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Abstract

With the ever-increasing demand for higher performance, the adoption of multicore proces-
sors has been a major stepping stone in the evolution of real-time systems. However, despite
the increase in computational bandwidth due to parallel processing, scheduling real-time
tasks on multicores is not a trivial problem. This scheduling problem is especially aggra-
vated for hard real-time systems where failure to meet task deadlines can be catastrophic.
Moreover, the inclusion of shared caches in multicores has increased the unpredictability
of the system, and the indispensable interactivity between the hierarchical memory subsys-
tem and multiple cores has further aggravated the already complex Worst Case Execution
Time (WCET) analysis of the tasks. Cache partitioning techniques have been proposed as
a countermeasure to decouple the shared cache latency from the WCET. However, existing
energy-efficient scheduling algorithms are oblivious to the unpredictable nature of shared
caches or cache partitioning techniques, thus, diminishing their applicability to real-world
systems. Furthermore, a relatively large portion of the processor is occupied by caches
contributing to a large percentage of the overall energy consumption. Several general tech-
niques have been proposed to mitigate the energy lost due to caches. However, adopting
such techniques into the multicore real-time systems domain has not yet received much
attention. This is due to the difficulty of analyzing the impact that core-level energy min-
imization techniques have on the cache subsystem. Finally, there is now a trend towards
heterogeneous multicores where cores on the same processor differ in power, performance,
and architectural capabilities. The desired performance and energy consumption is attained
by assigning a task to the core that is best suited for it.

In this thesis, we investigate the integration of the cache-partition model into homo-
geneous and heterogeneous multicore hard real-time systems for system-level energy mini-
mization. We start by investigating a more realistic task model that considers separately
the CPU compute cycles and the Memory latency cycles. We then incorporate the impact of
caches on independent frame-based tasks running on homogeneous multicores by proposing
algorithms for core-level, cache-level and system-level energy optimizations. We then move
onto heterogeneous multicores and propose a holistic solution for cache-aware system-level
energy minimization while ensuring the schedulability for periodic tasks. Finally, we propose
a dynamic cache-partition schedulability analysis for multicore partitioned scheduling.
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Chapter 1

Introduction

With the onset of climate change and the steady depletion of energy resources, factors

affecting energy consumption have become a global concern. A recent study has shown that

contributions to greenhouse emissions by the Information and Communication Technology

(ICT) sector alone could be more than 14% by 2040 [10]. Therefore, minimizing energy

consumption has become the forefront of research and innovation in many domains, and a

cornerstone for sustainability and world-wide economic stability.

Energy efficiency for the computing systems domain, in particular, has received signif-

icant interest in recent years due to advancements in Complementary Metal Oxide Semi-

conductor (CMOS) technology. A computing system is a machine that can be instructed

to perform a set of instructions. These instructions are composed in specific sequences to

create a wide range of meaningful applications. The instructions, which are stored in a

off-chip memory component, are fetched and executed on a processor core.

Since the advent of single-core processors, there has been a constant strive to improve

their performance. Continuous reductions in the CMOS feature size has allowed designers

to pack an increasing number of transistors into a single chip, thus, enabling circuits to

operate at higher frequencies and, therefore, execute instructions at greater speeds. Higher

frequencies with an exponential increase in the transistor count, however, had previously

forced chip designers into a thermal power-wall, e.g., destroyed Intel’s expectations to reach

a frequency of 10 GHz for technologies below 90nm [7]. This unexpected complication

motivated hardware manufacturers to fabricate chips, with the predicted high number of

transistors, as parallel components operating at lower frequencies, thus, entering into the

multicore era.

A homogeneous multicore is composed of multiple processor cores of the same type on

a single chip. Figure 1-1 is an example architecture of a multicore chip where each core

has access to a private Level-1 (L1) cache which is then connected to a Level-2 (L2) shared

cache. Caches act as a temporary storage and reduce the memory latency in fetching the

instructions/data to and from the off-chip memory component. This multicore setup per-
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Figure 1-1: Homogeneous multicore architecture

mits multiple applications to be executed on different cores at the same time and, therefore,

improves the performance of the system. However, thermal challenges still prevail for mul-

ticore systems, and the continuous demand for higher performance must be matched by

techniques to reduce the power consumed by these processors.

Another stimulus behind the demand for energy efficiency in computing systems is the

desire for portability and increased reliability. Thus, battery-life plays an important role

in portable computing devices. However, there is no Moore’s law for batteries and the

exponential increase in computing power has been shunned by the slow progress of battery

technology.

These factors, among many others, have prompted the need for specialized hardware

and software solutions to minimize energy consumption. A specific and essential class of

computing systems, that significantly relies on software energy-efficient solutions, is Real-

Time Systems.

1.1 Real-Time Systems

In contrast to mainstream computing systems, real-time systems are special-purpose sys-

tems that are designed to respond to real-world events under strict requirements. Today,

real-time systems can be found in virtually any environment, ranging from simple consumer

electronics to complex avionics and space exploration applications. Such systems are limited

by size, power, and resources. A system is only considered real-time when the correctness

of the system depends on both the logical output and the physical instant at which the

output is produced.

2
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Figure 1-2: Task model in real-time systems

1.1.1 Task-Models

Applications within the real-time systems domain are termed as tasks. A real-time system

is characterized by a task model. A task τn within a task model is defined by various

properties as shown in Figure 1-2. Different task models have been used within the domain

of real-time systems. Frame-based task models represent single-run tasks defined by a

release-time rn, Worst-Case Execution Time (WCET) en, and deadline dn as shown in

Figure 1-2 (a). Figure 1-2 (b) represents a frame-based taskset where the total length of the

taskset execution is called a makespan. Periodic task models, on the other hand, define each

task with an additional period pn parameter which describes a task’s re-occurrence after

its previous release-time as shown in Figure 1-2 (c). Periodic tasks are assumed to execute

perpetually where each re-occurrence of a task is defined as a single job. A job’s response

time is the time from when it was released to when it completes the execution. The response

time Resn of a task is then the longest finish time of all jobs of the task. A job misses its

deadline if its response time is greater than its deadline and a task misses its deadline if at

least one of the jobs of that task misses its job-deadline. The percentage of total processor

time used by a task is defined by its utilization un = en/pn. The taskset utilization, i.e.,

total utilization of all the tasks in a taskset, is the sum of utilization individual tasks. The

hyperperiod of a periodic taskset is the smallest interval of time after which the periodic

pattern of all the tasks are repeated and is calculated by taking the least common multiple

of the periods of all the tasks. There are other types of tasks aswell, e.g., sporadic tasks

where jobs of a task can reoccur at any moment and two successive jobs of a task must be

separated by a minimum inter-arrival time, and aperiodic tasks where jobs have irregular

arrival time.
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1.1.2 Single-Processor Scheduling

Scheduling refers to the process of selecting tasks for execution on processing elements.

Scheduling algorithms define the criteria through which specific tasks are selected for

scheduling. Scheduling real-time tasks on single-core processors has been a well-investigated

subject since the 1960s.

Two primary subject matters emphasized in this domain are: (i) to propose algorithms

to schedule different tasksets, and (ii) to derive schedulability tests to ensure that the taskset

constraints are met under a specific scheduling algorithm. A schedule can either be static

or dynamic. In static scheduling, all task information is known and scheduling decisions

are made at compile time. The predefined schedule is then stored in memory, and at run-

time the scheduling algorithm simply reads from the table at appropriate time instants to

run a particular task on the processor. This table-driven schedule permits a low run-time

overhead but is unsuitable for tasksets with varying workloads where the number of tasks in

the system can change at run-time. In dynamic scheduling, all scheduling decisions occur

at run-time while the taskset is being executed. Reoccurring tasks, e.g., periodic tasks,

are assigned priority numbers. At each scheduling instant (i.e. the time instant when the

scheduling algorithm is invoked to select a task to be run by the processor), the scheduling

algorithm selects a ready task with the highest priority to be executed. A scheduling

algorithms can assign its taskset either static or dynamic priorities. A scheduling algorithm

can also be classified as preemptive or non-preemptive. A scheduling algorithm is preemptive

if the execution of a task is suspended due to the arrival of a higher priority task. Similarly,

a scheduling algorithm is considered optimal if no other schedule can outperform it under

a given constraint, e.g., for the energy minimization problem, an optimal schedule will

minimize the energy consumption and no other schedule will be able to reduce the energy

consumption more than the optimal one. Tasks can also be classified as dependent or

independent. The execution of a dependent task relies on the completion of its prerequisite

tasks whereas an independent task does not have any such restriction.

There are different types of real-time systems. A soft real-time system permits deadline

misses while maintaining a minimum throughput of the system. A hard real-time system,

however, has stringent timing requirements where failure to meet any task deadline will

result in system failure. Such systems are used in time and safety critical applications.
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Figure 1-3: Partitioned and global scheduling.

Hard real-time systems will be the focus of this thesis.

Scheduling algorithms can have different utilization schedulability bounds. A taskset

is guaranteed to meet all deadline constraints for a particular scheduling algorithm if the

utilization of the taskset is less than the schedulability bound of that scheduling algorithm.

An example of a preemptive static priority scheduling algorithm is Rate Monotonic (RM)

where the priority of the task is specified by its period. RM has a schedulability bound of

N(2
1
N − 1) where N is the number of tasks in the taskset. Preemptive Earliest Deadline

First (EDF), on the other hand, is an optimal dynamic scheduling algorithm on single-core

processors and has a schedulability bound of 1 [88]. Under EDF, the tasks are dynamically

prioritized and scheduled according to their approaching deadlines. Both EDF and RM are

work-conserving scheduling algorithms. A work-conserving scheduling algorithm does not

allow the processor to be idle if there are tasks ready to be scheduled.

1.1.3 Multicore Processor Scheduling

The continuous demand for higher performance with application variability has led to the

adoption of multicore processors in real-time systems. Partitioned scheduling and global

scheduling are two primary methods adopted in the literature to tackle this problem [13].

Partitioned scheduling is a static scheduling method for multicore processors. Tasks are

assigned to cores at compile time. Each core, then, schedules its assigned tasks indepen-

dently. Figure 1-3 (a) displays such a scenario where each core has its own ready queue

and tasks are partitioned across cores. The partitioned scheduling problem is analogous

to the bin-packing problem which is NP-Hard [36]. There are many heuristic solutions,

in the literature, that can partition the tasks in polynomial time, e.g., First-Fit (FF),
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Best-Fit (BF), First-Fit Decreasing (FFD), etc. The prime advantage of using partitioned

scheduling is that it allows each individual core to schedule its assigned taskset via existing,

well-established, single-core algorithms. Partitioned scheduling is not work-conserving in

nature, however, it is a favorable option for deterministic workloads.

For varying workloads, the best option would be to choose a global scheduler as shown

in Figure 1-3 (b). In global scheduling, tasks are dynamically allocated to the cores and are

also allowed to migrate among cores at run-time to maintain a workload balance. Global

scheduling can theoretically increase the schedulability, i.e., number of tasks that can suc-

cessfully be scheduled. An example of an optimal global scheduling algorithm for periodic

tasks is Pfair [8] where the execution timeline is divided into equal length slots and the

scheduler is invoked at the beginning of each slot in order to select a task for execution.

In practice, however, such algorithms incur high overheads due to core synchronization

constraints and high scheduling overheads. Schedulability tests for global scheduling al-

gorithms are also largely pessimistic since the critical instant of a task is undefined, i.e.,

it is unknown which specific sequence of its Higher Priority Tasks (HPTs) will lead to its

maximum response time. Therefore, an upper-bound on the interference from HPTs must

be determined via the problem window approach, where a job of a periodic task is assumed

to have missed its deadline and the maximum interference from its HPTs, that led to its

deadline miss, is deduced and then used to determine the task’s schedulability [36]. Further-

more, migration overheads can vary over time and are highly dependent upon the processor

architecture. These migrations not only reduce the performance of the scheduler, but also

make schedulability tests more difficult to design. Therefore, schedulability tests for global

schedulers consider the migration overhead factor as constant or negligible [13].

Semi-partitioned scheduling has also been proposed as a hybrid technique to balance

the tradeoff between the under-utilization of partitioned scheduling and the high run-time

migration overhead of global scheduling. Semi-partitioned scheduling bounds the number of

migrations by either limiting the number of cores that can execute a task or by restricting

the migrations to take place only at job boundaries.
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1.2 Energy-Efficiency in Real-Time Systems

Along with other domains of computing research, energy-efficiency has become a prime

concern for real-time systems [6]. Particularly to hard real-time systems, the goal for

energy-efficient real-time scheduling algorithms is to minimize the energy consumed by task

executions while ensuring task deadlines are met. Most energy-efficient techniques are based

on the power consumption model of the processor which consists of static and dynamic power

components [6]. The inherent Dynamic Voltage and Frequency Scaling (DVFS) capabilities

of modern processors can be used to decrease the energy consumption. However, decreasing

the frequency increases the clock-cycle time which in turn increases execution time of the

tasks. Therefore, DVFS techniques carefully utilize the idle processor time between task

executions to ensure timely completion of the tasks.

1.2.1 Power Reduction Techniques

Today the majority of Integrated Circuits (ICs) are fabricated using CMOS technology. Its

low power consumption and high noise immunity features make it a favorable choice for

modern IC design. The power-consumption of a CMOS logic gate is composed of dynamic,

short-circuit, and static power consumption components, which can be modeled respectively

as:

P = κV 2
ddCf + IshortVdd + IleakVdd (1.1)

where κ is the transistor switching factor, Vdd is the supply voltage, C is the gate capac-

itance, f is the clock frequency, Ishort is the instantaneous surge current flowing during

CMOS switching activity and Ileak is the leakage current.

Recognizing the static and dynamic dimensions of the CMOS power consumption model,

early research efforts attempted to address these two entities independently to reduce the

power consumption. This resulted in two distinct energy saving techniques, i.e., DVFS

(for dynamic power) and Dynamic Power Management (DPM) (for static power). The

short-circuit current component is negligible compared to the others and is usually ignored.

The maximum operating frequency for a specified voltage is related to the circuit delay t

as: f ∝ 1
t ∝

(Vdd−Vth)γ

Vdd
, where Vth is the threshold voltage and γ (1 ≤ γ ≤ 2) is the velocity
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saturation. The power equation can be simplified if the voltage-frequency operating points

are fixed, resulting in an approximated model:

P = κfα + ks1f + ks2 (1.2)

where α ≥ 2, and ks1 and ks2 are static power dependent constants. Both Eqs.(1.1) and

(1.2) have been used extensively in the literature to model the power consumption of the

processor core [34,45,113].

1.2.2 Dynamic Voltage and Frequency Scaling (DVFS)

Modern processors are equipped with a clock-gating technique that varies the frequency

of the processor core between a minimum and maximum frequency bound. Such a setup

requires a programmable voltage regulator and clock generator [96]. The frequency (f) in

the dynamic component of Eq. (1.1) has a direct relation with the operating voltage (Vdd).

Therefore, decrease in voltage and a relevant decrease in frequency often go hand-in-hand

resulting in a cubic reduction in dynamic power consumption [2].

However, decreasing the frequency of the processor core increases the execution time of

the tasks by elongating the core cycle time while the number of execution cycles remain

constant. DVFS techniques use this available processor capability to utilize the core idle

time periods between scheduled tasks. The literature usually assumes a linear relationship

between the execution time of a task and the core frequency. This linearity can be modeled

through the equation s = fmax/f , where fmax is the maximum frequency of the core and

s is the task scaling factor, i.e., the resultant WCET of a task τi after changing the core

frequency to f will be ei × s .

DVFS can be categorized into static and dynamic techniques. In the static DVFS

technique, the slack, i.e. the idle time between task executions, is identified at compile

time and tasks are then stretched to minimize the slack. The core frequency is usually kept

at a constant value during the execution of a single task. This can be seen in Figure 1-

4 (a, b) for 2 frame-based tasks with different release times and deadlines, and where the

tasks are stretched according to the amount of slack available to each task. There have been

considerable achievements in this area ever since one of the earliest studies performed by Yao

et al. [124] where the authors proposed an optimal static DVFS algorithm for frame-based
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Figure 1-4: Effect of DVFS and DPM on tasks. Core State represents the activity of the
core during task execution. (b) More slack for τ1 permits a lower DVFS setting than that
of τ2. (c) Tasks execute at maximum frequency but the core is in sleep mode during periods
of inactivity

tasks executing on a single-core processor. In addition, optimal static DVFS algorithms

have also been proposed for periodic tasksets scheduled via the EDF dynamic scheduling

algorithm [4]. However, for static priority scheduling algorithms, the energy minimization

problem becomes NP-Hard [125].

Furthermore, the frequency is changed at discrete steps. Though impractical, most of

the reported literature simplify the problem by considering frequencies to be a continuous

function between the minimum and maximum frequency bound. Ishihara et al. [57] showed

that, for a system with discrete frequencies, selecting two frequencies adjacent to the optimal

desired continuous frequency leads to energy minimization. Frequency transitions also incur

a time and energy cost. In practice, this overhead is comparable to the context switching

cost in a multitasking environment [96] and is, therefore, usually ignored in most energy

minimization works.

Real-time tasks can also experience large variations in their Actual Execution Time

(AET). Dynamic DVFS techniques utilize the slack yielded, at run-time, when a task com-

pletes before its estimated WCET. There are primarily two ways of utilizing this slack:

(i) Inter-task DVFS and (ii) Intra-task DVFS. Inter-task DVFS redistributes the available

slack across other tasks within the system or to a single highest priority ready task [15].

On the other hand, Intra-task DVFS utilizes the slack produced by a task within the same

task [107].

However, DVFS techniques only contribute in the reduction of dynamic power consump-
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tion, and though dynamic power minimization techniques may have previously been favored,

continuous reduction in transistor size has resulted in increased leakage current (Ileak) that

now makes the static power consumption a significant factor as well. Consequently, lowering

the core frequency to its minimum no longer guarantees energy minimization since a lower

frequency elongates the computation time that in turn increases the leakage energy [61].

To this effect, critical frequency has been defined to limit the amount of task scaling. Set-

ting the frequency of the processor core below its critical frequency will increase the energy

consumption of the system. Therefore, for all practical purposes, this factor also needs to

be taken into consideration when performing DVFS.

1.2.3 Dynamic Power Management (DPM)

DPM techniques employ power-gating to switch the processor core into sleep mode whenever

it is idle as shown in Figure 1-4 (c). DPM can also be categorized into static and dynamic

techniques. Static DPM techniques calculate, at compile-time, the exact durations at which

the core should be in sleep mode. The more recent processors are equipped with multiple

sleep modes. However, switching to sleep mode and restoring back to idle mode incurs

a time and energy overhead cost that keeps on increasing further with every deeper sleep

mode. Therefore, a particular sleep mode is selected only if the transition reduces the overall

energy consumption. This decision can be made using the model proposed by Devadas et

al. [40] where the authors defined the break-even time as the minimum length of idle period

that would justify the core transition to a particular sleep mode.

To further reduce energy consumption, the idle periods can be combined to enable

the core into longer and deeper sleep modes. This can primarily be accomplished in two

ways. The first method is based on procrastination techniques that maximize the length

of a particular idle period by delaying the upcoming tasks while ensuring that the timing

constraints are not violated [76]. The second method is to maximize the processor speed

during a task’s execution to complete it at the earliest; thus, leaving a room for longer idle

periods [56].

In Dynamic DPM techniques, the durations of sleep modes are estimated at run-time.

One of the challenges in performing dynamic DPM is to determine the exact remaining idle

time upon early task completion. Determining this idle time can be classified into predictive

and stochastic schemes [14]. An interplay of DVFS and DPM techniques to find the right
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mix of static and dynamic energy savings has also been proposed in the literature [32,40,46].

