirac point K, the Hamiltonian can be approximated as

H(K + q) = vF

(
0 ξqx + iqy

ξqx − iqy 0

)
. (2.21)

Similarly, for the K ′ point the relative momentum is q = k −K′. Expanding αk

about the K ′, we find

α (K + q) = −3a

2
(ξqx − iqy) , (2.22)

so for the K ′ point we can write the Hamiltonian as

H(K′ + q) = vF

(
0 ξqx − iqy

ξqx + iqy 0

)
. (2.23)

The famous 2D massles Dirac Hamiltonian of graphene is given by

Ĥξ = vF τ̂ · q = vF (ξτ̂xqx + τ̂yqy) = h̄vF (ξτ̂xkx + τ̂yky) , (2.24)

where ~τx and ~τy are the Pauli matrices associated with the pseudospin of the

system and ξ = ±1 corresponds to the valleys (K and K ′) in momentum space.
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Figure 2.3: The first Brillouin zone of graphene. The cones indicate the K and K ′

valleys.

The notion of the valley represents the energy minima and extrema in the electronic

band structure of graphene and is regarded as a new degree of freedom for electrons,

additional to charge and spin. In the band structure of graphene, there are two

valleys in the first Brillouin zone as shown in Fig. 2.2. These are known as the

K and K ′ valleys. We can suppose the K valley as being ”pseudospin up” and

the K ′ valley as being ”pseudospin down”. The valley, just like the real spin, can

also be used to encode and process information, this is now the burgeoning field

of valleytronics [37]. In general for both valleys the Hamiltonian becomes

Ĥξ(k) =

(
0 h̄vF (ξkx − iky)

h̄vF (ξkx + iky) 0

)
. (2.25)

The energy eigenvalues can be easily computed and are given by

Eξ(k) = ±ξh̄vF |k|, (2.26)
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where +/− denotes the conduction/valence band.

2.2.2 Eigenfunctions of the graphene Hamiltonian

In order to obtain the eigen-states of the graphene Hamiltonian Ĥξ(k), we can

write

ξkx ± iky = |k|e±iξφk , kx = |k| cosφ, ky = |k| sinφ (2.27)

The 2D spinor wave function is given as

Ψtk(r) =

(
ΨA

ΨB

)
exp(ik · r). (2.28)

Utilizing the eigenvalue equation for the K valley (ξ = 1), we arrive at

h̄vF

(
0 kx − iky

kx + iky 0

)(
ΨA

ΨB

)
= E

(
ΨA

ΨB

)
, (2.29)

which yields two coupled equations

(kx − iky)ΨB = EΨA (2.30)

and

(kx + iky)ΨA = EΨB. (2.31)

By developing the above equations we reach at

ΨB =
(kx + iky)

E
=
h̄vF (kx + iky)

h̄vF |k|
ΨA. (2.32)

ΨB = teiφkΨA. (2.33)

The corresponding momentum space pseudospinor eigenfunction becomes

Ψt,k =

(
ΨA

ΨB

)
=

(
1

teiφk

)
ΨA

and the wave function is

Ψ(x, y) =

(
ΨA(x, y)
ΨB(x, y)

)
=

(
1

teiφk

)
ΨAe

ikxx+ikyy. (2.34)
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Normalizing the wave function, we finally obtain ΨA = 1√
2L
, wherc L2 is the area

of system: The wave function can be written as

Ψ(x, y) =
1√
2L

(
1

teiφk

)
eikxx+ikyy (2.35)

which in momentum space can be written as:

|Ψξ,t(k)〉 =
1√
2

(
1

te+iξφk

)
. (2.36)

The index t = ± is the band index (t = +1 for the conduction band and t = −1

for the valence band). The preceding discussion describes the low-energy physics

of graphene using a simple nearest-neighbor tight-binding Hamiltonian. In the

following section, we will discuss the formation of Landau levels in the presence of

a magnetic field.

2.2.3 Magnetic field effects in graphene

In this section we look at the dispersion relation of graphene in a perpendicular

magnetic field in a similar fashion to Section 1.0.7, but here we are dealing with

relativistic fermions. We apply a static uniform magnetic field B perpendicular

to the graphene sheet along the z-direction and utilize the earlier description to

determine the eigenstructure of this problem and derive the Landau levels (LLs).

Introducing the Landau gauge for the magnetic vector potential A = (−yB, 0, 0)

and utilizing Peierl’s substitution we can write,

h̄k → h̄k +
e

c
A, (2.37)

where e is the electronic charge of the electron, c = 1 is the speed of light and h̄k

is the momentum of the Dirac fermions in the absence of B. Therefore for a single

valley the Hamiltonian can be written as

Ĥξ =

(
0 h̄vF

(
ξ
(
kx − i eByh̄

)
− iky

)
h̄vF

(
ξ
(
kx − i eByh̄

)
+ iky

)
0

)
. (2.38)
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In terms of the spinors, we can define our wave function as

Ψ =

(
ψA
ψB

)
. (2.39)

Employing the Schrodinger equation ĤΨ = EΨ, we obtain(
0 h̄vF

(
ξ
(
kx − i eByh̄

)
− iky

)
h̄vF

(
ξ
(
kx − i eByh̄

)
+ iky

)
0

)(
ψA
ψB

)
= E

(
ψA
ψB

)
.

(2.40)

It is convenient to define the two ladder operators as following

−i
√

2h̄vF
lB

â = h̄vF

([
kx −

eB

h̄
y

]
− iky

)
(2.41)

and

i

√
2h̄vF
lB

â† = h̄vF

([
kx −

eB

h̄
y

]
+ iky

)
, (2.42)

where lB =
√
h̄/(eB) is the magnetic length. The Fock state of the harmonic

oscillator is denoted by |n〉, where n = 0, 1, 2..... These ladder operators satisfy

the commutation relation
[
â, â†

]
= 1. Recalling, â|n〉 =

√
n|n − 1〉 and â†|n〉 =

√
n+ 1|n+ 1〉. Our eigenvalue equation at the K point becomes(

0 −i
√

2h̄vF
lB

â

i
√

2h̄vF
lB

â† 0

)(
ψA
ψB

)
= E

(
ψA
ψB

)
, (2.43)

which yields the two equations

−i
√

2h̄vF
lB

âψB = EψA (2.44)

and

i

√
2h̄vF
lB

â†ψA = EψB. (2.45)

Substituting Eq. (2.44) in Eq. (2.45), we obtain

i

√
2h̄vF
lB

â†
−i
√

2h̄vF
lB

âψA

E
= EψA (2.46)

2h̄2v2
F

l2B
â†âψA = EψA. (2.47)
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Figure 2.4: Landau levels evolution of graphene as a function of magnetic field B
for |n| ≤ 5, (a) for the K valley and (b) K ′ valley.

We can define â†â = n, so that n|n〉 = E|n〉. Therefore for either of the two

valleys, we obtain the low-energy LL dispersion of graphene

En,t = t
√

2h̄ev2
F |n|B, (2.48)

where t = sgn(n) denotes the conduction/valence band.

Looking at Eq. (2.48), we noted that there are some striking differences and char-

acteristics between the graphene relativistic LLs and those of the conventional

(non-relativistic) LLs discussed in Section 1.0.7. A plot of the LL evolution with

magnetic field B is shown in Figs. 2.4(a) and (b) for the K and K ′ valleys, respec-

tively. The results are identical for both valleys. One of the remarkable differences

is that unlike 2DEG the LLs in graphene are no longer equally spaced. Here,

En,t ∝
√
n and the level spacing decreases as n increases. The second difference is

that the n 6= 0 LL scale as
√
B while the n = 0 level is pinned at zero energy. The

conduction and valence bands are mirror-symmetric with respect to the E = 0

axis.
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2.2.4 The associated eigenfunctions of graphene in the pres-
ence of magnetic field

The wave function of the system in term of the two spinors is given as

Ψ =

(
ψA
ψB

)
. (2.49)

We can define the A−B sublattice basis as: ψB = β|n〉, and ψA = α|m〉. Applying

the system Hamiltonian to ψ, we obtain

−i
√

2h̄vF
lB

âβ|n〉 = En,tα|m〉 (2.50)

and

i

√
2h̄vF
lB

â†α|m〉 = En,tβ|n〉. (2.51)

From the above equation it is clear that m = n− 1, and

β = itα. (2.52)

The wave function at the K point is given by

ΨK = |n̄〉K =

(
α|m〉
β|n〉

)
, (2.53)

which upon normalization becomes

|n̄〉K =
1√
2

(
−it|n− 1〉
|n〉

)
. (2.54)

The zero-energy LL with n = 0 deserves special attention and to be treated sep-

arately. Indeed, for n = 0, the first component in Eq. (2.54) is zero. We find

that the zero energy states at the K valley is entirely due to electrons from the B

sublattice. In this case the solution of the eigenvalue equation yields an eigenvector

|0〉K =

(
0
|0〉

)
. (2.55)

Similarly, for the K ′ valley, we obtain the associated wave functions as

|n̄〉K′ =
1√
2

(
−it|n〉
|n− 1〉

)
. (2.56)
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In summary, for the K and K ′ valleys, the eigen wave functions can be written as

|n̄〉ξ=+1 =

(
−iαn,t|n− 1〉

βn,t|n〉

)
(2.57)

and

|n̄〉ξ=−1 =

(
−iαn,t|n〉
βn,t|n− 1〉

)
, (2.58)

where |n〉 is an orthonormal Fock state of the harmonic oscillator, and αn,t and

βn,t are given by,

αn,t =

{
t√
2
, if n 6= 0

1−ξ
2
, if n = 0

(2.59)

and

βn,t =

{
1√
2
, if n 6= 0

1+ξ
2
, if n = 0.

(2.60)

We noted that the zero-energy states at the K valley are restricted to the sub-

lattice B, whereas those at the K ′ valley have a non-vanishing value only on the

sublattice A. For the K and K ′ valleys, the index ξ has been defined such that

ξ = +1 and ξ = −1, respectively. In the next section, we will explore the electronic

properties of other members of the graphene family staggered 2D semiconductor

materials, especially as we switch on the spin-orbit interaction.

2.3 The electronic properties of staggered 2D

semiconductor materials

Graphene shares analogous properties with staggered 2D semiconductor mono-

layer. In staggered two-dimensional semiconductor atomic crystals (monolayer of

silicon, germanium, and tin), atoms are still arranged in a honeycomb lattice.

These monolayer structures hold great promise in the field of valleytronics, spin-

tronics and optoelectronics due to their exceptional electronic and optical proper-

ties [69, 70]. We set up the discussion with the introduction of SOC in these 2D
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quantum materials. The presence of SOC provides a mass to the Dirac fermions

that result in the opening of a gap in their electronic band structure in each of the

K and K ′ valleys. The lattice of these materials is shown in Fig. 2.5. The ionic

size of the silicon atom is larger as compared to the carbon atom, which causing

buckling due to an sp3-like hybridization [66, 71, 72]. As a result of the buckled

lattice, the inversion symmetry generates an in-plane electric field which in turn

creates an on-site staggered potential difference between the A and B sublattices.

We introduce the concept of SOC in staggered 2D materials. The coupling is a

relativistic interaction between electrons and a local (internal or external) electric

potential gradient because the moving electrons experience an effective magnetic

Figure 2.5: (a) The un-buckled structure of the staggered 2D semiconductor mono-
layer. (b) Illustration of the buckled honeycomb lattice of of the staggered 2D
semiconductors which is distorted due to large ionic radius of a silicon atom and
generates a staggered sublattice potential Ez.
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field in their rest frame. We have already discussed it in Section 1.1.2, from where

we also know the generic form of the intrinsic spin-orbit Hamiltonian and can be

expressed as through the fourth term in L.H.S of Eq. (1.123)

Hso =
h̄

4m2c2

(
~∇V × ~p

)
· ~σ = − h̄

4m2c2

(
~F × ~p

)
· ~σ, (2.61)

where V is the potenial energy and ~F is the force parallel to the surface due to

the potential gradient, ~p is momentum and ~σ is a Pauli matrix, representing the

spin of the electron. The nearest-neighbor SOC is zero for staggered materials due

to the presence of a structure’s mirror symmetry, while the next-nearest-neighbor

SOC is nonzero as shown in Fig. 2.6(a). The next-nearest-neighbor SOC can be

divided into two types, one is parallel and the other is perpendicular to the plane,

respectively. As illustrated in Fig. 2.6(b), the perpendicular components of the

coloumbic force of sublattices A and B are non-coplanar. The Hamiltonian for the

force parallel to the plane has the following form

Hso1 = iγ2(~F‖ × ~dij) · ~σ ≡ it2vijσz, (2.62)

where t2 = ∆so/(3
√

3), vij = (~di × ~dj)/|~di × ~dj|, ~di and ~dj are the two unit

vectors connecting atom j to its next-nearest-neighbors i [71]. The intrinsic SOC

Hamiltonian of the staggered 2D materials in first quantization form is given by

Hso1 =
i∆so

3
√

3
vijσz. (2.63)

The staggered 2D materials band structure can be altered in the presence of a

perpendicular electric field as shown in Fig. 2.6(b). The origin of this field can

be gate voltage or charge impurities in the substrate. Due to the application of

the electric field, the spatial inversion symmetry breaks down and as a result, it

induces a nearest-neighbor (extrinsic) SOC called Rashba SOC [71]. For the force

perpendicular to the plane, the Hamiltonian has the generic form as

Hso2 = iγ1(~σ × ~d0
ij) · ~FA

⊥~ez = it1µij(~σ × ~d0
ij)z, (2.64)

where, γ1 and t1 are undetermined material and interface-dependent parameters,

j is the nearest neighbor of i, ~d0
ij = ~dij/|~dij| and µij = ±1 for the lattice A and B,
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respectively. However, the Rashba coupling is typically neglected, since ∆R � ∆so

being roughly 10 times smaller in magnitude than ∆so.

The so-called Kane-Mele Hamiltonian with SOC in these 2D materials in the

vicinity of Dirac point K in second quantization form is given by the following

equation [15, 71],

H = −|t|
∑
〈ij〉µ

(a†iµbjµ + b†iµajµ)

+i
∆so

6
√

3

∑
〈〈ij〉〉µν

vija
†
iµσ

z
µνajν

−i ∆so

6
√

3

∑
〈〈ij〉〉µν

vijb
†
iµσ

z
µνbjν , (2.65)

where a†iµ/ν(aiµ/ν) is the creation (annihilation) operator written in second quanti-

zation notation, which creates an electron (hole) in the sublattice A at site Ri with

spin µ/ν. Similarly, b†iµ/ν(biµ/ν) is the fermionic creation (annihilation) operator

that creates (annihilates) an electron in the sublattice B at the site Ri with spin

Figure 2.6: SOC in the staggered 2D materials. (a) The nearest-neighbor force

F1 vanishes, while the next-nearest-neighbor force ~F‖ is non-zero in the horizontal
plane. (b) The next-nearest-neighbor non-zero force FA

⊥ equals negative FB
⊥ in the

perpendicular direction. The dark and light atoms correspond to atoms in the two
staggered planes respectively.
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µ/ν.

The first term in Eq. (2.65) is the usual low-energy graphene-like which describes

nearest-neighbor hopping with hopping integral t and 〈ij〉 denotes the summation

over the nearest neighbor. The second and third terms account for a complex hop-

ping amplitude between next-nearest neighbors 〈〈ij〉〉, here ∆so is the strength of

SOC. The parameter vij = ±1 corresponds to counter-clockwise or clockwise hop-

ping, respectively and σzµν is the Pauli spin matrix. It is noticeable that the SOC

of sublattice B denoted in the fourth term has a negative sign, as the direction of

the force is opposite to that of sublattice A. According to Fig. 2.7(a), there are

three nearest neighbor atoms and six next-nearest neighbors of the silicon atoms.

Now transforming the creation and annihilation operators in the momentum space

using Fourier transformation, we have

ai =
1√
N

∑
k

eik·Riak, bi =
1√
N

∑
k

eik·Ribk, (2.66)

The first part of Eq. (2.65) is the usual graphene-like Hamiltonian. From Eq. (2.7),

we can write

−|t|
∑
〈ij〉µ

(a†iµbjµ + b†iµajµ) =
∑
k

(
−|t|α(k)a†k↑bk↑ − |t|α

∗(k)b†k↑ak↑

)
. (2.67)

By using the Fourier transormed operators defined in Eq. 2.66, the second and

third terms of Eq. 2.65 can be written in momentum space, respectively as

i
∆so

6
√

3

∑
〈〈ij〉〉µν

vija
†
iµσ

z
µνajν = i

∆so

6
√

3

∑
iµν

6∑
j=1

vija
†
iµσ

z
µνajν

= i
∆so

6
√

3

∑
k

∑
µν

6∑
j=1

a†kµσ
z
µνakνvje

ik·R′j

= i
∆so

6
√

3

∑
k

∑
µν

a†kµσ
z
µνakνv(k). (2.68)
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Figure 2.7: The staggered 2D semiconductor honeycomb lattice. (a) The six next-
nearest neighbor atoms of sublattice A at site i (i = 1, ...., 6) are shown with
number. The R

′
j is the vector connecting the sublattice A at site i with its six

next-nearest neighbors. (b) Next-nearest-neighbour hopping on the honeycomb
lattice with vij = ±.

Exapanding the σzµν , this term becomes,

i
∆so

6
√

3

∑
iµν

6∑
j=1

vija
†
iµσ

z
µνajν = i

∆so

6
√

3

∑
k

(
a†k↑ak↑ − a

†
k↓ak↓

)
v(k). (2.69)

Similarly, for the third terms in Eq. 2.65, we obtain

i
∆so

6
√

3

∑
〈〈ij〉〉µν

vijb
†
iµσ

z
µνbjν = i

∆so

6
√

3

∑
k

(
b†k↑bk↑ − b

†
k↓bk↓

)
v(k).

where v(k) is given by,

v(k) =
6∑
j=1

vje
ik·R′j

= −eik·v1 − eik·v2 − eik·v3 + e−ik·v1 + e−ik·v2 + e−ik·v3

= −2i
(

sin(k · v1) + sin(k · v2) + sin(k · v3)
)
, (2.70)

where v1, v2 and v3 are the values of next-nearest neighbor atoms vectors of

sublattice A as shown in Fig. 2.7(a). R
′
j is the vector of the j-th next-nearest
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neighbor atoms. We note that,

R′1 = −R′4 = v1 = (0, a) (2.71)

R′2 = −R′4 = v2 =

(√
3a

2
,
a

2

)
(2.72)

R′3 = −R′4 = v3 =

(√
3a

2
,−a

2

)
. (2.73)

The Hamiltonian of the staggered 2D materials in momentum space can be ob-

tained by substituting Eqs. (2.67–2.73) into Eq. (2.65). Therefore, for each of the

two spin projections, the Hamiltonian becomes

H↑ =
∑
k

(
− |t|α(k)a†k↑bk↑ − |t|α

∗(k)b†k↑ak↑ + i
∆sov(k)

6
√

3

∑
k

(
a†k↑ak↑ − b

†
k↓bk↓

))

=
∑
k

(
a†k↑ b†k↑

)( i∆sov(k)

6
√

3
− |t|α(k)

−|t|α∗(k) − i∆sov(k)

6
√

3

)(
ak↑
bk↑

)
. (2.74)

H↓ =
∑
k

(
− |t|α(k)a†k↓bk↓ − |t|α

∗(k)b†k↓ak↓ − i
∆sov(k)

6
√

3

∑
k

(
a†k↓ak↑ − b

†
k↓bk↓

))

=
∑
k

(
a†k↓ b†k↓

)(−i∆sov(k)

6
√

3
− |t|α(k)

−|t|α∗(k) i∆sov(k)

6
√

3

)(
ak↓
bk↓

)
. (2.75)

Quite similar to graphene, for the staggered 2D materials, we obatin a 2×2 Hamil-

tonian matrix for each spin in the first quantization form. From Eqs. (2.74) and

(2.75) we seek to find energy dispersion relation in the low energy limit. The coor-

dinates for the staggered 2D material are given by 4π(0,−1)/3a and 4π(0, 1)/3a,

respectively. Following Ref. [71], the diagonal terms can be approximated to the

first order as

i∆sov(K + k)

6
√

3
≈ −∆so

2
, (2.76)

i∆sov(K′ + k)

6
√

3
≈ ∆so

2
. (2.77)

Finally, a general low-energy Hamiltonian for silicene, germanene, and tinene can

be written as

Hξσ =

(
−ξσz ∆so

2
h̄vF (ξkx − iky)

h̄vF (ξkx + iξky) σz
∆so

2

)
, (2.78)
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where σz represents the real spin degrees of freedom, ξ = ±1 for the K and K ′

valleys and vF is the Fermi velocity. The precceeding discussion describes the eva-

lution of Hamiltonian in the presence of SOC. In the next sextion, we will explore

how this Hamiltonian may be modified by the application of electric field.

2.3.1 Impact of an electric field

When an electric field is applied perpendicular to the silicene sheet, then there is

an on-site potential difference between sublattices A and B, due to the buckled

structure. The Hamiltonian given by Eq. (2.65) picks up the additional term and

can be rewritten as

H = −|t|
∑
〈ij〉µ

(a†iµbjµ + b†iµajµ) + i
∆so

6
√

3

∑
〈〈ij〉〉µν

vija
†
iµσ

z
µνajν

−i ∆so

6
√

3

∑
〈〈ij〉〉µν

vijb
†
iµσ

z
µνbjν +

∆z

2

∑
i

a†iµaiµ. (2.79)

The fourth term represents the electric field contribution, The staggered potential

difference is ∆z = eEzl, Ez being an electric field and l being the lattice constant.

The low-energy effective Dirac Hamiltonian for the staggered graphene system in

the presence of an electric field is now expressed as

Ĥξσ =

(
−ξσz ∆so

2
+ 1

2
∆z h̄vF (ξkx − iky)

h̄vF (ξkx + iky) ξσz
∆so

2
− 1

2
∆z

)
. (2.80)

In terms of Pauli matrices the above Hamiltonian can be written as

Ĥξσ = h̄vF (ξkxτ̂x + ky τ̂y)−
1

2
ξ∆soσ̂z τ̂z +

1

2
∆z τ̂z. (2.81)

The first term in Eq. (2.81) is the usual low-energy graphene-like Hamiltonian for

describing massless Dirac fermions. The parameter ξ = ±1 corresponds to the

valleys (K and K
′
) in momentum space and the vector operators ~τ = (τ̂x, τ̂y, τ̂z)

and ~σ = (σ̂x, σ̂y, σ̂z) respectively represent Pauli matrices of the lattice pseudo spin

and real spin degrees of freedom. The second term in the Hamiltonian captures
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intrinsic spin-orbit coupling with a band gap of ∆so. The energy dispersion relation

of the Dirac electron in staggered 2D quantum materials is given by

E(ξ, σ, t, k) = t
√

(h̄vFk)2 + ∆2
ξσ, (2.82)

Here, t = sgn(n) denotes the conduction/valence band and ∆ξσ = −1
2
ξσ∆so+ 1

2
∆z

is general Dirac mass. The aforementioned discussion concludes the Hamilto-

nian’s evalution in the presence of electric field. In the forthcoming section, we

will investigate how this electric field drives a quantum material through different

topological phases. In litrature, these transitions are often deemed as topological

quantum phase transition in 2D quantum materials.

2.3.2 Topological qunatum phase transition in 2D quan-
tum materials

The discovery of topological phases and topological quantum phase transitions

(TQPTs) in a wide range of new quantum materials, such as graphene, stag-

gered 2D semiconductors (i.e. silicene, germanene, stanene), 2D transition metal

dichalcogenides (TMDCs), Dirac-Weyl semimetals, and their artificial analogs have

provided a new frame of mind to the understanding of the origin of quantum states

of matter. In section 1.0.9, we derived the expression for the Berry connection.

We now recapitulate. For any insulating state |ψ(k)〉 in the momentum space, the

Berry coneection is given as [73, 74]

Ai(k) = −i
〈
ψ(k)| ∂

∂ki
|ψ(k)

〉
. (2.83)

We may now define the Berry curvature (BC), which acts as a fictitious magnetic

field in the momentum space and is given by

Ω(k) =
∂

∂kx
Ay(k)− ∂

∂ky
Ax(k). (2.84)
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If we integrate the the Berry curvature over the first Brillouin zone, we get the

Chern-number (CN) or topological charge as

C =
1

2π

∫
FBZ

d2kF (k). (2.85)

Now the Hamiltonian in Eq. (2.81), can be written as

Ĥξσ = ~d · ~τ , (2.86)

where dx = ξh̄vFkx, dy = h̄vFky and dz = ∆ξσ. The Berry curvature in Eq. (1.28)

can be modified for this system as

Ωξσ(k) =
1

2
d̂ ·
(
∂d̂

∂kx
× ∂d̂

∂ky

)
, (2.87)

where the vector d in component notation can be expressed as

d̂(k) =
d(k)

|d|
=

(
ξh̄vFkx, h̄vFky,∆ξσ

)√
(h̄vFkx)2 + (h̄vFky)2 + ∆2

ξσ

. (2.88)

We finally determined the BC for each valley as

Ωξσ(k) = −ξ ∆ξσ

2
(
(h̄vFk)2 + ∆2

ξσ

)3/2
. (2.89)

For any 2 × 2 Hamiltonian as in (2.80), the CN is equivalent to the Pontryagin

number [74] and is given by

Cξσ =
1

4π

∫
Ωξσ(k)d2k. (2.90)

The Pontryagin number is certain topological invariant or topological number

which counts how many times d̂ wraps a sphere. The CN is determined by the

Dirac mass and is given by

Cξσ =
ξsgn(∆ξσ)

2
, (2.91)

where we already have defined the the Dirac mass ∆ξσ. The CN is quantized as

Cξσ = ±1/2. In particular, these topological spin numbers take the form

Cσ =
1

2

∑
ξ=±1

(
Cξ+ + Cξ−

)
. (2.92)
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Similarly, the corresponding valley CN is given by

Cξ =
1

2

∑
σ=±1

(
C+
σ + C−σ

)
. (2.93)

It must be remembered that the CN numbers are insensitive to a smooth defor-

mation of the band structure provided the bandgap is open as we have shown in

Section 1.0.2 in Fig. 1.5. On the other hand, the CN number changes its sign when

the Dirac mass ∆ξσ changes its sign. It is noteworthy that a topological quantum

phase transition (TQPT) occurs when the sign of the ∆ξσ changes.

For an insulator phase, we define four independent CNs as

C = CK↑ + CK′↑ + CK↓ + CK′↓ (2.94)

Cσ =
1

2

(
CK↑ + CK′↑ − CK

↓ − CK
′

↓

)
(2.95)

Cξ = CK↑ − CK
′

↑ + CK↓ − CK
′

↓ (2.96)

Cξσ =
1

2

(
CK↑ − CK

′

↑ − CK↓ + CK′↓
)
, (2.97)

where C is the total CN, Cσ is the spin CN, Cξ is the valley CN and Cξσ is the

spin-valley CN [74]. The energy gap is tunable through the application of the

staggered electric potential ∆z or impingence of circularly polarized light. The

electronic energy dispersion evolution with ∆z is shown in Fig. 2.8. As illustrated

in Fig. 2.8(a), for ∆z = 0, the spin degeneracy is witnessed with energy bands

separated by an insulating gap of 2∆so and the system is in the TI regime. For

the particular case where staggered electric potential is finite (∆z = 0.5∆so), the

possible CN and spin-Chern number is (0, 1) and we identify this state as the quan-

tum spin Hall insulator (QSHI) [75]. The QSHI state is also called the topological

insulator (TI) regime or non-trivial state. Each spin state in this regime splits into

two new features and gives rise to two Dirac energy gaps as shown in Fig. 2.8 (b).

When ∆z is increased to ∆z = ∆so, then the lower bandgap of the Dirac fermions

closes and the system transforms to the valley-spin polarized metal (VSPM) state.
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Figure 2.8: The electronic energy dispersion of the staggered 2D monolayer for the
K valley corresponding to three different topological regimes: (a) TI (∆z = 0),
(b) TI (∆z = 0.5∆so), (c) VSPM (∆z = ∆so) and (d) BI (∆z = 2∆so) respectively.
The solid blue (dashed red) curves are for spin up (down).