1.2.4 Energy Efficiency in Multicore Real-Time Systems

The decades of research on energy-efficient scheduling techniques, primarily focusing on

single-core processors, has been extended into the multicore domain [6]. Energy-efficiency

adds another dimension to this multicore scheduling problem. Given the complexity of

the problem, the widely-adopted bottom-line approach is to discretize the problem into two

phases. The first phase allocates the tasks to cores in a manner to promote maximum energy

savings, while the second phase takes advantage of this strategic allocation to effectively

minimize the energy consumption via DVFS or DPM.

1.3 Existing Limitations

1.3.1 Linear Task-Models

Most energy-efficient scheduling algorithms reported in the literature are handicapped by

the simplistic assumption of linear task scaling. Such algorithms model the execution time

of a task as homogeneous clock cycles executed at a particular core-frequency. However,

these models fail to capture the memory latency experienced by a task during execution.

Since this memory latency does not scale with core-frequency, such linear models can lead to

inaccuracies and overestimiation of task execution time when DVFS is applied. The need

to capture such non-linearities has prompted researchers to propose improved execution

models that separate memory latency from the processor clock cycles [90], resulting in

models that exhibit two sets of execution cycles, i.e., computation cycles and memory cycles.

In such models, the core-frequency can only scale the computation cycles while the memory

cycles are only affected by the operating clock of the bus and memory sub-system [44,126].

However, the benefits of using this model for multicore hard real-time systems is yet to be

determined.

1.3.2 The Dilemma of Shared Caches

Shared caches, a consequence of multicore architectures, pose to be a significant challenge

for real-time systems scheduling. Earlier on, caches were introduced to keep up with the

performance demand by bridging the gap between speeds of the core and main memory.
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Caches temporarily store information required by the core to process the executing task.

However, this has also resulted in increased unpredictability since cache hits or misses can

vary the number of memory latency cycles. Predicting cache behavior is a notable obstacle

for WCET analysis tools. The small cache sizes result in inter-task and intra-task cache-

line evictions [106], thus, contributing to the erratic nature of caches. Due to this versatile

nature, caches have the biggest influence on task execution time and, therefore, have a

considerable impact on the precision of the WCET estimation [86].

To ensure predictability on single-core processors, a pessimistic approach is usually

adopted by incorporating the upper bound of the cache delay into the WCET of the tasks.

Despite the decades of research on single-core WCET analysis, existing techniques cannot

be directly extended into the multicore domain due to inter-core conflicts introduced by

the inclusion of shared caches. Useful cache lines of a task may be evicted from the shared

cache by a task simultaneously running on another core, thus, dynamically increasing the

task miss-rate and system-level unpredictability. Inclusion of shared caches may also have

adverse effects on the execution time of a task as shown by Kim et al. [66], where the

execution time of a task was increased by 40% as opposed to when running alone on the

system. Thus, accurate analysis of inter-core conflicts has been termed as an extremely

difficult problem by the WCET analysis community [48]. In addition, replacement policies

and cache coherence protocols must also be considered.

Because of this unpredictable nature of shared caches, potentially-assumed schedulable

tasksets may experience deadline misses. The real-time systems community has attempted

to bound this shared cache unpredictability by adopting cache-partitioning techniques [47].

These partitions are then assigned to cores to prevent concurrent tasks from sharing the

same cache lines, thus, diminishing inter-core conflicts. Cache Partitions (CPs) can be

statically (core-based) or dynamically (task-based) assigned to the cores. However, such

techniques must be considered carefully since heedless allocation of CPs can lead to under-

utilization of resources. Though shared CP analysis has been tackled rather assiduously in

terms of maximizing schedulability [67,121,123], its impact on energy-efficiency techniques

is yet unknown.

Since predictability is a major concern for real-time systems, energy-efficient scheduling

algorithms cannot ignore these caching effects and will otherwise diminish their applicability

to practical systems. Existing energy-efficient algorithms cannot be adapted directly to
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the static CP-aware scenario since this would require a completely different task-to-core

allocation strategy according to the limited CPs assigned to each core. Directly adapting

existing algorithms in a dynamic CP scheme, without modeling the dynamic inter-core cache

contention, can result in cache violations, i.e., concurrent access of the same CPs by several

tasks running in parallel. Therefore, careful analysis needs to be carried out to incorporate

the CP scenario into the energy-efficient scheduling domain.

Furthermore, most of the existing energy-efficient scheduling algorithms only focus on

the core-level energy minimization problem. A relatively large portion of the processor is

occupied by caches contributing to a large percentage of the overall energy consumption.

On-chip caches consume 30 % of total power on the StrongARM processor core and nearly

24 % on the Niagara processors [91]. With the continuous increase of cache size and the

involvement of multicores and manycores, these numbers are likely to grow. Several general

techniques have been proposed to mitigate the energy lost due to caches [91]. However,

adopting such techniques into the real-time system’s domain has not yet received much

attention. There have been some limited attempts to accommodate the cache energy while

minimizing the system-wide energy consumption. However, most of them are focused on

simpler single-core systems [60,70,113,130].

1.4 Thesis Statement

As real-time systems shift into the multicore domain, there is a need for energy-efficient

scheduling algorithms to include the shared last-level-cache energy consumption into their

minimization problem while catering for the unpredicatbility caused by the shared-cache.

1.5 Thesis Contribution

Though there has been considerable research on energy-efficient scheduling in multicore

hard real-time systems, existing solutions only focus on the core-level and fail to include

the shared cache energy and unpredictability into the energy minimization problem. Fur-

thermore, the impact that cache partitioning has on execution cycles of a task in a energy

minimization setting has yet to be investigated. These existing limitation are summarized

in Figure 1-5, where the Venn diagram represents the complexity of the research problem.

Thus, the goal of this thesis is to overcome these limitations and in doing so, pave the way
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Figure 1-5: Complexity of the research problem

for more practical approaches to minimize the system-level energy consumption in multicore

hard real-time systems. In this work we first propose an improved non-linear task model

that accounts for the change in memory-latency cycles w.r.t to the number of CPs accessible

by a task. This improved task model depicts a more accurate change in execution cycles

when DVFS is applied while also catering for unpredictability posed by the shared cache

by integrating with the cache partition model. We then apply this improved task model

to a homogeneous multicore setting where we propose a novel cache contention model so

that well-existing cache-oblivious energy-efficient scheduling algorithms can easily adopt the

cache partition model into their problem setting. This allows existing algorithms to not only

ensure predictability of the system but also to include the shared cache into their energy

minimization problem. We then follow up upon this work by investigating the effects of

task execution cycles and cache partitioning in a heterogeneous multicore setting where the

multicore processor is composed of cores of different types. Scheduling real-time tasks on

heterogeneous multicores is far more challenging since the heterogeneity of the cores adds

another dimension to the scheduling problem. However, we propose a novel approach to

system-level energy minimization on heterogeneous multicore real-time systems that out-

performs state-of-the-art approaches. Finally, since existing cache partitioning algorithms

are biased towards a static CP scheme for scheduling of periodic tasks, we propose a schedu-

lability test for the dyanmic CP scheme as the dynamic scheme offers greater schedulability,

flexibility and energy-efficiency. Figure 1-6 summarizes the contributions of this thesis.
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1.6 Thesis Outline

This thesis is organized in the following manner:

• We present a thorough literature review of existing energy-efficient scheduling tech-

niques for both homogeneous and heterogeneous multicores along with cache-partitioning

techniques adopted by the real-time systems community in Chapter 2.

• We propose an improved task model that captures the non-linearity of the memory

latency cycles brought about by the shared cache and its impact on the energy con-

sumption of the system in Chapter 3.

• For Homogeneous multicores, we propose a novel approach to model the dynamic CP

inter-core interference for frame-based tasks and demonstrate its usability by existing

energy-efficient scheduling algorithms in Chapter 4.

• For Heterogeneous multicores, we propose a holistic approach to minimize system-

level energy consumption while including the proposed task-model and shared cache

model into the energy minimization problem in Chapter 5.

• Finally, we make initial contributions to a dynamic CP schedulability analysis for

fixed-priority periodic tasks for future energy-efficient scheduling in Chapter 6.

• We then conclude this thesis with some future directions in Chapter 7.
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Chapter 2

Literature Review

This chapter will discuss previous works relevant to this thesis. It is important to note

that most of the reviewed energy-efficient scheduling algorithms are specifically designed

for multiprocessors. This is because research on energy-efficient real-time scheduling algo-

rithms for single-core processors initially progressed into algorithms for multiprocessor and

distributed architectures before entering the multicore domain. Since multiprocessors are

usually void of shared caches, problems associated with the unpredictability of shared caches

were not considered. Even as multicores became a reality for real-time systems, the majority

of energy-efficient scheduling algorithms specific to multicores still failed to accommodate

the shared cache unpredictability into their energy minimization problem. Therefore, in

the reviewed scheduling algorithms below, we do not make a distinction between multipro-

cessors and multicores. To simplify terminology, energy-efficient scheduling algorithms for

both multiprocessors and multicores are classified as “energy-efficient multicore scheduling

algorithms”. Techniques proposed in the literature to cater for the shared cache unpre-

dictability are reviewed separately along with a discussion on the limited attempts made to

combine such techniques with energy-efficient multicore scheduling algorithms.

2.1 Energy-Efficient Scheduling on Homogeneous Multicores

The energy minimization problem for multicores consists of simultaneous mapping and

scheduling the tasks in a manner that minimizes the energy consumption. Thus, the energy

minimization is highly dependent on the task allocation strategy as different task allocations

will result in different values of energy consumption. The bottom line widely-adopted

approach in the literature is to discretize the problem into first allocating the tasks across

cores to promote maximum energy savings, and then performing energy-efficient techniques,

e.g. DVFS, DPM, etc. effectively to minimize the energy consumption of the tasks.

In the multicore domain, DVFS can be extended into two flavors (i) local DVFS and (ii)

global DVFS. These techniques depend on the processor hardware characteristics. In local
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DVFS, each core has its own voltage regulator and can operate at a frequency different from

the other cores. This enables maximum energy savings as each core can be tuned according

to its assigned taskset characteristics. However, providing each core with an independent

regulator adds a considerable expense and complexity to the hardware. In global DVFS, all

the cores are controlled by a single voltage regulator making it a more practical approach.

In order to avoid deadline misses, the global frequency of the chip is selected to match the

frequency of the core with the highest execution workload. Recently, Voltage Frequency

Island (VFI) techniques have also emerged as a hybrid that leverage from the flexibility of

local DVFS and the simplicity of global DVFS. Cores are divided into clusters. Each cluster

can operate at a separate frequency while the cores within a cluster are forced to run at the

same frequency.

In this section, we discuss the various allocation and scheduling techniques reported

in the literature that aim to minimize the energy consumption for tasks executing on ho-

mogeneous multicore architectures. Homogeneous multicores consist of cores of the same

type. Therefore, a task will consume same energy at a reference frequency irrespective to

its core assignment. Though there is a wealth of research articles in this area, the studies

specified in this section are selected to give the readers a progressive understanding and

general overview of this vast domain. Therefore, we summarize the existing work based on

the general classification, proposed by Davis et al. [36], for multicore scheduling algorithm

in real-time systems, i.e., Partitioned, Semi-Partitioned and Global scheduling techniques.

The same classification is also adopted for its heterogeneous counterpart as shown in Fig-

ure 2-1.

2.1.1 Partitioned Scheduling

In partitioned scheduling, tasks are statically allocated to cores at compile time and there

are no task migrations. After tasks are allocated, energy-efficient techniques, e.g., DVFS

and DPM, are applied to the allocated taskset in order to minimize the energy consump-

tion. One of the first theoretical studies on energy-efficient scheduling on multicores was

performed by Chen et al. for independent frame-based tasksets [30]. They certified the

problem to be NP-Hard and proved that the energy consumption can be minimized by

minimizing the makespan and then setting the frequency of each task according to the uti-

lization of the core it is allocated to. However, they only considered the dynamic component
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Figure 2-1: Classification of energy-efficient multicore scheduling algorithms for real-time
systems.

of the power consumption model. Therefore, for all problems focusing on frame-based inde-

pendent tasksets, minimizing the makespan of the schedule will be optimal in minimizing

the dynamic energy consumption.

However, unlike the independent taskset case, a schedule that minimizes the makespan

for dependent tasksets does not minimize the energy consumption [45]. On the contrary,

a schedule pertaining greater parallelism with more slack allocated to the parallel portions

of the schedule promotes greater energy savings [104]. Dependent tasksets are usually

modeled as Directed Acyclic Graphs (DAGs) to be used as input for the energy minimization

problem [16]. This problem is also NP-Hard. Due of the dependency relationship between

the tasks, slack is accumulated between the task executions and energy is decreased by

utilizing this slack to scale the tasks. Therefore, a schedule that results in an optimal slack

allocation leads to energy minimization. Attempts have been made to optimally allocate

the slack via convex optimization formulations [29,128] or heuristic algorithms [84]. Parallel

task models have also been proposed in order to maximize the degree of parallelism [16–18,

49, 101]. In these works, the authors consider a model where each task itself is a parallel

task that can utilize multiple computing units at the same time and where each task is

represented as a DAG. In doing so, they have proposed energy-efficient real-time scheduling

techniques of sporadic parallel tasks for both implicit and constrained deadlines. With the

prevailing leakage current with transistor feature size reduction, some authors also include

the critical frequency into their analysis [45], while others reduce the energy consumption

by reducing the number of active cores [50] or by simultaneously considering DVFS and
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Figure 2-2: Classification of energy-efficient partitioned scheduling on homogeneous multi-
core.

DPM techniques [29].

For periodic tasksets, it has been shown that balancing the workload, i.e., taskset utiliza-

tion, across the cores will minimize the energy consumption. This problem is also NP-Hard

in the strong sense when the number of cores are greater than two [5]. However, as with

the case for single-core processors, initial studies only focused on the dynamic component

of the processor power consumption. More recent approaches also consider leakage current

into their scheduling algorithm, e.g., in [31] where the critical frequency is also taken into

analysis, and in [127] where the authors strive to balance the tradeoff between attaining a

workload balance and decreasing the number of active cores.

Therefore energy-efficient techniques adopted by the authors for partitioned scheduling

can be categorized into three groups as shown in Figure 2-2. These categories are based on

proofs derived for different types of tasksets, i.e., minimizing the makespan for independent

frame-based tasks, increasing parallelism for dependent frame-based tasks and balancing

the workload for periodic tasks leads to energy minimization. Most of the articles focus

on local DVFS even though commercial processors are usually equipped with the more

practical global DVFS setup [53]. Some papers also suggest task-specific voltage frequency

scaling where tasks scheduled on the same core can execute at different frequencies w.r.t.

each other. Others propose a global scheme where tasks assigned to the same core operate

at the same frequency.

Some authors have also considered tasks with different power characteristics, i.e., tasks

consume different amounts of power at the same core frequency. Schmitz et al. [102] pro-

posed an algorithm to iteratively elongate pre-allocated tasks with the highest energy-

gradients. Energy-gradient is defined as the difference in energy dissipation of a task before

and after elongation. Luo et al. [84] followed up on this work by performing execution

order optimizations via simulated annealing to further improve the energy consumption.
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Figure 2-3: Classification of energy-efficient semi-partitioned scheduling on homogeneous
multicores.

Similarly, Genetic Algorithms (GAs) have also been proposed [87].

2.1.2 Semi-Partitioned Scheduling

Due to the innate nature of tasks and partitioning heuristics, it is difficult to obtain a

perfectly balanced workload across the cores. By permitting controlled migrations across

cores, semi-partitioned scheduling techniques attempt to decrease the energy consumption

by striving to obtain a better workload balance. Semi-partitioned energy-efficient scheduling

algorithms can be further categorized in static task migrations, dynamic workload balancing

and clustered scheduling as shown in Figure 2-3. In static task migrations, some works

achieve a better workload balance by partitioning the taskset such that some tasks are

allocated to only one core while the others are allocated to more than one core [30, 129].

Other works use parallel task models to break up the task into different components in

order to reduce the execution time of the tasks [69, 95]. These techniques are classified as

static task migrations since task-splitting is performed at compile time.

However, even though statically assigning a task to multiple cores produces a better

workload balance, the performance demand on each core can change during application

execution. This temporal imbalance can be solved by run-time migrations across the cores.

Seo et al. [103] proposed a technique to balance the workload using run-time migrations by

migrating the nearest deadline task from the highest utilization core to the lowest utilization

core. Such dynamic workload balancing techniques are also effective in a dynamic workload

environment where tasks enter and leave the system during run-time [89]. Again, tasks are

migrated from the heaviest to the lightest utilization core in order to reduce the imbalance.

A subset of the semi-partitioned scheme can be enveloped into clustered scheduling.

The cores on a processor are first grouped into clusters. The taskset is partitioned across

the clusters and each cluster, then, schedules its allocated taskset independently. Tasks are
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Figure 2-4: Classification of energy-efficient global scheduling on homogeneous multicores.

allowed to migrate across cores within the same cluster. Each cluster can also operate at

an independent frequency, e.g., using a VFI scheme [53,71,118].

2.1.3 Global Scheduling

Global scheduling has inherent load balancing capabilities as it dynamically assigns tasks at

run-time to available cores. However, due to the global nature of such scheduling algorithms,

it is impossible to determine the task-to-core allocation or task execution sequence on a

particular core at compile time. Without this information static DVFS schemes, that utilize

the predefined available slack to scale the tasks, cannot be used. Hence, performing DVFS

at run-time may cause future deadline misses. Several authors have attempted to perform

DVFS techniques by constructing canonical schedules ahead of the practical schedule [15]

or by utilizing the slack produced by early completion of the tasks [132].

Authors have also proposed simplistic DPM techniques that switch-off inactive cores

to decrease the energy consumption [62]. Advanced DPM techniques, e.g., procrastination

techniques that increase the idle periods between task executions, may also lead to un-

schedulability as switching to sleep mode on one core can also affect the schedulability on

the other cores [2]. Therefore, it is difficult to predict the outcome of the overall schedule

even when a change is performed on a single-core. Others have attempted to increase the idle

period durations for DPM by creating a static schedule and, then, using a global scheduling

algorithm to schedule tasks within the time frames defined by the static schedule [77].

2.2 Energy-Efficient Scheduling on Heterogeneous Multicores

Homogeneous multicore processors consist of identical cores with identical executing fre-

quencies. Such cores have the same architectural (core type, cache sizes, etc.) and micro-

architectural (superscalar, out-of-order execution, etc.) features. Heterogeneous multicore
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processors, on the other hand, consist of cores with varying features. This diverse comput-

ing potential is desirable because different tasks can have different core-type affinities in

terms of performance and energy requirements. The execution time and energy consump-

tion of a task running on a particular core-type depends on the set of instructions it must

execute as various instruction types using different parts of the processor [3, 9]. A task

may be executed with exceptionally good performance boost when executing on a partic-

ular core-type while other tasks may not take any advantage of the additional capabilities

available on the same core-type. The heterogeneous multicore processors discussed in the

literature are usually limited to a combination of two-type cores. This is because two-type

core architectures already present most of the power and performance benefits of hetero-

geneity and are composed of a set of small, in-order, power-efficient cores with another set

of big, out-of-order, high performance cores [64]. Furthermore, such processors are already

available in the market.

Though heterogeneity displays significant benefits in power and performance, it brings

along a significant complexity in task scheduling. Along with each task’s characteristics,

the scheduler must also take the different power, performance and architectural capabilities

of the cores into consideration while allocating tasks to different cores [85].

Lately, the scheduling problem on heterogeneous architectures has received a lot of

attention from the research community, especially for mainstream computers. Similar to

the case of homogeneous multicores, heterogeneous multicore scheduling can be either static

or dynamic. In the static scheme, tasks are partitioned across core-types at compile time.

Since tasks may have different performance and resource usage characteristics over time,

this approach has proved to be suboptimal [9]. The dynamic approach relies on analyzing

a task’s performance on each core-type after specific intervals and selecting the core-type

that maximizes performance and/or energy-efficiency.

Heterogeneous multicores are also finding their way into the real-time systems domain.

Techniques proposed for soft real-time systems rely on optimizing the Energy Delay Product

(EDP) through regression modeling [99] or by solving complex optimization problems [98].

More recently, heterogeneous multicores have caught the attention of the hard real-time

systems research community. Techniques proposed in the literature for energy-efficient

scheduling are limited to partitioned and semi-partitioned techniques due to the schedula-

bility complexity of global scheduling.
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Figure 2-5: Classification of energy-efficient partitioned scheduling on heterogeneous mul-
ticores.

2.2.1 Partitioned Scheduling

Colin et al. [34] showed that neither balancing the workload across the cores (which

maybe preferable for homogeneous multicores), nor assigning the maximum load to the

energy-efficient core-type is optimal for heterogeneous platforms. Therefore, the optimal

workload assignment to each core must be determined, which depends on the power charac-

teristics of the core-types and the tasks. Since the problem is NP-Hard, solutions proposed

in the literature are limited to Linear Program (LP) formulations and heuristic algorithms.

For LP formulation, both task partitioning and energy minimization techniques are per-

formed simultaneously. Heuristic solutions, however, first classify tasks based on their

energy-favorable core-types and then allocate them accordingly while ensuring that dead-

line constraints are met. DVFS or DPM is then applied to the allocated taskset to minimize

energy consumption. Furthermore, similar to the homogeneous multicore case, many initial

studies assume different tasks to consume the same amount of power when executed on the

same core-type, which simplifies the solution.

Energy-efficient partitioned scheduling on heterogeneous multicores can be classified

based on the adopted platform, as shown in Figure 2-5. Many initial studies focused on

simple hypothetical platforms composed of multiple core-types where the heterogeneity

of each core-type is defined by its maximum operating frequency or power-consumption.

As practical heterogeneous multicores became a reality, many proposed solutions began to

target specific heterogeneous architectures available in the market, e.g., ARM’s big.LITTLE

clustered heterogeneous architectures where cores of the same type are grouped into a cluster

as shown in Figure 2-6. In such solutions, the actual measured power consumption values

of each core-type are used to efficiently allocate the tasks across the core-type clusters.
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Figure 2-6: Exynos 5422 System-on-Chip (SoC) composed of A15 (big) and A7 (LITTLE)
core-type clusters.

Li et al. [78] proposed LP formulations of three DVFS scenarios: (i) Static Global DVFS,

(ii) Dynamic Global DVFS, and (iii) Dynamic Local DVFS, on a simplistic heterogeneous

platform for frame-based tasksets. The heterogeneity of the system is defined by the exe-

cution efficiency of a task on each core-type. Similarly, Elewi et al. [43] proposed different

DVFS solutions for periodic tasksets. The heterogeneity of the cores is defined by the max-

imum frequency of the cores. They, first, create an Integer Linear Program (ILP) for the

four cases of DVFS (i) Without DVFS, (ii) Global DVFS, (iii) Local DVFS and (iv) VFI

Islands. The ILPs are then complimented with heuristic algorithms to reduce the solution

complexity. DPM based approaches have also been proposed for simplistic heterogeneous

multicore platforms. Kuo et al. [74] proposed a heuristic that partitions a periodic taskset

according to the power consumption characteristics of the tasks. The partitioned taskset is

then scheduled according to EDF along with DPM techniques to switch-off the cores when

inactive. Awan et al. [3] proposed a DPM approach with multiple sleep states for periodic

tasksets. They divide the partitioning problem into two phases. The first phase consists

of allocating tasks to cores with the aim to minimize the dynamic energy consumption.

The second phase, then, attempts to reduce the static energy consumption by reallocating

selected tasks from each core in order to promote deeper DPM sleep states.

Energy-efficient algorithms for clustered heterogeneous multicores, where cores of the

same type are grouped into clusters, have also been proposed. Liu et al. [80] modeled real-

time streaming applications as hard real-time tasks to efficiently map the workload across

clusters while ensuring that the throughput and latency constraints are met. They first
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Figure 2-7: Classification of energy-efficient semi-partitioned scheduling on heterogeneous
multicores.

classify tasks based on core-type affinities and then use FFD to map the tasks across clusters.

More recently, energy-efficient techniques for tasks with different power characteristics have

been proposed [94,105]. Both works focus on the ARM big.LITTLE clustered heterogeneous

multicore platform and use actual core-type power consumption values to schedule a periodic

taskset. Pagani et al. [94] first selected specific frequencies for the core-types in order to

reduce the solution space. After sorting the tasks according to their utilization, tasks were

allocated across their energy-favorable core-types in a Worst-Fit Decreasing (WFD) manner

and DVFS was applied to minimize energy consumption. This was repeated for a number of

initial core-type frequency configurations in order to find the energy favorable configuration.

Suyyagh et al. [105] first determined frequencies at which it is energy-favorable to allocate

tasks to the high-performance core-type since a task may consume less energy running on

a high-performance core-type at a lower frequency compared to an energy-efficient core-

type at a higher frequency. Initial core-type frequencies were also assigned with the aim

to maximize the number of tasks that can fit on the energy-efficient core-type. Tasks were

then allocated in a Best-Fit Decreasing (BFD) manner according to their utilization in

order to minimize the idle-power consumption. The above mentioned algorithms do not,

however, allow intra-cluster task migrations and are, therefore, classified under partitioned

scheduling.

2.2.2 Semi-Partitioned Scheduling

The literature on solutions for semi-partitioned scheduling for heterogeneous multicores is

rather limited. Furthermore, solutions are restricted to static task migrations.

The authors in [108] presented an LP formulations to determine the percentage of time

interval and the frequency at which each task should execute on a core-type. After parti-
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tioning, the Hetero-Wrap algorithm [33], was used to schedule the tasks in order to avoid

parallel execution of the same task. The formulated LP was, then, extended to reduce the

energy consumption via DVFS. Liu et al. [81], however, proposed a heuristic algorithm and

adopted a task splitting approach [24] to efficiently utilize the capacity of the cores.

The presented literature on energy-efficient scheduling depicts extensive and diverse

solutions for both homogeneous and heterogeneous multicores. However, such solutions have

failed to accommodate shared-caches into their energy-model. In the following sections,

we describe the steps taken by researchers to model the shared-cache for hard real-time

systems. We, then, summarize the attempts made to accommodate such models into the

energy-minimization problem.

2.3 Cache-Aware Scheduling on Multicores

WCET unpredictability due to shared caches has been largely tackled by two mechanisms,

cache locking and cache partitioning.

Cache locking techniques permit tasks to load specific data into the cache which can

then be locked to prevent the contents from being replaced at run-time by other concurrent

tasks accessing the shared cache. Cache locking can also be used to improve performance

by locking hot and frequently accessed data. However, careful WCET analysis must still be

carried out to capture the effects of cache locking [47,92].

Cache partitioning techniques involve dividing the shared cache into sections to be as-

signed to specific cores. This prevents concurrent tasks from sharing the same cache lines,

thus, diminishing inter-core conflicts. Cache partitioning can be performed at the software-

level, e.g., cache-coloring [116] where a mapping between cache entries and physical ad-

dresses prevents inter-core conflicts, or hardware-level, e.g., way-based partitioning [122]

where the shared cache is divided into sections based on the cache associativity. Cache

partitioning adds another dimension to the mapping and scheduling problem, i.e., how to

efficiently distribute both tasks and CPs among the cores in order to ensure schedulability

of the taskset. The WCET of a task is subject to the number of CPs assigned to it. De-

pending on the computational characteristics of a task, fewer CPs assigned to a task may

result in an increased WCET as shown in the example taskset in Table 2.1. Therefore, such

algorithms attempt to optimally perform CP-to-core and task-to-core mappings to increase
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Table 2.1: CP-dependent WCET for 3 tasks and a total of 8 CPs

CP 1 2 3 4 5 6 7 8 Tasks

WCET

10 9 8 8 8 7 7 7 τ1

20 20 20 18 16 10 8 8 τ2

11 10 9 8 8 5 4 4 τ3

schedulability. The CPs can be used in two ways: (1) static scheme (core-based), where CPs

assigned to a core remain constant throughout taskset execution, and (2) dynamic scheme

(task-based), where CP assignments can be changed at run-time.

2.3.1 Static Cache-Partitioning

Given their correlative nature, the majority of cache-aware partitioned scheduling algo-

rithms focus on a static CP scheme. This greatly simplifies the analysis since tasks allo-

cated to the same core share the same CPs and are not blocked due to the cache-contention

from tasks running on other cores. Researchers have proposed various methods to group

specific tasks onto cores in order to efficiently utilize the limited CP resources. Berna et

al. [11] proposed a two phase algorithm where the first phase involved assigning a criti-

cal task to each core and then partitioning the remaining tasks based on their period and

WCET relationship with the critical tasks. The second phase then readjusted the task par-

titioning to ensure schedulability of the taskset. A similar approach was proposed by [26]

where periodic tasks are grouped together based on their harmonic relationship while tak-

ing the CP-dependent variable WCET into consideration. Some works have also considered

the impact that preemption has on the WCET, i.e., tasks sharing common CPs undergo

Cache-Related Preemption Delay (CRPD) analysis in order to account for the delay due

to cache-line invalidation by preempting tasks on the same core [23, 65]. In order to mini-

mize this delay and improve schedulaility, Guo et al. [51] proposed a Mixed Integer Linear

Program (MILP) along with approximation algorithms to ensure that strongly interfering

tasks are mapped onto distinct cores.

Along with cache-partitioning, some authors have also considered other shared resources

that can impact the WCET of tasks. Paolieri et al. showed that the number of tasks

executing in parallel can also have an impact on the WCET due to memory controller

contention and, therefore, proposed a partitioning algorithm to cater for the extra WCET
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Figure 2-8: Static vs. dynamic CP scheme

variability caused by the memory controller. Similarly, Xu et al. [120] proposed a method

to partition both CP and memory bandwidth resources in order to ensure predictability.

Valsan et al. [110] showed that the Miss Status Holding Registers (MSHR) can also be a

source of unpredictability and they proposed a hardware-software solution to cater for both

CPs and MSHR allocation.

2.3.2 Dynamic Cache-Partitioning

The dynamic CP scheme has been exclusively used in global scheduling. This can theo-

retically increase the schedulability, however, it substantially increases the complexity of

the scheduling problem since CPs are also considered a global resource and the sched-

uler needs to decide on the number of CPs to assign to each core at run-time to ensure

schedulability. Furthermore, devising schedulability tests for this scenario is also a difficult

problem. Attempts have been made to extend the classical non-CP schedulability tests

for global scheduling algorithms into the CP-aware scenario for both preemptive [115, 122]

and non-preemptive schemes [48, 119] where both cores and CPs are considered as global

resources for a task, and the maximum interference that can be imposed by its HPTs on

both the cores and CPs are determined via the problem-window approach [36]. However,

these schedulability tests assume a predefined fixed CP allocation to a task and, therefore,

a fixed WCET for each task.

For partitioned scheduling, Ward et al. [116] proposed a cache-management technique for

preemptive and non-preemptive scheduling of periodic tasks which involves cache-coloring

along with way-based cache-locking. However, the proposed schedulability analysis is simpli-
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fied by reducing the problem to a uniprocessor scheduling problem resulting in a pessimistic

schedulability test for each core. There have been other attempts to adopt a dynamic CP

scheme into partitioned scheduling, however, most initiatives are limited to MILP formu-

lations [27]. The dynamic CP scheme can offer greater flexibility and schedulability for

partitioned scheduling since tasks are not restricted by the static CP assigned to a core.

This can be seen in Figure 2-8 for three independent frame-based tasks partitioned across

two cores, based on the CP-variable WCET from Table 2.1, and where the dotted line

represents the division of CPs to each core. The resultant finish-time of the taskset for the

dynamic CP scheme in Figure 2-8 (b) is less than that of the static CP scheme in Figure 2-

8 (a). Furthermore, τ1 does not benefit from the 4 CPs allocated to it since 3 CPs result in

the same WCET. The dynamic CP scheme has also been proven to be beneficial in terms

of energy-efficiency [28].

2.4 Cache-Aware Energy-Efficient Scheduling on Multicores

There have also been some attempts to cater for cache unpredictability while minimizing

the energy consumption. Wang et al. [112] considered a reconfigurable cache model in their

energy minimization problem for periodic tasks on a single-core system. They strived to

minimize the energy consumed by both the core and cache subsystems where the energy

consumption of a task is defined by its execution frequency and cache configuration. How-

ever, the work presented is for a single-core system while our primary focus is on multicore

systems, which is far more challenging. For multicores, Fu et al. [44] attempted to minimize

the core-energy consumption while considering the cache contention among soft real-time

tasks. Tasks were statically partitioned across the cores and CPs were allocated on a core

basis (i.e. using the static CP scheme). They modeled the WCET of a task to be dependent

on the core frequency and the number of CPs assigned to it. However, uncertainties in the

task-model restrict their work to be used for hard real-time systems.

Wang et al. [114] proposed an energy minimization technique which employed both dy-

namic reconfiguration of private L1 caches and partitioning of shared L2 caches for multicore

processors. They adopted a profiling technique with dynamic programming to find L1 and

L2 configurations to minimize energy consumption of the cache-subsystem. However, their

profiling technique can be computationally expensive for larger tasksets and wider range
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of cache configurations. They also adopted a static CP scheme that can result in resource

wastage as tasks can require fewer CPs than those allocated to the core. It also results in

reduced energy savings as shown in [28]. Chen et al. [28] proposed an MILP to allocate

CPs to tasks and generate a time triggered schedule that minimizes the energy consump-

tion, however, their approach can be computationally expensive for large number of tasks

and system variables. Furthermore, both approaches presented by Wang et al. [114] and

Chen et al. [28] attempt to minimize the energy consumption of the cache subsystem only

and therefore, cannot exploit the existing techniques that use DVFS at core-level.

Authors in [126] proposed a method to minimize the complete system energy by per-

forming DVFS on both core and cache subsystem. They proposed a task model where the

power characteristics of each task is defined by the ratio of its compute and memory cycles.

They assigned different switching activity factors for different modes of operation, i.e., the

activity factor during compute cycle execution (active mode) is greater compared to the

activity factor during memory stall cycles when the core is idle (idle mode). However, their

work is also limited to single-core systems.

2.5 Discussion

There is a proliferation of energy-efficient scheduling algorithms for both homogeneous

and heterogeneous multicores. However, there are some practical aspects that have been

overlooked and need to be addressed.

Though some algorithms do consider tasks with different power characteristics, e.g., [87,

94,102,105], the task model adopted in such works are very simplistic and do not cater for

the nonlinear change in execution time brought about by the memory latency cycles. Also,

most energy-efficient algorithms only focus on the core-level energy and are oblivious to the

unpredictable nature of shared-caches. Since predictability is a major concern for real-time

systems, energy-efficient algorithms cannot ignore these caching effects and will otherwise

diminish their applicability to real-world systems.

Furthermore, the effects of cache-partitioning on heterogeneous multicores have not yet

been addressed. With the advent of heterogeneous multicores with in-built CP technology,

e.g., ARM DynamIQ, the need for CP techniques on such architectures becomes increasingly

more relevant. There have been attempts to introduce cache-aware energy minimization
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techniques for soft-deadline tasks running on heterogeneous multicore systems [42], however,

such techniques are still an open issue in the hard deadline-constrained domain. It is also

observed that in homogeneous multicore energy-efficient scheduling, many authors have

attempted to solve the energy minimization problem via theoretical analyses and proofs.

Solutions in the heterogeneous domain, however, lack such theoretical analyses that can

lead to optimal solutions for energy minimization.

Finally, the dynamic CP scheme for partitioned scheduling has largely been untackled

despite its proficiency in schedulability, flexibility, and energy-efficiency. Most cache-aware

partitioned scheduling algorithms focus on a static CP scheme. However, this technique

can greatly under-utilize the CP resources. Also, with the increasing number of cores and

the transition towards manycore systems, this technique can substantially decrease taskset

schedulability. There have been attempts to adopt a dynamic CP scheme into partitioned

scheduling where the CPs are dynamically allocated to the cores. However, such initiatives

are limited to simpler frame-based tasks and ILP formulations [27].

In the following chapters, we provide solutions to these existing limitation by proposing

an improved task model and cache-aware energy minimization techniques for multicore

real-time systems.
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Chapter 3

Improved Task Model for System-Level En-

ergy Minimization

The real-time research community has already identified the need for new task execution

models that can capture non-linearities in DVFS scaling [90]. Therefore, there have been

some efforts to separate the memory latency from the computation clock cycles by defining

task models with two sets of execution cycles, i.e., computation cycles and memory cycles

[44,126]. Dividing the execution length parameter permits a more realistic execution model

as the core frequency can only affect the computation cycles. The memory cycles, on the

other hand, are affected by the operating frequency of the memory and bus architecture.

Based on the seminal work proposed by Yun et al. [126], we take a step further in

improving the execution model by incorporating the change in execution time and energy

consumption brought about by the number of CPs assigned to a task. We then use the pro-

posed model for a Three-Dimensional (3D) energy minimization problem, i.e., minimizing

the core-, cache-, and system-level energy consumption.

Specifically, in this chapter:

• We make improvements to the existing task model to incorporate the dependency of

execution cycles on the cache subsystem.

• We propose techniques to minimize the energy consumption of the core subsystem for

tasks with different power characteristics.

• We modify the existing cache energy model and propose a greedy algorithm to mini-

mize energy consumption of the cache subsystem.

• We then propose a method to minimize the complete system-level energy consumption

via a Genetic Algorithm (GA).
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3.1 Core-Level Energy Optimization

In this section, we first propose optimal frequencies to minimize core-level dynamic energy

consumption for tasks with different power characteristics based on a traditional task model.

We then make improvements to the existing task model to incorporate the independent

memory latency cycles and investigate its impact to the energy minimization problem.

3.1.1 Traditional Task Model

In a traditional task model, each task is defined by a set of homogeneous execution-cycles cn.

These execution-cycles, when executed at a particular frequency fn, result in the execution

time of the task.

en =
cn
fn
. (3.1)

The energy consumed by a single-core during a task’s execution depends upon the

execution length of the task and the power it consumes while the execution on the core.

This power is composed of a dynamic and static component. The dynamic power component

represents the circuit-level activity and functional units utilized during task execution, which

can be accommodated into the dynamic component of the power equation by including a

term of activity factor κ ∈ {0, 1} [131]. Thus, the core dynamic power consumption for a

task τn can be defined as: The energy consumed by a single-core during a task’s execution

depends upon the task’s execution length and the power it consumes while executing on

the core. This power is composed of a dynamic and static component. The dynamic power

component represents the circuit-level activity and functional units utilized during task

execution, which can be accommodated into the dynamic component of the power equation

by including a term of activity factor κ ∈ {0, 1} [131]. Thus, the core dynamic power

consumption for a task τn can be defined as:

P core dynn = κnf
α
n (3.2)

where κn is the activity factor during τn’s execution and α is a constant (α ≥ 2). The core
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dynamic energy consumption due to τn’s execution is then defined as:

Ecore dynn = P core dynn en = κnf
α−1
n cn (3.3)

Thus, the total core dynamic energy consumption of all tasks assigned to a core can be

expressed as:

Ecore dyn =

N∑
n=1

Ecore dynn (3.4)

Assuming a common κn in Eq. (3.3) causes all tasks to consume the same amount of

power, which simplifies the energy minimization problem. This simplistic assumption, how-

ever, opposes the practical nature of the power characteristics of each task which can vary

depending upon on the circuit activity and functional units used during task execution [131].