In this phase, the CN is (1, 1/2) and is shown in Fig. 2.8 (c). For an even higher

staggered electric potential ∆z > ∆so, the system reaches to the band insulator

(BI) state (0, 0) and the lowest energy gap reopens, although a band inversion has

occurred as shown in Fig. 2.8(d). In the forthcoming chapters, we will explicitly

discuss the TQPTs in the presence of a magnetic field for the determination of the

magnet-optical effects in the graphene family.
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2.3.3 Two-component spinor wave functions of 2D quan-
tum materials

In order to obtain the eigenstates of Ĥξσ in Eq. (2.81), we can write

ξkx ± iky = |k|e±iξφk , (2.98)

where, |k| = k =
√
k2
x + k2

y, cos θ =
∆ξσ

E(ξ,σ,t,k)
and sin θ = ξh̄vF k

E(ξ,σ,t,k)
. Eq. (2.80)

becomes Hξσ(k) = E(ξ, σ, t, k)hξ(k), where hξ(k) is given by

hξ(k) =

(
cos θ sin θe−iξφk

sin θeiξφk − cos θ

)
(2.99)

The above matrix is Hermitian and exhibits real eigenenergies. The corrosponding

eigenfunctions for the K and K ′ points of Hξσ(k) are two-component spinors given

as follows

Ψ =
1√
S

(
ψA
ψB

)
eik·r, (2.100)

where S = LxLy is the area of the sample and |ψA|2 + |ψB|2 = 1. Using stan-

dard diagonalization procedure, we have eigenvalue equation Hξσ(k)Ψ = Eξσ(k)Ψ,

resulting in (
cos θ − t sin θe−iξφk

sin θeiξφk − cos θ − t

)(
ψA
ψB

)
= 0, (2.101)

which leads to

(cos θ − t)ψA + sin θe−iξφkψB = 0, (2.102)

sin θeiξφkψA − (cos θ + t)ψB = 0. (2.103)

By multiplying Eq. (2.102) by ψA and taking the conjugate of Eq. (2.103) and

then multiplying with ψB, we have

(cos θ − t) |ψA|2 + sin θe−iξφkψBψ
∗
A = 0, (2.104)

sin θe−iξφkψ∗AψB − (cos θ + t) |ψB|2 = 0. (2.105)

Subtracting thes equations, we have

(cos θ − t)|ψA|2 + (cos θ + t)|ψB|2 = 0, (2.106)
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(cos θ − t)|ψA|2 + (cos θ + t)|1− ψA|2 = 0, (2.107)

|ψA|2 =
1

2t
(1 + t cos θ) . (2.108)

As we know that t2 = 1, therefore we can therefore rewrite the above equation as

ψA =
1√
2

√
(1 + t cos θ). (2.109)

From Eq. (2.104) , we have

ψB =
(t− cos θ)

sin θ
ψAe

iξφk , (2.110)

Substituting the value of ψA into Eq. (2.110), we obtain

ψB =
t√
2

(1− t cos θ)
√

1 + t cos θ√
1− t2 cos2 θ

eiξφk ,

=
t√
2

√
1 + t cos θeiξφk . (2.111)

The full normalized eigenstates follow

Ψ(K,t,σ,k) =

(
ψA
ψB

)
=

1√
2S

(√
1 + t cos θ

t
√

1− t cos θ

)
eik·r, (2.112)

where t = sgn(n) denotes the conduction/valence band. Following the same pro-

cedure, the corresponding wave functions at the K ′ point can be obtain as

Ψ(K′,t,σ,k) =

(
ψA
ψB

)
=

1√
2S

(
t
√

1− t cos θ√
1 + t cos θ

)
eik·r. (2.113)

Now we are fully prepare to introduce the magnetic field effect in these staggered

2D quantum materials.

2.3.4 Landau level quantization

The low-energy Hamiltonian of silicene, germanene and tinene is given by Eq. (2.81)

Ĥξσ = h̄vF (ξkxτ̂x + ky τ̂y)−
1

2
ξ∆soσ̂z τ̂z +

1

2
∆z τ̂z· (2.114)
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In order to achieve Landau level (LL) quantization, we apply a static uniform

magnetic field B perpendicular to this plane. Introducing the Landau gauge for

the magnetic vector potential A = (−yB, 0, 0) [76, 77]. In the presence of a

magnetic field, for a single spin and valley the low-energy physics of the silicenic

materials is well described in matrix form using Pauli matrices as

Ĥξσ =

(
∆ξσ h̄vF

[
ξ
(
kx − i eByh̄

)
− iky

]
h̄vF

[
ξ
(
kx − i eByh̄

)
+ iky

]
−∆ξσ

)
, (2.115)

where ∆ξσ = −1
2
ξσ∆so + 1

2
∆z. The Hamiltonian Ĥξσ is expressed in the A and B

sublattices basis (ψA, ψB)T . The two ladder operators can be defined as

−i
√

2h̄vF
lB

a = h̄vF

([
kx −

eB

h̄
y

]
− iky

)
(2.116)

and

i

√
2h̄vF
lB

a† = h̄vF

([
kx −

eB

h̄
y

]
+ iky

)
, (2.117)

where lB =
√
h̄/(eB). The Fock state of the harmonic oscillator is denoted by

|n〉, where n = 0, 1, 2..... These ladder operators satisfy the commutation relation[
a, a†

]
= 1. Recalling, a|n〉 =

√
n|n−1〉 and a†|n〉 =

√
n+ 1|n+1〉. Our eigenvalue

equation at the K point yields(
∆Kσ −i

√
2h̄vF
lB

a

i
√

2h̄vF
lB

a† −∆Kσ

)(
ψA
ψB

)
= E

(
ψA
ψB

)
. (2.118)

By applying the Hamiltonian on Ψ, we obtain

∆KσψA − i
√

2h̄vF
lB

aψB = EψA (2.119)

and

i

√
2h̄vF
lB

a†ψA −∆KσψB = EψB. (2.120)

Eliminating ψA from Eq. (2.119), we obtain

ψA =
−i
√

2h̄vF/lB
E −∆Kσ

aψB, (2.121)
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and upon substituting Eq. (2.121) in Eq. (2.120), we arrive at

2h̄2v2
F/l

2
B

E −∆Kσ

a†aψB −∆KσψB = EψB, (2.122)

which can be further simplified to

2h̄2v2
F/l

2
B

E −∆Kσ

nψB = (∆Kσ + E)ψB. (2.123)

For n 6= 0, the dispersion relation of the silicenic materials in the K valley are

given by

E(K, σ, n, t) = t
√

2v2
F h̄eB|n|+ ∆2

Kσ. (2.124)

For n = 0, LL in the K valley, Eq. (2.120) can be written as

−∆KσψB = EψB. (2.125)

The n = 0 LL energy is given by

E(ξ, σ, 0) = −∆Kσ. (2.126)

Similarly, for the K ′ valley, we can solve the simple eigenvalue equation(
∆K′σ −i

√
2h̄vF
lB

a†

i
√

2h̄vF
lB

a −∆K′σ

)(
ψA
ψB

)
= E

(
ψA
ψB

)
, (2.127)

which yields

∆K′σψA − i
√

2h̄vF
lB

a†ψB = EψA (2.128)

and

−∆K′σψB + i

√
2h̄vF
lB

aψA = EψB, (2.129)

and upon eliminating ψB from Eq. (2.129), we obtain

ψB =
i
√

2h̄vF/lB
E + ∆K′σ

aψA. (2.130)

Finally, substituting Eq. (2.130) into Eq. (2.128), we obatain

2h̄2v2
F/l

2
B

E + ∆K′σ
a†aψA = (E −∆K′σ)ψB, (2.131)
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where a†aψA = nψA, the low-energy LL dispersion of the graphene family for the

K ′ valley is given by

E(K ′, σ, n, t) = t
√

2v2
F h̄eB|n|+ ∆2

K′σ. (2.132)

For n = 0 minifold in the K ′ valley, Eq. (2.128) can be recast as

∆K′σψB = EψB. (2.133)

The zeroth LLs energy in the K ′ valley is given by

E(K ′, σ, 0) = ∆Kσ. (2.134)

The low-energy LL dispersion of the system for the K and K ′ valleys are therefore

described as

E(ξ, σ, n, t) =

{
t
√

2v2
F h̄eB|n|+ ∆2

ξσ, if n 6= 0

−ξ∆ξσ, if n = 0.
(2.135)

Here, t = sgn(n) denotes the conduction/valence band, n is an integer, the quan-

tum number denoting the Landau quantization and σ = ±1 for spin up (↑) and

down (↓), respectively.

In graphene, the n = 0 energy levels are pinned at zero energy as previously

shown in Fig. 2.4 (a) and (b) for the K and K ′ valleys respectively. But in stag-

gered 2D materials, the four-fold spin and valley split n=0 manifold is located at

different locations in the conduction and valance bands in different regimes. One

of the main differences between graphene and these staggered materials is that the

n = 0 LL energies in silicenic materials are independent of the magnetic field and

can be linearly manipulated by the electric field only, whereas both the electric and

magnetic fields play a role in setting the position of the n6=0 levels. The locations

of these four n = 0 LLs can be controlled by the applied electric field. Similar to

graphene, non-zero LLs energies scale as
√
B.

In Figs. 2.9(a)–(d), we have illustrated how the n = 0 LL undergoes TQPTs
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Figure 2.9: The staggered 2D semiconductor Landau level energies as a function of
the external magnetic field B for three distinct topological regimes, TI, VSPM and
BI for both spin up and down (σz = ±1). (a) For ∆z = 0 the energy spectrum is
gapped due to SOC energy, and we have a TI phase. (b) For ∆z 6= 0 but ∆z < ∆so,
the degeneracy is lefted but the spctrum is still gapped and we have a TI phase.
(c) When ∆z = ∆so, the energy spectrum becomes gappless giving rise to a the
valley-spin polarized metal (VSPM) regime. (d) For ∆z > ∆so, the energy gap
re-opens giving rise to a phase transition from VSPM to a BI phase.

from the non-trivial to trivial states. In the absence of electric field ∆z = 0, the

n = 0 energy levels are degenerate and set at ∆so in the conduction and valance

bands as shown in Fig. 2.9 (a). When ∆z is turned on, the spin degeneracy is

lifted and the bands become spin-split representing two energy gaps. In the TI

regime, the spin-up LL is residing at positive energy while the spin-down level is

at negative energy as depicted in Fig. 2.9 (b).

In the valley-spin polarized metal (VSPM) instance [65], the gap of one of the

spin-split bands closes giving rise to a Dirac point. In the VSPM phase, the n = 0

spin-up LL at the K valley sits at zero energy, which exhibits graphene-like be-

97



havior. This is shown in Fig. 2.9 (c). On the other hand, the n = 0 spin-down LL

is at negative energy. For an even higher electric field, the system transitions from

the TI to BI state, and the lowest bandgap is opened again. In this regime, both

of the n = 0 spin-up and spin-down LLs living in the valance band are shown in

Fig. 2.9 (d).

2.3.5 Wave functions

The next goal is to calculate the wave function of the system in the presence of

a magnetic field. In order to determine the eigenfunctions for the staggered 2D

materials, we already know that for the K valley ψA ∝ |n− 1〉 and ψB ∝ |n〉. The

proposed eigenfunction for the K valley is given

ΨK =

(
A|n− 1〉
B|n〉

)
, (2.136)

with determinable constants A and B. The eigenvalue equation yields(
∆Kσ −i

√
2h̄vF
lB

i
√

2h̄vF
lB

a† −∆Kσ

)(
A|n− 1〉
B|n〉

)
= E

(
A|n− 1〉
B|n〉

)
, (2.137)

which can be cast into components forms

∆KσA|n− 1〉 − i
√

2h̄vF
lB

aB|n〉 = EA|n− 1〉 (2.138)

and

i

√
2h̄vF
lB

a†A|n− 1〉 −∆KσB|n〉 = EB|n〉. (2.139)

Now using a†|n〉 =
√
n+ 1|n+ 1〉 and a|n〉 =

√
n|n− 1〉, Eqs. (2.138) and (2.139),

can be rewritten as, respectively,

∆KσA|n− 1〉 − i
√

2h̄vF
lB

B
√
n|n− 1〉 = EA|n− 1〉 (2.140)

and

i

√
2h̄vF
lB

A
√
n|n− 1〉 −∆KσB|n〉 = EB|n〉. (2.141)
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From Eq. (2.141), we can attempt to eliminate A arriving at the relationship

A =
(E + ∆Kσ)

i
√

2nh̄eBvF
B. (2.142)

Now the eigenfunction for the K valley becomes

ΨK =

(
(E+∆Kσ)√

2nh̄eBvF
B|n− 1〉

B|n〉

)
. (2.143)

Utilizing the normalization condition Ψ∗KΨK = 1, we obtain

ΨK = |n̄〉
∣∣∣∣
ξ=1

=

(
−iAn|n− 1〉

Bn|n〉

)
, (2.144)

where |n〉 is an orthonormal Fock state of the harmonic oscillator, and An and Bn

are given by,

An =


√
|E(ξ,σ,n,t)|+t∆ξσ√

2|E(ξ,σ,n,t)|
, if n 6= 0.

1−ξ
2
, if n = 0.

(2.145)

and

Bn =


√
|E(ξ,σ,n,t)|−t∆ξσ√

2|E(ξ,σ,n,t)|
, if n 6= 0.

1+ξ
2
, if n = 0.

(2.146)

Similarly, for the K ′ valley, the wave function is given by

ΨK′ =

(
A|n〉

B|n− 1〉

)
. (2.147)

The eigenvalue equation for the K ′ valley is ĤΨK′ = EΨK′(
∆K′σ −i

√
2h̄vF
lB

a†

i
√

2h̄vF
lB

a −∆K′σ

)(
A|n〉

B|n− 1〉

)
= E

(
A|n〉

B|n− 1〉

)
. (2.148)

Once again applying the Hamiltonian on ΨK yields

∆K′σA|n〉 − i
√

2h̄vF
lB

B
√
n|n〉 = EA|n〉 (2.149)
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and

i

√
2h̄vF
lB

A
√
n|n− 1〉 −∆K′σB|n− 1〉 = EB|n− 1〉. (2.150)

From Eq. (2.150), we can write

A =
(E + ∆K′σ)

i
√

2nh̄eBvF
B. (2.151)

Substituting Eq. (2.151) into Eq. (2.147) and normalizing the wave function in

similar manner as before we obatin

ΨK′ = |n̄〉
∣∣∣∣
ξ=−1

=

(
−iAn|n〉
Bn|n− 1〉

)
(2.152)

|n̄〉
∣∣∣∣
ξ=−1

=

(
−iAn|n〉
Bn|n− 1〉

)
, (2.153)

where An and Bn are given by,

An =


√
|E(ξ,σ,n,t)|+t∆ξσ√

2|E(ξ,σ,n,t)|
, if n 6= 0.

1−ξ
2
, if n = 0.

(2.154)

Bn =


√
|E(ξ,σ,n,t)|−t∆ξσ√

2|E(ξ,σ,n,t)|
, if n 6= 0.

1+ξ
2
, if n = 0.

(2.155)

The corresponding solutions of eigenstates of the K and K ′ valleys will be exten-

sively used for the calculation of magneto-optical conductivities in the following

chapters and we will also form the basis of the subsequent work.

2.4 3D hybridized topological insulator ultra-thin

films in a magnetic Field

In section 1.1.5, we discussed that a bulk system with Dirac-like surface states

inside the bandgap is a 3D topological insulator (TI). To begin with, we discuss
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how a 3D TI thin film is different from that of graphene and staggered 2D quan-

tum materials. The Dirac fermions in TI thin films share analogous features with

graphene, silicene, germanene, and tinene [78]. The top and bottom SSs of 3D

TIs are analogous to the K and K ′ valleys in the graphene family, yet there are

key differences between the graphene family and the surface states of a 3D TI.

For example, unlike graphene which has four Dirac points, in 3D TI thin films

there exists an odd number of not spin degenerate Dirac points at any surface.

Additionally, due to SOC, TIs exhibit a distinct spin-momentum locking in SSs

[79]. In 3D TI thin film there is only a spin degeneracy gs = 2 for Dirac top and

bottom SSs, while in the graphene family, there is also a valley as well as spin

degeneracy for the Dirac states.

The hybridization gap in 3D TI thin film provides mass to the otherwise massless

Dirac fermions on the top and bottom SSs. Subsequently, the Zeeman energy field

with 3D TIs renders the Dirac mass controllable at the top and bottom SSs, which

leads to various TQPTs. Unlike the staggered 2D materials, here, we employ a

different stimulus to drive TQPTs between different phases from BI to quantum

spin Hall (QSH) state in TIs through the application of the magnetic field. To

elucidate the surface states dependent LL quantization, we consider the effective

Hamiltonian for large group of materials that host topological surface states such

as Bi2Te3, Bi2Se3, Sb2Te3 and (BiSb)Te in the presence of an out-of-plane mag-

netic field in the z direction [78, 80, 81] and spell it out as

Hστ = h̄vF (πyσx − τzπxσy) + (τz∆z + ∆H)σz, (2.156)

where πi = (ki + Ai) are the gauge-invariant momenta, Ai is the ith component

of the magnetic vector potential, ~σ = (σ̂x, σ̂y, σ̂z) represent the Pauli matrices of

the lattice spin degrees of freedom, τz correspond to whether the Dirac surface

states are localized near the top (τz = +1) or bottom (τz = −1) surface and vF is

the Fermi velocity. The term in the Hamiltonian ∆H represents effective energies

induced by the hybridization between the top and bottom SSs of the TI, whereas
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the third term captures the Zeeman energy with a band gap of ∆z=gµBB/2. Here

g is the surface effective g-factor and µB is the Bohr magneton. To determine the

eigenmodes of the quantum system, let us define the two ladder operators

−ih̄
√

2vFa

lB
= h̄vF (πx − iτz(πy − eBx/h̄)) (2.157)

and

ih̄

√
2vFa

†

lB
= h̄vF (πx + iτz(πy − eBx/h̄)). (2.158)

For τz = +1, the Hamiltonian in Eq. (2.156) can be written in matrix form as

Hτ=+1 =

(
(∆z + ∆H) −ih̄

√
2vfa

lB

ih̄
√

2vfa
†

lB
−(∆z + ∆H)

)
, (2.159)

whereas for τz = −1,

Hτ=−1 =

(
−(∆z −∆H) −ih̄

√
2vfa

†

lB

ih̄
√

2vfa

lB
(∆z −∆H)

)
, (2.160)

In terms of two-component spinors, we can define our wave function as

|ψ〉 =

(
ψ↑
ψ↓

)
. (2.161)

Applying the eigenvalue equation (ĤΨ = EΨ) to the top surface yields(
(∆z + ∆H) −ih̄

√
2vF a
lB

ih̄
√

2vF a
†

lB
−(∆z + ∆H)

)(
ψ↑
ψ↓

)
= E

(
ψ↑
ψ↓

)
, (2.162)

which results in

(∆z + ∆H)ψ↑ − i
√

2h̄vF
lB

aψ↓ = Eψ↑ (2.163)

and

i

√
2h̄vF
lB

a†ψ↑ − (∆z + ∆H)ψ↓ = Eψ↓. (2.164)

Eliminating ψ↑ from Eq. (2.163), we obtain

ψ↑ =
−i
√

2h̄vF/lB
E − (∆z + ∆H)

aψ↓, (2.165)
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Figure 2.10: Landau level energies as a function of the external magnetic field B
for three distinct topological regimes, TI, CNP and NI for top and bottom SSs
(τz = ±1). (a) For ∆z = 0 the energy spectrum is gapped due to Hybridization
energy, and we have a TI phase. (b) For ∆z 6= 0 but ∆z < ∆H , the degeneracy is
lefted but the spctrum is still gapped and we have a TI phase. (c) When ∆z = ∆H ,
the energy spectrum becomes gappless giving rise to a Dirac point called charge
Neutrality point (CNP). (d) For ∆z > ∆H , the energy gap re-opens giving rise to
a phase transition from CNP to a NI phase.

and putting Eq. (2.165) into Eq. (2.164), we obtain

2h̄2v2
F/l

2
B

E − (∆z + ∆H)
a†aψ↓ − (∆z + ∆H)ψ↓ = Eψ↓. (2.166)

It is clear that ψ↑ ∝ |n− 1〉 and ψ↓ ∝ |n〉, then a†aψ↓ = n|n〉, so

2h̄2v2
F/l

2
B

E − (∆z + ∆H)
nψ↓ = ((∆z + ∆H) + E)ψ↓. (2.167)

For n 6= 0, the LL dispersion relation of the TI thin film for the top surface state

is given by

E(τz, n, t) = t
√
E2
B|n|+ ∆2

τz , (2.168)
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For n = 0, and for the top surface state, Eq. (2.85) can be written as

−(∆z + ∆H)ψB = EψB. (2.169)

The zeroth LLs energy is given by

E(τz, 0) = −(∆z + ∆H). (2.170)

The general dispersion relation for the top and bottom SSs of TIs thin film is given

as below

E(τz, n, t) =

{
t
√
E2
B|n|+ ∆2

τz , if n 6= 0.

−∆τz , if n = 0.
(2.171)

Here, t = sgn(n) denotes the electron/hole band, EB = vF
√

2eh̄B and n is an

integer representing Landau quantization.

The CN for the 3D TI thin film can be determined by the Dirac mass and is

given by

∆τz = (∆z + τz∆H). (2.172)

In particular, these topological quantum numbers for the TI take the form,

Cτ =
τsgn(∆τz)

2
. (2.173)

We note that the energy gap ∆H can be controlled through the Zeeman interac-

tion energy ∆z. Here we demonstrate that 3D TI thin films pass through a phase

transition from Band insulator (BI) to quantum spin Hall (QSH) states.

In Fig. 2.10(a)–(d) we have shown the LL evolution with respect to the mag-

netic field. Just like the staggered materials, the zeroth LL is quantum anomalous

in the TI thin film. When ∆z is turned on, the bands become spin-split represent-

ing two energy gaps determined by 2∆min and 2∆max. In the regime ∆z < ∆H ,

the energy spectrum remains gapped and represents a topological phase, i.e., the

QSHI phase as shown in Fig. 2.10(b). The corresponding CN and SS-Chern num-

ber (C, Cτ ) in this regime are (0, 1). When ∆z is increased to ∆z = ∆H , the lower
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bandgap closes and the system transforms to the charge neutrality point (CNP)

state as depicted in Fig. 2.10(c) and the corresponding topological numbers are

(1,1/2). Furthermore, increasing ∆z beyond ∆H , the bandgap opens up again and

the system transforms to the BI phase where the topological numbers are (0,0) as

illustrated in Fig. 2.10(d).

2.4.1 Wave functions

The corresponding solutions of eigenstates of the top and bottom surface states

are

|n̄〉
∣∣∣∣
τz=1

=

(
−αn|n− 1〉

βn|n〉

)
(2.174)

and

|n̄〉
∣∣∣∣
τz=−1

=

(
−αn|n〉
βn|n− 1〉

)
, (2.175)

where |n〉 is an orthonormal Fock state of the harmonic oscillator, and alphan and

betan are given by,

αn =


√
|E(τz ,n,t)|+t∆τz√

2|E(τz ,n,t)|
, if n 6= 0.

1−τz
2
, if n = 0.

(2.176)

and

βn =


√
|E(τz ,n,t)|−t∆τz√

2|E(τz ,n,t)|
, if n 6= 0.

1+τz
2
, if n = 0.

(2.177)

In this section, we explored the LLs quantization of 3D TI thin films in the presence

of the magnetic field. In the next chapter, we will derive analytical expressions

for the MO longitudinal and Hall conductivities of the TI thin film based on these

eigenmodes. With these eigenstructures in hand we will be finally able to evaluate

the Faraday and the Kerr rotations and ellipticities, as well as Goos-Hänchen shifts

and will be able to describe the photonic spin Hall effect in these materials.
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Chapter 3

Quantized magneto-transport in
2D quantum materials

In this chapter, we will describe the basic formalisms that are useful for the main

calculations in the forthcoming chapters. We will briefly introduce Green’s func-

tions which are the main ingredients for the linear response theory. In the prec-

ceding chapter, we discussed the electronic structure of the graphene family and

topological insulator in the presence of magnetic field, which is used in the linear

response theory for obtaining the magneto-optical conductivity. Finally we show

how to determine the magneto-optical spectra of the graphene family, which are

useful for discussion of the magneto-optical effects. A fuller background descrip-

tion of linear response theory and Kubo formalism can be found in the references

[82, 83].

3.0.1 Introduction

Consider a monolayer graphene system which is exposed to an optical field of

frequency Ω. A photon of frequency Ω can be absorbed by exciting an electron

from the valance band to the conduction band in the graphene sample. The

associated electric field with this photon is given by

E(Ω) = E0e
iΩt. (3.1)
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Figure 3.1: Schematic representation of the graphene family conductivity in terms
of inter-band and intra-band transitions between energy bands.

The induced current by this electric field is given by Ohm’s law

J(Ω) = σ(Ω)E(Ω), (3.2)

where σ(Ω) is the conductivity of the material which measures the response of the

material to the applied electric field. It is pertinent to mention here, that the total

current density Jtot in an optical medium is normally due to two sources. The first

source is an optical field that may induce current and the other source is an exter-

nal current source which generate external current. Thus the total current density

is Jtot = Jind + Jext. As the optical properties of a material is entirely governed

by the response of the material to an external optical field, here we suppose that

Jext = 0 and Jtot = Jind.

In the graphene family this can be understood in terms of inter-band and intra-

band transitions between energy bands. Fig. 3.1 shows the low energy graphene

family dispersion for the K valley. The point where the two Dirac cones meet is

called the charge neutrality or Dirac point. For a finite chemical potential µF , we

can see that all the electronic states below the chemical potential are occupied and

those above are unoccupied. The inter-band transitions occur when an incident
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photon with sufficient energy excite an electron in the lower cone from an occu-

pied state to an unoccupied state in the upper cone thus leaving behind a hole.

These transitions are only possible when the electron energies are greater than 2µF .

On the other hand, we can also have intra-band transitions in which an elec-

tron can be excited from a state just below the µF to a state just above as shown

by green arrow in Fig. 3.1. These electronic transitions are heavily influenced by

the chemical potential µF and result in the well-known Drude conductivity. By

changing the frequency of the incident photon, we can probe the important energy

scales and extract information about the band structure.

This process can be best demonstrated in terms of a Feynman diagram as il-

lustrated in Fig. 3.2. We can see that an incident photon with energy h̄ω hits the

system and creates an electron-hole pair with energy h̄ω+h̄Ω and h̄ω, respectively.

The associated Green’s function are shown in the Feynman bubble.

With the brief introduction to low-energy phenomena of Dirac fermions in graphene

and buckled honeycomb lattices with intrinsic SOC presented in the preceding

chapter, we are ready to explore the optical conductivity of 2DEG and other 2D

systems. In this chapter, we will discuss the linear response theory for obtaining

the optical conductivity. The Kubo formalism is useful for discussing inter-band

and intraband transitions. It is well known that, in the presence of incident light

and applied magnetic field, transitions may occur between Landau levels in these

materials. Finally, we will derive analytic expressions for magneto-optical conduc-

tivity in the terahertz regime.
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Figure 3.2: Feynman bubble for conductivity.

3.1 Linear response theory

Linear response theory is an extremely popular concept in condensed matter

physics. The linear response theory (LRT) was formulated by Kubo in 1957

describing the electrical conductivity in solids and for constructing a statistical-

mechanical theory for irreversible thermodynamic processes [84]. Consider an open

quantum system say one comprising Dirac electrons, which is placed in an inter-

acting environment. The system will attain an equilibrium state sooner or later

depending upon the temperature of the environment and the external stimuli. If

the temperature or the external perturbing fields change slowly, in other words,

the field is weak, then the system can attain the new equilibrium state instanta-

neously, and this is called a reversible process. On the contrary, if the perturbing

fields change rapidly or the fields are strong, the system will remain far away from

the equilibrium and the process is irreversible. In the presence of a perturbing

field, the properties of a system coupled to the field, change accordingly. For weak

coupling, this change is proportional to the external field. The response (chang-

ing properties) to the stimulus (external field) is captured by the linear response

function and is described by retarded Green’s functions. There is also a close rela-

tionship between the time-dependent response functions and dynamical properties

of the system at equilibrium, also expressed by LRT. The theory is however only
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applicable in weak external fields.