A number of studies have focused on the energy minimization problem for tasks with differ-

ent power characteristics [34,84,102,131] where different values of κn were assigned to each

task. However, to the best of our knowledge, closed-form solutions for energy minimization

of tasks with different power characteristics is still an open problem. Therefore, we propose

a method to find a closed-form solution for the above-mentioned problem.

For this purpose, we model the real-time application as a set of independent frame-

based tasks represented as Γ = {τ1, τ2, .., τN}. In line with previous research studies, we

assume a common deadline D for all tasks [45, 63, 79]. The goal, in this case, is to find

the optimal frequencies fn that will minimize the dynamic energy consumption of the core

while ensuring the cummulative execution length of tasks does not exceed the deadline D.

min
fn

N∑
n=1

κnf
α−1
n cn

s.t.

N∑
n=1

cn
fn
≤ D.

(3.5)

Since the tasks are independent, relative sequencing of tasks has no impact on the energy

consumption.

Theorem 1. For tasks with different power characteristics executed on a single-core system

with a common deadline D, the dynamic core energy is minimized when the core frequency

during the execution of task τn equals
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fn =

∑N
j=1 cj

α
√
kj

D α
√
κn

Proof. The terms in Eq. (3.3) are strictly convex and since the sum of convex functions is

also convex, the function will have at most one global minimum. This allows us to use the

Lagrangian multiplier system to find the optimal value for fn [22]. Thus, the Lagrangian

can be defined as:

 L =
N∑
n=1

κnf
α−1
n cn − λ

(
N∑
n=1

cn
fn
−D

)

Taking the derivative w.r.t. fn and λ we get:

δ L

δfn
= (α− 1)κncnf

(α−2)
n +

λcn
f2
n

= 0

δ L

δλ
= −

(
N∑
n=1

cn
fn
−D

)
= 0

that is,

fn =

∑N
n=1 cn

α
√

(α− 1)κn

D α
√

(α− 1)κn

Since the numerator includes a summation of parameters of all the tasks in the taskset,

the resultant equation can be simplified as:

fn =

∑N
j=1 cj

α
√
kj

D α
√
κn

3.1.2 Improved Task Model

In the previous section, we assumed that τn’s execution-cycles scale linearly with the oper-

ation frequency of the core during τn’s execution. However, this assumption does not take

the nonlinear memory cycle latency into consideration. In order to incorporate this non-

linearity into the task model, we adopt an improved task model where each task is defined

by the number of compute-cycles ccn to be executed by the CPU along with number of
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Figure 3-1: Improved task model reflects the change in compute ccn and memory cycles mcn
when DVFS is applied on a task τn assigned to core. Number of ccn remain constant while
the number of mcn decrease in order to compensate for the change in clock-cycle length of
the core

memory cycles mcn due to the memory subsystem [126].

cn = ccn +mcn (3.6)

In such models, when DVFS is performed on a task, the number of compute-cycles ccn

remains constant while the clock-cycle length of the core increases. However, since DVFS

– applied to the core subsystem – does not affect the frequency of the memory subsystem,

the execution time contributed by the memory-latency cycles remains constant. This is

because the memory latency cycles depend on the memory hierarcy and frequency of the

memory subsystem. Therefore, the number of memory-cycles mcn will decrease in order to

compensate for the increase in clock-cycle length as shown in Figure 3-1. Thus, en can be

defined as:

en =
ccn
fn

+
mcn
fmem

(3.7)

where fmem is the constant frequency of the memory subsystem.

Yun et al. [126] further elaborated the model by defining the power characteristics of

each task by the ratio of its compute and memory cycles. They do this by assigning different

activity factors to different modes of core operation where the activity factor during memory

cycles (sleep mode) is smaller compared to the activity factor during execution of compute

cycles (active mode). Thus, tasks with a larger compute-to-memory cycle ratio are assigned

higher activity factors. This is a reasonable assumption since clock gating technology can be

used to make the core consume less power during memory access/stall cycles by cutting off

the clock supply to various components of the core [93]. The authors verified their proposed
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Figure 3-2: Change in core-level dynamic power consumption of ccn and mcn when DVFS
is applied

model by measuring the activity factors of numerous applications on actual hardware to

achieve a maximum error of less than 2%. Thus, based on their proposed model, the

dynamic energy consumed by the core during task τn’s execution can be defined as:

Ecore dynn = κaf
α−1
n ccn + κsf

α
n

mcn
fmem

(3.8)

where κa and κs are core’s activity factors during compute- and memory-cycles with κa>κs.

The change in Ecore dynn when fn is reduced is depicted in Figure 3-2. Since κa > κs, the

power consumed by ccn is greater than that of mcn. When fn is reduced, the execution

length contributed by ccn is increased while that of mcn remains constant. However, the dy-

namic power consumed by mcn is also reduced since fn contributes to the energy consumed

by the mcn component as expressed in Eq. (3.8).

The heterogeneous nature of the execution-cycles, however, increases the intractability

of finding the optimal clock frequencies to minimize the energy consumption of the core.

This is explained in the following corollary.

Corollary 1. Considering the improved task model, the activity factor for each task can be

defined as

κn =
κaccn + κsmcnδn
ccn +mcnδn

(3.9)

where fn = δnfmem

Proof. Given that fmem is a constant, fn can be related to fmem by a task specific factor

δn, causing the optimal frequencies of the tasks to be different from each other.

κnf
α
n (
ccn
fn

+
mcn
fmem

) = κaf
α−1
n ccn + κsf

α
n

mcnδn
fmem
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Since fn = δnfmem,

κn =
κaccn + κsmcnδn
ccn +mcnδn

The activity factor of each task depends on the ratio of fn to fmem. A closed-form solution

is difficult to achieve in this case since κn is now a function of the optimization variable

fn.

As a consequence to Corollary 1, we propose a convex optimization formulation to find

the optimal frequencies fn. Moreover, we include the static power consumption of the core

into the energy equation to get the total energy consumption of the core subsystem. The

static power and energy components are independent of the activity factor and can be

defined as,

P core sta = ks1f + ks2

Ecore sta = (ks1f + ks2)en

where ks1, ks2 are non-negative constants. Thus, core-level energy consumption of τn is

defined as:

Ecoren = κaf
α−1
n ccn + κsf

α
n

mcn
fmem

+ (ks1f + ks2)en (3.10)

3.1.3 Optimization Problem 1: Core-Level

The goal in our optimization problem is to find the optimal frequencies that will minimize

the energy consumption of the core while ensuring that the total execution length does not

exceed D.

min
fn

N∑
n=1

κaf
α−1
n ccn + κsf

α
n

mcn
fmem

+ (ks1f + ks2)en

s.t.

N∑
n=1

ccn
fn

+
mcn
fmem

≤ D; fmin ≤ fn ≤ fmax

(3.11)

Optimization solvers [41, 83] can be used to determine the optimal frequencies for each

task.

3.2 Cache-Level Energy Optimization

Caches occupy a large area of the die and contribute significantly to the energy consump-

tion of the system. However, energy minimization of the cache subsystem has received little
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Figure 3-3: Cache partitioned task model

attention by the real-time community. The majority of works on energy-minimization for

real-time systems have focused only on the core subsystem. In this section, we investigate

techniques to minimize the energy consumed by the cache subsystem during a task’s exe-

cution. We adopt the cache partitioning model and incorporate the CP attribute into the

improved task model proposed in the previous section.

Due to the interactivity between the core and memory subsystems, tasks running on the

core will require access off-chip cache if the requested data is not found in the on-chip caches.

We adopt a way-based cache partitioning scheme proposed in [28, 122] where the of-chip

cache is divided into A number of CPs represented as W = {w1, w2, .., wA}. Furthermore,

the number of memory cycles mcn can vary based on the number of CPs an allocated to

the task τn where 1 ≤ an ≤ A [26]. Thus, mcn of each τn can be defined by a table with A

columns indexed by an, i.e., mcann = {mc1
n,mc

2
n..mc

A
n }. A smaller an will increase mcn due

to an increase in cache miss-rate. Such a model is depicted in Figure 3-3 where W represents

the CPs and C represents the executing core. Cache ways that have not been assigned to

τn can be switched-off to reduce energy consumption via the selective-way energy saving

approach [91].

Similar to the core-level energy consumption, the cache-level energy consumption is

composed of both static and dynamic components [112]. Since we assume the cache to

be switched-off during periods of inactivity, the total energy consumption of the cache

subsystem can be defined as the sum of cache energy consumed by each individual task τn:

Ecache =

N∑
n=1

Ecachen

Ecachen = Ecache dynn + Ecache stan

Ecache dynn = Nac
n E

ac +Nms
n Ems

Ecache stan = P cache sta
an
A
en

(3.12)
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Figure 3-4: Cache energy consumption vs. cache ways assignment

The dynamic energy depends on the number of cache hits and misses experienced by a task.

The number of cache accesses Nac
n and cache misses Nms

n can be found by static profiling

techniques and depend on mcn, an and the instruction characteristics of the task. Values

for cache access energy Eac, cache miss energy Ems and cache static power P cache sta can

be derived via CACTI [109]. The cache energy consumption can vary based on the value

of an assigned to τn. Decreasing an will decrease the static energy consumption Ecache sta

since fewer CPs will be on, but at the same time may increase the cache miss-rate resulting

in an increased cache dynamic energy consumption Ecache dyn as shown in Figure 3-4.

We propose a greedy algorithm that finds the values of an for each task τn in order to

reduces the energy consumption of the cache. Since our aim is to minimize the cache-level

energy consumption, we keep the core-level power parameters constant. Thus, the opti-

mization problem is defined as,

Optimization Problem 2: Cache-Level

min
fn

N∑
n=1

Nac
n E

ac +Nms
n Ems + P cache sta

an
A
en

s.t.

N∑
n=1

ccn
fn

+
mcann
fmem

≤ D; 1 ≤ an ≤ A

(3.13)

Algorithm 1 attempts to minimize cache energy consumption by iteratively selecting

tasks that have a minimum impact on the total execution length. Tasks are first assigned

maximum CPs (line: 2) and are then selected based on their impact on the total execution

length (lines: 4-5). Doing so will permit greater number of tasks to reduce their CPs.
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ALGORITHM 1: Cache Energy Optimization

1: Output: an;
2: an = A ∀i;
3: while Tasks are extendable do
4: change = mcn[an]−mcn[an − 1];
5: Select task with minimum change;
6: an = an − 1;

7: Update en and Ecachen of τn accordingly;

8: if (
∑N
n=1 en > D||Ecachen (an + 1) < Ecachen (an)) then

9: an = an + 1;

10: Update en and Ecachen of τn;
11: Mark τn as non extendable;
12: end if
13: end while

This continues until the deadline is met. Since we are considering both dynamic and static

energy, the energy curve for each task is strictly convex. We must, therefore, ensure that

reduction in CPs does not increase the total energy consumption due to increase in dynamic

energy from increased miss-rate (lines: 8-12).

3.3 System-Level Energy Optimization

In Section 3.1 and 3.2, we proposed solutions to minimize the energy for the core and cache

subsystem. In this section, we propose a method to minimize complete system-level energy.

Hence, the goal is to find optimal values for fn and an that will minimize the overall energy

consumption which is defined as:

Optimization Problem 3: System-Level

min
fn

N∑
n=1

[[κaf
α
n

cn
fn

+ κsf
α
n

mcann
fmem

+ (ks1f + ks2)en]

+ [Nac
n E

ac +Nms
n Ems + P cache sta

an
A
en]]

s.t.
N∑
n=1

cn
fn

+
mcann
fmem

≤ D; fmin ≤ fn ≤ fmax; 1 ≤ an ≤ A

(3.14)

Optimizing both subsystems together increases the complexity of the energy minimiza-

tion problem. We, thus, propose a Genetic Algorithm (Algorithm 2) to utilize the numerous

degrees of freedom in the optimization variables. GAs have been widely used in numerous

domains and are considered to be one of the most powerful techniques in solving optimiza-

41



Table 3.1: Genetic algorithm chromosome

τn 1 2 3 4 5 6 7 8

fn 150 180 60 50 200 110 75 63

an 4 7 2 8 5 3 4 2

tion problems [87].

Within the context of our proposed optimization problem, the chromosome is repre-

sented by the frequencies fn and CPs an of each task in the taskset. Thus, the chromosome

can be viewed as a Two-Dimensional (2D) array with n columns and 3 rows as shown in

Table 3.1.

ALGORITHM 2: System Energy Minimization

1: Output: a∗n,f∗n
2: Input: an, fn
3: Generate initial Population
4: Assign fitness of the initial population
5: while termination condition not met do
6: Select parents
7: Perform crossover
8: Randomly select genes from each parent
9: Swap selected genes to create children

10: For each child check feasibility
11: Discard child if not feasible
12: Perform Mutation
13: For each child
14: Increment/decrement an or fn to decrease En
15: end while
16: Evaluate fitness of children
17: Replace population with new generation

Algorithm 2 gives a pseudo-code of the proposed approach. The initial population is

generated by randomly selecting values for fn and an (line: 2-3). Parents are selected based

on a roulette wheel approach (line: 5). For the crossover operation, genes (tasks) of the

parent chromosome are randomly selected and swapped to create child chromosomes. Task

execution time en and energy En are updated accordingly (lines: 6-8). Feasibility condition

is maintained by ensuring the total execution time does not exceed the deadline, D (lines:

9-10). Feasible child chromosomes then undergo a mutation operation where either fn or an

is changed in order to decrease the total energy consumption (lines: 11-13). The crossover

and mutation operations are performed with probabilities of 0.8 and 0.6 respectively. The
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energy consumption curves for core and cache are both non-monotonic based on their opti-

mization variables fn and an, respectively. Consequently, both increment and decrement of

optimization variables must be evaluated to ensure convergence towards a minima. After

ensuring the feasibility of the mutated chromosomes, the current population is replaced

with the new generation (lines: 15-16). This continues until the energy consumption fails

to decrease any further, resulting in energy favorable task parameters a∗n and f∗n.

3.4 Simulation Results and Discussion

In this section, we present simulation results for the proposed optimization problems and

perform experiments to show how the cache can play a significant role in influencing the

energy consumption of the system.

3.4.1 Experimental Setup

We modeled our taskset based on real-world application benchmarks, SPEC-CPU2000 [55].

Instruction count, miss-rates and load/store ratios of each benchmark for various cache sizes

have previously been collected by authors in [25]. This available data was used to create

a synthetic benchmark. The miss-rate and load-store ratio of a randomly selected SPEC-

CPU2000 benchmark were used to model the ccn and mcn of a task τn for a specified cache

size. The instruction count of the selected benchmark was randomly generated to introduce

variability in the execution length of the task τn. We have used cache sizes of 8 kB, 16 kB,

32 kB, 64 kB and 128 kB with 8 ways as shown in Table 3.2. We use the technique proposed

in [63] to define the deadline of the taskset as: D = (1 + df )× ft, where df is the deadline

factor which can be set to 0.05, 0.1, etc., and ft is the finish time of the last task in the

schedule.

Parameters for the power model are taken from [126], i.e., κa = 0.51, κs = 0.22 and fn =

[20, 200] MHz while fmem is fixed at 200 MHz. The cache energy consumption parameters

are retrieved from CACTI for 68 nm technology [109].

3.4.2 Energy Savings for Different Optimization Techniques

Figure 3-5 shows the energy saving percentages for the three optimization techniques pro-

posed in the framework for n = 10 tasks with df = 0.15 and a cache size of 16 kB. OPT-1,
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Table 3.2: Memory cycles (mcn) vs. CP (an) for SPEC-CPU2000 for task length of 100
cycles

an 1 2 3 4 5 6 7 8 Benchmarks

mcn

38 19 12 5 5 4 3 2 164.gzip
66 49 49 49 49 49 49 49 173.aplu
74 29 25 20 19 18 16 15 178.galgel
66 18 12 5 5 4 3 2 189.lucas
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Figure 3-5: Energy savings for different proposed optimization techniques

OPT-2 and OPT-3 refers to the optimization algorithms proposed for core-, cache- and

system-level energy minimization, respectively. For each optimization problem, the impact

on energy saving of the core subsystem, cache subsystem and complete system (core+cache)

are shown.

For the core-level energy optimization problem (OPT-1), the MATLAB fmincon func-

tion was used to obtain to optimal frequencies fn in Eq. (3.11). As expected, results show

considerable energy savings for the core subsystem with a negative impact on the cache

subsystem. The decrease in core frequency increases the tasks’ execution length and thus

elongates the length of time for which the assigned CPs are active. Since the CPs for each

task are fixed, the cache energy is increased due to an increase the static energy component.
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Figure 3-6: Energy savings for the proposed energy optimization techniques against different
cache sizes

44



OPT‐1 (Cor OPT‐1 (Cac OPT‐1 (SystOPT‐2 (Cor OPT‐2 (Cac OPT‐2 (SystOPT‐3 (Cor OPT‐3 (Cac OPT‐3 (System)
0.05 32.29545 ‐10.5312 5.932407 1.226779 17.88352 11.49082 15.04525 13.39766 14.02143
0.1 37.01572 ‐12.8999 6.726226 0.153996 13.58957 8.333893 18.2414 9.176414 12.76076

0.15 41.55113 ‐15.2241 6.924969 1.001007 15.33194 9.726792 25.4593 9.534326 15.72932
0.2 45.43143 ‐18.791 5.695188 1.102427 14.19431 9.257838 30.9397 7.045391 16.23077

0.25 50.28826 ‐20.392 6.263813 2.170516 17.3738 11.62658 35.64925 9.357918 19.26799
0.3 50.74407 ‐23.7057 4.99898 0.314502 17.0113 10.58168 35.63082 8.890134 19.23049

0.35 53.69837 ‐25.9252 4.483847 1.228964 17.31881 11.16447 39.24676 8.393667 20.18245
0.4 55.71459 ‐29.4082 2.8799 1.936131 17.91679 11.83511 38.27852 8.852522 20.13476
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Figure 3-7: Energy savings for (a) different number of tasks, n and (b) different values of
deadline factor df

Initializing the taskset with fewer CPs can reduce the cache static energy consumption but

may also increase the cache dynamic energy consumption along with reducing the slack

available for core DVFS.

For the cache-level energy optimization problem (OPT-2), Algorithm 1 attempts to

reduce the value of an for each task which reduces the static cache energy consumption

resulting considerable energy saving for the cache subsystem. The slight increase in energy

savings for the core is explained below in Section 3.4.3.

For system-level energy optimization via GA (OPT-3), the energy savings for each indi-

vidual subsystem (either cache or core) are less than those achieved through the subsystem-

specific optimization techniques. However, the system-level savings are better because the

GA simultaneously attempts to optimize both subsystems.

3.4.3 Energy Savings vs. Cache Size

Figure 3-6 shows how energy savings change as the cache size is varied from 8kB to 128kB.

For OPT-1, core energy savings decrease as the cache size is increased. This is because

mcn dominates the execution cycles for smaller cache sizes resulting in greater slack per

ccn available for DVFS. Cache energy savings for OPT-1 initially decrease as the cache

size is increased due to an increase in static cache energy consumption. However, for very

large cache sizes, e.g., 128kB, energy savings tend to increase again because the reduction

in dynamic energy consumption, due to a reduced miss-rate, dominates the cache energy

profile.

For OPT-2, core energy savings decrease as the cache size increases because Algorithm 1

starts with a minimum core energy consumption since original values of an are initially

replaced with full CPs A for all tasks. After the algorithm completes, some tasks may still

45



have an values greater than the original an assignment, thus, resulting in increased energy

savings. However, as the cache-size increases, the change in miss-rate at higher values of an

are less significant, permitting greater reductions in an, thus causing an to become smaller

than the original assignment.

This reason also holds true for the cache subsystem where the energy savings increase

significantly with an increase in cache size due to the reduced static energy consumption

component. Similar trends are also observed for OPT-3.

3.4.4 Energy Savings vs. Number of Tasks

Figure 3-7 (a) shows the energy savings as n is increased from 10 to 50 for df = 0.15

and for a cache-size of 16kB. Energy savings remain the same across number of tasks and

optimization techniques. This is understandable since the amount of slack available per

task remains the same for the same value of df .

3.4.5 Energy Savings vs. Deadline Factor

Energy savings as df is varied from 0.05 to 0.4 for 16kB cache-size is shown in Figure 3-7 (b).

Core energy savings for OPT-1 and OPT-3 increase with df because more slack is available

for DVFS as df is increased. Increased slack utilization consequently has a negative impact

on OPT-1 cache energy consumption. Energy savings for OPT-2 remain constant because a

small value of df is sufficient for Algorithm 1 to find values for an that minimize the energy

consumption.

3.5 Discussion

Cache energy minimization is usually neglected in the real-time systems domain even though

it significantly contributes to the overall system energy consumption. For this reason, we

improved existing execution task models by incorporating the change in execution time and

energy consumption brought about by the number of CPs assigned to a task. We then used

the proposed model for a 3D energy optimization problem, i.e., minimizing the core-, cache-,

and system-level energy consumption, in order to demonstrate the effects that caches have

on the energy consumption of various components of the system. Results demonstrated

that the cache energy optimization plays a major role in overall energy minimization.
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Chapter 4

Cache-Aware Energy-Efficient Scheduling

on Homogeneous Multicores

Despite the overwhelming research on energy-efficient scheduling algorithms for multicore

real-time systems, existing algorithms are oblivious to the unpredictable nature of shared

caches or cache partitioning techniques, as discussed in Chapter 2. Since predictability is

a major concern for real-time systems, such algorithms cannot ignore these caching effect

and will otherwise diminish their applicability to practical scenarios.

Therefore, in this chapter, we extend the initial investigations on an improved task and

system model for energy minimization, performed in the previous chapter, for the homoge-

neous multicore setup. In particular, the problem of scheduling cache-aware independent

frame-based tasks to minimize system-level energy consumption is considered. In this work,

we make use of the dynamic CP (task-based) scheme to take advantage of its increased flex-

ibility, schedulability and energy-efficiency against the static CP (core-based) scheme. Since

the simple task-to-core allocation problem in itself is NP-Hard, the overall objective is bro-

ken down into sub-problems to develop efficient and tractable solutions. The problem is

divided into three non-trivial sub-problems: (i) cache-aware task-to-core mapping to mini-

mize schedule length, (ii) modeling the inter-core dynamic CP interference, and (iii) utilizing

the model to minimize the system-level energy consumption. We make assumptions that

aim to build upon recently proposed and improved frameworks. Based on these assump-

tions, we then present proofs to further corroborate the cache-aware scheduling techniques

proposed in this chapter. Specifically, this chapter makes the following contributions:

• We start with formulating an algorithm for makespan minimization of cache-aware

independent frame-based tasksets.

• We then show how directly applying existing cache-oblivious energy minimization

schemes on task-models accompanied with CPs can result in cache violations and

then explore ways to decrease the energy consumption of tasks without any inter-core
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dynamic CP interference model.

• We then continue to propose a novel approach to model the inter-core dynamic CP

interference as a dependency graph, called Cache Dependency Graph (CDG).

• Finally, we present experimental results to demonstrate how existing algorithms can

take advantage of our proposed approach to minimize the core-, cache-, and system-

level energy consumption of tasksets modeled with CP requirements.

It is important to note that the proposed approach focuses on facilitating existing

energy-efficient scheduling algorithms to accommodate the shared cache unpredictability

and energy-consumption in their energy minimization problem. Therefore, to exhibit the

effectiveness of energy minimization using our proposed CDG, we present the results using a

well-established core-level energy-efficient scheduling algorithm [102] to reduce system-level

energy consumption. However, since such existing algorithms are designed to minimize only

the core-level energy consumption, utilizing the proposed CDG model does not guarantee

system-level energy minimization. We, therefore, propose a CP-gradient approach to re-

duce only the cache-level energy consumption. We then combine both core- and cache-level

techniques to propose an algorithm designed for system-level energy minimization.

4.1 System and Task Model

In this section, we adapt the improved task model, proposed in the previous chapter, to a

homogeneous multicore setting. We also employ another commonly used power-model to

indicate the universal applicability of the improved task model. With the presented models,

we then show how cache-oblivious scheduling can disrupt the correctness of the schedule

and argue upon the need for new CP-aware scheduling techniques for system-level energy

minimization. In this section, we adapt the improved task model, proposed in the previous

chapter, to a homogeneous multicore setting. We also employ another commonly used

power-model to indicate the universal applicability of the improved task model. With the

presented models, we then show how cache-oblivious scheduling can disrupt the correctness

of the schedule and argue upon the need for new CP-aware scheduling techniques for system-

level energy minimization.
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4.1.1 Task Model

We consider a multicore platform with M identical cores represented as O = {o1, o2, .., oM}

and adopt the way based cache partitioning scheme used in the previous chapter, where the

shared cache is divided into A number of partitions represented as W = {w1, w2, .., wA}.

We consider a set of N independent frame-based tasks represented as Γ = {τ1, τ2, .., τN}.

Each task τn < ccn,mcn, an, fn, en, dn, rn, Rn > can be defined by computation cycles ccn,

memory cycles mcn, CPs an, core frequency fn, execution time en, deadline dn, start time

rn and finish time Rn.

Each task is composed of two sets of cycles; (i) constant compute cycles ccn that are

executed by the CPU , and (ii) variable memory cycles mcann = {mc1
n,mc

2
n..mc

A
n } due to

shared cache latency. The number of compute cycles remain constant while the memory

cycles can change according to the CPs assigned to τn. Furthermore, since DVFS is only

applied to the cores, the frequency of the core fn only affects the cycle-length of ccn, thus,

increasing the execution time contributed by the compute cycles, while the execution time

due to memory cycles remains constant. The execution time en can, therefore, be defined

as:

en =
ccn
fn

+
mcann
fmem

(4.1)

where fn is the core-frequency when τn is executing and fmem is the constant memory

frequency. The en can change based on the variables fn and an, i.e., a smaller an assign-

ment may increase the cache miss-rate, increasing the number of memory cycles due to

off-chip memory access. Similarly, decreasing fn will increase the clock cycle length of the

computation cycles, increasing en. A dynamic CP scheme is adopted where the CPs are

considered as a global resource and scheduled tasks must acquire the required number of

CPs before they can execute. Depending upon the availability, ready tasks can use any of

the unengaged CPs. Similar to other works, e.g., [122], we assume that the overhead due to

intrinsic cache misses is already included in the WCET of the tasks. In line with previous

studies, we assume a common deadline of dn = D for all the tasks [45,63,79].

4.1.2 Power Model

We adopt another classical power model consisting of dynamic and static power components

which is defined by the operating voltage and frequency of the core. We assume the core to

49



be switched off when it is idle, i.e, when no task is executing. Switching-off the core has an

associated time and energy cost. Solutions have been proposed to account for this cost by

defining break-even parameters to justify a transition in terms of energy minimization [6].

However, to simplify the analysis, we assume that these costs are already factored into the

WCET and energy of the task. Thus, the total power can be expressed as the sum of power

consumed by individual tasks.

P coren = P core dynn + P core stan = κnV
2
n fn + VnIn (4.2)

where κn is the capacitive switching activity factor, Vn is the supply voltage, fn is the core

clock frequency, and In is the leakage current during τn’s execution. In can be calculated

with the following [126]:

In = k̂1e
Vnk̂2 (4.3)

where k̂1 and k̂2 are constants. The clock cycle time tn is related to the core-frequency as

follows:

tn =
1

fn
=
k̂3[Vn − Vt]2

Vn
(4.4)

where Vt is the voltage threshold. With the improved task model consisting of compute-

ccn and memory- mcn cycles, the energy consumption of the core during τn’s execution can

be defined as:

Ecoren = κaV
2
n ccn + κsV

2
n fn

mcann
fmem

+ VnInen (4.5)

where κa and κs are the core switching activity factors for active mode and sleep mode,

respectively.

The cache energy model presented in Chapter 3 is used to define the total energy con-

sumption of the system due to τn’s execution as:

En = Ecoren + Ecachen (4.6)

4.1.3 Problem Formulation

Existing multicore energy-efficient algorithms are oblivious to the unpredictable nature of

shared caches or recent cache partitioning models that isolate the shared cache unpre-

dictability from the WCET of a task. Directly adapting existing algorithms to a dynamic
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CP scenario can result in cache-violations, i.e., multiple tasks using the same CPs at the

same time instant. These violations may increase the cache miss-rate of the tasks due to

cache-line evictions, resulting in longer and unpredictable execution times, and ultimately

deadline misses. The predicted energy savings may also be exaggerated from the actual sce-

nario. This is because in a cache-aware schedule, which safeguards against cache-violations,

a task may be delayed due to insufficient CPs even if an idle core is available, thus, resulting

in comparatively less slack for DVFS to utilize.

We, thus, define a valid schedule as one that ensures timely completion of tasks while

preventing any cache violations. Making use of the model proposed in the previous section,

Figure 4-1 displays a scenario where DVFS is performed on a system with M = 2 cores

and W = 8 CPs for N = 4 tasks with en and an values for each task as Γ = {τ1 <

3, 4 >, τ2 < 2, 2 >, τ3 < 2, 4 >, τ4 < 2, 7 >}. In Figure 4-1 (a), tasks are partitioned without

considering the task CP assignments. After DVFS, the tasks are elongated uniformly till the

deadline to achieve considerable energy savings, however, the cache violations are evident.

In Figure 4-1 (b), tasks are partitioned while taking the CP assignments into consideration.

The inter-core dynamic CP interference, i.e., blocking imposed by tasks due to their CP

assignments, prevents some tasks from execution. This unavailability of CPs increases the

schedule length compared to the one in Figure 4-1 (a). Therefore, there is less slack available

for the DVFS resulting in reduced energy savings, but with the benefit of no cache violations.

In the following sections, we will present techniques to tackle this dynamic CP-aware en-

ergy minimization problem for system-level energy consumption while ensuring valid sched-

ules.

4.2 Makespan Minimization

Minimizing the makespan of the schedule is a favorable first step to minimize the energy-

consumption for independent frame-based tasksets [30]. Makespan minimization is anal-

ogous to the bin-packing problem which is NP-Hard. To keep up with the literature, we

also attempt to minimize the makespan for our problem setup. However, considering the

CPs of the tasks during makespan minimization increases the intractability of the problem.

This is because, along with reducing the schedule length, the cache constraints must also
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Figure 4-1: Energy minimization with cache contention

be ensured throughout the schedule, i.e., at any point in time, the sum of CPs required by

the executing tasks cannot exceed the total partitions available in the cache.

As stated in Section 4.1, tasks executions are statically assigned to specific cores while

CPs are mapped according to the availability of cache ways. Thus, the goal is to find a

task-to-core mapping Π, i.e., τn → om ∀τn ∈ Γ ∧ ∀om ∈M , such that the schedule length

is minimized. During the mapping process, the execution time en can only be mapped to

an idle core. Furthermore, en must be pushed forward on the core’s execution path if there

are insufficient idle CPs to accommodate τn’s CPs an even if the core is idle. Therefore,

the following constraints must be ensured i) Core constraint: the number of tasks placed in

parallel does not exceed the number of cores and ii) Cache constraint: the CPs utilized by

the tasks in parallel do not exceed the total number of CPs.

However, for homogeneous cores, i.e., identical cores, if we can ensure that the number

of parallel tasks do not exceed the core count, it is not necessary to determine the specific

core to which a task should be mapped. Rather, the task can be mapped to any of the

idle cores. This reduces the complexity of the problem and allows it to be simplified to the

Two-Dimensional-Strip-Packing-Problem (2DSPP) [82].

The goal in the 2DSPP is to minimize the height required to pack a set of rectangular

objects onto a vertical strip of fixed width. A task’s CPs an, execution-time en and schedule-
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length of the taskset can be considered as the rectangle width, rectangle height and strip

height, respectively in the 2DSPP. Ensuring that the number of rectangles placed in parallel

do not exceed the number of cores, if a rectangle is placed at a position in the strip, there

must be a core available at that point in the execution schedule to execute the task. The

result of the 2DSPP problem is the Cartesian position of each rectangle in the strip which

can be transformed into the placement of each task’s CP requirement in the original problem

as shown in Figure 4-2 (a) and (b).

Since this problem is also NP-Hard, we propose a heuristic solution for the 2DSPP along

with the extra restriction on the number of tasks that can be placed in parallel.

Algorithm 3 gives the pseudo-code of our proposed heuristic solution. The algorithm

iteratively searches for empty spaces in the strip to best-fit a task. If no task can be placed

in the selected gap, the gap is vertically filled so that a new gap can be found in the next

iteration (lines: 7-9). Since the tasks are placed bottom to top, if a task placement results

in the number of parallel tasks to exceed the number of cores, the task is removed and the

gap is vertically filled at the bottom by 1 unit before making another attempt in the next

iteration (lines: 10-12). After a task is successfully placed, its corresponding core allocation

in the original problem can be made by selecting an idle core with the minimum finish time

(lines: 14-16).

ALGORITHM 3: 2DSPP Makespan Minimization

1: Output: rn, Rn,Π;
2: Input: Γ,M ;
3: Sort τn ∈ Γ in decreasing order of an;
4: while ∃τn /∈ Π do
5: Find lowest free gap in the strip;
6: Find τn that can best-fit into the gap;
7: if τn cannot fit into gap completely then
8: Fill the gap;
9: Continue;

10: else if τn placement will violate core constraint then
11: Fill the gap vertically by 1 unit;
12: Continue;
13: else
14: Place τn in gap;
15: Assign τn to idle core with minimum finish time;
16: end if
17: end while

With a method to obtain a valid task-to-core mapping that minimizes the schedule

length, the following section investigates different DVFS techniques that will maintain a
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valid schedule.

4.3 Valid Schedules

Assuming a cache-aware pre-mapped taskset Π, it remains to minimize the energy con-

sumption of the tasks while ensuring the schedule is valid. Without any method to model

the inter-core dynamic CP interference, one way to apply DVFS without causing cache

violations is to stretch the exact schedule uniformly until the deadline, i.e. the elongated

schedule is a stretched version of the original schedule as shown in Figure 4-1 (b). This is

proved in the following lemma.

Lemma 1. Without any method to model the inter-core dynamic CP interference, stretching

the schedule uniformly until the deadline will always result in a valid schedule.

Proof. Consider a cache-aware pre-mapped valid schedule Π. Suppose that the original

mapping is stretched by a factor s resulting in a schedule Πs where s = D/Rl and Rl is the

finish time of the last task in the schedule. The stretched version of the original schedule

ensures that any tasks τj that start after τi, i.e., rj = Ri + ∆ in Π will still continue to

do so by the factor s, i.e., rjs = Ris + ∆s in Πs since both tasks τi, τj and slack between

the tasks ∆ are elongated by the same factor s. Since all the tasks and their related slacks

are elongated by the same factor, there will be no extra overlap of tasks executions or task

CPs. Thus, ensuring Πs to be a valid schedule.

Following Lemma 1, we must now determine a DVFS scheme that constructs a valid

schedule.

Corollary 2. For a simplistic task model where all tasks are assumed to have the same

power characteristics, static global DVFS can be used to construct a valid schedule.

Proof. Under static global DVFS, all tasks will execute at a common global frequency fg.

As the tasks have homogeneous power characteristics, the activity factor κn (defined in

Chapter 3: Eq: 3.9) for all tasks will be the same. That is,

κacci + κsmciδi
cci +mciδi

=
κaccj + κsmcjδj
ccj +mcjδj

∀i∀j
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Since applying the global frequency implies that the ratio of compute to memory cycles for

all task must be same,
cci
mci

=
ccj
mcj

∀i∀j

the resultant scaling factor will also be the same for all tasks

si = sj ∀i∀j

where si = D/fg

For tasks with different power characteristics, global DVFS will no longer guarantee a

valid schedule.

Corollary 3. For tasks with different power characteristics, each task τn will run at a

frequency f̂n in order to obtain an valid schedule

Proof. Given that each task is scaled by the global scaling factor s, we must find find the

frequencies of each task that will cause the tasks to scale by the same factor s.

ên = ens

ccn

f̂n
+
mcann
fmem

= s(
ccn
fn

+
mcann
fmem

)

f̂n =
ccnfn

ccns+ mcann
fmem

fns− mcann
fmem

fn

f̂n =
ccnfn

ccns+ mcann
fmem

fn(s− 1)

Though this approach results in a valid schedule, it restricts the energy-saving capabil-

ities of the DVFS method since the schedule pattern remains the same and slack may still

be available between the task executions for DVFS to utilize. However, since there is no

method to model the inter-core dynamic CP interference, elongating any task with hopes

to utilize the unused slack may result in cache-violations.

Lemma 2. Without any method to model the inter-core dynamic cache contention, tech-

niques other than that proposed in Lemma 1 may result in an invalid schedule
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Proof. By contradiction, we assume that without any method to model the inter-core dy-

namic CP interference, other ways to elongate the tasks will always result in a valid schedule

Πc. We consider two tasks τi and τj mapped onto different cores where rj = Ri + ∆ and

ai + aj > A. Contrary to the schedule proposed in Lemma 1, Πc will elongate the tasks τi

and τj and slack between them ∆ by different scaling factors, i.e., τi is scaled by a factor si

and ∆ is scaled by a factor s∆. If si >> s∆ such that rjsj < Risi+∆s∆, then the resultant

elongations will result in a CP overlap and, therefore, a cache-violation, which contradicts

the assumption that Πc is a valid schedule.

Based on the analysis presented above, uniformly stretching the schedule will always

guarantees a valid schedule. However, this method nullifies the decades of research put into

trying to utilize the available slack most effectively. In the following section, we propose our

novel approach to model the inter-core dynamic CP interference to achieve better energy

savings.

4.4 Cache Dependency Graph (CDG)

This section presents our novel technique to model the inter-core dynamic cache contention.

At this point, we assume that the taskset is mapped across the cores using the heuristic

algorithm presented in Section 4.2. We now model the CP interference of the allocated

tasks by creating dependencies among tasks that are blocked due to insufficient CPs.

Our proposed technique converts the independent mapped taskset into a dependent

taskset based on the inter-core dynamic cache-contention as shown in Figure 4-2 (b) and (c).

4.4.1 Rules For Creating Dependencies

Given a pre-mapped taskest Π, we introduce the concepts of single-blocking and poly-blocking

on a DAG representation of Π.

Definition 1: τj is said to be single-blocked by τi if there is a single edge from node τi

to node τj , shown as dotted edges in Figure 4-2 (c).

The rules for creating single-blocking dependencies among the tasks are as follows:

(a) Same-core Blocking: Given two tasks τi and τj executed in succession on the same

core, there will be a single-blocking edge from τi to τj
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Figure 4-2: Makespan minimization for a cache-aware independent frame-based taskset Γ
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(a) Illustration of 2DSPP, (b) Corresponding task-to-core mapping and (c) Resultant CDG.