In the following section we will derive a formal theory for the linear response

of a quantum mechamical system immersed in an external field and discuss some

application to the study of the transport properties of 2D systems.

3.1.1 Kubo’s prescription for linear response theory

Consider a typical optical experiment, where a weak time dependent electromag-

netic (EM) field is impinged on the surface of a metal. By invoking the linear

approximation, the electric current density ~J can be related to the EM field ~E by

Ohm’s law as

~J = σ ~E, (3.3)

where the constant of proportionality σ is termed conductivity. Our system is

quantum mechanical, in thermodynamic equilibrium and descibed by the Hamil-

tonian H0. At some time t = t0, an external agent interacts with the system,

driving the system out of equilibrium. The perturbed Hamiltonian for this prob-

lem takes the form [82, 85]

H(t) = H0 +H
′

tθ(t− t0), (3.4)

where H
′
t is the time dependent perturbed Hamiltonian and θ(t − t0) is the step

function, which ensures that the perturbation starts at t = t0. Suppose that we

are doing typical measurement by probing the system through an EM field to

measuring an observable quantity A. The next task is to find out the expectation

value of the observable A at t > t0 where the expectation value of the observable

quantity A as a function of time is given by

〈A(t)〉 =
1

Z0

∑
n

〈n(t)|A|n(t)〉e−βEn , (3.5)

where Z0 is the partitition function, |n(t)〉 is the time-dependent state and En

is the eigenvalue of the system. The states |n(t)〉 of the quantum system evolve
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according to the Schrödinger equation

ih̄
∂

∂t
|n(t)〉 = H(t)|n(t)〉, (3.6)

It is often convenient to use the interaction reperesentation in which the time

dependence of the state is given by

|n̂(t)〉 = Û(t− t0)|n̂(t0)〉, (3.7)

where ground state has the form

|n̂(t0)〉 = eiH0t0/h̄|n(t0)〉 = |n〉 (3.8)

where Û(t, t0) is the unitary opertor which depends on the perturbing part of the

Hamiltonian H
′
(t) and |n̂(t)〉 is the state in the interaction picture reperesentation.

As we are only intereseted in terms linear in the electric field, so we will only keep

terms which are linear in H
′
(t) by expanding the unitary operator

Û(t, t0) ≈ 1 +
i

h̄

∫ t

t0

dt
′
Ĥ
′
(t
′
). (3.9)

Utlizing Eq. (3.7), the state in Schrödinger picture is related with the interaction

picture state by the following equation,

|n(t)〉 = eiH0t/h̄|n̂(t)〉

= eiH0t/h̄Û(t, t0)|n̂(t0)〉. (3.10)

Substituting Eqs. (3.9) and (3.10) into Eq. (3.5), the expectation value at a given

time t up to linear order in perturbation is obtained in the following manner,

〈A(t)〉 =
1

Z0

∑
n

〈n̂(t)|eiH0t/h̄

(
1 +

i

h̄

∫ t

t0

dt
′
Ĥ
′
(t
′
)

)
×Ae−iH0t/h̄

(
1− i

h̄

∫ t

t0

dt
′
Ĥ
′
(t
′
)

)
|n̂(t)〉e−βEn , (3.11)
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which can be further simplified as

〈A(t)〉 = 〈A〉0 −
i

h̄

∫ t

t0

dt
′ 1

Z0

∑
n

e−βEn
〈
n̂(t)|

[
Â(t), Ĥ

′
(t
′
)
]
|n̂(t)

〉
= 〈A〉0 −

i

h̄

∫ t

t0

dt
′ 1

Z0

∑
n

e−βEn
〈
n(t0)

∣∣∣[Â(t), Ĥ
′
(t
′
)
]∣∣∣n(t0)

〉
= 〈A〉0 −

i

h̄

∫ t

t0

dt
′∑

n

〈[
Â(t), Ĥ

′
(t
′
)
]〉

0
, (3.12)

where all the averages 〈....〉0 represents an equilibrium which are taken with respect

to the H0. Indeed it is a remakable result in which the non-equilibrium quantity

〈A(t)〉 can be written in terms of correlation functions of the system. The linear

response represented by Eq. (3.12) can be rewritten in terms of retarded correlation

function as

δ〈A(t)〉 = 〈A(t)〉 − 〈A(t)〉0 =

∫ ∞
t0

dt
′
CR
AH′ (t, t

′) eη(t−t′), (3.13)

where

CR
AH′ (t, t

′) = −iθ(t− t′)
〈[
Â(t), Ĥ

′
(t
′
)
]〉

0
. (3.14)

Eq. (3.12) is the famous Kubo formula, which can be used for the linear response

to an external perturbation. The average in Eq. (3.12) is known as the retarded

correlation function, because the response A appears after the perturbation starts

(t > t0).

3.1.2 Kubo formula for optical conductivity

The optical conductivity of a medium implies the induction of current in response

to an incident optical field of frequency Ω which connects the current density to

the electric field for general frequencies. To derive the optical conductivity from

general Kubo formalism, we consider a quantum system for which the eigenstates

of H0 (unperturbed Hamiltonian) are denoted by |n〉, such that

H0|n〉 = En|n〉. (3.15)
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These states form a complete set,
∑
|n〉〈n| = 1, 〈n | m〉 = δnm. Now there is a

weak external EM field H ′ that varies with time so that the total Hamiltonian is

H = H0 +H ′(t). (3.16)

Suppose that H ′(t) is slowly turned on, i.e., H ′(t→ −∞) = 0 and |Ψ(t = −∞)〉 is

|n〉. For the time being we set h̄ = 1., and the evalution of state in the interaction

picture can be written as

|Ψ(t)〉I ≡ eiH0t|Ψ(t)〉, (3.17)

where |Ψ(t)〉 is the state at time. The ultimate goal is to find this state. Taking

derviative of Eq. (3.17) with respect to time t and multiplying by i on both sides,

we can write

i
d

dt
|Ψ(t)〉I =

(
i
d

dt
eiHot

)
|Ψ(t)〉+ eiHoti

d

dt
|Ψ(t)〉

= −Hoe
iHot|Ψ(t)〉+ eiHotH|Ψ(t)〉

= eiHot (H −Ho) |Ψ(t)〉

= eiHot (H −Ho) e
−iHoteiHot|Ψ(t)〉

= eiHotH ′(t)e−iHot|Ψ(t)〉I

= H ′I(t)|Ψ(t)〉I (3.18)

It must be noted that [H ′(t1), H ′(t2)] 6= 0. By integrating Eq. (3.18) with limits

−∞ to t, we obtain

|Ψ(t)〉I = exp

[
−i
∫ t

−∞
dt′H ′I (t′)

]
|n〉

= 1− i
∫ t

−∞
dt′H ′I (t′) |n〉+O

(
H ′2I
)
, (3.19)
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since the perturbation is weak, we are justified in ignoring the 2nd order term in

H ′I(t). Eq. (3.17) can be expressed as

|Ψ(t)〉 = e−iHot|Ψ(t)〉I

= e−iHot
(

1− i
∫ t

−∞
H ′I (t′)

)
|n〉 (3.20)

=

{
e−iEnt − i

∫ t

−∞
dt′eiHo(t

′−t)H ′I(t)e
−iHot′

}
|n〉

= e−iEnt|n〉 − i
∑
m

∫ t

−∞
dt′eiEm(t′−t)|m〉 〈m |H ′|n〉 e−iEnt′ .

Here we introduce the completeness relation,∑
|m〉〈m| = 1, (3.21)

allowing us to write

|Ψ(t)〉 = e−iEnt|n〉 − i
∑
m

|m〉e−iEmt
∫ t

−∞
dt′ei(Em−En)t′ 〈m |H ′ (t′)|n〉 .(3.22)

In an EM field, the time dependent perturbation is harmonic, say with a funda-

mental frequency Ω allowing us to decompose the perturbation as

Ĥ ′(t) = ĥe−iΩt + ĥ†eiΩt, (3.23)

where

〈m |H ′ (t′)|n〉 = 〈m|ĥ|n〉e−iΩt + c.c

= Vmne
−iΩt + c.c. (3.24)

Upon substituting Eq. (3.24) into Eq. (3.22), we obtain

|Ψ(t)〉 = e−iEnt|n〉 − i
∑
m

e−iEmt|m〉Vmn
∫ t

−∞
dt′ei(Em−En−Ω)t′︸ ︷︷ ︸

I(t)

+c.c. (3.25)

The integral I is no longer well-defined. Let’s assume Ω→ Ω + iΓ.

I(t) =

∫ t

−∞
dt′ei(Em−En−Ω−iΓ)t′ =

ei(Em−En−Ω)t′

i (Em − En − Ω− iΓ)
, (3.26)
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so that Eq. (3.25) becomes

|Ψ(t)〉 =

{
|n〉 −

∑
m

Vmne
−iΩt

(Em − En)− Ω− iΓ
|m〉+

∑
m

V ∗mne
iΩt

(Em − En)− Ω + iΓ
|m〉

}
e−iEnt.

(3.27)

Eq. (3.27) is the time evolved state for any general time dependent perturbation.

In next section we will use this state to determine the optical conductivity of the

two dimensional electron gas.

3.1.3 Optical conductivity of the two-dimensional electron
gas

Consider a two dimensional electron gas (2DEG) which is described by the per-

turbed Hamiltonian as follows

H =
p2

2m
+ V. (3.28)

Here, V is the external potential. In the presence of the EM field, the canonical

momentum is modified and is given by Peierls substitution (~p − e ~A/c), which in

turn changes the Hamiltonian to

H =

(
~p− e

c
~A
)2

2m
+ V, (3.29)

where ~A is the magnetic vector potential, which can be expressed as

~A = ~Aoe
−iΩt + c.c. (3.30)

From elementary electrodynamics, the optical field is given by

~E = −∇φ− 1

c

∂ ~A

∂t

=
iω

c
~Aoe
−iΩt + c.c

= ~Eoe
−iΩt + c.c. (3.31)
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Now expanding Eq. (3.29) and ignoring higher order term in ~A, we obtain

H =
p2

2m
− e

mc
p · A, (3.32)

where the first term is unperturbed Hamiltonian Ho and H ′(t) represents the

perturbation which oscillates at frequency Ω.

H = Ho −
e

mc
p · Aoe−iΩt. (3.33)

From Eq. (3.31), A = cE/iΩ

H = Ho + ie
p · E
mΩ

e−iΩt. (3.34)

Utilizing the Heisenberg equation to calculate the velocity ~̇x

−ih̄~̇x = [H,~x] = [Ho, ~x] + [H ′, ~x]

= −2ih̄
~p

2m
− ih̄ ie

mΩ
~Ee−iΩt (3.35)

Using the commutation relation for momentum and position operators, we obtain

~v =
~p

m
+

ie

mΩ
~Ee−iΩt − ie

mΩ
~EeiΩt. (3.36)

For 2DEG we obtain the time dependent harmonic perturbation as

H ′(t) =
ie

mΩ
~Ee−iΩt − ie

mΩ
~EeiΩt. (3.37)

The current density is given by

ĵα = σαβEβ. (3.38)

Multiplying both sides with e−iΩt, we obtain

ĵαe
−iΩt = σαβ(Ω)Eβe

−iΩt. (3.39)

Our primary task is to evaluate the expectation value of the current density using

the perturbed state

〈ĵα〉 =
〈

Ψ(t)
∣∣∣ĵα∣∣∣Ψ(t)

〉
= 〈Ψ(t) |ev̂α|Ψ(t)〉 . (3.40)
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From Eq. (3.27), the zeroth order perturbed state is given by

|Ψ(t)〉 = e−iEnt|n〉, (3.41)

which is utilized to obtain the average current density or the expectation value of

current as

〈ĵα〉(o) = 〈Ψ(t) |ev̂α|Ψ(t)〉 =
ie2

mΩ
Eβδαβ, (3.42)

where Eβ is the electric field. Similarly, we determine the first order current

expectation value using the perturbed state in Eq. (3.27), as

〈ĵα〉(1) = 〈Ψ(t)
∣∣∣ĵα∣∣∣Ψ(t)〉

= 〈n|ĵα| −
∑
m

Vmn
(Em − En)− Ω− iΓ

|m〉

− 〈m|ĵα|
∑
m

V ∗mn
(Em − En)− Ω + iΓ

|n〉, (3.43)

where Vmn is given as

Vmn = 〈m| − e

mc
~p · ~A|n〉 =

ie

Ω
〈m |vα|n〉Eβ. (3.44)

Combining the zero’th and first order terms, we obtain

ĵα =
ie2

mΩ
Eβδαβ−i

e2

Ω

∑
m

〈n |vα|m〉 〈m |vβ|n〉
(Em − En)− Ω− iΓ

Eβ+i
e2

ω

∑
β

〈n |vβ|m〉 〈m |vα|n〉
(Em − En) + Ω− iΓ

Eβ.

(3.45)

Plugging Eq. (3.44) into Eq. (3.45) and using the definition of conductivity in

Eq. (3.38), we obtain

σαβ =
ie2

mΩ

{
δαβ −

∑
m

m

{
〈n |vα|m〉 〈m |vβ|n〉
(Em − En)− Ω− iΓ

− 〈n |vβ|m〉 〈m |vα|n〉
(Em − En) + Ω− iΓ

}}
.

(3.46)

The first term is zero because the equilibrium state does not carry any current, so

we can write

σαβ =
e2

iΩ

∑
m

[
〈n |vα|m〉 〈m |vβ|n〉
(Em − En)− Ω− iΓ

+
〈n |vβ|m〉 〈m |vα|n〉
(Em − En) + Ω− iΓ

]
(3.47)
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The expression in Eq. (3.47) is for a single occupied state. Consider an electron

in state |n〉 which is excited into a state |m〉, where |n〉 6= |m〉. If there is a Fermi

sea in which all levels below fermi energy µF are occupied and above µF , all are

empty, then we can write

σTotαβ =
∑

En<µF

∑
Em>µF

σαβ, (3.48)

which results in

σαβ =
e2

iΩ

∑
n6=m

fn
∑
m

〈n |vα|m〉 〈m |vβ|n〉
(Em − En)− Ω− iΓ

+
e2

iΩ

∑
n6=m

fn
∑
m

〈n |vβ|m〉 〈m |vα|n〉
(Em − En) + Ω− iΓ

,

(3.49)

where fn = 1/(1 + e(En−µF )/kBT ) is the Fermi Dirac distribution function at tem-

perature T and chemical potential µF . The above equation can be simplifyingly

written as

σαβ(Ω) =
e2

iΩ

∑
n6=m

(fn − fm)
〈n |jα|m〉 〈m |jβ|n〉
(Em − En) + Ω− iΓ

, (3.50)

and reintroducing h̄ in the above expression we obtain [86, 87]

σαβ(Ω) =
ih̄e2

S

∑
n6=m

fn − fm
(En − Em)

〈n |jα|m〉 〈m |jβ|n〉
Em − En + h̄Ω− iΓ

. (3.51)

Eq. (3.51) can be used to calculate the optical conductivity of the graphene, sil-

icene, TMDCs, and other 2D materials. To derive the magneto-optical conductiv-

ity i.e. in the presence of a magnetic field, Eq. (3.51) can be slightly modified.

3.2 Magneto-optical conductivity of the graphene

family

In the previous chapter, we discussed the energy dispersion of the Dirac electrons

for the graphene family in the presence of a magnetic field. We have already dis-

covered that unlike 2DEG, where the LLs energies are equally spaced by h̄ωc, in
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Figure 3.3: Schematic representation of the allowed transitions between LLs for
two different chemical potentials in the K valley. (a) µF = 0 and (b) µF 6= 0.

the graphene family the non-zero LLs energies scale as
√
B.

We will start our derivation of the magneto-optical (MO) conductivity with a

brief discussion of LL transitions from an energy band perspective. A schematic of

the allowed and Pauli blocked transitions between lower and upper cones for finite

chemical potential µF are shown in Figs. 3.3(a) and (b). Blue lines represent LLs

for the spin up and red lines represent LLs for spin down. The same color scheme

applies to the LLs transitions. The LLs are marked on the right and the two values

of chemical potential are labeled by the green line. In Fig. 3.3(a), the chemical

potential is placed at the charge neutrality point. All the electronic states up to

the chemical potential are occupied. The inter-band transitions occur when an

incident photon with sufficient energy excites an electron from an occupied state

to an unoccupied state thus leaving behind a hole. The LL transitions are heavily

influenced by the chemical potential µF . When the chemical potential lies in be-

tween the n=0 and n=1 LLs then in contrast to charge-neutral graphene, we have

inter-band as well as intra-band transitions as illustrated in Fig. 3.3(b).

Our main interest in this chapter is to derive analytical expression of magneto-

119



optical conductivity for the graphene family. Kubo formula is used to derive the

following general expressions for the optical conductivity tensor [83, 88, 89, 90],

σµν(Ω) =
ih̄

2πl2B

∑
σ,ξ=±1

∑
mn

fn − fm
En − Em

〈n̄|ĵµ|m̄〉〈m̄|ĵν |n̄〉
h̄Ω− (En − Em) + iΓ

, (3.52)

where ĵµ = (e/h̄)
(
∂Ĥ/∂kα

)
is the current density operator, En is the energy

of the n’th Landau level, Γ is the transport scattering rate responsible for the

broadening of the energy levels and lB =
√
h̄/eB is the magnetic length.

In section 2.3.4, we have already derived the energy dispersion and eigen-functions

of the staggered 2D materials in the presence of an external magnetic field in

section 2.3.4. We are now in a position to use the Kubo formalism to calculate the

frequency dependent conductivity of silicene, germanene, stanene and plumbene

etc. We start directly from the graphene family Hamiltonian given in Eq. (2.83),

Ĥξσ = h̄vF (ξkxτ̂x + ky τ̂y)−
1

2
ξ∆soσ̂z τ̂z +

1

2
∆z τ̂z. (3.53)

The expectation value of the current density along the x-axis is given by

〈ĵx〉 =
e

h̄

∂Ĥξ

∂kx
= evF ξ 〈n̄t |τ̂x| m̄t′〉 , (3.54)

where τ̂x is the pseudospin Pauli matrix. The normalized eigenfunctions are

|n̄〉
∣∣∣∣
ξ=1

=

(
−iAn|n− 1〉

Bn|n〉

)
(3.55)

and

|n̄〉
∣∣∣∣
ξ=−1

=

(
−iAn|n〉
Bn|n− 1〉

)
, (3.56)

where |n〉 is an orthonormal Fock state of the harmonic oscillator, and An and Bn

are given by (as outlined in Eqs (2.145) and (2.146)),

An =


√
|E(ξ,σ,n,t)|+t∆ξσ√

2|E(ξ,σ,n,t)|
, if n 6= 0.

1−ξ
2
, if n = 0.

(3.57)
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and

Bn =


√
|E(ξ,σ,n,t)|−t∆ξσ√

2|E(ξ,σ,n,t)|
, if n 6= 0.

1+ξ
2
, if n = 0.

(3.58)

The current operator evaluates as

〈ĵx〉 = evF ξ 〈n̄t |τ̂x| m̄t′〉 = evF ξ
(
iAn,t〈n− 1| Bn,t〈n|

)( 0 1
1 0

)
×

(
−iAm,t′|m− 1〉

Bm,t′ |m〉

)
= evF ξ(iAn,tBm,t′δn−1,m − iBn,tAm,t′δn+1,m).(3.59)

Similarly, we also have

〈ĵx〉 = evF ξ 〈m̄t′ |τ̂x| n̄t〉 = evF ξ
(
iAm,t′〈m− 1| Bm,t′〈n|

)( 0 1
1 0

)
×

(
−iAn,t|n− 1〉

Bn,t|n〉

)
= evF ξ(iAm,t′Bn,tδm−1,n − iBm,t′An,tδm+1,n).(3.60)

The product of the previous two conductivity expressions can be calculated as

e2v2
F ξ(iAn,tBm,t′δn−1,m − iBn,tAm,t′δn+1,m)(iAm,t′Bn,tδm−1,n − iBm,t′An,tδm+1,n)

= (Am,t′Bn,t)
2δm−1,n + (Bm,t′An,t)

2δm+1,n − 2Am,t′Bn,tBm,t′An,tδm+1,nδm−1,n,
(3.61)

where the last term involves two Kronecker δ-functions, so it is zero. Eq.(3.61),

becomes

〈n̄s |τ̂x| m̄t′〉 〈m̄t′ |τ̂x| n̄t〉 = (Am,t′Bn,t)
2δm−1,n + (Bm,t′An,t)

2δm+1,n. (3.62)

Substituting Eq.(3.62) into Eq.(3.52), we obtain

σxx(Ω) =
ih̄e2v2

F

2πl2B

∑
σ,ξ=±1

∑
mn

fn − fm
En − Em

(Am,t′Bn,t)
2δm−1,n + (Bm,t′An,t)

2δm+1,n

h̄Ω− (En − Em) + iΓ
,

(3.63)
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we can drop the band indices as t = t′ = ±1. So the expression for the longitudinal

conductivity take the form

σxx(Ω) =
ih̄e2v2

F

2πl2B

∑
σ,ξ=±1

∑
mn

Θ(En − µF )−Θ(Em − µF )

En − Em
(AmBn)2δm−1,n + (BmAn)2δm+1,n

h̄Ω− (En − Em) + iΓ
.

(3.64)

To express the conductivity explicitly in real and imaginary parts, we multiply

and divide Eq. (3.64) by h̄Ω− (En − Em)− iΓ.

σxx(Ω) =
ih̄e2v2

F

2πl2B

∑
σ,ξ=±1

∑
mn

Θ(En − µF )−Θ(Em − µF )

En − Em

× (AmBn)2δm−1,n + (BmAn,t)
2δm+1,n

h̄Ω− (En − Em) + iΓ
× h̄Ω− (En − Em)− iΓ
h̄Ω− (En − Em)− iΓ

. (3.65)

Finally, at T = 0 K we can compute the real and imaginary parts of the longitu-

dinal conductivity as follows [76, 89]

Re
Im

}(
σxx(Ω)

)
σ0

=
2v2h̄eB

π

∑
ξ,σ

∑
m,n

Θ(En − µF )−Θ(Em − µF )

En − Em

×
[
(AmBn)2δ|m|−ξ,|n| + (BmAn)2δ|m|+ξ,|n|

]{
Fnm
Gnm

, (3.66)

where

Fnm =
Γ(

(h̄Ω− (En − Em))2 + Γ2

) (3.67)

and

Gnm =
h̄Ω− (En − Em)(

(h̄Ω− (En − Em))2 + Γ2

) . (3.68)

In these expressions, σ0 = e2/4h̄ is the universal conductivity. The Kronecker

deltas ensure the rules for electric dipole transitions between the LL’s are sat-

isfied. The Heaviside functions Θ(En − µF ) ensure that only transitions across

the Fermi level are possible, hence they effectively account for the so-called Pauli

blocking [91, 92]. There are certain specific selection rules for LL transitions [92].
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Similarly, for transverse Hall conductivity the spatial index are α = x and β = y,

Eq. (3.52) becomes

σxy(Ω) =
ih̄

2πl2B

∑
σ,ξ=±1

∑
mn

fn − fm
En − Em

〈n̄|ĵx|m̄〉〈m̄|ĵy|n̄〉
h̄Ω− (En − Em) + iΓ

. (3.69)

The current density matrix along the y direction can be determined as

〈ĵy〉 = evF 〈m̄t′ |τ̂y| n̄t〉 = evF
(
iAm,t′〈m− 1| Bm,t′〈n|

)( 0 −i
i 0

)(
−iAn,t|n− 1〉

Bn,t|n〉

)
= evF (Am,t′Bn,tδm−1,n +Bm,t′An,tδm+1,n).

The product of 〈ĵx〉 and 〈ĵy〉 is given by

〈n̄ |τ̂x| m̄〉 〈m̄ |τ̂y| n̄t〉 = (AmBn)2δm−1,n − (BmAn)2δm+1,n. (3.70)

Here, the Eq. (3.69) can be recast as

σxy(Ω) =
ih̄e2v2

F

2πl2B

∑
σ,ξ=±1

∑
mn

Θ(En − µF )−Θ(Em − µF )

En − Em
(AmBn)2δm−1,n − (BmAn)2δm+1,n

h̄Ω− (En − Em) + iΓ
.

(3.71)

In the same fashion, the real and imaginary parts of the transverse Hall conduc-

tivity are given [76, 89]

Re
Im

}(
σxy(Ω)

)
σ0

=
2v2h̄eB

π

∑
ξ,σ

∑
m,n

ξ
Θ(En − µF )−Θ(Em − µF )

En − Em

×
[
(AmBn)2δ|m|−ξ,|n| − (BmAn)2δ|m|+ξ,|n|

]{
−Gnm

Fnm
· (3.72)

These are the analytical expressions for both longitudinal and transverse conduc-

tivities of the graphene family subjected to external electric and magnetic fields.

These conductivities display interesting physics as functions of the incident light

frequency Ω, the chemical potential µF , temperature T , and applied magnetic field

B. We will be exploring these properties shortly. In the limit ∆so = ∆z = 0, we re-

cover graphene’s Hall conductivity [91]. For these expressions, the real (imaginary)
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part of σxx(σxy) is a sum of absorptive Lorentzians, each of whose FWHM depends

on the scattering rate Γ; a higher Γ resulting in broader and shorter peaks. Like-

wise, the real (imaginary) part of σxy(σxx) is a sum of dispersive Lorentzian. These

peaks are positioned at h̄Ω = (En−Em), which we call the magneto-excitation en-

ergies. The transitions obey the appropriate selection rules namely |n|− |m| = ±1

and the conservation of real spin implying that transitions between σ = +1 and

−1 levels are spin forbidden.

It is worth discussing the magneto-optical conductivities for different magnetic

fields in the TI regime. The relevant parameters used are ∆z = 0.5∆so and chem-

ical potential µF = 0. We quickly recount the effect of the magnetic field on the

energy level structure and subsequently the MO response. Schematic diagrams

showing the allowed transitions between Landau levels (LL’s) for three different

magnetic field (B =1, 3 and 5 T) all in the topological insulator regime (∆z < ∆so)

and in the K valley are shown in Fig. 3.4(a)–(c). The transition energy is deter-

mined from the energy difference between LL’s obeying certain selection rules

namely |n| − |m| = ±1 and the conservation of real spin implying that transitions

between σ = +1 and −1 levels are spin forbidden.

The excitation energies corresponding to the different transitions, Em,K(K′),↑(↓) →
En,K(K′),↑(↓) are labelled as ∆mn,K(K′),↑(↓). Blue lines represent Landau levels for

spin up (σ =↑) and red lines represent Landau levels for spin down (σ =↓) [76].

In each of the depicted transitions, one of the participating levels is an n=0 level.

For example for B = 1 T, the first and second magneto-excitation energies corre-

spond to the ∆−10,K,↑ and ∆01,K,↓ for spin up and spin down respectively and are

calculated at 20.3 meV (4.9 THz) and 25.1 meV (6.1 THz) respectively. Explicit

values of these MO transitions are summarized in Table 3.1.

A static electric field Ez, controls the electronic band structure of the 2D staggered
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Table 3.1: Table of allowed transitions in K valley in the n = −1, 0, 1
subspace, for different magnetic fields in the TI regime with ∆so = 0.5∆z.