(b) Cache Blocking: Given two tasks τi and τj to be executed on different cores where

Ri ≤ rj , there will be single-blocking from τi to τj if ai > A− aj

(c) Chain Blocking: If τi single-blocks both τj and τk, and τj single-blocks τk. We

can then ignore the dependency between τi and τk due to the chain blocking, therefore,

simplifying the DAG.

Definition 2: τj is said to be poly-blocked by a combination C of two or more tasks if

there is a combinatorial edge from nodes τi ∈ C, shown as solid edges in Figure 4-2(c). The

rule for creating poly-blocking dependencies among the tasks is a follows:

(a) For tasks τi which start with or before τj and cannot separately single-block τj ,

there will be poly-blocking among different combinations of these tasks. Such tasks can be

grouped into a set PBj ← τi : ri ≤ rj ∧ai ≤ A−aj . We define a poly-blocking combination

C ⊂ PBj :
∑

τi∈C ai > A− aj .

4.4.2 Algorithm for the Creation of CDGs

In Algorithm 4, tasks are first sorted in ascending order of their start times (line: 3).

A poly-dependency queue PolyQ is created to collect candidates for poly-blocked tasks

57



(line:4). The outer loop (lines: 5-22) iteratively selects each task τi from the taskset.

Counter count is used to prevent a task from creating further dependencies once successive

tasks on each core are single-blocked. The inner loop (lines: 7-21) then selects the next

task τj from the taskset. If Same-Core or Cache single-blocking dependencies exist, single-

blocking dependencies are created accordingly (lines: 8-14). If none of the conditions are

satisfied, then the task is considered a candidate for poly-blocking (lines: 15-20). τj is added

to polyQ and τi is added to PBj accordingly. Once all the single-blocking dependencies

are recognized, another loop (lines: 23-26) creates poly-blocking dependencies. Tasks are

iteratively extracted from polyQ, and all combinations of tasks in the PBj that can poly-

block τj under the poly-blocking dependency rule are added to the DAG. This DAG then

becomes a CDG and can be used by existing energy-efficient algorithms to scale the tasks

via DVFS to minimize energy consumption.

ALGORITHM 4: Creating Cache Dependency Graph

1: Output: CDG
2: Input: Γ, Π
3: Sort τi ∈ Γ in ascending order of their ri;
4: Create PolyQ;
5: for τi ∈ Γ do
6: Initialize count to equal M;
7: for τj ∈ Γ : rj ≥ ri do
8: if Same-core ‖ Cache (Blocking) then
9: if Chain Blocking then

10: Ignore single-blocking τi!→ τj ;
11: else
12: Create single-blocking τi → τj ;
13: end if
14: Decrement count and exit loop if equals 0;
15: else
16: if τj /∈ polyQ then
17: Add τj to polyQ;
18: end if
19: Add τi to PBj ;
20: end if
21: end for
22: end for
23: for τj ∈ polyQ do
24: Find all combinations of τi ∈ PBj that will block τj ;
25: Remove τj from polyQ;
26: end for

Note that the makespan minimization technique presented in the Section 4.2 is spe-

cific for independent frame-based tasksets with a common deadline. However, frame-based
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tasksets can also have arbitrary deadlines or precedence constraints, in which case other

techniques are required to map the tasks successfully onto the cores. Nonetheless, the CDG

approach presented in this section can be used for tasksets with arbitrary deadlines and

precedence constraints assuming that they are already mapped across the cores. This is

because the CDG mechanism will simply add dependencies to the existing dependencies of

the precedence constrained taskset and the arbitrary deadlines will be catered for via the

energy-efficient algorithm selected for energy minimization.

4.5 Energy Minimization

In Section 4.4, we presented a technique to model the inter-core dynamic CP interference in

the form of a CDG. Thus, the presented model can be adopted by existing, well-established,

energy-efficient algorithms to avoid cache-violations while minimizing the energy consump-

tion for a cache-aware scenario.

Energy minimization of the core subsystem has been the focal point for most multicore

energy-efficient algorithms in the literature. However, a relatively large portion of the

processor is occupied by caches contributing to a large percentage of the overall energy

consumption. With the continuous increase in cache sizes and the involvement of multicores

and many-cores, this percentage is likely to grow. Consequently, the contribution made

by caches to energy consumption can no longer be ignored. Thus, with the proposed

interference model, the cache energy consumption can be easily accommodated in the energy

minimization problem.

Using the 68 nm technology processor parameters [29, 60, 112] for the system model

proposed in Section 4.1, we show how the core subsystem, cache subsystem and system-

wide (core+cache) energy consumption can change with respect to the core-voltage Vn

during τn’s execution and the CPs an assigned to τn in Figure 4-3. The dynamic energy

consumption of the core subsystem for a task decreases when Vn is decreased, however,

it increases when an is increased (Figure 4-3 (a)). This is because a smaller an increases

the memory latency which increases the overall execution length of the task. A longer

execution length for the same Vn results in higher energy consumption. Contrary to what

appears in Figure 4-3 (c), the static energy consumption of the core should increase with Vn.

However, the decrease, in this case, is due to the task model adopted in this study. Since the
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Figure 4-3: Impact on energy consumption of a τn fluidanimate(PARSEC) by varying
the voltage Vn and CPs an. (a) Dynamic energy consumption of core. (b) Dynamic energy
consumption of cache. (c) Static energy consumption of core. (d) Static energy consumption
of cache. (e) Total energy consumption of core. (f) Total energy consumption of cache. (g)
Total energy consumption of complete system.
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change in voltage only affects the ccn portion of the task rather than the complete execution

length, the increase in execution length is not as significant as the decrease in static power

consumption resulting in an overall decrease in energy consumption. This pattern is more

apparent for a smaller an, e.g., an = 1, since a smaller CP assignment decreases the ccn to

mcn ratio. However, for a larger an where the ccn overwhelms the mcn, the conventional

trend is still noticeable. The overall core energy consumption is seen to decrease as Vn is

decreased. However, the energy curves are non-monotonic and the critical voltage, i.e., the

voltage at which the energy consumption is minimum, of the task is still apparent, e.g.,

critical voltage is 0.55 V for an = 8 (Figure 4-3 (e)).

Vn has no impact on the dynamic energy consumption of the cache subsystem (Figure 4-

3 (b)). However, reducing the number of CPs increases the cache miss-rate which increases

the dynamic cache energy consumption in accordance with cache energy model in Chapter 3.

For smaller values of Vn, the static energy consumption of cache is comparable to its dynamic

counterpart (Figure 4-3 (d)), however, it increases significantly as the Vn is decreased since

the CPs are active for a longer period of time. Furthermore, reducing an reduces the static

cache energy consumption. The overall cache energy consumption can be seen in Figure 4-

3 (f). Finally, Figure 4-3 (g) sums up the energy consumptions of both core and cache

subsystems and it is apparent that both core-voltage and CP variations have a significant

impact on the system-level energy consumption.

In this section, we investigate this fact further by proposing techniques for a 3D cache-

aware energy minimization problem, i.e., minimizing the core-, cache-, and system-level

energy consumption. For each sub-problem, we propose techniques that aim to minimize

the energy consumption of the specified component irrespective of its impact on the other

components of the system. Experimental results for the proposed techniques are also pre-

sented in this section. The performance metrics are based on the energy savings obtained

by adopting the proposed techniques against the energy consumed by the taskset in its

original state, i.e., without DVFS.

Since this study is the first of its kind in proposing a 3D cache-aware energy mini-

mization problem for homogeneous multicore real-time systems, the performance metrics

cannot be compared to those present in the literature. Thus, for baseline comparison, the

energy savings obtained by the proposed approach are compared against the energy savings

obtained by stretching the schedule uniformly till the deadline, which, to the best of our

61



knowledge, is the only way to guarantee a valid schedule while performing DVFS when there

is no method to model the inter-core dynamic CP interference. We have mentioned this

fact previously in Section 4.3. Along with the energy savings for the specific optimization

component for each sub-problem, we also demonstrate the impact of the specified technique

on the energy consumption of the other components of the system. For instance, for the

core-level energy minimization problem, we present the energy savings on the core along

with its impact on the cache and complete system energy consumption.

For the core-level energy minimization problem, we adapt existing algorithms to the CP

interference model. For the cache-level energy minimization problem, we propose a heuristic

that reduces the CPs for each task based on a CP-gradient metric. We then combine both

core- and cache-level techniques to minimize system-level energy consumption.

4.5.1 Experimental Setup

To evaluate the effectiveness of our approach, we conducted a series of simulations using

real-time workloads for the proposed system and task model.

Workload

We used the PARSEC [19] benchmark to represent real-time workloads that have been

extensively used by the real-time community [67, 121]. We collected the instruction count,

load/store ratio and miss-rates for each benchmark with various cache sizes and levels

of associativity using the Gem5 Simulator [20]. The collected benchmark statistics were

then used to create a synthetic benchmark, similar to the approach presented [23, 67].

Specifically, the cache hit and miss delay, taken from [67], along with instruction count,

the load/store ratio and miss-rates, collected from Gem5, were used to model the ccn and

mcn [54]. Table 4.1 gives an example of how mcn changes for different values of an.

A taskset is generated by randomly selecting one of the benchmarks from within the

suite for different taskset sizes [67]. We adopt the method proposed in [63] to set the

deadline of the taskset as: D = (1 + df )×Rl, where df is the deadline factor which can be

set to 0.0(D = Rl), 0.05, 0.1, etc., and Rl is the finish time of the last task in the schedule.
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Table 4.1: Example of scaled mcn vs. an for PARSEC benchmarks

an 1 2 3 4 5 6 7 8 Benchmarks

mcn

70 45 42 41 41 41 41 41 blackscholes
93 73 67 65 64 62 62 62 canneal
70 66 64 62 56 43 41 41 streamcluster
29 25 23 23 22 22 22 22 swaptions

System model

The system model parameters are taken from the classical and verified energy model of the

68 nm technology processor [29, 60, 112]. fmem is fixed at the maximum frequency of the

core for this model. The switching activity factor, however, is determined from the active

and sleep mode switching activity factors presented in [126], i.e., κa = 0.51, κs = 0.22.

The energy consumption parameters for the cache are retrieved from CACTI for 68 nm

technology [109] for a cache-line size of 64bytes. All of the results are shown for a 4 core

system with an 8-way 2 MB shared cache. However, we have also shown the trend in energy

consumption for varying number of cores (Figure 4-6) and cache-sizes (Figure 4-7).

4.5.2 Core-level Energy Minimization

The goal of this section is to minimize the energy consumption of only the core-subsystem

in a cache-aware scenario. Since many core-energy minimization algorithms are already

present in the literature, we propose to utilize these existing algorithms to demonstrate the

effectiveness of our inter-core dynamic CP interference model.

Existing algorithms utilize the slack available between task executions to elongate se-

lected tasks based on specified criteria. They then determine whether successor tasks must

be pushed forward in the schedule after elongation of a predecessor task via a DAG [84,87,

102]. These elongations continue until task deadlines are met.

The cache-related dependencies created among the tasks in our CDG model can be

used to mimic dependencies among predecessor and successor tasks. However, due to the

diverse nature of poly-blocking dependencies, successor nodes in the CDG are prevented

from unnecessary pushing, i.e., a successor is only pushed forward if the finish times of all

poly-blocking predecessors exceed the start time of the successor.

For our evaluation, we have used the algorithm presented by Schmitz et al. [102] that
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Figure 4-4: Core-level energy minimization with df = 0.05 and N = 30.

exploits a task’s energy-gradient to minimize the cores’ energy consumption. The energy-

gradient is defined as the change in energy consumption of a task when the voltage/frequency

of the core, during a task’s execution, is reduced. Tasks with higher energy-gradients are

iteratively selected for elongation until the deadline is met.

Core-level Techniques

Figure 4-4 shows the energy savings achieved using our CDG method against the base-

line technique termed as Exact. Our proposed CDG model is combined with the energy

minimization algorithm proposed in [102], termed as CDG+CoreG. The results display

the energy savings obtained for each subsystem, i.e., core, cache and complete system

(core+cache) along with the contributions made by the dynamic and static components of

each subsystem.

We will use Core (dyn), Cache (dyn), Core (sta), Cache (sta), Core (tot), Cache (tot)

and System (tot) for Core dynamic, Cache dynamic, Core static, Cache static, Core total,

Cache total, and System-level total energy consumptions, respectively in all future results

and discussions.

Results show the proposed CDG method to outperform the baseline technique. The

dynamic energy portion of the cache remains the same since the number of CPs for each task

remains constant resulting in a constant miss-rate. However, the static energy consumed by

the cache increases since the CPs for each elongated task, brought about by DVFS at the

core-level, are active for a longer time. Nevertheless, the overall system energy consumption

is decreased, though heavily deterred by the cache subsystem.
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Figure 4-5: Core-level energy minimization against different values of n and df

Change in Task Parameters

Figure 4-5 (a) shows a change in energy savings as the number of tasks are increased from

10 to 50. Energy savings for the proposed CDG approach are higher for all ranges of the

number of tasks. However, the energy savings as the number of tasks increase. This is

because the CDG approach also benefits from the slack among task executions to minimize

energy consumption. An increase in the number of tasks increases the inter-core dynamic

contention along with a decrease in the amount of slack available for each task to utilize.

Figure 4-5 (b) shows how the energy-saving vary as the deadline-factor df in increased

from 0.0 to 0.3. There are no energy savings for the baseline approach when df is set to 0.

This is because the schedule cannot be stretched since there is no slack after the finish time

of the last task. However, the CDG approach allows tasks to utilize the slack between task

executions, thus, permitting significant energy savings. As the deadline factor is increased,

the core energy savings increase for both Exact and CDG+CoreG due to an increase in

available slack. However, the increase is concave due to the simultaneous increase in the

static component of the core energy consumption. Furthermore, the system energy savings

begin to saturate after df = 0.15 at which point the energy consumed by the cache outweighs

the core energy savings due to CPs being active for a longer period of time.

Change in System Parameters

Figure 4-6 shows the change in energy savings as the core-count is varied. Energy savings

tend to decrease as the number of cores are decreased. This is because our approach takes

advantage of the blocking due to insufficient CPs to increase energy savings. Therefore,
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Figure 4-7: Core-level energy minimization vs. cache size

with fewer number of cores, the blocking imposed on the tasks is due to insufficient number

of cores rather than insufficient CPs, thus, resulting in smaller energy saving. As M is

increased, the inter-core dynamic blocking due to insufficient CPs in also increased, thus,

enabling more energy savings. In all cases, the proposed CDG method outperforms the

baseline technique.

Figure 4-7 shows that the ratio in energy savings between the baseline and CDG ap-

proach remains approximately the same across cache sizes. However, the overall energy

savings reduce as the cache size is increased. This is because increasing cache size increases

the cache energy consumption and so reduces the impact on energy savings from algorithms

that focus on core-level energy minimization.
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4.5.3 Cache-level Energy Minimization

The cache energy consumed by a task depends on the task miss-rate, execution length

and number of CPs assigned to it. In the previous section, the execution length of a task

was altered via the inherent DVFS capabilities of the core subsystem while the CPs of

each task were kept constant. Changing the number of CPs, however, is a property of the

cache subsystem. Thus, in this section, we propose an algorithm to change the number

CPs assigned to each task with the aim to minimize the energy consumption of the cache

subsystem. Decreasing the number of CPs used by a task can benefically reduce the static

energy consumption of the cache subsystem. However, the problem is non-trivial as any

decrease in CPs may increase the miss-rate which can in turn increase the dynamic energy

consumption of the cache subsystem. Doing so can also increases the number of memory

cycles, thus, increasing the execution length of the task and resultantly increase the static

energy of the core subsystem. Moreover, due to the increase in task execution length, CP

reductions must be performed carefully to avoid deadline misses.

Hence to efficiently utilize the slack for task elongations, tasks are selected for CP

reductions based on a CP-gradient metric. The CP-gradient is defined as the change in

execution time of a task when its CPs are decreased.

∆en = en(an)− en(an − 1)

The algorithm iteratively selects a task with the lowest CP-gradient so that minimum slack

is used. Since decrementing the CPs increases the dynamic energy, the CPs of a task are not

reduced if the resultant energy consumption increases. Furthermore, decreasing the CPs

of the tasks also decreases the inter-core dynamic contention. As a result, the inter-core

dynamic blocking is decreased permitting additional task elongations.

Cache-level Technique

The results for the proposed approach are shown in Figure 4-8. As discussed above, there

is a slight increase in the dynamic energy consumption of the cache subsystem. The energy

savings for the static portion of cache are substantially reduced resulting in an overall de-

crease in cache energy consumption. However, the core energy consumption is significantly

increased due to an increase in the execution length of the tasks while the core-level power
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Figure 4-8: Cache energy minimization with df = 0.05 and N = 30.
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Figure 4-9: Cache energy minimization against values of n and df .

consumed by each task remains the same.

Changing Task Parameters

Figure 4-9 (a) and (b) show the change in energy savings as the number of tasks and deadline

factor are increased. For all cases, the energy savings from the proposed approach are higher

than the baseline approach. The energy savings tend to increase as the number of tasks

are increased because the algorithm can reduce a greater number of active CPs. A similar

trend is observed as the deadline-factor is increased.

4.5.4 System-level Energy Minimization

In the previous two sections, we demonstrated how the energy consumption of the different

subsystems were influenced by the techniques that focused on energy minimization specific

to the core and cache subsystems. In this section, we modify the techniques proposed

for the specific subsystems to minimize system-level energy consumption. Specifically, we
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Figure 4-10: System-level energy minimization with df = 0.05 and n = 30.

extend the techniques proposed for core subsystem, i.e, CDG+CoreG, and cache subsystem,

i.e., CDG+CacheG for system-level energy minimization termed as CDG+CoreG+CacheG.

CDG+CoreG+CacheG simultaneously reduces the CPs of the lowest CP-gradient task along

with a reduction in the operating core voltage of the highest energy-gradient task.

The extended algorithm, targeting system-level energy minimization, attempts to bal-

ance the energy consumed by the core and cache subsystems. Consequently, it is not as

effective as the algorithms targeting energy optimizations of individual subsystems as can

be seen in the left and center set of graphs in Figure 4-10. However, as far as system-level

energy minimization is concerned, the extended algorithm outperforms the baseline (Exact)

and proposed techniques targeting individual subsystems (CDG+CoreG, CDG+CacheG)

as shown on the right-most set of graphs in Figure 4-10. There is approximately a 5×

increase in the energy savings over the baseline case for CDG+CoreG+CacheG.

4.5.5 Comparison with the Optimal

In Section 4.2, we proposed a cache-aware method to map a taskset onto the cores in

order to minimize the makespan. However, makespan minimization does not guarantee

an energy minimization schedule. Therefore, we have compared the proposed approach

against the optimal schedule for a taskset with 8 tasks running on a 4 core machine with

8 CPs. The optimal solution is found by searching for all the possible mappings and

selecting the schedule that results in the minimum energy consumption via the CDG+energy

minimization techniques discussed in the previous sections. Figure 4-11 displays the energy

savings achieved using our proposed 2DSPP mapping technique compared to the optimal.

For core-level energy minimization, i.e., CDG+CoreG, the optimal solution results in 1.4×
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energy savings over the proposed 2DSPP approach. However for the system-level solution,

the results for the 2DSPP are comparable to the optimal.

4.6 Discussion

The adoption of multicores has opened up new paradigms for research in real-time systems.

However, despite the advancements made, existing algorithms have failed to accommodate

the impact of shared caches on the predictability and energy consumption of the processor.

In this chapter, and in light of the growing influence that shared caches have on such sys-

tems, we formulated the problem of cache-aware energy minimization and proposed various

techniques to reduce the energy consumption for valid schedules. The proposed energy opti-

mization techniques outperform the baseline case for individual core and cache subsystems

as well as system-level (core+cache). Specifically for the system-level energy minimization,

a 5× energy improvement is observed against the base-line approach. With the increasing

popularity for heterogeneous multicore architectures in the domain of real-time systems,

cache-contention related issues adds another interesting dimension to the schedulability

and energy minimization problem. Thus, in the following chapter, we propose a solution

for cache-aware energy minimization on heterogeneous multicore real-time systems.
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Chapter 5

Cache-Aware Energy-Efficient Scheduling

on Heterogeneous Multicores

Despite the significant contributions made towards energy-efficient deadline-constrained

scheduling on heterogeneous multicores [81,94,105,108], prior work is handicapped by two

important limitations. First, it ignores the impact of shared caches on a task’s execution

time. Second, tasks are assumed to scale linearly with the core-frequency.

In this chapter, we introduce a new approach to energy-efficient scheduling on hetero-

geneous multicores which compensates for the simplistic assumptions made in prior work.

First, we bound the shared cache unpredictability by adopting cache partitioning techniques

where specific sections of the shared cache are individually assigned to cores to prevent con-

current tasks from accessing the same cache-lines. Second, we investigate the impact that

the core-frequency and CPs have on the task execution cycles in a heterogeneous multicore

environment, and its resultant impact on task execution time and energy consumption. To

this effect, we present a model where the task characteristics dictate the task allocation

strategy, i.e., we analyze the model by presenting proofs to determine the best core and

core-type affinities based on the task characteristics. Finally, we present an energy-efficient

scheduling algorithm that considers the nonlinear change in execution time brought about

by the frequency and CPs assigned to the cores.

To assess the proficiency of our approach, we perform extensive evaluations using PAR-

SEC [19] and Mibench [52] benchmarks on the ARM big.LITTLE architecture. Results

show our approach to consume less energy than the two state-of-the-art solutions, achiev-

ing an average of 15.73%, 13.0% and a maximum of 35.0%, 31.7% in energy savings while

ensuring tasks complete before their deadlines. To the best of our knowledge, this work is

the first to analyze the effect that CPs have on influencing the task-to-core allocation in a

heterogeneous multicore setting for hard real-time systems. In summary, contributions of

this work are as follows:

• We investigate the effects of heterogeneity, core-frequency and CPs on the execution

71



cycles of a task.

• We propose an algorithm that performs efficient task-to-core mapping based on the

task characteristics.

• We, finally, present results of our experimentation to show the proficiency of our

proposed approach over the state-of-the-art.

In this work, we focus on a static CP scheme. This is due to the fact that a periodic

task model is adopted in this work to match the state-of-the-art energy-efficient scheduling

solutions for heterogeneous multicores. A dynamic CP scheme for periodic tasks will require

careful analysis to ensure schedulability of the taskset. Initial investigations in this direction,

i.e., on a dynamic CP analysis for periodic tasks are presented in Chapter 6.

5.1 Problem Setting

We start by analyzing the effects of heterogeneity, core-frequency and number of CPs on

the execution cycles of a task. Figure 5-1 displays this relationship for PARSEC [19] and

Mibench [52] application benchmarks. The execution cycles of selected benchmarks exe-

cuting on the big.LITTLE Exynos 5 Octa (5422) processor are extracted using the Gem5

Simulator [21]. This processor is composed of 4-core clusters for A15 and A7 core-type

each, with respective frequency ranges of (0.2 GHz-2.0 GHz) and (0.2 GHz-1.4 GHz) [105],

respectively. A Last-Level Cache (LLC) is shared by cores of the same cluster. Figure 5-

1 (a) shows the change in execution cycles w.r.t. frequency when each task is executed

separately on a single A15 and A7 core and the selected core has complete access to its

respective LLC, i.e., 8 CPs. It is observed that the execution cycles change by an average of

6.62%, 9.63% and maximum 13.95%, 20.64% between the frequency poles, for the A15 and

A7 core-type, respectively. A higher frequency represents relatively higher execution cycles

since the memory latency is not affected by the reduced clock-cycle length, thus, increasing

the execution cycles contributed by the memory latency, as discussed in Chapter 3.

In a practical setting, however, cache partitioning must be established to preserve pre-

dictability in a deadline-constrained hard real-time system [68, 120]. For an equal sharing-

scheme, each core in a cluster will be limited to only 2 CPs. The resultant change in execu-

tion cycles are depicted in Figure 5-1 (b), where there is an average of 14.29%, 15.23% and
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Figure 5-1: Change in execution-cycle count for applications from the PARSEC and
Mibench benchmark suites running on the big.LITTLE Exynos 5 Octa (5422) processor
for different core-types, CPs and frequency setting (based on simulations in Gem5). The
X- and Y-axis in all graphs represent frequency and normalized number of clock cycles,
respectively.

maximum of 21.67%, 30.17% difference in execution cycles between frequency poles for A15

and A7 core-type, respectively. This significant increase is due to the fact that the reduced

CP assignment increases the LLC miss-rate which in turn increases the memory-latency.

A greater increase for the A7 cores is because the A7 cluster has an LLC of only 512 kB

on the Exynos (5422) compared to the 2 MB LLC on the A15 cluster. The Out-of-Order

(OoO) pipeline on the A15 core also contributes to hiding some of the memory-latency. It

is also observed that the execution cycles of some tasks scale more than others. This is due

to the diverse internal characteristics of the benchmark applications. Some benchmarks,

e.g., canneal, are more memory-intensive resulting in a greater change in execution cycles,

while others, e.g., sha, do not scale much due to their higher compute-intensity.

The execution time of a task is dictated by its execution cycles divided by the executing

core-frequency. These execution cycles are estimated statically at normal core operation,

i.e., without DVFS, in order to ensure an upper bound on the WCET [73,86]. Recent works

consider constant execution cycles, and therefore, assume the execution time to increase

linearly with core-frequency [94,105]. However, since in reality only the computation portion

of the execution cycles scale with the core-frequency, such works fail to capture the actual

change in execution cycles, thus, resulting in an over-estimation of the task execution time

when DVFS is applied. Therefore, apart from under-utilizing the system, such a difference

can have a drastic impact on energy-efficiency since a task may have to be placed on a
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Figure 5-2: Clustered heterogeneous multicore system model with (M=8) cores, (K=4)
clusters, and (J=2) core-types. The number of cores assigned to a particular cluster can
be specified by the function NUMo(vk) while the number of clusters assigned to a par-
ticular core-type can be specified by the function NUMv(hj), e.g., NUMo(v1) = 2 and
NUMv(h1) = 2.

power-hungry core even if there is some space available on the energy-efficient one. In the

following sections, we aim to overcome this limitation by utilizing the improved task model,

presented in Chapter 3, and by proposing a task-characteristic-aware mapping to efficiently

utilize the cores for energy minimization.

5.1.1 System Model

The system builds upon the notion of a clustered heterogeneous multicore architecture

composed of M cores, O = {o1, o2..oM} (indexed by m), where a core can be any one of J

core-types, H = {h1, h2..hJ} (indexed by j), such that same core-type cores are grouped to

form clusters, resulting in a total of K clusters, V = {v1, v2..vK} (indexed by k). Figure 5-

2 is an example of a clustered heterogeneous multicore system model with (M=8) cores,

(K=4) clusters, and (J=2) core-types. Note that to signify the relation among components

from different layers, we indicate a component’s parent structure in the superscript of its

expression, i.e., a core om belonging to core-type hj can be expressed as o
hj
m .

Each core-type cluster vk can operate at an independent frequency while cores within

the same cluster must operate at the same frequency. The frequency range for core-type

hj is defined by a finite set of frequencies, F hj = {f1, f2..fQj} (indexed by qj) while the

frequency assigned to a core om can be expressed as fm. Furthermore, each cluster has an

independent LLC that is shared by cores in the cluster. This model is adopted from the

state-of-the-art clustered heterogeneous energy-efficient scheduling algorithms [94,105].

To cater for the cache unpredictability, we assume the LLC can be partitioned into

A partitions based on its associativity [122]. A core-based CP scheme is adopted where

each core within a cluster is assigned a number of distinct CPs and the cumulative CPs

assigned to the cores cannot exceed the associativity of the LLC. Adopting a task-based

CP scheme for periodic tasks would require extensive analysis to ensure schedulability.
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Initial investigations into this direction are discussed in the next chapter. The number

of CPs assigned to each core is defined by W = {w1, w2..wM} (indexed by m). Note

that the cores within a cluster are identical in every aspect except for the number of CPs

assigned to each core making the CP assignment a distinguishing factor. Thus, the state

of each core is identified by its heterogeneity, assigned cluster, operating frequency and

assigned CPs. For instance, Exynos 5422 System on Chip (SoC) is an example of a clustered

heterogeneous multicore SoC and can be modeled by the system parameters as M=8, J=2,

K=2, F big={0.2,0.3,...,2.0}GHz, FLITTLE={0.2,0.3,...,1.4}GHz, and where 2048 kB and

512 kB LLCs for the big and LITTLE clusters, respectively are sectioned into A=8 CPs.

5.1.2 Task Model

The task model is defined by a set of N independent periodic tasks T = {τ1, τ2..τN} (indexed

by n). Each task τn releases an infinite number of task-instances, each after a specified

period pn, where each task-instance must complete before a deadline dn relative to its arrival

time. We consider a partitioned scheduling scheme where tasks are statically allocated to

cores and tasks within each core are scheduled via EDF.

The hyper-period of the complete taskset is defined by L. After the tasks are partitioned

across all the cores, task-subsets are created for each core Γ = {T1, T2..TM} (indexed by

m). Implicit task deadlines are considered (pn = dn), thus, the utilization of τn is defined

by un = en
dn

, where en is the WCET of τn. According to EDF, the utilization of each core

Um must be less than or equal to 1 to ensure schedulability i.e. Um =
∑

τn∈Tm
en
dn
≤ 1.

The same nonlinear task model proposed in Chapter 3 is utilized for this work, i.e., the

execution cycles cn of τn can be defined as:

cn = ccn +mcn (5.1)

To differentiate between these task-specific characteristics, we define a compute-intensity

metric φn = ˆccn
ˆccn+m̂cn

, where ˆccn and m̂cn represents the compute-cycles and memory-cycles

at maximum frequency and maximum CPs, respectively. We also define a cache-gradient

metric, ζmn = mcomn
m̂cn

which represents the increase in memory-cycles of assigning τn to core

om with wm CPs, compared to a core of the same type having maximum CPs. These metrics

will facilitate the task allocation strategy to determine the best core and core-type for each
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task.

5.1.3 Power Model

For this work, we utilize the frequency dependent power model used in Chapter 3.

Pn = κnf
αj
n + βj (5.2)

where κn is the task activity factor, fn is the core-frequency during the task’s execution,

and αj and βj are core-type specific constants [34,100].

Due to their internal characteristics, different tasks vary in the amount of power they

consume even when executing on the same core-type. This variation can be captured by

the task-specific activity factors κn ∈ {0, 1}. Based on the derivations in Chapter 3, κn can

be modeled as:

κn =
κaccn + κsmcnδn
ccn +mcnδn

(5.3)

where δn=
fn

fmem
, fmem is the constant frequency of the memory subsystem, while κa and

κs are constants such that κa>κs.

5.1.4 Solution Space

Based on the system, task and power model, the execution time and power consumption of

task τn becomes a function of its internal characteristics, architectural properties of the core-

type hj , executing core-frequency fm, and CPs allocation, wm, i.e., en = F e(τn, hj , fm, wm),

Pn = FP (τn, hj , fm, wm), where F e(.) and FP (.) are functions mapping these variables to

the execution time and power consumption of τn.

The energy consumption of a single instance of a task can be expressed as:

En = Pn · en (5.4)

Since we are using EDF scheduling, the cumulative utilization of tasks assigned to a core

cannot exceed 1. When DVFS is applied, the cluster frequency must be set according to

its highest utilization core in order to maintain schedulability. Furthermore, cores allocated

with any tasks cannot be switched-off during periods of inactivity due to switching overheads
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Figure 5-3: Solution space for a single task executing on a big or LITTLE core where
each dot on the graph represents the energy consumption of the task for a particular core
frequency and assigned CP.

and the prohibitive nature of EDF and real-time constraints [34, 105]. Therefore, the idle-

power consumption of the cores must also be included into the power consumption of the

system. This idle core power P
hj ,fm
idle can vary based on the core-type and core-frequency

but is independent of the CP assignment.

Thus, the problem of finding the energy-optimal allocation and scheduling of a taskset

can be summarized as follows:

min
hj , fm, wm

∑
Tm∈Γ

((L
∑

τn∈Tm

Phj ,fm,wm
n

en
dn

hj ,fm,wm

) + (1− Um)P
hj ,fm
idle ) (5.5a)

s.t.
∑

τn∈Tm

en
dn
≤ 1 ∀ Tm ∈ Γ (5.5b)

fm = fk ∀om ∈ vk : fk ∈ F j ∀vk ∈ hj (5.5c)

The objective function Eq. (5.5a) minimizes the energy consumed by the tasks and the

energy lost due to idle-power, while constraints (5.5b, 5.5c) ensure taskset schedulability

and that all cores in the same cluster operate at the same frequency.

Figure 5-3 displays the solution space for only 1 task on the ARM big.LITTLE Exynos

5422 SoC where the x and y axis represents the frequency and CP range on each core-type.

The problem of finding the minimum energy-consumption is clearly of NP-complexity. Fur-

thermore, a task-characteristic oblivious, aggressive allocation of tasks to a power-efficient

core does not guarantee energy minimization since some tasks may be more energy-efficient

when executing on a high-performance core operating at a lower frequency as opposed

to running on a power-efficient core at a higher frequency [105]. To design an effective

solution, it is important to analyze the dependency of each task on different core-types,
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frequencies and CP sizes. We propose such a solution in the following sections. We first

make assumptions that aim to build upon recently proposed analysis and then based on

these assumptions, we provide proofs to further corroborate our proposed solution.

5.2 Task Assignment Strategy

The previous section identified a 3D partitioning problem for energy-minimization on a

heterogeneous clustered multicore system. In this section, we solve this problem by de-

termining the criteria for selecting the favorable core-type cluster, core within a core-type

cluster, and frequency for each cluster based on the values of ccn and mcn of each task. We

analyze each dimension separately by keeping the other two constant. This simplifies the

analysis allowing us to identify the specific properties of each dimension and how it affects

the power consumption and execution length of each task.

5.2.1 Core-type Selection

The performance factor of core-types is differentiated by the speed at which they execute

tasks. Hence, the general notion of a high-performance core-type is expected to complete the

execution of a task earlier than a low-performance core-type. This performance difference is

evident from the reduction in the execution cycles of a task running on a high-performance

core, i.e., specifically, the reduction in computation cycles ccn [72], e.g. authors in [34]

showed the speedup achieved by MiBench applications running on the ARM A15 (big) core

compared to the A7 (LITTLE) core.

Therefore, we start by first defining a metric for the performance of core-types, i.e., we

define compute-cycle-scale: Shj≤ 1, as a factor that scales the number of compute-cycles

ccn of a task when running on core-type hj compared to reference core-type hr. Assuming

the same constant frequency between core-types, the resultant length of execution cycles

of τn running on hj are ccnS
hj
n +mcn. This metric can be related to in-order A7 and OoO

A15 cores on the big.LITTLE where SA7>SA15 and hA7 is the reference core resulting in

a number of execution cycles on the A15 as ccA7
n SA15

n +mcA7
n . Incidentally, if Sh1n >S

h2
n for

all τn ∈ Γ, then it is safe to assume that P h1n will be less than P h2n for all τn ∈ Γ. This is a

valid assumption based on the power-model parameters measured in [34].

Consequently, energy-factor : S
hj
n

P
hj
n
fn

, represents a measure of change in the energy con-
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sumption when assigning τn to a core of type hj compared to a reference core-type hr.

Thus, if Sh1n
P
h1
n
fn

< Sh2n
P
h2
n
fn

for τn then h1 is considered the energy-efficient option for τn.

Note that in a practical scenario, memory cycles may also reduce when switching to a

higher performance core due to memory latency hiding induced by OoO cores, however,

the impact is relatively less significant. We also assume the function Shj scales the num-

ber of compute-cycles of every task by the same factor. Again, this is a generalization of

the core-type properties since the degree of reduction in compute-cycles when switched to

a higher performance core-type depends on the internal characteristics of the task e.g. a

task’s tendency to exploit the instruction level parallelism available in OoO cores. However,

abstracting away from micro-architectural features allows us to simplify the analysis leading

to effective decision making.

Lemma 3. Consider a system of two cores of different-types o1 ∈ h1 and o2 ∈ h2 having

the same frequency and CP size where Sh1 > Sh2 and Sh1n
P
h1
n
fn

< Sh2n
P
h2
n
fn
∀ τn. Given two

tasks τ1 and τ2 where e1 = e2 on the reference core-type h1 and φ1 < φ2, assigning τ1 to o1

and τ2 to o2 will result in less energy consumption compared to the opposite assignment.

Proof. The difference in energy consumption of both assignment strategies can be expressed

as E∆ = E′ − E′′, where E′ is the energy consumption of assigning τ1 to o1 and τ2 to o2:

E′ = (cc1S
h1
1 +mc1)

Ph1
1

f1
+ (cc2S

h2
2 +mc2)

Ph2
2

f2

The opposite assignment will result in an energy consumption:

E′′ = (cc1S
h2
1 +mc1)

Ph2
1

f1
+ (cc2S

h1
2 +mc2)

Ph1
2

f2

Since cc2 > cc1(φ2 > φ1), assigning τ2 to h2 will downscale cc2 by a greater factor compared

to assigning τ2 to h1. Therefore, the initial assumption that e1 = e2 will cause E′ to be less

than E′′. Thus, the lemma is proven.

A similar hypothesis has been proven in [94] for a linear task-model where tasks consume

the same power when executing on the same core-type. Lemma 3 extends that hypothesis

to incorporate the nonlinear task model adopted in this work. Doing so enables us to design

an optimal core-type assignment strategy under assumptions made above.

Theorem 2. Consider a non-DVFS enabled system of m cores and j core-types with same

number of CP allocations where j=m and Sh1n >Sh2n >..>S
hj
n and Sh1n

P
h1
n
fn

<Sh2n
P
h2
n
fn

<..<
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S
hj
n

P
hj
n
fn

for all τn ∈Γ. Given a set of tasks of equal length e1 = e2 = ..= en, re-ordering the

tasks in non-decreasing order of their compute-intensities, φn, and iteratively assigning tasks

to cores in first-fit manner, starting with core-type h1 will minimize the energy consumed

by the taskset.

Proof. Given that Sh1n
P
h1
n
fn

<Sh2n
P
h2
n
fn

for all τn∈Γ, assigning a task τn to h1 rather than h2

will maintain a lower energy consumption of τn. The rest of the proof follows from Lemma 3

where tasks with larger φn are more affinitive to core-types with smaller Shj factors.

Theorem 2 establishes the following criterion:

Criterion 1: Tasks with lower compute-intensity φn should be assigned to cores-types

with smaller energy-factors S
hj
n
P
hj
n
fn

.

5.2.2 Core Selection (based on CPs)

The LLC partitions assigned to a core have a considerable impact on the execution time of

a task. Fewer CPs can increase the LLC miss-rate which, in turn, increases the memory-

latency cycles mcn. It is observed that the execution time increases monotonically as the

number of CPs are decreased [26, 120]. Assuming such a relationship prevails for all tasks

on every core-type, the following lemma can be justified.