∆mn,K(K′),↑(↓) B (T) Frequency (THz)
∆−10,K,↑ 1 4.9
∆01,K,↓ 1 6.1
∆−10,K,↑ 3 8.1
∆01,K,↓ 3 9.2
∆−10,K,↑ 5 10.3
∆01,K,↓ 5 11.4

µ
F
=0 meV

n=3

n=2

n=1

n=0

n=0

n=1

n=2

n=3

01,K,

-10,K,

-21,K, 12,K,

n=3
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n=3

n=0
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-10,K,
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n=1
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n=3
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n=0

B=1 T B=3 T B=5 T(a) (b) (c)

Figure 3.4: Schematic representation of the allowed transitions between LLs for
three different magnetic fields in the K valley for magnetic field (a) 1 T (b) 3 T (c)
5 T. Blue lines represent Landau levels for spin up (σ =↑) and red lines represent
Landau level for spin down (σ =↓). The same color scheme applies for the Landau
levels transitions.

graphene family by generating a staggered sublattice potential ∆z. An increase in

the electric field triggers a well-known quantum phase transition that occurs from

topological insulator to band insulator state [65]. Fig. 3.5(d) shows the longitu-

dinal conductivity versus photon energy for various values of ∆z. As we increase

the applied electric field ∆z, each interband peak splits into two spin-polarized

peaks in the TI regime (∆z < ∆so). Concomitantly, due to a redistribution of

spectral weight, the intensity of the peaks is reduced for larger fields values. When

∆z = ∆so, the gap of one of the spin-split bands closes and a new type of metallic
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Figure 3.5: Longitudinal and transverse Hall conductivities as a function of pho-
tonic energy for different magnetic fields in the TI regime. (a) Longitudinal con-
ductivities in the K and K ′ valleys, respectively. (b) and (c) Hall conductivities
in the K valley and K ′ valleys, respectively. Longitudinal and transverse Hall
conductivities as a function of photonic energy for magnetic field of 1 T in differ-
ent topological regimes. (d) Longitudinal conductivities in the K and K ′ valleys,
respectively. (e) and (f) Hall conductivities in the K valley and K ′ valleys, respec-
tively. The parameters used are ∆z=8 meV, ∆z = 0.5∆so and chemical potential
µF = 0.

phase emerges called the valley-spin polarized metal (VSPM) state.

At the VSPM point, the lowest frequency peaks, move apart: the ∆−10,K,↑ peak
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Table 3.2: Table of allowed transitions in K valley in the n = −1, 0, 1
subspace, for B = 1 T in three different topological regimes for ∆so = 8
meV.
∆mn,K(K′),↑(↓) ∆z (meV) Regime Photonic energy (meV)
∆−10,K,↑ 0 TI 22.6
∆01,K,↓ 0 TI 22.6
∆−10,K,↑ 4 TI 20.3
∆01,K,↓ 4 TI 25.1
∆−10,K,↑ 8 VSPM 18.2
∆01,K,↓ 8 VSPM 27.8
∆−10,K,↑ 16 BI 33.8
∆01,K,↓ 16 BI 22.6

is red-shifted while the ∆01,K,↓ peak is blue shifted. The excitation energies corre-

sponding to the first two peaks at the VSPM point are now 18.2 meV (4.4 THz)

and 27.8 meV (6.7 THz) for the spin up and down, respectively. Further increasing

∆z results in re-opening of the gaps and the system transitions from the VSPM

to the band insulator (BI) state. In the BI regime, all interband peaks move to

higher energies. The magneto-excitations frequencies are presented in Table 3.2

for the first two transitions in three different regimes. The main role of the electric

field is that it controls the band structure and is responsible for spin and valley

polarized responses, and therefore, quite similar to magnetic fields, also controls

the magneto-optic excitation energies [76].

The MO conductivity of the graphene family in the THz regime, besides its de-

pendence on several other parameters (e.g, the polarization of incident beam, fre-

quency ω, scattering rate Γ), is heavily influenced by chemical potential µF as

expressed in Eqs. (3.70) and (3.71) [76]. In this chapter, we described the basic

underlying physics for the optical conductivities of 2D materials. We started with

the linear response theory, which is the main character. Using the Kubo formal-

ism we derived the general optical conductivity expression for the 2DEG which is

equally applicable to the 2D materials. Finally, we were able to derive and discuss
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the longitudinal and Hall magneto-optical conductivities.
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Chapter 4

Magneto-optic polarization
re-orientation effects in 2D
quantum materials

This chapter mainly addresses the magneto-optical effects in two different quantum

materials, in particular the polarization re-orientation affected by these materials.

In the first part of this chapter, we discuss the response of staggered 2D quan-

tum materials. We will calculate the Fresnel coefficients of silicene by using the

magneto-optic conductivity derived in Section 3.2. They are then used to deter-

mine unusually large Faraday and Kerr rotations and ellipticity. In the second

part, we will study the response of the 3D hybridized topological insulator thin

films in the presence of a perpendicular magnetic field. The mathematical formal-

ism developed in the previous chapter will be heavily employed. Material in this

chapter has been published in Optics Express [76] and Optical Materials Express

[81].
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4.1 Faraday and Kerr rotation for the Landau

level manifold of 2D lattices with spin-orbit

interaction

4.1.1 Background and motivation

Monolayer graphene has garnered immense interest from a large global commu-

nity of researchers. This is primarily due to its unique electronic and optical

properties [33] derived from its exotic electronic structure. For example, graphene

possesses a gapless Dirac-type band structure [34], high carrier mobilities and uni-

versal broadband optical conductivities (due to interband transitions) [93]. Due

to its fascinating optical properties, graphene is also considered to be a promising

material for photonic and optoelectronic applications in the terahertz (THz) to

mid-infrared ranges.

For example, Faraday and Kerr rotations are non-reciprocal magneto-optic (MO)

effects, in which the polarization of a plane wave is rotated when linearly polar-

ized light is respectively transmitted or reflected from a transparent medium in the

presence of a static uniform perpendicular magnetic field B. Both of these effects

originate from the breaking of time-reversal symmetry by an external applied mag-

netic field. Graphene exhibits an exceptionally large Faraday and Kerr rotation in

the THz region and therefore is considered a futuristic candidate for non-reciprocal

tunable devices [94, 95, 96]. The magnitude of FR is about 6◦ in a field of strength

7 T. Unfortunately, the FR and magneto-optic Kerr effects (MOKE) observed in

a single layer graphene sheet exist only at low frequencies (< 3 THz) and that too

in the presence of large magnetic fields.

Graphene shares analogous properties with a large range of 2D quantum mate-

rials [26]. For example, recently, transition metal dichalcogenides (TMDC) have

attracted a lot of attention due to their novelty [26, 27]. TMDC’s have the formula
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MX2, where M is a transition metal element (Mo, W, V, etc) and X is a chalco-

gen atom (S, Se, or Te). TMDC’s are of particular interest because they possess

a valley degree of freedom and exhibit large band gaps due to SOI [97]. These

interesting spin-valley structures make TMDC’s highly attractive candidates for

spintronic, valleytronic [27, 97, 98, 99] and optoelectronic devices [100, 101].

The discovery of 2D materials has also stimulated growing interest in silicene [64],

the silicon analog of graphene. Stable silicene can be experimentally synthesized

[24]. There are many electronic and physical similarities between graphene and

silicene as both are found in the same group of the periodic table. The major dif-

ference is that silicene has a large SOC with an electrically tunable bandgap. Just

like silicene, germanene and tinene also possess stable honeycomb lattice structures

[24, 25]. Due to the relatively large SOI, these materials have buckled structures,

providing a mass to the otherwise massless Dirac fermions. In silicene [65], ger-

manene [66] and tinene [67], the values of ∆so have been predicted to lie in the

range 1.55–7.9 meV, 24–93 meV, and 100 meV respectively. Subsequently, the

interaction of an external electric field with silicene, germanene, and the tinene-

substrate system renders the Dirac mass controllable at the K and K ′ points,

which leads to various topological phase transitions [68].

In addition to charge and spin, which are intrinsic degrees of freedom, Dirac elec-

trons have another degrees of freedom called the valley [37, 102, 103]. The valley

can also be used to encode and process information, this is the now burgeoning

field of valleytronics [37]. A promising platform for valleytronics is provided by

silicene. Due to spin and valley polarized responses, silicene also offers the possi-

bility to realize novel tuneable MO devices [102, 104]. The possibility of dynamic

adaptability of silicene’s electronic structure via electric and magnetic fields makes

it favorable for tuneable THz applications. However, the two most important MO

responses namely FR and MOKE of monolayer silicene and the wider class of Dirac
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Figure 4.1: Overview of magneto-optic effects in 2D quantum material.

materials deserve a rigorous exploration.

The purpose of this work is to study FR and MOKE in these 2D lattices. Sub-

sequently, the magnetic field-dependent MO effects can be directly utilized for

magnetic field sensing and optical modulation [105, 106, 107]. Furthermore, we

also investigate the dependence of these MO effects on the incident angle, polariza-

tion state, chemical potential, and temperature, an overview is shown in Fig. 4.1.

The present part of this chapter is divided into the following sections. In Section

4.1.2, we will derive the Fresnel’s coefficients. In Section 4.1.3, we discuss the

theoretical background for the magneto-optic Kerr effect and Faraday rotation.

Finally, we present the results for our simulative investigations followed by a dis-

cussion in Section 4.1.4.
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4.1.2 Fresnel coefficients

We now present a general method to calculate the Faraday and Kerr rotation angles

and the resulting ellipticities. Due to the rich LL structure, these MO effects are

modulated by myriad stimuli such as electric and magnetic fields [94, 108, 109],

chemical potential gating [108], modification through doping, optical pumping

[110] as well as temperature [111] and the substrate effect [94].

Let us consider the situation depicted in Fig. 4.2. We consider a well-collimated,

monochromatic, Gaussian beam of light with nontotal reflection impinging from

one medium to the planar interface of the silicene-substrate system at an incidence

angle θ1. The beam of light of frequency Ω has polarization in an arbitrary di-

rection, and is propagating through the incident and transmitted materials with

relative permittivity and permeability εn and µn respectively, where n = (1,2).

The beam make an angle θ2 in the substrate which is assumed to be semi-infinite,

obviating the need to consider finite substrate size effects and thin-film interference

[112]. Consider that the substrate is a non-magnetic material, i. e. µ1 = µ0. The

wave vectors are k1 and k2, kn = Ω
√
µnεn, Zn = Z0

√
µn/εn and Z0 =

√
µ0/ε0,

where µ0 and ε0 are the vacuum permeability and permittivity respectively.

The corresponding arbitrarily polarized impinging, reflected and transmitted elec-

tric and magnetic fields are given by [113]

Ei =
[
Es
i ε

+
s,1 + Ep

i ε
+
p,1

]
e−ikz,1zei(k·x−ωt), (4.1)

Hi =
1

Z1

[
Ep
i ε

+
s,1 − Es

i ε
+
p,1

]
e−ikz,1zei(k·x−ωt), (4.2)

Er =
[
Es
rε
−
s,1 + Ep

r ε
−
p,1

]
eikz,1zei(k·x−ωt), (4.3)

Hr =
1

Z1

[
Ep
r ε
−
s,1 − Es

rε
−
p,1

]
eikz,1zei(k·x−ωt), (4.4)

and

Et =
[
Es
t ε

+
s,2 + Ep

t ε
+
p,2

]
e−ikz,2zei(k·x−ωt), (4.5)

Hr =
1

Z2

[
Ep
t ε

+
s,2 − Es

t ε
+
p,2

]
e−ikz,2zei(k·x−ωt). (4.6)
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Figure 4.2: Schematic view of a monochromatic plane wave impinging on the
surface of staggered 2D quantum material.

The polarization vectors are given by

ε±s =
kyx̂− kxŷ

k
, (4.7)

ε±p =
kẑ

k0

± kz
k0

kxx̂ + kyŷ

k
, (4.8)

where

kz =


√
k2

0 − k2
x − k2

y =
√
k2

0 − k2, k < k0

i
√
k2
x + k2

y − k2
0 = i

√
k2 − k2

0, k > k0

(4.9)

and the + and − signs correspond to z > z′ and z < z′, respectively. It must

be noted these polarization vectors are orthogonal and normalized only for prop-

agating modes (k < k0). The relationship of the s and p polarized reflected and

transmited coefficients are determined by the ratio of the reflected and incident

amplitudes:

ri,j =
Ei
r

Ej
i

and ti,j =
Ei
t

Ej
i

, (4.10)

where (i, j) = (s, p), The Fresnel reflection coefficients can be obtained by model-

ing the silicenic system as a surface current density K = σ · E|z=0 and applying
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the electromagnetic (EM) boundary conditions at z = 0. The electric and mag-

netic fields of the 2D quantum material are connected at z = 0 by the Maxwell’s

boundary conditions:

ẑ ×
[
Et − Er − Ei

]
= 0 (4.11)

ẑ ×
[
Ht −Hr −Hi

]
= σ · Et, (4.12)

For the 2D homogeneous anisotropic materials (e.g., graphene, silicene, etc) sub-

jected to a perpendicular magnetic field, the MO conductivity tensor is given as

σ = σLê‖ ⊗ ê‖ + σT ê⊥ ⊗ ê⊥ + σH
(
ê⊥ ⊗ ê‖ − ê‖ ⊗ ê⊥

)
+σsym

xy

(
ê⊥ ⊗ ê‖ + ê‖ ⊗ ê⊥

)
where ê‖ = kxx̂ + kyŷ/|k| and ê⊥ = kyx̂− kxŷ/|k|. Utilizing Eqs. (4.1)–(4.10) in

Eqs. (4.11) and (4.12), we can write,

Es
i + Es

r = Es
t , (4.13)

kz,2
k2

[Ep
i − Ep

r ] =
kz,1
k1

Ep
t , (4.14)

1

Z1

kz,1
k1

[
Es
i − Es

r

]
=

(
σT +

1

Z2

kz,2
k2

)
Es
t +

(
σH + σsym

xy

) kz,2
k2

Ep
t , (4.15)

1

Z1

[
Ep
i + Ep

r

]
=

(
σL
kz,2
k2

+
1

Z2

)
Ep
t +

(
σsym
xy − σH

)
Es
t . (4.16)

Now it is straightforward to obtain reflected and transmitted Fresnel coefficients

in the presence of an external magnetic field [76, 113, 114]:

rpp =
αT+α

L
− + β

αT+α
L
+ + β

, (4.17)

rss = −
(
αT−α

L
+ + β

αT+α
L
+ + β

)
, (4.18)

tpp = 2
Z2ε2

Z1

k1zα
T
+

αT+α
L
+ + β

, (4.19)

tss = 2µ2

k1zα
L
+

αT+α
L
+ + β

, (4.20)

rsp = tsp =
−2Z2

0µ0µ1µ2k1zk2z(σH + σsymxy )

Z1(αT+α
L
+ + β)

, (4.21)
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rps = −k1k2z

k2k1z

tps = 2
Z2

0µ1µ2

Z1

k1zk2z(σ
sym
xy − σH)

αT+α
L
+ + β

, (4.22)

where,

αL± = (k1zε2 ± k2zε1 + k1zk2zσL/(ε0Ω)), (4.23)

αT± = (k2zµ1 ± k1zµ2 + µ0µ1µ2σTΩ), (4.24)

β = Z2
0µ1µ2k1zk2z[σ

2
H − (σsymxy )2]· (4.25)

Here, k1z = k1 cos(θ1) and k2z = k2 cos(θ2). The conductivities σL(σT ) are the lon-

gitudinal (transverse) components. For homogeneous, isotropic media, σL = σT =

σxx = σyy. The cross conductivity of a 2D system in the presence of magnetic

field is antisymmetric [91, 115] σxy = −σyx. In fact, the cross conductivity σxy has

symmetric σsymxy and asymmetric σantisymxy parts. For anisotropic materials, such as

phosphorene [116], σsymxy is non-zero because the band structure of phosphorene is

Dirac like (linear in k) in one direction and Schrodinger like (parabolic in k) in the

other direction [116]. However, for isotropic materials such as graphene and other

staggered materials (silicene, germanene, stanene, and plumbene etc.) σsymxy =0.

Therefore in Eqs. (4.21) and (4.22), we use σH = σxy which comprises wholly of

the anti-symmetric part.

The real and imaginary parts of the magneto-optical conductivity are already

separately computed in Eqs. (3.66) and (3.72) in Section 3.2. In our case, medium

1 is vacuum (ε1= 1, µ1=1) and medium 2 is nonmagnetic µ2=1. The Fresnel co-

efficients which are derived from the magneto-optical conductivities, subsequently

determine the magneto-optic rotations and ellipticity.
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4.1.3 Phenomenological description of the magneto-optic
effects

For incident s and p polarization, the Faraday rotation and ellipticity are computed

using the expressions

ΘF,s(p) =
1

2
tan−1

(
2

Re
(
χF,s(p)

)
1− |χF,s(p)|2

)
, (4.26)

and ηF,s(p) =
1

2
sin−1

(
2

Im
(
χF,s(p)

)
1− |χF,s(p)|2

)
, (4.27)

where,

χF,s =
tps
tss

= Z0

√
ε1

µ1

k1cos(θ1)σH
αL+

, (4.28)

and χF,p =
tsp
tpp

= −Z0

√
µ2

ε2

µ0µ1
k2cos(θ2)σH

αT+
· (4.29)

Similarly, for MOKE, the rotations and ellipticities are

ΘK,s(p) =
1

2
tan−1

(
2

Re
(
χK,s(p)

)
1− |χK,s(p)|2

)
, (4.30)

and ηK,s(p) =
1

2
sin−1

(
2

Im
(
χK,s(p)

)
1− |χK,s(p)|2

)
, (4.31)

where,

χK,s =
rps
rss

=
2Z0
√
µ1ε1µ2k1zk2zσH

αT−α
L
+ + β

, (4.32)

and χK,p =
rsp
rpp

=
−2Z0

√
µ1ε1µ0µ2k1zk2zσH

αL+α
L
− + β

· (4.33)

A note about the notation is in place here. The spin (↑ or ↓) or valley (K or

K ′) will be specified in the subscripts while the superscripts identify the Fara-

day (F) or Kerr rotation (K) as well as the polarization state (s) or (p). If the

χ’s are small, χ � 1, Eqs. (4.26) and (4.27) reduce to ΘF,s(p) ≈ Re(χF,s(p)) and

ηF,s(p) ≈ Im(χF,s(p)) and vis-a-vis for the Kerr effect. However, for Landau quan-

tized systems, there is no reason to believe, at the ontset, that the MO effects are

small.
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Figure 4.3: Schematic view of magneto-optic Kerr and Faraday effects on the
surface of staggered 2D quantum material.

4.1.4 Results and discussion

4.1.4.1 Electric field modulated Faraday rotation and ellipticity

First, we discuss Faraday rotation (FR) for charge-neutral 2D silicene, where the

inter-band transitions bridge across the valance and conduction bands. Hence

µF = 0. Fig. 4.4(a) shows the FR spectra as a function of incident photon fre-

quency with modulation of the external electric field, landing the band structure

into three distinct topological regimes [89]. The signal originating from a single

spin orientation in only one of the valleys is dispersive Lorentzian, with a positive

followed by a negative (or vice versa) signature. Let’s call this an anti-phase peak.

This terminology is borrowed from NMR literature [117]. The anti-phase peak

is centred at the magneto-optic excitation frequency En − Em with positive and
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negative maxima at En−Em±Γ. For the opposite spin in the same valley and an

identical LL transition, we still see an absorptive anti-phase peak whose sign may

be reversed, the possibility of reversal depending on the exact topological regime.

The peaks corresponding to the different transitions, Em,K(K′),↑(↓) → En,K(K′),↑(↓)

2
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2
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Figure 4.4: Faraday, Kerr rotation and ellipticity of silicene-substrate system as a
function of photon energy electric and magnetic fields. (a) The s polarized Faraday
rotation and (b) ellipticity as a function of incident photon energy in the K valley
with modulation of the external electric field for the three distinct topological
regimes, TI, VSPM, and BI for a magnetic field of 1 T. The spectral peaks are
labeled 1 through 6 and their origin is identified in the main text. The spectrum
are vertically shifted by 15◦ among themselves for clearer viewing. Furthermore, in
this figure we use ∆z = ∆so/2 (TI) and ∆z = 2∆so (BI). (c) The s polarized Kerr
rotation as a function of incident photon energy in the K ′ valley with modulation
of the external magnetic field for the TI regime for three different values of B =1, 3
and 5 T. (d) The maximum Faraday, Kerr rotation and ellipticity as a function of
the magnetic field in theK valley for the single transition ∆−10,K,↑. The parameters
used are ∆z=8 meV, θ1 = 30◦, Γ = 0.01∆so, refractive index n2 = 1.84 and
chemical potential µF = 0.
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are labelled as ∆mn,K(K′),↑(↓). For higher frequencies, the magnitude of the rotation

is reduced in accordance with the factor of 1/(En −Em) appearing in the denom-

inator of Eqs. (3.66) and (3.72). We now explore the three distinct topological

regimes. In the topological insulator (TI) regime (∆z < ∆so), the first and second

anti-phase peaks correspond to the ∆−10,K,↑ and ∆01,K,↓ transitions for spin up

and spin down respectively. In each of these transitions, one of the participating

levels is an n=0 level.

In a magnetic field of 1 T and ∆z = ∆so/2, these magneto-excitation energies

are calculated as 20.3 meV (4.9 THz) and 25.1 meV (6.1 THz) respectively and

are shown as 1 and 2 in the bottom spectrum of Fig. 4.4(a). The anti-phase peaks

switch sign with spin within the same valley. The s polarized FR angles for the first

two anti-phase peaks are ∼ ±6.5◦. The subsequent anti-phase peaks appearing at

different resonant frequencies differ in magnitude for the spin-up and spin-down

cases due to spin-dependent energies. The anti-phase peaks labeled 3 through 6

can also be assigned to the various transitions. For example the multiplet structure

3 originates from ∆−12,K,↑, 4 is due to ∆−21,K,↓, 5 is due to ∆−23,K,↑ and 6 comes

from ∆−32,K,↓.

In the valley-spin polarized metal (VSPM) instance (∆z = ∆so), the gap of one

of the spin-split bands closes [89] giving rise to a Dirac point. As we increase

the applied electric field and begin to approach the VSPM point, the lowest fre-

quency peaks, labeled 1 and 2 in the middle spectrum of Fig. 4.4(a) move apart:

the ∆−10,K,↑ peak is red shifted and ∆01,K,↓ peak is blue shifted. The excitation

energies corresponding to the first two anti-phase peaks at the VSPM point are

now 18.2 meV (4.4 THz) and 27.8 meV (6.7 THz). However, it is observed that at

this precise electric field, the spectrum is cleaner and exhibiting fewer peaks. The

peaks labeled 4 and 6 originate from the ∆−21,K,↓ and ∆−32,K,↓ transitions.
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The peaks that were labeled 3 and 5 in the TI regime and came from the ∆−12,K,↑

and ∆−23,K,↑ transitions are now annihilated. Eq. (6.3) shows that at the Dirac

point in the K valley (ξ = 1), the spin-up (σ = 1) transitions leads to ∆ξσ = 0

which results in An = Bn = 1/
√

2 irrespective of the Landau quantum number

n. For these spin up levels, therefore (AmBn)2 = (BmAn)2 and from Eq. (3.72),

the minus sign between the terms in the square brackets results in annihilation of

the spectral response at the ∆−12 and ∆−23 frequencies. So even though, these

transitions are allowed by selection rules, destructive interference between their

quantum amplitudes extinguishes the response. Conversely, in the K ′ valley (data

not shown), the spin-down peaks will be annihilated at the Dirac points.

For an even higher electric field (∆z > ∆so), the system transitions from the

VSPM to the band insulator (BI) state, and the lowest bandgap is opened again,

resulting in sign change of some of the anti-phase peaks with respect to the TI

phase. Compare the peaks 1 through 5 between the TI and BI shown in Fig. 4.4(a).

The full range of the allowed peaks also resurfaces once the VSPM point is crossed.

The separation between the anti-phase pair keeps on growing in the BI state. Con-

sequently, all the peaks gradually shift towards higher frequencies. The magnitude

of the maximum spin-polarized FR angles for the first two peaks inside the anti-

phase pair is ∼ ±8◦.

If we change the polarization of the incident light, the sign of anti-phase peaks

inverts with respect to the baseline. Alternatively, the same effect is achieved by

switching from one valley to another. If we change the valley, the spin identity of

the anti-phase also changes. The juxtaposition of identities between the spin-up

and down polarized peaks after band inversion is also observed in the K ′ valley.

Consequently, the s polarized FR in the K valley will have the same form as the

p polarized FR response in the K ′ valley. The MOKE rotation spectra (data not

shown) follow a similar trend. The MOKE response is also spin and valley polar-
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ized and the magnitudes of the rotation angle range between 5–15◦ for both valleys

and all three topological regimes, which are in general larger than the FR angle.

Fig. 4.4(b) shows the series of peaks in the ellipticity acquired by transmitted

light from s polarized incident radiation originating from the K valley manifold.

Faraday geometry is considered though analogous results are obtained for reflec-

tion as well. It is evident that extremely large ellipticities, of the order of 8–15◦,

appear for the lowest excitations. The spectrum for ellipticity comprises absorp-

tive Lorentzians, which are spin and valley polarized. These maxima are at the

excitation energies En − Em. The rotation and ellipticity data when considered

together, indicate that at the exact excitation energy En−Em, the rotation is zero

while the ellipticity is maximum. Furthermore, when the rotation is maximum

(h̄Ω = En − Em ± Γ), the ellipticity drops to 50% of its maximum value. The

intertwined effects, although both being ultra-large, limit the use of the silicene-

substrate system for a pure MO rotator since significant ellipticity is also intro-

duced.

4.1.4.2 Magnetic field modulated Faraday and Kerr rotation

We now demonstrate the effect of how the magnetic field modifies the magneto-

optic response. The s polarized MOKE in the K ′ valley is only one possible

illustration and is shown in Fig. 4.4(c). Here we plot the MO spectrum in the TI

regime for three different values of B =1, 3, and 5 T, while keeping µF = 0 and

θ = 30◦. The impact on the MOKE signal in terms of shifting magneto-excitation

frequency and the amount of Kerr rotation is clear. The silicene energy levels are

strongly dependent on the magnetic field B, as given by Eq. (6.3), and this is also

true for other 2D materials including graphene [89, 93].

As we increase the strength of the applied magnetic field, the MO excitations
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Figure 4.5: (a) Schematic representation of the allowed transitions between LL’s
for three different values of chemical potential µF =0, 10 and 22 meV; (b) and
(c) the s polarized Kerr rotation as function of incident photon frequency in K
and K ′ valleys with modulation of the chemical potential in the TI regime for
a magnetic field of 1 T, respectively. (d) The s polarized Faraday rotation as
function of incident photon energy in K valley for different incident angles for a
single transition in the TI regime. (e) The s polarized Faraday rotation as function
of incident photon energy in K for different temperatures for a single transition
in the TI regime. (f) The s and p polarized Kerr rotation as function of incident
photon frequency in the semiclassical limit for n-type and p-type silicene (µF =
56 and -56 meV), respectively. The solid line represents the s polarized and the
dashed line p polarized. The parameters used are ∆z=8 meV, θ = 30◦, Γ = 0.01∆so

and refractive index n2 = 1.84.
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shift towards higher frequencies with a concomitant increase in the magnitude of

the MOKE rotation angle. For example, the peaks labelled 1 and 2 have excita-

tion energies 20.3 meV (4.9 THz) and 25.1 meV (6.1 THz) for B = 1 T, 33.5 meV

(8.1 THz) and 38 meV (9.2 THz) for B = 3 T and finally, 42.7 meV (10.3 THz)

and 47 meV (11.32 THz) for B = 5 T. The maximum value of the rotation ΘKs
K′

exceeds ∼ ±13◦ at a magnetic field of 5 T, which is an exceptionally large rota-

tion for a monolayer silicene-substrate system. Similarly, the FR is also strongly

field-dependent (data not shown).

The primary role of magnetic field tuning, therefore, is to shift the position of

the magneto-optic excitation energies and also to modify the amount of rotation.

However, unlike the electric field, the magnetic field does not switch the sign of the

anti-phase doublets. Fig. 4.4(d) show the field dependence of ΘFs
K and ΘKs

K in the

TI regime. Due to the dispersive MO spectrum, we chose to plot the maximum

rotation. By increasing the magnetic field strength the amount of FR and Kerr

rotations grows. However, for stronger fields, the Kerr signal slowly decreases.

At a field of 10 T, we report ΘFs
K = 13◦ and ΘKs

K = 5.5◦. The ellipticity is also

strongly field-dependent.

4.1.4.3 Effect of chemical potential

It is also instructive to discuss the effect of controlling the FR and MOKE spectra

by varying the chemical potential of the silicene surface, e.g, by applying a bias

voltage [108] or optical pumping [110]. For illustration purposes, we consider three

different values of chemical potentials µF=0, 10 and 22 meV, while keeping the

magnetic field 1 T, in the TI regime (∆z = 0.5∆so) and an angle of incidence of 30◦.

In the first case the chemical potential is at zero and lies within the n=0 manifold,

for µF=10 meV the chemical potential is in between the n=0 and n=1 LL’s and for
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µF=22 meV the chemical potential is in between the n=1 and n=2 LL’s. These

LLs are shown in Fig. 4.5(a). Only the K valley is depicted. For µF = 0, the

lowest energy excitations are also indicated on the same subfigure. They identify

as ∆−10,K,↑ = 20.3 meV and ∆01,K,↓ = 25.1 meV. These result in the Kerr rotations

shown by anti-phase peaks 1 and 2 in the bottom spectrum of Fig. 4.5(b). They

are interband transitions since they occur across the zero energy datum. The com-

bination of anti-phase peaks ∆−12 and ∆−21 in the K valley, for both spins yield

the multiplet structure 3 and the transitions ∆−23, ∆−32 yield the structure 4.

These anti-phase are rather close in their excitation energies (e.g. ∆−12,K,↑ = 44.0

meV, ∆−21,K,↑ = 44.0 meV, ∆−12,K,↓ = 45.5 meV and ∆−21,K,↓ = 45.5 meV) and

the ability to resolve this finer structure depends on the experimental capability.

As µF increases to 10 meV, certain transitions become Pauli blocked. For ex-

ample the transition ∆−10,K,↑ becomes forbidden and in its stead, the intra-band

transition ∆01,K,↑ = 16.0 meV emerges. The Pauli blocked transition is shown by

a dashed upward-pointing arrow in the middle part of Fig. 4.5(a) and the two low-

est transitions, ∆−10,K,↑ = 16.3 meV and ∆01,K,↓ = 25.1 meV are shown by solid

arrows. Once again, these yields the Kerr signatures 1 and 2 shown in Fig. 4.5(b).

The higher frequency agglomerated multiplets 3 and 4 remain unchanged.

If µF is further increased to 22 meV, so that it lies between the n=1 and n=2 man-

ifolds, both transitions starting from n=0, i.e, ∆−10,K,↑ and ∆01,K,↓ now become

Pauli blocked. These are again indicated by the dashed arrows in the rightmost

part of Fig. 4.5(a). In their place, however, the intra-band transitions ∆12,K,↑ = 7.0

meV and ∆12,K,↓ = 7.2 meV pop up. For higher n, the LL’s are closely spaced.

Hence the excitation energies also converge. These closely spaced transitions are

separated by ≈ 200 µeV and are shown by the structure 1, 2 in top part of

Fig. 4.5(b). The transitions involving the n=0 levels are completely missing from

this magneto-optic spectrum. Furthermore, the transitions ∆−21,K,↑ and ∆−21,K,↓
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become Pauli forbidden and hence are absent from the excitation structure labeled

3 which now comprises only ∆−12,K,↑ = 44.0 meV and ∆−12,k,↓ = 45.5 meV. There-

fore peak 3 is a cleaner doublet of anti-phase structure when compared with the

µF=0 and µF=10 meV cases. The structure 4 originates, as earlier, from rather

closely spaced ∆−23 and ∆−32.

The magneto-optic spectrum originating from the K ′ valley for the same values of

µF is depicted in Fig. 4.5(c). For µF = 0, the rotational peaks are coincident with

the K valley as ∆mn,K,↑ = ∆nm,K′,↓ (when m = 0 and n 6= 0), ∆−10,K,↑ = ∆01,K′,↓

and ∆01,K,↓ = ∆−10,K′,↑. However, these valley-specific spectrums are sign inverted

with respect to each other. For µF = 10 meV, the lowest energy transitions 1 and

2 occur at different positions for the two valleys. For the K valley, 1 and 2 are

∆01,K,↑ = 16 meV and ∆01,K′,↓ = 25 meV respectively whereas for the K ′ valley,

the peaks 1 and 2 are ∆01,K′,↑ = 13.1 meV and ∆01,K′,↓ = 20.3 meV respectively.

4.1.5 Impact of angle of incidence

The FR and MOKE signatures are clearly sensitive to the incident angle θ1. This

is because the Fresnel coefficients are strongly dependent on the incidence angle.

This dependence is shown in Fig. 4.5(d) for a single transition in the TI regime. An

increasing incidence angle diminishes the amount of rotation until it disappears at

complete grazing, θ1 = π/2. A similar trend can also be seen in the MO response

of graphene [67, 106].

4.1.6 Role of temperature and scattering

All of the results presented so far are at 0 K but as the temperature goes up,

the Fermi Dirac distribution function in Eqs. (3.66) and (3.72) starts becoming

significant. We can explore the temperature dependence of the FR by introducing
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Table 4.1: Table of allowed transitions in K valley in the n = −1, 0, 1 sub-
space, at a fixed Magnetic field and Chemical potential µ. Furthermore
x = ∆z/∆so, y =

√
h̄v2eB/∆2

so. and µ = µF/∆so.

m n spin (↑↓) Range of x ∆mn,K(K′),↑(↓)

0 1 ↑ x ≥ 1− 2µ −1
2

+ x
2

+
√

(x−1
2

)2 + 2y2

0 1 ↓ all x +1
2

+ x
2

+
√

(x+1
2

)2 + 2y2

-1 0 ↑ x ≤ 1− 2µ +1
2
− x

2
+
√

(x−1
2

)2 + 2y2

-1 0 ↓ not allowed

these distributions in place of the Heaviside functions. Nevertheless, at 100 K, the

FR angle is 3o, while at 300 K, the FR angle is 1◦. These results are shown in

Fig. 4.5(e). The experimental value [111] of the FR angle for graphene at 1.5 K is

4 mrad which translates to 0.23◦. This shows that silicene has a bigger Faraday

rotation than graphene in the THz range.

In silicene, the electrons frequently interact with scatterers. There are many scat-

tering mechanisms including Coulomb interaction, impurities, optical phonons,

acoustic phonons, and radiative decay [115]. Due to these scattering channels, the

peaks are additionally broadened [118]. However, in actuality, the temperature

dependence of the scattering rate Γ must also be taken into account. This is ig-

nored in the present work. The amount of MO rotation is strongly influenced by

the presence of a substrate [94].

4.1.7 Response in the semiclassical limit

In studies on 2D materials placed inside magnetic fields, the semiclassical limit is

valid when the LL spacing becomes unimportant [89]. This happens as |n| goes up

and when the chemical potential is high up in the conduction band or deep down
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Figure 4.6: (a) Schematic representation of the allowed transitions between LL’s
for chemical potential µ = 0.2. (b) and (c) the s polarized Faraday rotation
contour plots as function of x in K valley for µ = 0 and 1.25, repectively, where
x = ∆z/∆so and µ = µF/∆so. The parameters used are θ = 30◦, Γ = 0.01∆so and
refractive index n2 = 1.84.

in the valance band, |µF | � |E0|. In this case, the intra-band transitions between

closely spaced levels are allowed. Suppose that µF lies between the n − 1 and n

LL’s. Since the gap is minuscule, µF ≈ En. In this limit we have

En+1 − En ≈
h̄v2eB√

∆2
ξσ + 2nh̄v2eB

= h̄Ωc, (4.34)

where, Ωc = h̄v2eB/µF is called the classical cyclotron frequency. In this regime

the Faraday and Kerr rotations can also be derived from a purely classical point of

view [119]. For finite µF and n, the allowed transitions are ∆(n−1)n, ∆−(n−1)n and

∆−(n+1)n, however the latter two are large energies with diminished contributions

to the magneto-optical conductivities, Eqs. (3.66) and (3.72). Hence, the allowed

transition is the one that immediately across the chemical potential and results in a

single large peak in all magneto-optic signatures. Furthermore in the semiclassical

limit An ≈ An−1 ≈ Bn ≈ Bn−1 = 1/
√

2, and we can straightforwardly derive, using

Eqs. (4.37) and (4.38), the following conductivities summed over both valleys and

both spins,

Re
(
σxx(Ω)

)
σ0

= −
Im
(
σxy(Ω)

)
σ0

=
h̄µF
π

Γ

(h̄(Ω− Ωc))2 + Γ2
, (4.35)

Im
(
σxx(Ω)

)
σ0

=
Re
(
σxy(Ω)

)
σ0

=
h̄µF
π

h̄(Ω− Ωc)

(h̄(Ω− Ωc))2 + Γ2
· (4.36)
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These conductivities are shaped as absorptive and dispersive Lorentzians and are

directly used to compute the Fresnel coefficients Eqs. (4.17)–(4.22) and subse-

quently the rotations. The conductivities, therefore, are modeled by classical

Drude-like behavior [94, 120]. For example, in Fig. 4.5(f) we plot the s and p

polarized Kerr rotation angles as a function of the incident photon frequency in

the K valley. For n-type doping, we set µF=56 meV, which places chemical po-

tential between the n=9 and 10 LL’s. The transitions from n=0 to higher LL’s are

Pauli blocked, the selection rules dictate that only three transitions ∆−9 10, ∆−11 10

and ∆9 10 are allowed. The former two have negligible contributions, whereas the

last mentioned transition results in a strong Drude peak, at 2.94 meV (0.71 THz).

Similarly, we plotted the s and p polarized Kerr rotation angles as a function

of the incident photon frequency for p-type silicene, with µF = −56 meV. The

Kerr rotation angle switches between n-type and p-type silicene indicating modu-

lation of the rotation angle by switching the chemical potential, e.g, by switching

gate bias voltage. Also note that the spin and valley information is lost in the

semiclassical limit. The value of electric field ∆z also becomes inconsequential at

higher doping and the silicene behaves as graphene, because not only that the

resonant frequency approaches that of graphene in this limit [89], but also the role

of SOI becomes inconsequential.

4.1.7.1 Probing topological quantum phase transitions via Faraday ro-
tation

An alternative approach to understanding the magneto-optic response is by con-

tour plotting the rotations as a function of two variables. This method also allows

one to identify topologically distinct regions and topological phase transitions [89]

and may reveal discontinuations that may otherwise go unnoticed. For example,

we consider transitions in the K valley within the n = −1, 0, 1 subspace. We
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use dimensionless variables to simplify the analysis. We can define x = ∆z/∆so,

y =
√
h̄v2eB/∆2

so as measures of the electric and magnetic fields respectively,

h̄Ω/∆so and µ = µF/∆so as variables for photon frequency and chemical potential.

In Fig. 4.6(a), we first plot the LL spectrum for the transitions under considera-

tion. Table 4.1 summarizes the allowed transitions across the chemical potential.

The excitation energies are also computed in the last column. It is evident that at

the critical point x = 1− 2µ, the ∆−10,K,↑ transition gives way to the ∆01,K,↑ tran-

sition, we say that the former becomes Pauli blocked. For example for a precise

value of µ = 0.2, this is shown by the sequence of green-colored arrows that are

only drawn for x ≤ 1−2µ and the purple-colored arrows drawn only for x ≥ 1−2µ.

For µ = 0, this transition point is x = 1.0.

The contour plot in Fig. 4.6(b) aptly captures the scenario. For x ≤ 1.0, the

∆−01,K,↑ transitions causes the Faraday rotation while for x ≥ 1.0, the ∆01,K,↑

transition kicks in yielding the Faraday rotation. Upon this transition point, the

sign of the anti-phase peaks also switches. For µ = 0.2, this switching now occurs

at a smaller value of xc = 1 − 2µ = 0.6 as depicted in Fig. 4.6(c). Further-

more at this switching point, xc = 1 − 2µ, one observes a discontinuous jump

in the excitation energy. This can be computed by inserting xc into the energies

∆01,K,↑|xc = −µ +
√
µ2 + 2y2 and ∆−10,K,↓|xc = µ +

√
µ2 + 2y2 which yields a

discontinuity of magnitude 2µ in the contour plot. The uninterrupted rotation

which continues upward to the top right is due to ∆01,K,↓ transition which is al-

ways switched on and is shown by thick red-colored arrows in Fig. 4.6(a). The xc

point also indicates a topological phase transition from the TI to the BI regime.

4.1.7.2 Dependence on the silicene-substrate system

For realistic applications, the substrate effect cannot be ignored in Faraday and

Kerr rotations. It is understood that the substrate does not introduce any magneto-
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optic rotation itself. Compared to free-standing silicene, the substrate reduces the

total rotation angle in silicene, just like in graphene [94]. If the refractive indices

are small, in general, the magneto-optic rotation will be large. To get a higher

value of the Faraday and Kerr rotations, it is recommended to use substrates with

smaller refractive indices [120].

Fig. 4.7 shows the s and p polarized Faraday and Kerr rotation spectra as a function

of incident photon energy in the K valley with modulation of relative permittivities

in the TI regime for a magnetic field of 1 T. By increasing the relative permittivity

strength the amount of FR and Kerr rotations reduces. In Fig. 4.8 we have shown

(a) (b)

(c)

Figure 4.7: Faraday and Kerr rotation of silicene-substrate system as a function of
photon energy for three different relative permittivities. (a) The s polarized and
(b) p polarized Faraday rotation as a function of incident photon energy in the K
valley with modulation of relative permittivities in the TI regime for a magnetic
field of 1 T. (c) The s polarized and (d) p polarized Kerr rotation as a function of
incident photon energy in the K valley with modulation of relative permittivities
in the TI regime for a magnetic field of 1 T, for the two transitions. The parameters
used are θ1 = 30◦, Γ = 0.01∆so and chemical potential µF = 0.
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the s and p polarized Faraday and Kerr rotation spectra as a function of incident

photon energy in the K valley with modulation of relative permeabilities in the TI

regime for a magnetic field of 1 T. Here the magneto-optic effects show a different

behavior, i.e. by increasing the relative permeability, the magnitude of Faraday

and Kerr rotations grows. Fig. 4.9 shows the s and p polarized ellipticity peaks for

two transitions acquired by reflected and transmitted light of the silicene-substrate

system as a function of photon energy for three different relative permittivities.

(a) (b)

(c) (d)

Figure 4.8: Faraday and Kerr rotation of silicene-substrate system as a function
of photon energy for three different relative permeabilitis. (a) The s polarized and
(b) p polarized Faraday rotation as a function of incident photon energy in the K
valley with modulation of relative permeabilitis in the TI regime for a magnetic
field of 1 T. (c) The s polarized and (d) p polarized Kerr rotation as a function of
incident photon energy in the K valley with modulation of relative permeabilities
in the TI regime for a magnetic field of 1 T, for the two transitions.
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(a) (b)

(c)

Figure 4.9: Faraday and Kerr ellipticities as a function of incident photon energy
for three different relative permittivities. (a) The s polarized and (b) p polarized
Faraday ellipticities as function of incident photon energy in the K valley with
modulation of relative permittivities in the TI regime for a magnetic field of 1 T.
(c) The s polarized and (d) p polarized Kerr ellipticities as a function of incident
photon energy in the K valley with relative permittivities in the TI regime for a
magnetic field of 1 T, for the two transitions. The parameters used are θ1 = 30◦,
Γ = 0.01∆so and chemical potential µF = 0.
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4.2 Polarization manipulation with hybridized topo-

logical insulator thin films

4.2.1 Background and motivation

The discovery of topological phases and topological phase transitions (TQPTs) in

a wide range of new quantum materials, such as graphene, staggered 2D semicon-

ductors (i.e. silicene, germanene, stanene), 2D transition metal dichalcogenides

(TMDCs), Dirac-Weyl semimetals, and their artificial analogs have provided a

new frame of mind to the understanding of the origin of quantum states of matter.

Besides finding new quantum materials, searching the ways to tune a normal in-

sulating (NI) phase into a topological one is of both theoretical and experimental

importance. In 3D topological insulators thin films, one way to drive such TQPTs

is to tune the thickness L of the film. The topologically protected SSs of a TI thin

film has a finite decay length (also called the penetration depth of the SSs) over

which the SSs decay into the bulk region.

As the thickness L of the TI thin film becomes comparable to, or smaller than,

the penetration depth, quantum tunneling between SSs occurs due to which the

top and bottom SSs hybridize to open up an energy gap ∆H at the Dirac points

[60, 61]. This can happen for 1 to 5 quintuple layers with a thickness of the order of

L =5 nm [62, 63]. In the small L limit, the hybridization gap can be approximated

by the relation ∆H = 2B1π
2/L2, where B1 is a system parameter. For the band

structure in the Bi2Se3 the parameter B1 is equal to 10 eVA2, which is obtained

by first-principles calculations [61, 121].

However, tuning the thickness of the TI in real space is not a suitable way to

drive TQPTs. There are other efficient ways in which TQPTs can be extrinsically

induced in TIs, such as through band distortions in momentum space by in-plane

or out-of-plane magnetic fields [122, 123], pressure and temperature [124, 125],
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and an external electric field [126, 127]. There are studies that the response of TI

thin films in an external magnetic field is highly nontrivial [128, 129]. Recently,

successful TQPTs from NI to quantum spin Hall (QSH) state in TIs through the

application of electric and magnetic fields have been experimentally reported [130].

In addition to having interesting topological features, TI thin films exhibit Fara-

day and Kerr rotations in the THz regime. Faraday and Kerr rotations are non-

reciprocal magneto-optic (MO) effects that describe the rotation of linearly polar-

ized light when it is respectively transmitted or reflected from a magnetic medium.

At the surface of a TI, both of these effects originate from the breaking of TRS

either by an external applied magnetic field or by doping the system with magnetic

impurities [17].

In the THz range, W. K. Tse et. al theoretically studied the MO Faraday and

Kerr effects of TIs thin films and found that MOKE exhibits a giant π/2 ro-

tation [88, 131]. Experimentally, Colossal MOKE and FR in the presence of a

strong magnetic field in Bi2Se3 thin films [132, 133] have been investigated. It

has been demonstrated that THz FR in pure or magnetic TI films is equal to the

fine structure constant [134]. Recently, FR and cyclotron resonances magneto-

transmission spectroscopy of (Bi1−xSbx)2Te3 and THz Faraday and Kerr rotation

spectroscopy measurements on Bi1−xSbx thin films have been experimentally re-

ported [135, 136]. Nedoliuk et. al observed colossal FR on Landau levels in

high-mobility encapsulated graphene in the mid-infrared and THz ranges [137].

A. Stroppa et. al computationally determined the MO properties of (Ga,Mn)As

within density functional theory [138]. Using first-principles calculations K. Yang

et. al explored the MOKE for different spin configurations of the (CrI3)2 bilayer

and in a hybrid organic-inorganic perovskite [139, 140].

In this part, we employ a different mechanism to drive TQPTs between different
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phases and study FR and MOKE in a TI thin film. We make use of the Zeeman

energy as a control knob to close and reopen the bandgap in order to drive the

phase transition between a band insulator state and a topological insulator state

in a hybridized TI thin film. Hybridization provides mass to the Dirac fermions

on the top and bottom SSs. In the absence of Zeeman energy (∆z = 0), the en-

ergy spectrum of the 3D TI is gapped (because of the hybridization energy) and

electron-hole symmetry which leads to Shubnokov–de Haas oscillations. When ∆z

is less than ∆H , the system is in the quantum spin Hall insulator (QSHI) regime.

However, by tuning ∆z = ∆H we enforce a TQPT at the charge neutrality point

(CNP) where the energy of one of the n = 0 LLs becomes zero.

In this part of the chapter, we also study the FR and MOKE in the 2D SSs

of a TI thin film, and the effects of a magnetic field and chemical potential. We

believe that the magnetic field-dependent MO effects provide a convenient scheme

that can be directly utilized for optical measurement of different quantum topolog-

ical features, magnetic field sensing, Faraday rotators, isolators, current sensors,

optical modulation, and communication [105, 106, 141]. This part of the chapter is

organized as follows: in Section 4.2.2 we present the basic formalism for the FR and

MOKE in the 2D SSs of a TI thin film. In Section 4.2.3.1 we use the formulation of

the previous section to discuss the FR and MOKE simulations for the TI thin film.

4.2.2 Geometry of the the magneto-optic effects and con-
ductivities

In order to calculate the MO effects, we consider an ultrathin film of a TI having

thickness L such that L → 0. In these conditions, the TI thin film SSs can

be treated as 2D surfaces. We consider an arbitrarily polarized, well-collimated,

monochromatic, Gaussian beam of light propagating in vacuum impinging from

one medium to the planar interface of the TI-substrate system at an incidence angle

θψ. The interface of air and TI thin film is located at the z = 0 plane. The beam of
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light of frequency Ω has polarization in an arbitrary direction and is propagating

through the incident and transmitted materials with relative permittivity and

permeability εn and µn respectively, where n = (1,2). The beam makes an angle

θχ in the substrate. Fresnel reflection and transmission coefficients are given in

Section 4.1.2. For homogeneous, isotropic media, σL = σxx = σyy and σT = σxy =

σH . Following Section 3.2 calculation, at T = 0 K the expressions for the real and

imaginary parts of the longitudinal conductivity of the 3D hybridized topological

insulator thin films are given by [81]

Re
Im

}(
σxx(Ω)

)
σ0

=
E2
B

π

∑
τz

∑
m,n

Θ(En − µF )−Θ(Em − µF )

En − Em

×
[
(αmβn)2δ|m|−τz ,|n| + (βmαn)2δ|m|+τz ,|n|

]{
Wmn

W ′
mn

, (4.37)

where σ0 = e2/4h̄, Wmn = η/
(
(h̄Ω− (En − Em))2 + η2

)
and W ′

mn =
(
h̄Ω− (En −

Em)
)
/
(
(h̄Ω − (En − Em))2 + η2

)
. Similarly, the real and imaginary parts of the

transverse (Hall) conductivity are

Re
Im

}(
σxy(Ω)

)
σ0

=
E2
B

π

∑
τz

∑
m,n

τz
Θ(En − µF )−Θ(Em − µF )

En − Em

×
[
(αmβn)2δ|m|−τz ,|n| − (βmαn)2δ|m|+τz ,|n|

]{
Wmn

W ′
mn

· (4.38)

In the limit ∆z = ∆H = 0, the above conductivity expressions reduce to the result

for graphene for a single valley [91].

4.2.3 Results and discussion

4.2.3.1 Magnetic field effect on Faraday and Kerr rotations

To fully understand the FR and Kerr rotation in a TI thin film-substrate, we plot

the real part of the longitudinal and Hall conductivities as a function of the pho-

tonic energy for three different values of magnetic field strengths, i.e. for 1, 3 and 5
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T as shown in Figs. 4.10(a) and (b). The parameters for simulation are mentioned

in the caption of the figure. Notably the angle of incidence θψ is taken to be 30◦

for all simulations. The magnitudes of the MO effects depend on θψ. For example,

an increase in the incidence angle diminishes the amount of rotation. A similar

trend can be seen in the MO response of graphene [106]. In the QSHI phase, the

absorption peaks can be seen for interband transitions. Each transition is repre-

sented by a Lorentzian peak with a full width at half maximum η. Following the

terminology mentioned in [142], the peaks corresponding to different transitions

Eτz=±1
m → Eτz=±1

n are labeled as T τz=±1
mn .

Utilizing the expressions of Fresnel’s coefficients and the s and p polarized Faraday

and Kerr rotations in Sections 4.1.3 and 4.1.2, we performed these simulations. In

this section, while investigating the FR and Kerr rotation in TI thin film-substrate

system, we restrict ourselves to the lowest magneto-excitation transition frequen-

cies (originating only from the T+1
01 and T−1

−10 transitions), unless specifically men-

tioned otherwise. We can see resonant peaks when the incident photon hits the

magneto-excitation energy gap.

As we increase the strength of the applied magnetic field, the MO excitations

shift towards higher frequencies. In Fig. 4.10(a), the first two absorption peaks

correspond to T+1
01 (top surface) and T−1

−10 (bottom surface) transitions in which

Table 4.2: Allowed transitions for τz = ±1 in the n = −1, 0, 1 subspace, for B =1,
3 and 5 T in the QSHI phase ∆z = 2 meV.
T τz=±1
mn ∆z (meV) B (T) Photonic energy (meV)
T+1

01 2 1 25.1
T−1
−10 2 1 20.3
T+1

01 2 3 38.0
T−1
−10 2 3 33.5
T+1

01 2 5 47.0
T−1
−10 2 5 42.7
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Table 4.3: Allowed transitions in the n = −1, 0, 1 subspace, for B = 1 T in three
different topological regimes for ∆H = 4 meV.

T τz=±1
mn ∆z (meV) Regime Photonic energy (meV)
T+1

01 2 QSHI 20.3
T−1
−10 2 QSHI 25.1
T+1

01 4 CNP 18.2
T−1
−10 4 CNP 27.7
T+1

01 8 NI 22.7
T−1
−10 8 NI 33. 9

one of the participating level is zeroth LL. For higher magnetic fields we can see

that the spectral weight increases with the increase in the strength of the applied

magnetic field. The spectral weight decreases for higher magneto-excitation fre-

quencies. To shed more light on MO excitations, we plot in Fig. 4.10(c)-(f) the

s and p polarized magneto-transmission and reflection coefficients as a function

of the incident photonic energy for different strengths of the magnetic field. We

can see the normalized magneto-transmission and reflection peaks of the magneto-

excitation energy for different transitions. Table 4.2 summarizes these results.

Next, we study the Kerr and Faraday rotation of the TI thin-films-substrate system

by tuning the magnetic field for finite hybridization ∆H = 4 meV. The parameters

used are θψ = 30◦, η = 0.15 ∆H (estimated from experimental findings [143]),

refractive index n2 = 1.84 and chemical potential µF = 0, so that the inter-band

transitions bridge across the valance and conduction bands. Fig. 4.11(a) shows

the p polarized Kerr spectra as a function of the incident photonic energy for dif-

ferent values of the magnetic field strength. Borrowing ideas from [76], the signal

originating from a single transition is dispersive Lorentzian, with a positive peak

followed by a negative peak (or vice versa). We call this an anti-phase peak. We

observed the first anti-phase peak of the Kerr rotations, which occurs when the in-

coming photon frequency resonates with a Landau level transition T+1
01 . Similarly,

we can see a relatively small rotation anti-phase peak (with a negative followed
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(c) (d)

(e) (f )

Figure 4.10: (a) and (b) Longitudinal and transverse Hall conductivities as a func-
tion of photonic energy for different magnetic fields in the QSHI regime for top
and bottom SSs, respectively. (c)-(f) Modulus of the s and p polarized magneto-
transmission and reflection coefficients for TI thin film-substrate system as a func-
tion of the incident photonic energy for different magnetic fields in the QSHI regime
for top and bottom SSs, respectively. The parameters used for this simulation are
∆H=4 meV, ∆z = 0.5∆H , θψ = 30◦, η = 0.15∆H , refractive index n2 = 1.84, and
chemical potential µF = 0.

by a positive) for the second magneto-excitation transition T−1
−10. Like other 2D

materials including graphene [93, 119] the TI energy levels are strongly dependent

on the magnetic field B. As we increase the strength of the magnetic field, the
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MO excitations shift towards higher frequencies.

Fig 4.11(b) shows the s polarized Kerr rotation spectra for different strengths of

the magnetic field indicating that the anti-phase peaks switch signs. Furthermore,

the sign of the MO rotation can be controlled by the polarization of the incident

light. Fig. 4.11(c) shows that s polarized FR as a function of the incident photonic

energy in the QSHI phase. The s polarized FR angles for the first two anti-phase

peaks are ≈ ±6.5◦. The main role of the modulated magnetic field is to shift the

position of the MO excitation energies and also to change the magnitude of MO

effects. Figures 4.11(d)-(f) represent the MO Kerr and FR rotations for different

Zeeman interaction terms ∆z in the THz regime. We display in Fig. 4.11(d) the

p polarized Kerr rotation angle versus incident photonic energy for several values

of the Zeeman field ∆z. The first and second anti-phase peaks correspond to T+1
01

and T−1
−10 transitions in all three regimes. In the QSHI phase (∆z = 0.5∆H) with

B = 1 T, these magneto-excitation energies are calculated as 20.3 meV (4.9 THz)

and 25.1 meV (6.1 THz).

The magneto-excitations frequencies are presented in Table 4.3 for the first two

transitions (T+1
01 and T−1

−10) in the three distinct topological regimes. At the CNP

(∆z = ∆H), E−1
0 has exactly zero energy (see supplemental material). For QSHI

phase E−1
0 is electron like and for NI phase it is hole like. The amount of Kerr

rotation angles for both QSHI and CNP is ≈ ±6.0◦ for τz = +1. For higher

MO excitation energies, we have T−1
−10 LLs transitions and the Kerr rotation angle

≥ ±2.0◦. In the NI phase (∆z = 2∆H) the separation between the anti-phase pair

keeps on growing and the peaks gradually shift towards higher frequencies (blue

shifted). Here, the magnitude of the Kerr rotation angle is small as compared to

the QSHI and CNP phases.

In Fig. 4.11(e) we plot the s polarized Kerr spectra as a function of photonic
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QSHIQSHI

QSHI

Figure 4.11: Kerr and Faraday rotation of TI thin film-substrate system as function
of photonic energy for different values of magnetic field. (a) The p polarized and
(b) s polarized Kerr rotation for magnetic field strength of 1, 3 and 5 T, in the
QSHI regime. (c) The s polarized Faraday rotation for magnetic field strength
of 1, 3 and 5 T, in the QSHI regime. (d) and (e) The s and p polarized Kerr
rotation with modulation of the external Zeeman field interaction, for the QSHI
(∆z = 0.5∆H), CNP (∆z = ∆H) and BI (∆z = 2∆H) at a magnetic field of 1 T.
(f) The s polarized Faraday rotation as function of the incident photonic energy
with modulation of the external Zeeman field interaction, for the QSHI, CNP and
BI at a magnetic field of 1 T. The parameters used for this simulation are ∆H=4
meV, θψ = 30◦, η = 0.15∆H , refractive index n2 = 1.84 and chemical potential
µF = 0.

162



energy for three distinct topological regimes, but only for two transitions. For s

polarized incident light the polarity of the Kerr rotation angle is switched. The

FR rotation spectra shown in Fig. 4.11(f) follow a similar trend. The magnitudes

of the FR rotation angles range between ≈ ±2◦ for all three topological regimes

for top and bottom surfaces, which, in general, are smaller than the Kerr rotation

angle.

4.2.3.2 Doping control of magneto-optic response

It is worth investigating the control of Kerr and FR spectra by varying the chem-

ical potential µF . The LLs of the TIs top and bottom topological SSs can be

tuned independently by employing top and back gate electrodes [144, 145]. Fine

control of µF of the paired surface states in a dual-gated system has been recently

reported [146]. In the subsequent analysis, the chemical potential is tuned near

the Dirac point. For this purpose, we consider two different values of chemical

potentials µF=10 and -10 meV while keeping the magnetic field 1 T in the QSHI

regime (∆z = 0.5∆H), and an angle of incidence of 30◦.

In the first case we assume n-type doping and µF=10 meV. The chemical poten-

tial lies in between the n=0 and n = 1 LLs as shown in Fig. 4.12(a). Blue lines

represent LLs for top surfaces and red lines represent LLs for bottom surfaces.

The same color scheme applies for the LL transitions with green line indicating

the chemical potential µF . We identify these LL transitions as T+1
−01, T−1

−10, T−1
01 ,

T+1
−12 and T−1

−21 as shown in Fig. 4.12(a). The intra-band transition is shown by

a dashed black upward pointing arrow. In the second case we consider p-type

doping where µF = −10 meV and the chemical potential is in between the n=0

and n = −1 LLs as displayed in Fig. 4.12 (b). For n-type doping, certain transi-

tions become Pauli blocked. For example the transition T−1
−10 = 20.3 meV becomes

forbidden and in their place the intra-band transition T−1
01 = 16.3 meV in the bot-
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Figure 4.12: (a) and (b) Optically allowed inter-band and intra-band LL transitions
satisfying the selection rule ∆n = ±1 for top and bottom SSs in the QSHI regime.
(c) and (d) Real parts of the optical conductivities for p-type and n-type TIs thin
film-substrate system as a function of the incident photonic energy in the QSHI
regime. (e) and (f) the p polarized Kerr rotation in the QSHI regime with n-type
and p-type doping for a magnetic field of 1 T, respectively. (e) and (f) the p
polarized Kerr rotation in the QSHI regime with n-type and p-type doping for a
magnetic field of 1 T, respectively

tom surface appears. Similarly for p-type doping, when the chemical potential µF

jumps between the n=0 and n = −1 LLs, owing to the Pauli blocking, transition

T+1
01 = 25.1 meV disappears and T+1

−10 = 13.1 meV emerges.
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The first and second magneto-excitation energies corresponding to T+1
−01 and

Table 4.4: Allowed LL transitions in the n = −1, 0, 1 subspace for different chem-
ical potentials in the QSHI regime with ∆H = 4 meV.
T τz=±1
mn µF (meV) Inter/intraband Photonic energy (meV)
T+1

01 10 Inter 25.1
T−1

01 10 Intra 16.3
T+1
−10 -10 Intra 13.1
T−1
−10 -10 Inter 20.3

T+1
−01 for top and bottom surfaces are calculated and summarized in Table 4.4.

Higher-order inter-band transitions are weak where the LLs are closely spaced and

the Kerr and FR originating from these transitions are very small hence we ignore

them here. The longitudinal conductivities for n-type and p-type doped TIs are

shown in Figs. 4.12(c) and (d). The intra-band and inter-band transitions are

shown as pronounced dips at incident photonic energies in the QSHI regime for

B = 1 T.

The spectral weights of these transitions are larger for p-type doping and smaller

for n-type doping. The p polarized Kerr rotations anti-phase peaks are shown in

Fig. 4.12(e) and (f) for µF=10 meV and -10 meV, respectively. For n-type doping,

these anti-phase peaks originate from the two lowest transitions T−1
01 = 16.3 meV

and T+1
01 = 25.1 meV as shown in Fig. 4.12(e). The maximum Kerr rotation is

achieved at the bottom surface for n-type doping, while for the top surface the

amount of rotation is small. On the other hand, for p-type doping, we have giant

anti-phase peaks for the top surface and comparatively small peaks for the bottom

surface as shown in Fig. 4.12 (f). For p-type doping, the Kerr rotation angles of

≈ ±10◦ and ≈ ±9◦ are observed (data not shown) for the two lowest transitions

T+1
−10 = 26.0 meV and T−1

−10 = 33.5 meV for bottom and top surfaces respectively,

for B = 3 T. This exceeds the maximum values reported in literature for graphene

in the THz region [94, 109]. Please note that the asymmetric response from the
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top and bottom surfaces arises due to the difference in their energies and not due

to the permittivity of the medium.

4.2.3.3 Semiclassical approximation

In the semiclassical approximation, the LL spacing due to the applied magnetic

field becomes negligible, which occurs when the chemical potential is very large

|µF | � |E1|. This usage of the term ‘semi-classical‘ is unique to these low di-

mensional quantum systems and different from other literature in atom-matter

interactions, where the term describes quantized electronic systems interacting

with light which is treated as a classical electromagnetic wave (though this is the

assumption in the current work as well). In this case, the intra-band transitions

between closely spaced LLs are allowed.

To compare the semi-classical results with the quantum mechanical ones, we study

the real part of the longitudinal and transverse magneto-optical conductivities of

the TIs thin film (see supplemental material for details). These conductivities are

shaped as absorptive and dispersive Lorentzians which are directly used to com-

pute the Fresnel coefficients Eqs. (4.17)–(4.22) and subsequently the rotations. We

also investigate the dependence of Kerr and Faraday rotations on photonic energy

in the semiclassical regime for n-type TIs thin film (see supplemental material for

details). These rotation angles exceed the maximum values as discussed above in

the quantum regime. At a field of 1 T, we report the p polarized Kerr rotation

and s polarized Faraday rotations Θτz=+1
K,p = 14◦, Θτz=−1

K,p = 10◦, Θτz=+1
F,s = 6◦ and

Θτz=+1
F,s = 5◦, respectively.

In the semiclassical approximation, the energy of intra-band transitions can be

approximated as

En+1 − En ≈
h̄v2eB√

E2
B|n|+ ∆2

τz

= h̄Ωc, (4.39)
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Figure 4.13: (a) The real part of the longitudinal and (b) transvers Hall conduc-
tivity as a function of incident photonic energy in the semiclassical limit for two
transitions for n-type doping. (c) the p polarized Kerr rotation and (d) the s polar-
ized Faraday rotation as a function of incident photonic energy in the semiclassical
limit.

where, Ωc = h̄v2eB/µF is called the classical cyclotron frequency. In the semiclas-

sical limit the conductivities of the top and bottom surfaces can be modeled by

classical Drude-like peaks and can be written as

Re
(
σxx(Ω)

)
σ0

= −
Im
(
σxy(Ω)

)
σ0

=
h̄µF
π

η

(h̄(Ω− Ωc))2 + η2
, (4.40)

Im
(
σxx(Ω)

)
σ0

=
Re
(
σxy(Ω)

)
σ0

=
h̄µF
π

h̄(Ω− Ωc)

(h̄(Ω− Ωc))2 + η2
, (4.41)

where αn ≈ αn−1 ≈ βn ≈ βn−1 = 1/
√

2. In Figs. 4.13(a) and (b), we have plotted

the real part of the longitudinal and transverse magneto-optical conductivities of

the TIs thin film. For finite chemical potential µF and LL n, the allowed intra-

band transitions are T τz=+1
9−10 and T τz=−1

9−10 . For large chemical potential the strong
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intra-band absorption peak can be seen in Fig. 4.13(a). We also observe that the

spectral weight increases with the chemical potential. These conductivities are

shaped as absorptive and dispersive Lorentzians.

We plotted the Kerr and Faraday rotations verses photonic energy in Figs. 4.13(c)

and (d) in semiclassical regime for n-type TIs thin film. We can see in Figs. 4.13(c)

giant p polarized Kerr rotation anti-phase peaks for the incident beam exciting the

T τz=+1
9−10 and T τz=−1

9−10 transitions respectively. These rotation angles exceeds the max-

imum values discussed in the quantum regime. Similarly, for s polarized Faraday

rotation for µF = 55 meV, the anti phase peak can be seen at classical cyclotron

resonance frequencies. At a field of 1 T, the p polarized Kerr rotation and s po-

larized Faraday rotations are: Θτz=+1
K,p = 14◦, Θτz=−1

K,p = 10◦, Θτz=+1
F,s = 6◦ and

Θτz=+1
F,s = 5◦.
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Chapter 5

Mechanical beam shifts in 2D
quantum materials

In this chapter, we will study the Goos-Hänchen shifts of a beam impinging on

the surface of a 2D material-dielectric interface and we will show that the beam

appears to undergo lateral as well as angular shifts as shown in Fig. 6.1. This me-

chanical displacement was first experimentally studied by Goos and Hänchen in

1947. Hence this effect is called the Goos-Hanchen effect. The effect is a direct con-

sequence of the evanescent field produce in the rarer medium and hence cannot be

explained from classical ray optics. In this chapter, by using the magneto-optical

conductivities and Fresnel’s coefficients of silicene and hybridized topological in-

sulator thin films derived in Chapter 3, we calculate the lateral and angular shifts

for these quantum materials, indicating the potential superiority of these materials

relative to graphene.

The current chapter is structured into three major parts. In the first part, we

will apply the GH shift formalism to investigate the electric and magnetic field

modulated giant spatial and angular GH shifts in silicene. This part of the chap-

ter has been published in OSA Continuum [142]. In the second part, we study the

Goos-Hanchen (GH) shift from the surface of a hybridized topological insulator

(TI) thin film in the presence of a static magnetic field. The second part has been
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published in Physica E: Low-dimensional Systems and Nanostructures [147].

5.1 Magneto-optic modulation of lateral and an-

gular shifts in spin-orbit coupled members of

the graphene family

5.1.1 Background and motivation

The most common phenomena in classical optics are the reflection and refraction

of light. To describe the interaction of a plane wave with an interface separat-

ing two dielectric media, the propagation of the reflected and transmitted waves

is described by the well-known Fresnel and Snell laws. However, this traditional

geometric optics picture is not applicable for a beam (the superposition of several

plane wave components) of finite width in a subwavelength regime. On reflec-

tion, each plane wave suffers different amounts of spatial and angular phase shifts,

resulting in longitudinal (parallel to the plane) and transverse (perpendicular to

the plane) shifts, respectively called Goos-Hanchen (GH) and Imbert-Fedorov (IF)

shifts [148, 149]. Such a striking optical phenomenon is attributed to the penetra-

tion of an evanescent field.

In order to understand the evanescent field description, Lotsch in 1968 presented

an explicit calculation of the Poynting vector for the analysis of the energy redis-

tribution, which gives the direction of energy flow [150]. He examined that a part

of the incident beam enters the rarer medium and reappeared at another point

to produce the observed shift. To understand the physics of the Goos-Hanchen

shift, consider the pictorial representation of Schaefer and Pich [151] in Fig. 5.1.

The incident beam is represented by ABCD. The beam is homogeneous in the

central region BC and decays off to zero from B to A and C to D. The direction

of the Poynting vector is toward the rarer medium, parallel to the surface, and
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Figure 5.1: Schematic representation of the Poynting vector direction in different
parts of a beam ABCD.

away from the rarer medium, in the regions PQ, QR, and RS respectively. The

energy is entering into the rarer medium from the leading portion of the beam and

returning from the rarer medium in the sweeping portion after reflection.

On imposing the boundary conditions it is evident that there should be an evanes-

cent field in the rarer medium. This field decays exponentially away from the

boundary. Initially, there is no evanescent field. However, when the leading por-

tion of the beam is incident on the interface, it set up an evanescent field in a rarer

medium. Because of this, the beam undergoes a spatial and angular deviation.

During the last decade, the GH shift has been extensively studied in many different

systems, such as photonics [152, 153], plasmonics [154, 155], chiral materials [156],

metamaterials [157] and quantum systems [158]. The potential applications of GH

shift are in biosensors [155], optical measurement, and optical heterodyne sensors

[159]. For example, controlling the Fermi energy in THz region, L. Jiang et. al
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theoretically studied electrically tunable GH shifts of monolayer graphene [160].

The magnetic field and Fermi energy modulated giant quantized GH effect on the

surface of graphene in the quantum Hall regime was recently predicted [161]. T.

Tang et. al proposed an experimental scheme based on a prism-graphene coupling

structure for MO tunable GH effect sensing [162, 163].

Recently the GH shift on the surface of silicene [75], TMDCs [164] and Weyl

semimetals [165] has also been investigated. From an application perspective, Far-

mani et. al designed a bidirectional and tunable graphene plasmonic switch in a

modified Kretschmann configuration in THz range [166]. In the THz to the mid-

infrared range, the observation of GH effect in graphene may find significant new

and interesting applications in extremely sensitive optical sensors [167, 168]. Many

works are devoted to study the electronic analog of the valley and spin-polarized

GH shift in silicene and gapped graphene structures [169, 170].

The novelty of this current work lies in obtaining large spin and valley resolved GH

shifts simultaneously in staggered 2D materials in the presence of applied electric

and magnetic fields, a scenario not comprehensively covered in previous works.

The present study details the impact of the magnetic field, chemical potential,

incident frequency, electric field, and incident angle modulation of the valley- and

spin-polarized GH shifts in staggered 2D semiconductors materials.

Furthermore, the Brewster effect is a fundamental electromagnetic and optical

phenomenon in which p polarized light experiences zero reflection [171, 172]. Con-

trolling the Brewster angle is extremely important in broadband devices such as

the solid-state modulator [173]. We also show that the Brewster effect in the sil-

icenic atomic layer is strongly influenced by magnetic fields. Last, we find that

angular and spatial GH shifts can be significantly enhanced by tuning the chemical

potential, incident beam frequency, and the electric field which can render the sys-
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tem in various regimes such as the topological insulator (TI), valley-spin polarized

metal (VSPM) and band insulator (BI).

The MO-controlled Brewster angle can be used to develop a highly tunable solid-

state modulator. More interestingly, the valleys and spins indices can be used for

the switching of the GH shift from negative to positive and vice versa. The GH shift

in staggered 2D materials paves the way for realizing spin and valley-dependent

devices and systems that can be useful optical readout markers for experiments

in quantum information processing, biosensing, spintronics, and valleytronics in

the THz regime. Moreover, the electro-optic and MO tunable GH shifts can be

used for the detection of electric field and magnetic field sensing and also for the

determination of the doping level of these 2D staggered layers.

This part of the chapter is organized as follows: Section 5.1.2 will lay down the

theoretical background for the lateral and angular shifts in spin-orbit coupled

members of the graphene family. In Section 5.1.3, we will present the results and

discussion. Finally, we will conclude our findings in Section ??.

5.1.2 Model and theory

To illustrate GH shifts in a general beam propagation model, we consider an

EM Gaussian beam of light of finite width, well collimated, monochromatic, with

frequency ω, and is incident on a 2D material-substrate at an incident angle θψ

from the air. The refractive indices of the first and second media are n1 and n2,

respectively. We consider the air-staggered 2D monolayer-substrate interface to be

in the x, y plane of the laboratory Cartesian frame at (z = 0). A static magnetic

field is acting along the z axis which is perpendicular to a 2D material substrate.

We use coordinates (xi, yi, zi) and (xr, yr, zr) to denote the incident and reflected
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Figure 5.2: Schematic representation of the beam reflection at a 2D staggered
material-substrate interface in the presence of external electric and magnetic fields
are shown for partial reflection (PR) and total internal reflection (TIR) conditions.
The spatial and angular GH shifts for (a) PR and (b) TIR. The incident, classically
predicted and reflected beams are denoted by a, b and c respectively.

beams, respectively. The incident Gaussian beam can be expressed in the angular

spectrum representation as

Ẽi(kix, kiy) = Φ0f̂ , (5.1)

where Φ0 = exp[−w2
0(k2ix+k2iy)

4
] with the beam waist w0. The unit complex vector f̂ =

(x̂ifp+ŷifs) represents the polarization of the incident beam. The amplitudes of the

incident and reflected angular spectrum are related as Ẽr(krx, kry) = MRẼi(kxi, kri)

which can be expressed explicitly as[
Ẽ

(r)
p

Ẽ
(r)
s

]
= R̂

[
Ẽ

(i)
p

Ẽ
(i)
s

]
,with R̂ =

[
rpp rps
rsp rss

]
, (5.2)

where rpp, rps, rss and rsp are the Fresnel reflection coefficients for parallel and

perpendicular polarizations. Introducing the boundary condition krx = −kix and

kry = kiy and by making use of a Taylor series expansion the Fresnel reflection

coefficients rλ around the central wave vector can be written as

rλ (kix) = rλ (kix = 0) + kix

[
∂rλ (kix)

∂kix

]
kix=0

+
N∑
j=2

kNix
j!

[
∂jrλ (kix)

∂kjix

]
kix=0

(5.3)
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The angular spectrum of the reflected field can be written as

Ẽr(krx, kry) = Φ0x̂r

[
fprpp

(
1− krx

k0

∂ ln rpp
∂θi

)
+ fsrps

(
1− krx

k0

∂ ln rps
∂θi

)]
+ Φ0ŷr

[
fsrss

(
1− krx

k0

∂ ln rss
∂θi

)
+ fprsp

(
1− krx

k0

∂ ln rsp
∂θi

)]
(5.4)

Upon reflection, the complex amplitude for the reflected beam using the Fourier

transformations, can be expressed as

Er(xr, yr, zr) =

∫ ∫
dkrxdkryẼR(krx, kry) exp[i(krxxr + kryyr + krzzr)] (5.5)

For well collimated paraxial beams the transverse wavenumbers k2
x + k2

y � 1, so

using paraxial approximation, we can write krz =
√
k2
r − (k2

rx + k2
ry) = kr− (k2

rx +

k2
ry)/2kr. Using the above relation Eq. (5.5), can be written as

Er(xr, yr, zr) =

∫ ∫
dkrxdkryẼR(krx, kry) exp[i(krxxr+kryyr+(kr−

(k2
rx + k2

ry)

2kr
)zr)]

(5.6)

In position space the general expression for the reflected angular spectrum is ob-

tained as

Er ∝ exp

(
ik0zr −

k0

2

x2
r + y2

r

ΛR + izr

)
×
{

x̂r

[
fprpp

(
1− ixr

ΛR + izr

∂ ln rpp
∂θi

)
+ fsrps

(
1− ixr

ΛR + izr

∂ ln rps
∂θi

)]
+

{
ŷr

[
fsrss

(
1− ixr

ΛR + izr

∂ ln rss
∂θi

)
+ fprsp

(
1− ixr

ΛR + izr

∂ ln rps
∂θi

)]}
(5.7)

where, ΛR is the Rayleigh range, fp = ap ∈ R and fs = as exp(iη).

The next task is to find out the relationship for the Goos-Hanchen shift in stag-

gered 2D monolayer materials. The intensity distribution of the reflected beam

I(xr, yr, zr) is related to the longitudinal momentum current or another words to

the Poynting vector. The time-averaged linear-momentum density can be written

as [161]

Sr =
1

c2
Re[Er × H∗r] (5.8)
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Here the magnetic field is given by Hr = −ik−1
r ∇ × Er. If one ignore the irrele-

vant proportionality factor, the intensity is directly proportional to the absolute

square of the reflected angular spectrum I(xr, yr, zr) ∝ |ER|2. The longitudinal

displacements of the field centroid at any given plane zr=const, is given by

DGH =

∫ ∫
xrI(xr, yr, zr)dxrdyr∫ ∫
I(xr, yr, zr)dxrdyr

(5.9)

Considering only the horizontal polarization with ap = 1, as = 0 and η = 0.

Substituting Eqs. (5.7) into (5.9), the following expression is obtained

DGH =
2(2
ppϕpp +R2

psϕps)ΛR

2k(R2
ps +R2

pp)ΛR + χpp + χps
(5.10)

− zr
2(R2

ppϕpp +R2
psϕps)

2k(R2
ps +R2

pp)ΛR + χpp + χps
(5.11)

where, Rλ = Rλ exp(iφλ), ρλ = Re(∂ lnRλ/∂θi), ϕλ = Im(∂ lnRλ/∂θi) and χλ =

R2
λ(ϕ

2
λ + ρ2

λ). Here Rλ is the amplitude and φλ is the phase of the reflection

coefficients. The first term is the spatial GH shift and the second term the is

the angular GH shift as a function of the beam propagation distance zr. For p

polarized incident light beam the GH shifts can be divided into spatial and angular

shifts as [142]

Θp
GH = −

2(R2
ppρpp +R2

psρps)

2k(R2
ps +R2

pp)ΛR + χpp + χps
, (5.12)

∆p
GH =

2(R2
ppϕpp +R2

psϕps)ΛR

2k(R2
ps +R2

pp)ΛR + χpp + χps
. (5.13)

The superscripts identify the polarization state (p). By using Eqs. (3.66) and

(3.72), we can calculate the Fresnel’s reflection coefficients and subsequently the

GH shifts.

5.1.3 Results and discussion

5.1.3.1 Magnetic field modulated Goos-Hanchen

We quickly recount the effect of the magnetic field on the energy level structure

and subsequently the MO response. Schematic diagrams showing the allowed tran-
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sitions between Landau levels (LL’s) for three different magnetic field (B =1, 3

and 5 T) all in the topological insulator regime (∆z < ∆so) and in the K valley

are shown in Fig. 5.3(a)–(c). The transition energy is determined from the energy

difference between LL’s obeying certain selection rules namely |n| − |m| = ±1 and

the conservation of real spin implying that transitions between σ = +1 and −1

levels are spin forbidden.

The excitation energies corresponding to the different transitions, Em,K(K′),↑(↓) →
En,K(K′),↑(↓) are labelled as ∆mn,K(K′),↑(↓). Blue lines represent Landau levels for

spin up (σ =↑) and red lines represent Landau levels for spin down (σ =↓). In each

of the depicted transitions, one of the participating levels is an n=0 level. For ex-

ample for B = 1 T, the first and second magneto-excitation energies correspond to

the ∆−10,K,↑ and ∆01,K,↓ for spin up and spin down respectively and are calculated

at 20.3 meV (4.9 THz) and 25.1 meV (6.1 THz) respectively. For higher n, the

LL’s are closely spaced, we ignore these transitions for the time being. Similarly

for B = 3 and 5 T, the allowed transitions between LL’s are shown in Fig. 5.3(b)

and (c). In fact, Table 5.1 summarizes magneto-excitation frequencies within the

n = −1, 0, 1 manifold for the magnetic fields considered.

In Fig. 5.3(d), we have shown the variation of the longitudinal conductivity as

a function of photon frequency for three different magnetic fields also shown ex-

clusively for the TI regime. We can see resonant peaks when the incident h̄Ω hits

the magneto-excitation energy. As we increase the strength of the applied mag-

netic field, the MO excitations shift towards higher frequencies. For practicality

and simplicity, we will restrict ourselves to the lowest magneto-excitation transi-

tion frequency, originating only from the ∆−10,K,↑ transition while investigating

the GH shift in this article, unless otherwise specified.

With knowledge of the LL transitions and magneto-optical conductivities of the
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Figure 5.3: Schematic representation of the allowed transitions between LL’s for
three different magnetic fields in the K valley at (a) 1 T (b) 3 T (c) 5 T. Blue
lines represent Landau levels for spin up (σ =↑) and red lines represent Landau
level for spin down (σ =↓). The same color scheme applies for the Landau levels
transitions. (d) Longitudinal conductivity as a function of photon frequency. The
parameters used are ∆so=8meV, ∆z = 0.5∆so and chemical potential µF = 0.

2D materials for different magnetic fields at hand, we are now capable to study

the spatial and angular GH shifts. We first discuss the reflectivity and phases of

the reflected s and p polarized waves for incident light. Clearly, if the impinging

Gaussian beam frequencies are smaller than all Dirac gaps, then no electrons can

be excited from the valence to the conduction band. On the other hand, a reso-

nant Gaussian wave will excite an electron-hole pair. As the resonance condition
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Figure 5.4: Modulus and phase of the s and p polarized reflection coefficients
for 2D staggered graphene-substrate system as a function of incident angle for
different magnetic fields in K valley for PR: (a) Rss, (b)Rpp, (c) φpp and (d) φss.
The parameters used are ∆so=8meV, Γ = 0.2∆so, refractive index n2 = 1.84 and
chemical potential µF = 0.

is spin-dependent, so spins of only one kind (say up spin) electrons will be excited.

The resonant excitation energies (frequencies) for the ∆−10,K,↑ transition are 20.3

meV (4.9 THz) at B = 1 T; 33.5 meV (8.1 THz) at B = 3 T and 42.6 meV (10.3

THz) at B = 5 T. Fig. 5.4 illustrates the magnetic field modulated reflectivity

(Rss and Rpp) and their phases (φss and φpp) as a function of incident angle in

the TI regime. In Fig. 5.4(a) and (b), the moduli of Rpp and Rss are shown for

various magnetic fields indicating that for p polarized incident light, Rpp achieves a

minimum value at a certain θ1 and rises again. This is called the pseudo-Brewster

angle θB = tan−1(n2/n1), whereas Rss increases smoothly as the angle of incidence

is increased. At θB, the magnitude of reflection coefficient Rpp intensity for the

uncoated surface (without 2D material) reaches zero, as shown in Fig. 5.4(a) by a

dashed line. For the 2D staggered atomic layer, Rpp at the Brewster angle θB is
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Table 5.1: Table of allowed transitions in K valley in the n = −1, 0, 1
subspace, for different magnetic fields in the TI regime with ∆so = 0.5∆z.

∆mn,K(K′),↑(↓) B (T) Frequency (THz)
∆−10,K,↑ 1 4.9
∆01,K,↓ 1 6.1
∆−10,K,↑ 3 8.1
∆01,K,↓ 3 9.2
∆−10,K,↑ 5 10.3
∆01,K,↓ 5 11.4

non-zero, because the MO conductivity of the graphene-family is complex.

The phase φpp shows the transition from 0 to −π in the vicinity of θB for dif-

ferent magnetic fields. A similar variation has been reported in 2D-TMDC [164].

The phase φss shows an increasing trend with θ1 in the TI regime, as shown in

Fig. 5.4(d). Note that we haven’t shown results in the VSPM state and BI regime,

for which Rss and Rpp don’t appreciably change for magnetic fields. In the re-

mainder of this section, we will only discuss the magnetically induced spatial and

angular s for the interesting case of p polarized light. The shifts for the charge-

neutral graphene-family (µF = 0 meV) are plotted as a function of incident angle

for different magnetic fields in the TI regime in Fig. 5.11(a), whereas the angular

GH shifts are represented in Fig. 5.11(b). Since ∂φp/∂θ1 6= 0 and is accentuated

in the vicinity of θB, the spatial shifts are dominant in the vicinity of the pseudo-

Brewster angle.

To better visualize the dependence of the GH shifts with respect to the mag-

netic field consider the p polarized spatial GH shifts in Fig. 5.5(a), for the three

different magnetic fields. We observe giant negative spatial beam shifts in the TI

regime. If we look at the φpp spectra in Fig. 5.4(c) together with these shifts, we
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Figure 5.5: The p polarized spatial and angular GH shifts for charge neutral
staggered graphene-substrate system as a function of incident angle for different
magnetic fields in the K valley in the TI regime for PR and TIR. (a) The p
polarized spatial GH shifts for PR, (b) the p polarized angular GH shifts for PR,
(c) the p polarized spatial GH shifts for TIR and (d) the p polarized angular GH
shifts for TIR. The dashed lines represents the values of θB and θC for the native
dielectric substrate. The parameters used are identical across all figures, unless
stated otherwise.

observe that φpp shows a change of −π resulting in negative spatial GH shifts. The

magnitude of spatial GH shifts are larger for smaller magnetic fields and smaller

for large magnetic fields values; however, the extent of the spatial GH shifts for

p polarization on a 2D staggered monolayer graphene-substrate system is larger

compared to the case of the graphene-coated surface [174].

It is also worth noting that the Brewster angle is also sensitive to the applied

magnetic field. From the results shown in Fig. 5.5(a), we observe that the Brew-
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ster angle of the spatial GH shifts can be tuned from 62◦ to 63◦ by modulating

the magnetic field for the three proposed magnetic fields.

Similarly, in Fig. 5.5(b), we also plot the angular GH shifts as a function of the

incident angle. The angular GH shift Θp
GH is positive and gradually increases with

incident angles, but as the incident angle reaches θB, Θp
GH decreases rapidly and

results in a negative GH shift. By tuning the angle of incidence of the p polarized

THz beam and the applied magnetic field, one can therefore control the polarity of

the angular GH shift as well as its amplitude. Similar to the spatial counterpart,

the amplitude of the angular GH decreases for increasing magnetic fields and this

finding is in good agreement with purely graphene-coated surfaces [174]. Once

again, the tuning of the Brewster angle θB with the magnetic field is also clearly

observable.

Similarly, we plot the p polarized spatial and angular GH shifts under the total

internally reflected (TIR) condition in Figs 5.5(c) and (d) respectively. Notable

deviations from external reflection and certain additional features are vividly ob-

servable here. From Fig. 5.5(c) we observe that for magnetic fields of 1, 3, and 5

T, we have peaks in the vicinity of θB and sharply precipiced dips at the critical

angle θC = sin−1(n2/n1), in the TI regime. Once again, the amplitude of the

spatial GH shift is attenuated for larger magnetic fields. Similarly, the magnetic

field modulated p polarized angular GH shifts for TIR geometry are depicted in

Fig 5.5(d) wherein we expect unusual behavior of the GH shifts in the vicinity of

both the Brewster and the critical angle. The angular GH shift Θp
GH is positive

when the incidence angle is smaller than the Brewster angle and negative beyond.

Similarly, just before the critical angle, the angular shift acquires a large negative

spike and diminishes immediately after. Furthermore, near θB, the angular GH

decreases in size with increasing magnetic field values.
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5.1.3.2 Tuning the electric field

A static electric field Ez, controls the electronic band structure of the 2D staggered

graphene family by generating a staggered sublattice potential ∆z. An increase in

the electric field triggers a well-known quantum phase transition that occurs from

topological insulator to band insulator state [175]. Fig. 5.6(a) shows the longitudi-

nal conductivity versus photon energy for various values of ∆z. As we increase the

applied electric field ∆z, each interband peak splits into two spin-polarized peaks

in the TI regime (∆z < ∆so). Concomitantly, due to a redistribution of spectral

weight, the intensity of the peaks is reduced for larger fields values.

When ∆z = ∆so, the gap of one of the spin-split bands closes and a new type

of metallic phase emerges called the valley-spin polarized metal (VSPM) state. At

the VSPM point, the lowest frequency peaks, move apart: the ∆−10,K,↑ peak is

red-shifted while the ∆01,K,↓ peak is blue shifted. The excitation energies corre-

sponding to the first two peaks at the VSPM point are now 18.2 meV (4.4 THz)

and 27.8 meV (6.7 THz) for the spin up and down, respectively. Further increasing

∆z results in re-opening of the gaps and the system transitions from the VSPM

to the band insulator (BI) state. In the BI regime, all interband peaks move to

higher energies. The magneto-excitations frequencies are presented in Table 5.2

for the first two transitions in the three different regimes. The main role of the

electric field is that it controls the band structure and is responsible for spin and

valley polarized responses, and therefore, similar to magnetic fields, also controls

the magneto-optic excitation energies.
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Figure 5.6: (a) Longitudinal conductivity as a function of incident photon fre-
quency and the p polarized spatial and angular GH shifts for the staggered
graphene-substrate system as a function of incident angle for magnetic field B = 1
T in the K valley in three distinct topological regimes and four different chemical
potentials. The incidence is external PR, while (b) and (c) show the p polarized
spatial and angular GH shifts with modulation of the external electric field, for the
TI, VSPM, and the BI at a magnetic field of 1 T. (d) Schematic representation of
the allowed transitions between LL’s for three different values of chemical potential
µF=0, 10 and 22 meV, and (e) and (f) are the p polarized spatial and angular GH
shifts with modulation of the chemical potential in the TI and classical regimes
for a magnetic field of 1 T.
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Table 5.2: Table of allowed transitions in K valley in the n = −1, 0, 1 subspace,
for B = 1 T in three different topological regimes for ∆so = 8 meV.

∆mn,K(K′),↑(↓) ∆z (meV) Regime Frequency (THz)
∆−10,K,↑ 0 TI 5.6
∆01,K,↓ 0 TI 5.6
∆−10,K,↑ 4 TI 4.9
∆01,K,↓ 4 TI 6.1
∆−10,K,↑ 8 VSPM 4.4
∆01,K,↓ 8 VSPM 6.7
∆−10,K,↑ 16 BI 5.5
∆01,K,↓ 16 BI 8.2

In Figs. 5.6(b) and (c), we show the p polarized spatial and angular GH shifts

as a function of the incident angle in the TI, VSPM and BI regimes, illustrating

selective excitation of spin up carriers in the K valley. From Fig. 5.6(b), it is

obvious that p polarized incident light produces giant negative spatial GH shifts.

For example, in the TI regime when all Dirac gaps are open and at the magneto-

excitation frequency of 4.9 THz, a maximum value of ∆p
GH ≈ 222 µm is attained

for a scattering rate of Γ = 0.2∆so. Further increasing ∆z results in reopening the

lowest energy gaps and the system undergoes a topological phase transition from

VSPM state to the BI regime. After band inversion, we observed smaller shifts,

∆p
GH = 130 µm. By increasing the electric field, the locations of the Brewster

angle do not change but the spatial GH shifts diminish in size.

The p polarized angular GH shift as a function of the incident angle in the TI,

VSPM, and the BI regimes can also be seen in Fig. 5.6(c), showing first, the sign

inversion of the angular displacement across Brewster’s angle and second, illus-

trating that the impact of the electric field is to suppress the size of the angular

shifts.
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5.1.3.3 Effect of chemical potential variation

The THz magneto-optical conductivity is heavily influenced by the chemical po-

tential µF . We examine the p polarized beam shifts by modulating the chemical

potential solely in the K valley. Results for the K ′ valley are analogous. We

observe that the magnitude, sign, and position of Brewster’s angle can all be con-

trolled by this external stimulus. For this purpose, we choose three different values

of the chemical potential of µF=0, 10, and 22 meV, while keeping the magnetic

field 1 T positioning the system in the TI regime. In contrast to neutral staggered

graphene (µF=0 meV), we now have interband as well as intraband transitions.

For µF=10 meV the chemical potential lies in between the n=0 and n=1 LL’s and

for µF=22 meV the chemical potential is in between the n=1 and n=2 LL’s.

A schematic diagram that helps us to understand the possible LL’s transitions

for this chemical potential adaptation is shown in Fig. 5.6(d). Moving from left

to right, we can see the LL’s interband transitions for µF = 0 meV are energies

∆−10,K,↑ = 20.3 meV and ∆01,K,↓ = 25.1 meV. As µF increases to 10 meV, then

according to selection rules, certain transitions become Pauli blocked. For in-

stance, the interband transition ∆−10,K,↑ becomes forbidden which is shown by the

dashed upward-pointing arrow in the middle. In its lieu, the intra-band transition

∆01,K,↑ = 16.0 meV emerges whereas for the spin-down electron, we still have the

allowed interband transition ∆01,K,↓ = 25.1 meV, shown by a solid arrow. If the

chemical potential µF is further enhanced to 22 meV, so that it lies between the

n=1 and n=2 manifolds, then both of the transitions ∆−10,K,↑ and ∆01,K,↓ become

Pauli blocked, which are again indicated by the dashed arrows in the rightmost

part of Fig. 5.6(d). In this case, the excitation energies (frequencies) corresponding

to the first two intra-band transitions ∆12,K,↑ and ∆12,K,↓ are 7.5 meV (1.8 THz)

and 7.2 meV (1.6 THz), respectively. Table 5.3 summarizes these results.
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Table 5.3: Table of allowed transitions in K valley in the n = −1, 0, 1 subspace,
for different chemical potentials in the TI regime with ∆so = 8 meV.
∆mn,K(K′),↑(↓) µF (meV) Inter/intraband Frequency (THz)
∆−10,K,↑ 0 Inter 4.9
∆01,K,↓ 0 Inter 6.1
∆01,K,↑ 10 Intra 4.0
∆01,K,↓ 10 Inter 6.1
∆12,K,↑ 22 Intra 1.8
∆12,K,↓ 22 Intra 1.6

Figs. 5.6(e) and (f) depicts the impact of altering the chemical potential (e.g.

by chemical doping) on the GH shifts. Only the K valley is demonstrated for the

sake of brevity. For these results, we selected the resonance frequency that excites

only the first allowed LL transition for the spin-up electrons. The p polarized

spatial GH shifts as a function of incident angle for different chemical potentials

are shown in Fig. 5.6(e). For µF=0 meV, we have negative spatial GH shifts origi-

nating from the ∆−10,K,↑ transition, which is purely interband. When the chemical

potential µF=10 meV, we have the intra-band transition, and the magnitude of

the p polarized spatial GH shift is larger.

As we further increase to µF=22 meV, we have purely intraband transitions. Here

is the sign of GH shift switches which is a remarkable demonstration of chemi-

cal potential modulated angular GH shifts. Note that an intraband transition is

responsible for the giant positive GH shift, precisely ∆12,K,↑ and whose resonant

frequency is 1.8 THz. With a further increase of chemical potential, the magnitude

of the p polarized spatial GH shift decreases while its full width half maximum in-

creases. Furthermore, we conclude that the pseudo-Brewster angles shifts to larger

incidence angles due to the chemical modification. The inversion of signs of the

GH shift from negative to positive has significant applications in optoelectronic

devices and chemical potential measurement.
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5.1.3.4 Semiclassical approximation, again!

In the semiclassical approximation, the LL spacing becomes unimportant, which

occur when |µF | � |E0|, or another word when µF is high up in the conduction

band or deep down in the valance band [76]. In this regime, the conductivities can

be modeled by classical Drude-like peaks. For example, we suppose that µF=55

meV which places the chemical potential between the n=9 and 10 LL’s. According

to the selection rules, only two transitions ∆−9 10 and ∆9 10 are allowed [76]. The

magneto excitation frequencies for ∆−9 10 and ∆9 10 are 27.1 and 0.71 THz respec-

tively. We plot the spatial and angular GH shifts for this semi-classical scenario

in Figs. 5.6(e) and (f). We can see in Figs. 5.6(e) a giant negative and minuscule

spatial GH shift for the incident beam exciting the ∆−9 10 and ∆9 10 transitions

respectively. We also observe that the Brewster angle is strongly influenced by

the chemical potential and dramatically changes in the classical regime for the

two different transitions. Similarly, we plot the p polarized angular GH shifts in

Fig. 5.6(f) for the two mentioned transitions. Remarkably, we get a giant angular

shift for ∆9 10 transition as compared to a small effect for the ∆−9 10 transition.

5.1.3.5 Valley and spin polarized beam shifts

In addition to charge and spin degree of freedom, the Dirac electrons in staggered

2D atomic layers possess a valley degree of freedom which acts like a fictitious spin

1/2 particle. The valley information for our system is actually embodied in the

variable ξ, which is described in the system Hamiltonian in Eq. (2.81). Since the

MO excitation energies are spin and valley dependent, one can selectively address

the valley pseudospin in these materials to achieve full spin and valley-polarized

GH shifts. For instance, by impinging right or left-handed circularly polarized

light of the correct frequency, we can selectively excite spin up or spin down elec-

188
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Figure 5.7: The valley and spin-polarized spatial and angular GH shifts for stag-
gered 2D material-substrate system as a function of incident angle for K and K ′

valleys in the TI regime. (a) The spatial GH shifts for both spins and for both val-
leys, (b) the p polarized angular GH shifts for both spins and valleys. The spatial
and angular GH shifts for staggered 2D material-substrate system as a function of
photon energy in the K valley for different magnetic and electric fields. (c) the p
polarized spatial and angular GH shifts for three different magnetic fields in the
TI regime, (d) the spatial and angular GH shifts for B = 1 T in three distinct
topological regimes. The p polarized response is shown only.

trons in either of the K or K ′ valleys. Hence we have full freedom to choose spin

or valley by tuning the frequency and helicity of the impinging radiation.

In this vein, the valley and spin-dependence of the spatial GH shifts are depicted

in Fig 5.7(a), indicating positive and negative GH shifts for both K and K ′ val-

leys. It is clear that this valley-dependent response is quite interesting. The sign

of the lateral GH shift is inverted across the two valleys for the same spin identity.

However, the angular shift does not undergo sign-inversion across the two valleys.

Therefore for experimental verification, the direction of the lateral shift can allow
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probing of the valley polarization tuning it into a prospective readout modality for

the valley qubit in quantum information processing schemes.

5.1.3.6 Dependence on the incident photonic energy

As we vary the magnetic field imposed on the 2D atomic layer, the energy and

hence the MO excitation energies manifold change. It is therefore instructive, to

examine the dependence of the spatial and angular GH shifts on the frequency

(energy) of the incident THz beam. In Fig. 5.7, we plot the beam shifts as a

function of incident photon energy. In Fig. 5.7(c) we show the response for three

different values of B =1, 3 and 5 T while keeping µF = 0 and θ1 = 61◦ (near the

Brewster angle) and keeping the electric field fixed to assign the system to the TI

regime. Only the K valley spin-up polarized response is demonstrated. The beam

shifts display an oscillating dependence moving gradually to higher frequencies as

the magneto excitation energy is increased. This is shown in Fig. 5.7(c). Likewise

for a fixed magnetic field (B = 1 T), as the electric field is changed, rendering the

system into various topological regimes, the position, as well as the magnitudes

of the beam shifts, change. From the TI→VSPM→BI progression, the GH shifts

increase and then decreases. This is shown in Fig. 5.7(d).
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5.2 Quantized Goos-Hänchen shifts on the sur-

face of hybridized topological insulator thin

films

5.2.1 Background and motivation

The emergence of topological insulators provides a new platform to reexamine the

spatial and angular beam shifts at the unique optical interface by impinging a light

beam on a topological insulator from an ordinary dielectric. Using the stationary-

phase approach, it has been theoretically investigated that these lateral shifts on

the surface of a topological insulator can be used to extract the surface charac-

teristics of the TI slab, and to measure signatures of topological phase transitions

[176, 177, 178].

Motivated by the advances in the study of GH shifts in TIs, in this part of the

chapter, we theoretically investigate a large quantized GH shift on a surface of a

TI thin film subjected to an external magnetic field by taking into account the

hybridization between the SSs. This type of configuration has not been studied in

detail in previous works. Our investigation can be demonstrated experimentally

by impinging a beam of light on an air–TI interface in the presence of an external

magnetic field, and then determining the direction of the optical beam after reflec-

tion. Techniques similar to those used for determining the angular deviations in

the specular reflection of a light beam from an air-glass interface can be employed

[179].

The present study covers the impact of a magnetic field, chemical potential, pho-

tonic energy, angle of incidence, and polarization of the incident beam on GH shifts

in TI thin films. We further investigate GH shifts in different topological phases of

the TI thin film by driving phase transitions through an external magnetic field.

The study of GH shifts in different topological phases can provide a new way of
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investigating the topological characteristics of TIs materials. The present part is

divided into the following sections. Section 5.2.2 is based on the theoretical model

for the lateral and angular Goos-Hänchen shifts in topological insulator thin films.

Finally, we present the results for our simulative investigations followed by a dis-

cussion in Section 5.2.3.

5.2.2 Goos-Hänchen shifts

Figure 5.8: Schematic illustration of the GH shifts of a light beam reflected from
a TI-substrate interface.

We consider a beam of light with Gaussian profile propagating in a vacuum and

is incident on the planar interface of the TI-substrate system as shown schemat-

ically in Fig. 5.8. The beam makes an angle θψ upon incidence, and θχ upon

reflection with the simi-infinite substrate. The interface of air and TI thin film

is assumed to be at the z = 0 plane. The Fresnel reflection coefficients can be

obtained by considering the TI thin film as a surface current density K = σ ·E|z=0
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and applying the electromagnetic (EM) boundary conditions on the two sides of

the thin film at z = 0. The electric and magnetic fields above and below the TI

thin film are connected at z = 0 by Maxwell’s boundary conditions:

ẑ ×
[
Et − Er − Ei

]
= 0 (5.14)

ẑ ×
[
Ht −Hr −Hi

]
= σ · Et, (5.15)

where Ei (Hi), Er (Hr), and Et (Ht) represent the incident, reflected, and trans-

mitted electric (magnetic) fields, respectively. Here σ is the MO conductivity of

the TI thin film. By decomposing the incoming field into its transverse-electric

(TE) and transverse-magnetic (TM) components, the relationship of the TE,TE

and TM,TM polarized reflected coefficients can be determined from the ratio of

the reflected and incident amplitudes:

ri,j =
Ei
r

Ej
i

. (5.16)

The angular and spatial GH shifts are given by [142]

ΘTM,τz=±1
GH = −

2(r2
TM,TMρpp + r2

TM,TEρTM,TE)

2k(r2
TM,TE + r2

TM,TM)ΛR + χTM,TM + χTM,TE

, (5.17)

∆TM,τz=±1
GH =

2(r2
TM,TMϕTM,TM + r2

TM,TEϕps)ΛR

2k(r2
TM,TE + r2

TM,TM)ΛR + χTM,TM + χTM,TE

. (5.18)

The superscripts identify the polarization state (TM) and the TI top and bottom

SSs, while the subscripts specify the GH shift.

5.2.3 Results and Discussion

5.2.3.1 Effect of magnetic field on angular and spatial GH shifts

To investigate GH shifts in a TI thin film-substrate system, first, we plot the real

part of the MO conductivities versus the photonic energy. We consider three differ-

ent values of the magnetic field strength, i.e., for B =1, 3, and 5 T in the TI regime,

as shown in Figs. 5.9(a) and (b). The absorption peaks occur at photon energies
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for inter-band transitions (we ignore the contribution from intra-band transitions),

and have Lorentzian shapes with a full width at half maximum at Γ. We label

the Lorentzian peaks corresponding to different MO transitions Eτz=±1
m → Eτz=±1

n

as T τz=±1
mn following the nomenclature described in [142, 180]. For practicality, we

consider only the lowest magneto-excitation transitions, i.e., T+1
01 and T−1

−10 to in-

vestigate the GH shifts.

When the frequency of the impinging Gaussian beam is equal to any of the Dirac

gaps, an electron-hole pair will be excited. The Dirac electrons in the hybridized

TI thin film have a degree of freedom related to the SS just like the valley degree

of freedom in graphene, silicene, and other TMDCs. As a result, these electrons

behave like pseudo spin 1/2 particles. We can selectively excite the Dirac electrons

in either of the top or bottom SSs by impinging left-handed circularly (LHC) and

right-handed circularly (RHC) polarized light beam, respectively.

Figures 5.9(a) and (b) show that the magneto-excitation energies of the Lorentzian

peaks shift to the right with the increase in the strength of the magnetic field. The

spectral weight (and absorption) increases with the strength of the magnetic field

(at the peak magneto-excitation frequency). For higher magneto-excitation fre-

quencies the spectral weight decreases. Figure 5.9(c) and (d) present variations

of the TM and TE polarized magneto-reflection Fresnel coefficients with respect

to the photonic energy for different strengths of B. The normalized magneto-

reflection peaks are clearly observed at the magneto-excitation energies. We sum-

marized these results in Table 5.4.

In Figs. 5.9 (e) and (f), we show the phases of the reflected TM and TE polarized

EM beam with respect to the incident angle θψ. The phase φTM changes sharply

from 0 to −π in the proximity of Brewster angle θB. This transition smooths out

194



(e)
(f )

R

R
R

R
R

Figure 5.9: Real part of the (a) longitudinal and (b) transverse Hall conductivities
as a function of the photonic energy for different strengths of the applied magnetic
field in the TI regime for top and bottom SSs. Variations of the modulus of (c)
the TE and (d) TM polarized normalized magneto-reflection coefficients for the TI
thin film-substrate system with the incident photonic energy for different strengths
of the magnetic field in the TI regime for top and bottom SSs. Variation of (e)
the φTM,TM and (f) φTE,TE with the incident angle. Parameters used for TI SSs
are ∆H= 4 meV, Γ = 0.15∆z, refractive index n2 = 1.84, and chemical potential
µF = 0.

when the strength of B increases. The phase φTE decreases (for a fixed value θψ)

with the increase in the strength of B in the TI regime (see Fig. 5.9(f)). However,
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its behaviour as a function of θψ is different for different strengths of B.

Figure 5.10: Magnetic field modulated TM polarized spatial and angular GH shifts
on the surface of the TI thin film substrate-system versus photonic energy (h̄ω)
and θψ for two different values of B for top and bottom SSs. (a) The TM polarized
spatial GH shifts and (b) the TM polarized angular GH shifts for B = 1 T. (c)
The TM polarized spatial GH shifts and (d) the TM polarized angular GH shifts
when B = 3 T.

In the remaining part of this chapter we investigate the lateral displacements

of the beam under partial reflection conditions. We discuss only the magnetic field

modulated spatial and angular shifts for the TM polarized light. In Fig. 5.10(a)

we show the TM polarized spatial GH shift versus photonic energy and incident
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Table 5.4: Allowed transitions for τz = ±1 in the LLs subspace n = −1, 0, 1, for
B =1 and 3 T in the TI phase ∆z = 2 meV.
T τz=±1
mn ∆z (meV) B (T) Photonic energy (meV)
T+1

01 2 1 25.1
T−1
−10 2 1 20.3
T+1

01 2 3 38.0
T−1
−10 2 3 33.5

angle for B = 1 T in the TI regime (for both top and bottom SSs). The spatial

shift in this case shows negative and positive giant peaks at the Brewster’s angle

(θB ≈ 61.8◦), which is due to the fine transition of φTM from 0 to −π at this

angle. Due to the LL quantization of the MO conductivities and, consequentially,

the Fresnel’s coefficients of the TI SSs the GH shift shows quantized behavior.

We summarize these transitions in Table 5.4. The SS polarized GH shift for T+1
01

and T−1
−10 transitions gives local minimum and maximum values around 20.3 meV

and 25.1 meV, respectively. Thus in the hybridized TI thin film the GH shift is

enhanced several times of the incident beam wavelength in the THz regime. The

shift also switches sign on each transition as shown in Fig. 5.10(a). Similarly, in

the proximity of θB we can see minima and maxima in the quantized GH spectra

for higher photonic energies. Extreme values of the GH shift occur away from

the resonant magneto-excitation energies in the proximity of the Brewster’s angle.

This agrees with the previous studies that the beam shifts give peak values around

θB [142, 181].

In Fig. 5.10(b) we show the TM polarized angular GH shifts vs. h̄ω and θψ

under PR condition. The shift is positive which grows slowly with θψ, but as θψ

reaches θB, the angular shift starts decreasing and reaches a negative value. This

shows that the amplitude and polarity of the angular GH shift can be controlled

by modulating the incident angle of the TM polarized THz beam and the strength

of the magnetic field. The magnitude of these shifts are larger for smaller values of

the magneto-excitation energies and smaller for higher values. The imaginary part
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of the MO conductivity of the TI SSs is responsible for ohmic loss [182], which is

a reasonable justification of this behavior. At higher magnetic fields the magneto-

resistance is large since the absorption is greater and the magnitude of angular

GH shifts is smaller on higher photonic energies. For B = 3 T, Figs. 5.10(c) and

(d) show that the spatial and transverse shifts are still quantized in the proximity

of Brewster’s angle. The local minima and maxima of the spatial shift occur at

higher photonic energies.

5.2.3.2 Impact of Zeeman potential on angular and spatial beam shifts

The external magnetic field B alters the electronic band structure of the hybridized

3D TI by generating an exchange Zeeman potential ∆z. By tuning ∆z, one can

control the Dirac mass of the SSs, which leads to a TQPT from TI to BI phase at

∆z = ∆H . To manifest the role of topology in GH shifts, in Figs. 5.11(a) and (b)

we show the variation of the TM polarized spatial and angular GH shifts with the

photonic energy and the incident angle θψ in the CNP and BI phases for B = 2.3 T.

From Fig. 5.11(a) it is clear that the TM polarized beam generates large negative

and positive spatial GH shifts. Due to the quantized Fresnel’s coefficients, Brew-

ster’s angle is quantized. The local maxima and minima of the quantized spatial

GH shift occur at off-resonant photonic energies. Similarly, the angular GH shifts

in the CNP and TI regimes show similar behavior. In Table 5.5 we present the

magneto-excitations energies of the TI thin film SSs for the first two transitions in

the two distinct topological phases. The TM polarized spatial GH shift vs. h̄ω and

θψ is depicted in Fig. 5.11(c). In the BI regime, the magneto-excitation energies

move to the right and there are fewer minima and maxima of the spatial GH shift.

From the angular GH shift spectra, we observe that the sign of the amplitude of

the angular shifts is suppressed by increasing the Zeeman potential.
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Figure 5.11: TM polarized spatial and angular lateral shifts on the surface of the
TI thin film substrate-system as a function of the incident photonic energy and
incident angle for two different topological regimes for top and bottom SSs. (a)
The TM polarized spatial GH shifts and (b) the TM polarized angular GH shifts
for B = 2.3 T in the CNP phase. (c) The TM polarized spatial GH shifts and (d)
the TM polarized angular GH shifts for B = 2.3 T in the BI state.

5.2.3.3 Chemical potential modulated angular and spatial beam shifts

The MO conductivity of the hybridized TI thin film in THz regime, besides its de-

pendence on several other parameters (e.g., the polarization of the incident beam,

frequency ω, scattering rate Γ), is heavily influenced by the chemical potential µF
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Table 5.5: Allowed transitions in the LLs subspace n = −1, 0, 1, for B = 1 T in
three different topological regimes for ∆H = 4 meV.

T τz=±1
mn ∆z (meV) Regime Photonic energy (meV)
T+1

01 4 CNP 18.2
T−1
−10 4 CNP 27.7
T+1

01 8 NI 22.7
T−1
−10 8 NI 33. 9

Figure 5.12: (a) and (b). MO allowed inter-band and intra-band LL transitions
for top and bottom SSs in the TI regime and for B = 1 T. (c) and (d). Real parts
of the MO conductivities for n-type and p-type TIs thin film-substrate system as
a function of the incident photonic energy in the TI regime. (e) and (f). The TM
polarized spatial and angular GH shifts with modulation of the chemical potential
in the TI regime for B = 1 T.

as expressed in Eqs. (4.37) and (4.38). The quantized LLs of the TIs SSs can be

independently controlled by employing top and back gate electrodes [144, 145].

Fine control of µF of the paired SSs in a dual-gated system has been recently

reported [146]. To demonstrate the variation of the GH shift with the chemical

potential, we consider two different values of the chemical potential, i.e., µF=10
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meV and -10 meV while keeping B = 1 T in the TI regime. In the first case, we

assume n-type doping and µF=10 meV. The chemical potential resides in between

the n=0 and n=1 LLs as shown in Fig. 5.12(a). Blue lines represent LLs for the

top surface and red lines represent LLs for the bottom surface. LL transitions are

represented with the same color scheme with the green line indicating the chemical

potential µF .

We represent these LL transitions by T+1
−01, T−1

−10, T−1
01 , T+1

−12, and T−1
−21 as shown

in Fig. 5.12(a). The first two magneto-excitation energies are presented in Table

5.5. The intra-band transition is represented by a dashed black arrow pointing

upward. In the second case we consider p-type doping where µF=-10 meV and the

chemical potential resides in between the n=0 and n=-1 LLs as shown in Fig. 5.12

(b). For n-type doping, there are certain transitions which become Pauli blocked.

For example the transition T−1
−10 = 20.3 meV is not allowed and in their place the

intra-band transition T−1
01 = 16.3 meV in the bottom surface appears. Similarly

for p-type doping, when the chemical potential µF jumps between the n=0 and

n=-1 LLs, owing to the Pauli blocking, transition T+1
01 = 25.1 meV disappears and

T+1
−10 = 13.1 meV emerges. The longitudinal conductivity for n-type and p-type

doped TIs are shown in Figs. 5.12(c) and (d). The intra-band and inter-band

transitions are shown as pronounced dips at the incident photonic energies in the

TI regime for B = 1 T.

Table 5.6: Allowed LL transitions in the n = −1, 0, 1 subspace for two different
values of the chemical potential in the TI regime with ∆H = 4 meV.
T τz=±1
mn µF (meV) Inter/intraband Photonic energy (meV)
T+1

01 10 Inter 25.1
T−1

01 10 Intra 16.3
T+1
−10 -10 Intra 13.1
T−1
−10 -10 Inter 20.3

In Figs. 5.13(a) and (b), we show the TM polarized spatial GH shifts vs. θψ and
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Figure 5.13: Chemical potential modulated TM polarized spatial and angular GH
shifts on the surface of TI thin film substrate-system as a function of photonic
energy and incident angle for two different chemical potential for both top and
bottom SSs in the TI regime. (a) The TM polarized spatial and (b) angular GH
shifts for n-type doping. (c) The TM polarized spatial and (d) angular GH shifts
for p-type and magnetic of B = 1 T.

h̄ω in the TI phase for n-type and p-type doping, respectively. For n-type doping,

a negative giant spatial GH shift originates from a pure intra-band transition T−1
01 .

The other minima and maxima of the quantized GH shift can be seen at higher

inter-band transitions. Figure 5.13(b) shows that due to the LL quantization of

MO conductivities, the angular GH shifts also exhibit quantized characteristic.
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The minima and maxima due to the intra-band and inter-band transitions can

be clearly seen, where the amplitude is smaller (as compared to the µF = 0 case

which is shown in Fig. 5.10(b)) due to n-type doping.

Figure 5.13(c) shows that maximum positive GH shifts arise for µF=-10 meV,

for which the intra-band transition T+1
−10 is responsible. The sign switching of the

GH shift is an interesting demonstration of chemical potential modulated spatial

GH shifts. The magneto-excitation energies for the intra-band and inter-band

transitions are shown in Table 5.6. Figure 5.13(d) illustrates the TM polarized

angular GH shifts for p-type chemical potential. When θψ < θB, the angular GH

shift is positive and is negative in the opposite case, i.e., θψ > θB.
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Chapter 6

The photonic spin Hall effect in
topological silicene

In this chapter, we discuss the valley and spin-polarized quantized photonic spin

Hall effect in topological silicene. We explore the giant spin-dependent shifts of

the graphene family-substrate system which can be tuned by an externally applied

electric field as well as a magnetic field. Contents of this chapter have been

published in Physics Letters A [183].

6.1 Background and motivation

A striking optical phenomenon generally arises due to spin-orbit interactions of

light at the interface is the photonic spin Hall effect (PSHE), which demonstrates

itself as spin-dependent splitting. The PSHE phenomenon occurs when a Gaussian

beam of linearly polarized light (a linear combination of right-handed circularly

polarized (RHCP) and left-handed circularly polarized (LHCP)) refracts or re-

flects at a planar dielectric interface where the light beam experiences a small

spatial shift in both the transverse and in-plane directions [184, 185]. The PSHE

is universal to any interface and has potential applications in precision metrology,

biosensors [155], optical measurement and optical heterodyne sensors [159] includ-

ing nanoprobing [186].
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Recently, the PSHE has been theoretically studied in the graphene-substrate sys-

tem in the quantum Hall regime in the presence of an external magnetic field

[187]. The PSHE can be a new spin and valley sensitive topological tool to de-

termine the physical and optical properties of nanostructures i.e., metallic and

magnetic thin films and 2D materials [188]. For example, W. Wu et. al show that

weak-value measurement technique can be used to measure the minuscule optical

signature of TQPTs [176]. L. Luo et. al and T. Tang et. al have examined that

the giant PSHE appears when the Gaussian beam reflects or transmits through a

graphene–substrate system and prism-graphene waveguide structure, respectively

[163, 189]. In addition, the giant PSHE on the surface of other 2D anisotropic

materials e.g., black phosphorus has also been predicted [181, 190]. Finally, the

spin-dependent shifts are sensitive to the refractive index variations of the sensing

medium [191, 192].

To our knowledge, a complete semi-classical study of the PSHE reflected from

the surface of the silicene in the presence of magnetic and electric fields hasn’t

been reported. Motivated by the spin and valley-coupled topological properties

of the staggered 2D materials [22, 69, 70], we attempt to explore the giant spin-

dependent shifts of the graphene family-substrate system which can be tuned by

an externally applied electric field as well as the magnetic field. Our results depict

that the in-plane and transverse spatial PSHE are quantized and show an oscil-

lating behavior due to the valley and spin splitting of Landau levels (LLs). For

larger magneto-excitation energies, the oscillation period of the PSHE gradually

decreases with the increase of LL spacing. We observe that the resonant spectrum

of the PSHE can be utilized to realize a multi-channel quantum switch. Further,

we note that PSHE can be significantly enhanced by driving the system through

several phase transitions involving topologically nontrivial and trivial states by

tuning the staggered electric potential.
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The chapter is organized as follows. In Section 6.2 we briefly present the ba-

sic formalism of the photonic spin Hall effect. Following this, in Section 6.3 we

present our results for the valley and spin-polarized quantized spin-dependent pho-

tonic shifts in topological silicene.

6.2 General theoretical model

For the incident light, we consider a monochromatic Gaussian wave packet of fre-

quency ω with a finite beam width illuminating from air to the surface of a stag-

gered 2D semiconductors-substrate system at an incident angle θψ. The refractive

indices of the first and second media are n1 and n2 respectively. Consider the z axis

of the laboratory Cartesian frame (x, y, z) is perpendicular to the 2D monolayer-

substrate interface (z = 0). An external electric and magnetic field is applied

perpendicularly to the system in the z direction. Furthermore, for the incident

and the reflected beam, we use Cartesian coordinates (xi, yi, zi) and (xr, yr, zr),

respectively. The wave vectors are k1 and k2, kn = ω
√
µnεn, Zn = Z0

√
µn/εn

and Z0 =
√
µ0/ε0, where µ0 and ε0 are the vacuum permeability and permittivity

respectively. As a result the reflected Gaussian light beam can be split into LHCP

and RHCP components, which experience the PSHE shift along the x and y-axis

as shown in Figure 6.1(a) and (b). The amplitudes of the incoming horizontal

|Hi〉 and vertical |Vi〉 polarization Gaussian states are related to the reflected hor-

izontal |Hr〉 and vertical |Vr〉 polarization states by a transfer matrix, which can

be written as [183, 187] (
|H(kr)〉
|V (kr)〉

)
= R̂

(
|H(ki)〉
|V (ki)〉

)
, (6.1)

where

R̂ =

[
rpp − kry cot θψ(rps−rps)

k0
rps +

kry cot θψ(rpp+rss)

k0

rps +
kry cot θψ(rpp+rss)

k0
rss − kry cot θψ(rps−rsp)

k0

]
. (6.2)

The Fresnel’s coefficients rpp, rps, rss and rsp are already separately computed in

Eqs. (4.17) and (4.22) in Section 4.1.2. Here we introduce the angular spectrum
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Figure 6.1: Schematic of the LHCP and RHCP spatial in-pane and transverse
photonic spin Hall effect.

components of the incident and the reflected fields satisfying the boundary con-

ditions krx = −kix and kry = kiy. The four Fresnel coefficients of the graphene

family-substrate system in the presence of static magnetic field can are already

given in Section 4.1.2. In the spin basis, linearly polarized states of the horizon-

tal |H〉 and vertical |V 〉 polarized Gaussian states can be broken down into two

orthogonal spin components

|H〉 =
|+〉+ |−〉

2
, (6.3)

|V 〉 =
i(|−〉 − |+〉)

2
, (6.4)

where the positive and negative states (|+〉 and |−〉) represent the LHCP and

RHCP components, respectively. In the momentum space, the angular spectrum

of the incident Gaussian beam can be represented by

|Φ0〉 =
w0√
2π

exp

(
−
w2

0(k2
ix + k2

iy)

4

)
, (6.5)

where w0 is the beam waist. From Eqs. (6.1) and (6.5), the complex amplitudes

for the reflected angular spectrum can be obtained as follows:

E
H/V
r± =

∫ ∫
dkrxdkryẼ

H/V
r± exp[i(krxxr + kryyr + krzzr)]. (6.6)
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The LHCP and RHCP are the spin components of the reflected light beam under-

going in-plane and transverse displacements, which can be computed as

〈∆xH/Vr± 〉 =

∫ ∫
xr|EH/V

r± |2dxrdyr∫ ∫
|EH/V

r± |2dxrdyr
(6.7)

〈∆yH/Vr± 〉 =

∫ ∫
yr|EH/V

r± |2dxrdyr∫ ∫
|EH/V

r± |2dxrdyr
, (6.8)

where the integration is performed over the reflected electric fields coordinates xr

and xr, respectively. In the following, we limit the discussion to the H polarized

light beam only, although these results also hold for the V polarized beam. Com-

pared to the geometrical-optics prediction the the displacements of field centroid

at zr = const can be expressed as [183, 190]

〈∆K(K′),↑,(↓)
xr± 〉 = ∓ 1

k0

Re

(
rpp
χ

∂rsp
∂θψ
− rsp

χ

∂rpp
∂θψ

)
, (6.9)

〈∆K(K′),↑,(↓)
yr± 〉 = ∓cot θψ

k0

Re

(
ϕrpp
χ
− ρrsp

χ

)
, (6.10)

where χ = (r2
pp + r2

sp), ϕ = (rpp + rss) and ρ = (rps − rsp). The superscripts iden-

tify the valley (K,K ′) and spin (↑, ↓) information, while the subscripts specify the

LHCP and RHCP spin dependent shifts.

6.3 Results and Discussion

6.3.1 Effect of magnetic field

Before analyzing the PSHE on the surface of staggered 2D silicenic mono-layer

substrate system, we first quickly recount the effect of the applied magnetic field

on the energy level structure. Details can be found in Ref. [142]. Schematic dia-

grams illustrate the allowed transitions between LLs satisfying the selection rule

∆n = ±1 for different values of the magnetic field are shown in Fig. 6.2(a). Simi-

larly, Fig. 6.2(b) presents the allowed LL transitions for three distinct topological
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regimes for B =1 T in only the K valley. The transition energy is determined from

the energy difference between LLs obeying the conservation of real spin which in

turn implies that transitions between σ = +1 and −1 levels are spin forbidden.

Following the nomenclature described in [76, 142], the magneto-excitation energies

corresponding to different transitions, Em,K(K′),↑(↓) → En,K(K′),↑(↓) are labelled as

Tmn,K(K′),↑(↓). In each of the depicted transitions, one of the participating LL is

n=0 level. The n = 0 sublevels is quantum anomalous and unlike graphene n = 0

LLs do not sit at zero energy. Eξ
0,σ is independent of the magnetic field, and only

depends on the specific spin and valley indices. Tables 5.4 and 5.5 of Ref. [142]

summarize the magneto-excitation energies within n = −1, 0, 1 subspace for dif-

ferent magnetic and electric fields.

The real part of the longitudinal MO conductivity is plotted as a function of

the incident photon energy at 1, 2, and 3 T exclusively for the QSHI regime in

Fig. 6.3(a). For simplicity, we only display here the two inter-band transitions

T−10,K,↑ and T01,K,↓ within the n = −1, 0, 1 subspace where we have ignored the

contribution from intra-band transitions. The inter-band absorption peaks can be

clearly seen when the incident photon energy h̄ω resonantly matches the magneto-

excitation energy gap. Each inter-band transition is represented by a Lorentzian

peak. As the strength of the applied magnetic field is increased, the MO photonic

energies are blue shifted. Fig. 6.3(b) illustrates the MO longitudinal conductivity

as a function of the incident photon energy for different topological regimes.

For ∆z = 0, only the spin-orbit coupling contributes to the strong absorptive

responses related to inter-band transitions. For the particular case where stag-

gered potential is finite (∆z = 0.5∆so), each spin state splits into two new features

giving rise to two Dirac energy gaps. Due to the asymmetric distribution of the

spectral weight between the spin-split features, the intensity of the inter-band tran-
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Figure 6.2: Schematic representation of the allowed transitions between LLs for
(a) three different magnetic fields 1, 2 and 3 T for the QSHI regime in the K valley
and (b) for three distinct topological regimes in the K valley for B = 1 T.

sition peaks is reduced. For ∆z = ∆so i.e., the valley-spin polarized metal (VSPM)

regime, the spin-up absorption peaks are red-shifted which is an optical signature

of the closing of the lowest bandgap of the Dirac fermions whereas the spin-down
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absorptive peaks move higher in photonic energy due to the increase in the second

bandgap as shown in Figure 6.3(b). For an even higher staggered electric potential

∆z = 2∆so, the system reaches from the VSPM to the band insulator (BI) state.

Finally, due to the reopening of the lowest gap, all inter-band features move to

higher photonic energies as shown in Figure. 6.3(b) in the BI regime.

Fresnel’s reflection coefficients are closely related to Landau quantization, which is

induced by the MO response of the staggered silecenic monolayer. These quantized

characteristics bleed into the PSHE as well. The effect of altering the magnetic

field on LHCP in-plane and transverse PSHE is illustrated in Figures 6.3(c) and

(d), respectively. We observe that the extreme values of PSHE appear away from

conductivity peaks. For instance, for B = 1 T, the LHCP in-plane spatial shift

〈∆K,↑,(↓)
xr+ 〉 originated by T01,K,↓ transition gives maximum and minimum values

in the vicinity of the first magneto-excitation energy. The oscillation period of

〈∆K,↑,↓
xr+
〉 gradually decreases as the magneto-excitation energy increases. The am-

plitude of the 〈∆K,↑,(↓)
xr+ 〉 decreases by increasing the magnetic field and photonic

energy as shown in Figs. 6.3(c). In Figure. 6.3(d), we have shown the spin and

valley polarized transverse PSHE 〈∆K,↑,(↓)
yr+ 〉 as a function of the incident photon

energy. Unlike the 〈∆K,↑,(↓)
xr+ 〉, the oscillation period of 〈∆K,↑,(↓)

yr+ 〉 is different. This

is in agreement with results on Landau quantization of PSHE in monolayer black

phosphorus [181]. Figs. 6.3(e) and (f) illustrate the LHCP in-plane and transverse

spatial displacements as a function of the incident photon energy for the spin up

and down in the K valley in three distinct topological regimes.

The oscillation period of the electric field modulated spin-dependent shifts grad-

ually increases as the photonic energy increases. In Figures. 6.4(a) and (b), the

valley and spin polarized 〈∆K,↑,(↓)
xr+ 〉 and 〈∆K,↑,(↓)

yr+ 〉 as a function of the incident pho-
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Figure 6.3: (a) Magnetic field modulated longitudinal conductivity as a function
of the incident photon energy for different magnetic fields in the K valley for the
QSHI regime. (b) Electric field modulated longitudinal conductivity as a function
of the incident photon energy for three distinct topological regimes in the K valley
for B = 1 T. (c) and (d) magnetic field modulated in-plane and transverse spatial
shifts. (e) and (f) electric field modulated in-plane and transverse spatial shifts in
distinct topological regimes. The parameters used are ∆so=8 meV, ∆z = 0.5∆so,
θψ = 61.9◦ and chemical potential µF = 0.
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Figure 6.4: Magnetic field modulated LHCP (a) in-plane and (b) transverse PSHE
as a function of the incident photon energy and the incident angle for both spins
in the K valley. The applied magnetic field is 1 T.

ton energy and the incident angle for a magnetic field of 1 T in the QSHI regime

are depicted. Due to the quantization of the MO conductivities and consequently

Fresnel’s coefficients, the PSHE is quantized and their values are enhanced by

several orders of magnitude. It is observed that the spin dependent shifts exhibit

extreme values near Brewster’s angles, which in our case is 61.9◦ [181, 193]. We

can see that at T01,K,↓ transition, the in-plane spatial shift 〈∆K,↑,(↓)
xr+ 〉 switch sign

from negative to positive in the proximity of the Brewster’s angle as shown in

Figure. 6.4(a). For spin and valley polarized transverse shifts, when θψ < θB, the

quantized PSHE is positive whereas for the opposite case (θψ > θB), the spatial

shift is negative as presented in Figure. 6.4(b). These quantized steps in this sys-

tem can be experimentally verified by a direct optical measurement [194].

6.3.2 Electric field modulated photonic spin Hall effect

In Figures 6.5(a) and (b), we have shown the spin dependent shifts for the VSPM

(∆z = ∆so) point. An increase in the electric potential ∆z activates TQPTs and
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Figure 6.5: Electric field modulated (a) LHCP in-plane and (b) RHCP transverse
PSHE in the VSPM state as a function of the incident photon energy and the
incident angle for both spins in the K valley. Electric field modulated LHCP (c)
in-plane and (d) transverse PSHE in the BI phase. The applied magnetic field is
1 T.

the system goes from the QSHI to the BI state. On the VSPM point ∆z = ∆so, the

Dirac cones meet at E0,K,↑ = 0 for the spin up Dirac fermion while the transition

gap is equal to E0,K,↓ for the spin down in the K valley. Figure 6.5(a) repre-

sents the giant LHCP in-plane PSHE as a function of the incident angle and the

photonic energy on this particular point. We observe quantized and significantly

enhanced spin and valley polarized shifts in this case. The local minima and max-
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ima can be seen around the first and second transitions T−10,K,↑ = 18.2 meV and

T01,K,↓ = 27.8 meV, respectively. According to Figure 6.5(b), the spin and valley

polarized RHCP transverse PSHE 〈∆K,↑,(↓)
yr− 〉 is negative for θψ < θB and positive

for θψ > θB.

Similarly, for the BI state, both 〈∆K,↑,(↓)
xr+ 〉 and 〈∆K,↑,(↓)

yr+ 〉 display a similar ten-

dency and sensitivity to the variance of θB as presented in Figures 6.5(c) and (d).

The LHCP in-plane spatial shift is negative as expected. At the first magneto-

excitation energy, we can see a sharp peak, and the polarity of the shift is changed

from negative to positive as shown in Figure. 6.5(c). Similarly, we observe a giant

positive transverse spatial shift at the first transition. Furthermore, the magni-

tudes of transverse spatial shifts are greater than the in-plane shifts in the BI state

as shown in Figure 6.5(c). For the BI phase, as depicted in Figures. 6.5(c) and (d)

it is clear that the spin-dependent shifts are significantly enhanced.
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Chapter 7

Summary and outlook

The current chapter will furnish the reader with the main findings of the work

described in previous chapters and the possible future extension of this work.

7.1 Summary

In the first part of the thesis, we started with a brief introduction to quantum mate-

rials. In the first chapter, we set the stage for the quantum mechanical description

of 2D quantum materials. We reviewed some basic concepts in-band topology. We

found that the key role players in topological band theory are the Berry phase and

topological invariant. We started from the classical Hall effect and finally derived

the quantized Hall resistivity ρxy and connected it to the topological invariant. We

discussed the topological edge states in detail and argued that these topological

edge states are robust against backscattering. We noted that these topological

helical modes are protected by TRS. We derived the SOC in 2D materials using

the Dirac equation. We described how the time-reversal symmetry is useful for

the description of 2D and 3D topological insulators. Finally, we introduced 3D

hybridized topological insulator ultra-thin films.
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In the second chapter, we discussed the electronic properties of the 2D quan-

tum materials, for example, graphene and silicene by deriving their low energy

physics utilizing the tight-binding models. We discussed the energy dispersion of

the 2DEG in the presence of a magnetic field and found that the energy dispersion

of free electrons is a discrete set of highly degenerate LLs. Unlike 2DEG, in the

presence of a magnetic field graphene responds differently. The energy dispersion

of the Dirac fermions is proportional to the
√
nB. Another striking difference is

the existence of the zero-energy LL which remains pinned at the Dirac point.

We also introduced a low-energy specific model for the Dirac fermions in buck-

led honeycomb 2D lattices possessing spin-orbit interaction. The staggered 2D

materials have been predicted to map onto the Kane-Mele Hamiltonian. Addi-

tionally, we discussed the energy dispersion of these 2D quantum materials in the

presence of the magnetic field. We found that there is only a single contribution

from the n = 0 levels for each band. The SOC provides mass to the Dirac fermions.

We made use of the electric field as a control knob to close and reopen the band gap

in order to drive phase transition between trivial and non-trivial states. Finally,

in the same Chapter, we derived the low energy dispersion of TI thin film. The

zeroth LL in TI thin film is quantum anomalous: its magnitude is independent of

the magnetic field, and its sign depends on the specific Dirac SSs.

In Chapter 3, we focused on the transport properties of these materials. This

chapter served as a theoretical framework for the description of the magneto-optic

effects. We provided a brief reminder on quantized magneto-transport properties

with a focus on the tools that are needed later in this thesis. We started with the

introduction of the advance and retarded Green’s functions which are the main

pillars of the linear response theory. The Kubo formalism is an extremely popular

technique in condensed matter physics to calculate linear response in materials.
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We provided a comprehensive derivation of the Kubo formula for electronic conduc-

tivity. Using the Kubo approach, we then derived the general optical conductivity

expression for the 2DEG which is equally suitable for studying quantum transport

phenomena in other 2D graphene-based materials.

Using Kubo formalism, we derived the longitudinal and Hall magneto-optical con-

ductivities which were shown to display novel and interesting physics as functions

of the incident light frequency Ω, the chemical potential µF , temperature T and

applied electric and magnetic fields. To better visualize the dependence of these

parameters, we plotted the MO conductivities for different magnetic fields and in

different topological regimes.

The main results of my work were presented in Chapters 4, 5, and Chapter 6.

In Chapter 4, we explored the well-known magneto-optic effects, i.e., the Faraday

and Kerr rotations in two different quantum materials. For example, we theo-

retically demonstrated the transitional MO effect due to the topological phase

transition in staggered 2D materials and studied the electric field modulated val-

ley and spin-polarized Faraday, Kerr rotations and ellipticities for three different

topological regimes in silicene.

We also observed that if we change the polarization of the incident light or switch

from one valley to another, the anti-phase peaks invert with respect to the base-

line. We further investigated the magnetic field modulated MOKE for different

magnetic fields and found that by increasing the magnetic field, the positions of the

valley and spin-polarized FR and MOKE anti-phase peaks move towards higher

frequencies, and the magnitude of FR and MOKE rotation is also enhanced. The

second part of Chapter 4, reproduced similar results for 3D topological insulators.

The most notable result we reported was that the magnitude of the maximum

giant Kerr rotation angles for the first two anti-phase pairs exceeds ≈ 15◦ at a
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magnetic field of 5 T, which is an exceptionally large rotation for hybridized 3D

TI-substrate system as compared to 3D Bi2Se3 films with µF=30 meV above the

Dirac point in the presence of a magnetic field of 7 T [195].

In Chapter 5, we explored the mechanical beam shifts of topological silicene and

3D hybridized topological insulators. The lateral shifts are modulated by electric

and magnetic fields and are analyzed in the THz frequency range. We have studied

the effect of chemical potential, spin, valley, and incident photon frequency on the

silicenic layer, with the particular enhancement of the GH shift in the vicinity of

the Brewster angle. Furthermore, we found that the Brewster angle is sensitive

to changing magnetic fields and chemical potential. The phenomenon can be used

to develop highly tunable solid-state modulators. More interestingly, the valleys

and spins indices can be used for the switching of the GH shift from negative to

positive and vice versa.

In Chapter 6, we reported on the spin and valley polarized in-plane and transverse

PSHE on the surface of the graphene-family substrate system. This formalism

includes 2D materials such as silicene, germanene, stanene, and plumbene. Our

findings show that both the spatial shifts are quantized and the nature of these

spin shifts are oscillatory due to the LL splitting in the presence of the magnetic

field. This is true for both the K and K ′ valleys. Our analysis highlights that

the giant PSHE appears away from magneto-excitation energy peaks and offers a

practical way to determine the valley and spin-polarized Hall conductivity and LLs

by direct optical measurement, for example through quantum weak measurement

techniques [176, 194].
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7.2 Future Directions

In recent years, a broad family of 2D bilayer semiconducting quantum materi-

als (twisted bilayer graphene and transition metal dichalcogenides ) have been

fabricated through micromechanical exfoliation [196, 197], having exotic proper-

ties and potential applications in electronic and optoelectronic devices. Twisted

bilayer graphene (TBG) consists of two graphene sheets that are rotated by an

angle called magic angle with respect to each other [198]. In the vicinity of the

magic angle, TBG transforms from a weakly correlated Fermi liquid to a strongly

correlated 2D quantum system [199]. In TBG the magic angle of 1.1◦ has been re-

ported, which gives rise to exotic phenomena, including intrinsic superconductivity,

quantized anomalous Hall states, magnetism, and interaction-induced correlated

insulator states [196, 200, 201].

An interesting follow-up to the present work would be the exploration of these

MO effects in other 2D quantum materials i.e. TBG [196] and topological Weyl

semimetals [30]. We believe that the MO effects in TBG will open up a new

way to design novel chiral topological photonic technologies. Analyzing systems

with such exotic magneto-optic materials are expected to be used in many new

optoelectronic, spinoptics, spintronics, and valleytronics applications, for example,

manipulation of surface plasmons, remote sensing of magnetic fields, modulation

of polarization, and other laser applications.

2D ferrovalley materials offer another landscape of 2D quantum materials which

are half-metallic and belongs to a new kind of spin-valley coupled 2D material

[202, 203]. We aim to determine the full response of 2D ferrovalley materials to

electromagnetic fields as a function of frequency in the presence of an external

magnetic field.

Recently, the idea of topology has been entered from condensed matter physics
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into photonics, and now this burgeoning field of optics is called topological pho-

tonics. The topological laser is the hottest topic in topological photonics nowadays.

In topological laser, the main driver is topologically protected photonic modes, in

which light is topologically protected [204]. Comparing with conventional lasers,

topological lasers are more efficient and robust against defects giving rise to a

new type of lasing [204, 205]. For future considerations, we aspire to explore the

topologically protected photonic edge states in 2D valleytronic materials for lasing

applications [206].
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