Lemma 4. Consider a system of two cores at maximum frequency and of the same type

o1, o2∈hj where the CPs assigned to o1 is greater than those assigned to o2, i.e., w1>w2.

Given two tasks τ1 and τ2 where e1=e2 on hj with 8 CPs, φ1 < φ2, and both tasks have

the same monotonic execution time to CP relationship, i.e., cache-gradients ζ1
1=ζ1

2&ζ2
1=ζ2

2 ,

then assigning τ1 to o1 and τ2 to o2 will result in less energy consumption compared to its

opposite assignment.

Proof. From Eq. (5.1) and the cache-gradient definition, we can infer the change in execution

cycles of assigning τ1 to o1 as cc1 +mc1ζ
1
1 . Thus, based on Eqs. (5.2), (5.3) and (5.4), the

difference in dynamic energy consumption of both assignment strategies is:

Edyn∆ = ((cc1κa +mc1ζ
1
1κs) + (cc2κa +mc2ζ

2
2κs)

−(cc1κa +mc1ζ
2
1κs)− (cc2κa +mc2ζ

1
2κs))f

α−1
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where δn in Eq. (5.3) equals 1 due to fn = fmax. w1 >w2 implies ζ1
1 =ζ1

2 < ζ2
1 =ζ2

2 . Thus,

since the execution cycles of both tasks increase by the same factor due to a smaller CP

assignment and since before the assignment mc1 > mc2 (φ1 < φ2), increasing mc1 by a

smaller factor ζ1
1 will result in an effective execution time smaller than compared to the

opposite assignment, resulting in Edyn∆ <0. The same case follows for the static component,

Esta∆ = ((cc1 +mc1ζ
1
1 ) + (cc2 +mc2ζ

2
2 )− (cc1 +mc1ζ

2
1 )− (cc2 +mc2ζ

1
2 ))

β

fα

Thus, the cumulative increase in energy consumption of both tasks brought about by the

increase in mc1 and mc2 by assigning τ1 to o1 and τ2 to o2 is less than the opposite assign-

ment.

Lemma 4 is extended to derive an energy optimal assignment strategy between same

core-types with different CPs.

Theorem 3. Consider a non-DVFS enabled system of m cores of the same-type hj, such

that the cores are assigned CPs in non-increasing order w1 > w2 > .. > wm. Given a set

of tasks of equal length e1 = e2 = .. = en with the same monotonic execution time to CP

relationship ζm1 = ζm2 = .. = ζmn ∀om ∈ hj , re-ordering the tasks in non-decreasing order

of their φn values and iteratively assigning the tasks to the cores with the largest CP will

minimize the energy consumed by the taskset.

Proof. Based on Lemma 4, and under the assumption made on the execution time and

CP relationship, tasks with comparatively smaller φn values benefit in terms of energy

minimization when assigned to cores with greater CPs. Thus, when frequencies are constant

and tasks are of equal length, ordering tasks in non-decreasing order of their φn values

promotes a task allocation that results in a energy optimal schedule.

Theorem 3 provides a criterion for determining the appropriate CPs allocated for each

task.

Criterion 2: Tasks with lower compute-intensity, φn, should be assigned to cores with

more CPs.

Note that Theorem 3 only holds true for a setup where all tasks must have the same

execution time to CP relationship. Nonetheless, the simplistic assumption still governs a

criteria for determining the appropriate CP allocation for each task. For tasks that do not
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follow the same execution time to CP relationship, it has already been shown in Chapter 3

and 4 that cache-friendly tasks, i.e., tasks with a comparatively higher cache-gradients,

should be assigned to cores with greater number of CPs.

Criterion 3: Tasks with a higher ζmn should be assigned to the cores with greater

number of CPs.

5.2.3 Core Selection (based on frequency)

For DVFS enabled multicore systems, the optimal frequencies that will minimize energy

consumption depend on the task allocation strategy. Theorem 4 summarizes this for the

model presented in this chapter.

Lemma 5. Consider two tasks τ1 and τ2, where e1 =e2 and φ1<φ2, assigned to a core om

running at frequency fm. Reducing the frequency of the core will result in e1 < e2.

Proof. The difference in execution length brought about on a task due to a decrease in

frequency can be expressed as:

e∆ =
ccn
fm
− ccn
fmax

Since cc1 < cc2, the increase in execution time from cc2 cycles will be greater than the

increase in execution time from cc1 cycles.

Lemma 5 is extended to derive optimal strategy to minimize the frequency of a global-

DVFS-enabled multicore cluster.

Theorem 4. Consider a DVFS-enabled system with m cores of the same type where all

cores must run at the same frequency. Given a set of tasks of equal length e1 = e2.. = en,

re-ordering tasks in non-decreasing order of their φn values and assigning the tasks to the

cores in the worst-fit manner will permit maximum frequency scaling.

Proof. This comes directly from Lemma 5 where DVFS causes a task with a higher φn value

to change in length more than that of a lower φn. Since the initial execution lengths of the

tasks are equal, balancing tasks across the cores based on their φn values, via WFD, will

minimize the difference in execution lengths among the cores once DVFS is applied. This

comes directly from Lemma 5 where DVFS causes a task with a higher φn value to change

in length more than that of a lower φn. Since the initial execution lengths of the tasks are
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equal, balancing tasks across the cores based on their φn values, via WFD, will minimize

the difference in execution-lengths among the cores once DVFS is applied.

Criterion 4: Balancing the tasks across the cores based on their φn values will permit

a minimum DVFS setting.

The analysis performed in this section agrees towards the understanding that φn plays

a significant role in the energy minimization of the taskset. Note that the correctness of the

proofs presented above depends on the perverse assumption of tasks with equal execution

lengths. Nevertheless, it still provides a basis for task assignments between core-types, cores

and CPs where tasks are not necessarily of equal lengths as will be shown in Section 5.4.

In the next section, we will make use of these observations to create an effective heuristic

solution for this 3D energy-minimization problem.

5.3 The Proposed Algorithm – THEAM

The presented algorithm, Task-Heterogeneity-Energy Aware Mapping (THEAM), requires

knowledge of the monotonicity of core-types in the system, i.e., ordering of the core-types

based on their potential energy consumptions [92]. This can be easily established based

on the architectural composition of the core-types, e.g., in-order vs OoO. Furthermore,

this does not limit the application space since heterogeneous platforms are built on the

grounds of providing diversity in the execution environment. For this reason, two core-

type heterogeneous systems are the prevalent platform as they already present most of the

power and performance benefits of heterogeneity [64]. Nonetheless, the presented algorithm

caters to platforms with more than two types of heterogeneity as shown in Figure 5-4. The

monotonicity can also be determined by sorting core-types according to the average energy

consumed by the tasks on each core-type, i.e. average energy-factors [94].

The algorithm builds upon observations made in Section 5.2, where core and core-type

affinities were discovered based on task characteristics. The algorithm also takes the idle-

power into account by balancing the tradeoff between maximizing DVFS and minimizing

the number of active-cores. Such a balance is achieved by dividing the algorithm into

two phases. The first phase determines the minimum number of active-cores that would

be required to schedule the taskset. After allocating tasks across the specified cores, the

second phase iteratively increases the active-core count and re-balances the workload to
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Figure 5-4: THEAM algorithm structure. The core-types hj ∈ H are arranged according to
their energy-factors. The tasks τn ∈ T are arranged according to their compute-intensity.
CPs are statically assigned to each core in a cluster vk ∈ V . All cores are separately arranged
in C according to their CP assignment and core-type to facilitate the task allocation strategy
according to the Criteria established in Section 5.2. Cores without any tasks are shut-off
along with their associated CPs while active cores are collected into an array CA.

further reduce frequency. This continues until the energy-consumption fails to decrease any

further.

Figure 5-4 represents the algorithm structure. Cores in the same cluster operate at a

common frequency while the LLC is partitioned among cores. Since low φn tasks have

an affinity towards energy-efficient core-types (Criterion 1), both tasks and core-types are

sorted in non-decreasing order of their φn and energy-factor values, respectively. Further-

more, since low φn tasks benefit from cores with comparatively greater CPs (Criterion 2), an

uneven distribution of CPs among cores can provide additional energy savings. Thus, cores

within each cluster are arranged in non-increasing order of their assigned CPs to prompt

tasks with lower φn values to be allocated to cores with greater CPs. This arrangement

facilitates a separate Two-Dimensional (2D) sorting of all the cores in the system in non-

increasing order of their assigned CPs and non-decreasing order core-type energy-factors,

i.e., cores for a specific core-type are arranged in non-increasing order of their assigned CPs

before moving on to the next core-type. This is shown as C in Figure 5-4 where o1 and

o3 are given sorting preference over o2 and o4, and all the cores of h1 are given sorting

preference over cores in h2. This 2D sorting of cores balances benefits of both Criteria 1

and 2.

5.3.1 Phase-1: Minimizing Active Cores

In the first phase, i.e., Phase-1, tasks are allocated on a minimum number of active cores

to reduce the idle-power consumption. Algorithm 5 presents the pseudo-code for Phase-
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ALGORITHM 5: Phase-1
1: function phase1(sys = {T,H, V,C,A})
2: T ← sort tasks in non-decreasing order of φn values.
3: C ← sort cores in non-increasing order of CPs and non-decreasing order of core-type

energy-factors.
4: CA ← {}.
5: for τn ∈ T do
6: allocated← 0
7: for om ∈ CA do
8: if Um + un <= 1 then
9: allocated← 1

10: break
11: end if
12: end for
13: if allocated = 0 then
14: om←argmaxom(wm)∀om∈hj , /∈CA ∧hj=min(H)
15: CA ← {CA, om}
16: end if
17: end for
18: for τn ∈ Γ do
19: Assign τn to CA in worst-fit manner according to φn;
20: end for
21: minimizeFrequency(hj) ∀hj ∈H
22: endfunction

1. Core-types, cores and tasks are first sorted according to the arrangement presented

in Figure 5-4. The minimum number of active-cores required to schedule the taskset is

determined by making mock task assignments to determine the total utilization of the

allocated taskset (lines: 5-17). Cores are added into the active-core set CA based on the

sorted arrangement of C (line: 15). Once the minimum core-count is established, tasks

are allocated onto active-cores CA in a worst-fit manner according to their φn values (line:

18-20). The assignment process allocates tasks in a core-type step-wise manner, i.e., tasks

are first worst-fit allocated (Criterion 4) across the subset of cores in CA belonging to core-

type h1 before moving onto the next core-type subset. At each step, the utilization of the

task is updated according to its core-type and CPs allocation. minimizeFrequency then

minimizes the frequency of all core-type clusters while ensuring schedulability (line: 21).

The frequency is reduced on a core-type basis, thus, equalizing the frequency of clusters of

the same core-type using Algorithm 6.

5.3.2 Phase-2: Maximizing DVFS

In second phase, i.e., Phase-2, the number of active-cores are iteratively increased in
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ALGORITHM 6: MinimizeFrequency

1: function minimizeFrequency(hj)

2: while f(hj) ≥ f
hj

critical do
3: Decrement f(hj);
4: if ∃Um>1∀om ∈ hj then
5: Increment f(hj);
6: break;
7: end if
8: end while
9: endfunction

hopes that a lower DVFS setting will further reduce the energy consumption. Algorithm 7

presents the pseudo-code for Phase-2 which follows directly after Phase-1. Core-types are

first sorted in non-decreasing order of their energy-factors (line: 2). After keeping a log

on the current system configuration and energy consumption (line: 4), a task allocated

core-type which is not already at minimum frequency is selected from the sorted set H

(lines: 5-9). Note that the loop returns the core-type with the highest energy-factor under

the selection criteria. This is done based on the intuition that prioritizing the frequency

minimization of higher energy-factor core-types will lead to lower energy consumption [105].

Failure to find any core-type indicates that all cores are already at a minimum frequency

setting, thus, prompting the algorithm to exit the loop. If a core-type hs is found, the

frequency of all clusters associated with the core-type are decremented (line: 11). Decreasing

the frequency, increases the cycle utilization of the tasks. Therefore, each core’s utilization

is monitored at each iteration to ensure the taskset utilization does not exceed 1 (line:

12). If a core om in hs becomes unschedulable, the task allocation is re-adjusted in hopes

of balancing the utilization. The re-adjustment is based on Criterion 3 where tasks with

higher ζn are assigned to cores with greater CPs using Algorithm 8.

Function adjustUtilization iteratively transfers selected tasks from the heaviest uti-

lization core oh to the lightest utilization core ol. A task exchange after the loop exits

ensures a better balance of the taskset utilization (lines: 12-14 (Algorithm 8)), after which

the frequency of hs is then minimized to enable maximum energy savings.

If the unschedulability persists (line: 15 (Algorithm 7)) and if an empty core of the

same core-type is available (line: 16), the active-core count is increased by activating the

empty core of the same type based on the ordering of C in Figure 5-4 (lines: 17-18). The

task allocation of hs is re-adjusted again to accommodate the new core in balancing the
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ALGORITHM 7: Phase-2
1: function phase2(Sys = {T,H, V,C,A}, CA)
2: H← sort hj in non-decreasing order of their energy-factors;
3: do
4: Eold ← Esys, sysold ← sys , s← −1;
5: for hj ∈ H do

6: if(∃om :om∈CA∀om∈hj)&(f(hj)>f
hj

critical) then
7: s← j
8: end if
9: end for

10: if s! = −1 then
11: Decrement f(hs);
12: if ∃Um>1 ∀om∈hs then
13: adjustUtilization(hs);
14: end if
15: if ∃Um>1 ∀om∈hs then
16: if ∃om : om/∈CA,∈ hs then
17: om ← argmaxom(wm) ∀om /∈ CA,∈ hs
18: CA = {CA, om};
19: adjustUtilization(hs);
20: else if s! = J then
21: if @hs+1 ∈ CA then
22: om←argmaxom(wm)∀om∈hs+1, /∈ CA
23: CA = {CA, om};
24: end if
25: ol ← argminom(Um) ∀om ∈ hs+1,∈CA;
26: while ∃Um>1 ∀om∈hs do
27: oh ← argmaxom(Um) ∀om ∈ hs,∈CA;
28: τs ← argmax(φn) ∀τn ∈ Th
29: Transfer τs from oh to ol
30: if Uh < 1 then
31: Transfer τs from ol to oh
32: τs←argmin(un)∀τn∈Th :un>Uh−1
33: Transfer τs from oh to ol
34: end if
35: end while
36: while ∃Um>1 ∀om∈hs+1 do
37: Increment f(hs + 1);
38: end while
39: if ∃Um>1∀om∈hs+1 then
40: om←argmaxom(wm)∀om∈hs+1, /∈ CA
41: CA = {CA, om};
42: end if
43: adjustUtilization(hs+1);
44: end if
45: end if
46: if (Eold < Esys) || (∃Um > 1 ∀om ∈ CA) then
47: sys← sysold;
48: break;
49: end if
50: end if
51: whiles! = −1
52: endfunction
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ALGORITHM 8: AdjustUtilization

1: function adjustUtilization(hs)
2: do
3: ol ← argminom(Um) ∀om ∈ hs,∈CA;
4: oh ← argmaxom(Um) ∀om ∈ hs,∈CA;
5: if wl < wh then
6: τs ← argminτn(ζln) ∀τn ∈ Th
7: else
8: τs ← argmaxτn(ζln) ∀τn ∈ Th
9: end if

10: Transfer τs from oh to ol
11: while ol! = argmaxom(Um) ∀om ∈ hs,∈CA
12: Transfer τs from ol to oh
13: τs ← argminτn(un) ∀τn ∈ Th : un > Uh − Ul
14: Transfer τs from oh to ol
15: minimizeFrequency(hs);

endfunction

utilization of the taskset (lines: 19).

If there are no empty cores of the same type and if there is a higher energy-factor

core-type available hs+1 (line: 20), selected tasks are transferred from hs to hs+1. The

transfer is based on Criterion 1 where tasks with higher φn values have more affinity to

higher energy-factor core-types compared to tasks with lower φn values. If a core from

hs+1 is not yet in CA, it is added to the list (lines: 21-24). The lightest utilization core

ol of hs+1 is then selected and tasks are iteratively transferred from the heaviest cores

of hs until hs is schedulable again (lines: 25-35). Similar to adjustUtilization, a task

exchange at the end, (lines: 31-33), ensures a better balance of the taskset utilization. If

ol becomes unschedulable, the frequency of hs+1 is iteratively increased (lines: 36-38). If

the unschedulablity persists, then the active-core count is increased by accommodating a

core of the same type, after which the taskset is then re-balanced and the frequency is

minimized (lines: 39-43). If no empty cores are available (C⊂CA), or the unschedulability

still persists, or if the new configuration results in more energy consumption, the system

reverts to its previous configuration and exits (lines: 46-49).

5.4 Experimental Results

In this section, we present the experimental evaluations conducted to ascertain the ex-

pected performance of the proposed approach. The results are based on simulations using

power-model parameters for big.LITTLE Exynos 5422 platform, similar to works presented
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in [81, 94, 108]. For this work, the power-model parameter values are taken from [34]. Re-

alistic applications from the MiBench [52] and PARSEC [19] benchmark suite are used

to model the taskset. Benchmark characteristics are determined via the Gem5 Simulator.

The experimental results of the proposed approach are shown in terms of percentage en-

ergy savings achieved against the state-of-the-art clustered heterogeneous energy-efficient

scheduling algorithms, HIT-LTF [94] and TCHAP [105]. The approaches proposed by these

state-of-the-art algorithms have already been described in detail in Section 2.2.1.

5.4.1 Setup

Platform Configuration

We select a commonly used platform, the heterogeneous big.LITTLE Exynos-5422 processor

composed of ARM A7 and A15 core-type clusters, for the experimental evaluation [34, 94,

105]. Each cluster is composed of 4 cores with a 512 kB and 2 MB LLC attached to each

A7 and A15 core-type cluster, respectively. The platform has a wide range of frequency

settings, i.e., A7 clusters have a frequency range of {0.2, 0.3, ..., 1.4}GHz, while the A15

clusters have a frequency range of {0.2, 0.3, ..., 2.0}GHz [105].

Authors in [34] performed experiments on the Exynos-5422 processor to determine

power-model parameters specific to the platform, i.e., κa = {1.35 × 10−5, 3.42 × 10−7}

mW/MHz3, α = {2.27, 2.88} and β = {18.01, 135.07}mW for the A7 and A15 core-type,

respectively. We utilize these parameters to model power consumption of tasks running on

the cores. Based on the trend observed from the power-model parameters derived in [126],

we assume κs as half of κa. The idle-power values on each core-type at every frequency

are taken from the experimentally measured values in [37,38]. Furthermore, we assume the

LLCs can be partitioned into 8 sections. For experimentation, the number of clusters and

cores are varied to diversify the configuration setting of the platform.

Workload

Benchmark applications from the PARSEC (canneal, blackscholes, ferret, fluidanimate and

swaptions), and MiBench (qsort, susan, stringsearch, ispell and sha), benchmark suite are

used to model each task within the taskset. These benchmarks were selected to represent

an adequate mix of both compute- and memory-intensive workloads. Benchmark execution
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cycles and characteristics are determined via the Gem5 Simulator, i.e., ccn and mcn of each

benchmark application are extracted for every core-type, CP size and frequency setting.

To generate a taskset, a benchmark application is randomly selected to model a task.

The total cycle-count of the selected application is used to define the execution time of

the task. The utilization of the task is determined by selecting one of three distribution,

[0.01,0.1], [0.1,0.4] and [0.4,0.6], where each distribution has probabilities 3/10, 4/10 and

3/10, respectively [120]. The task utilization is fine-tuned before adding it to the set in order

to keep the taskset hyper-period within bounds. The establish a conclusive comparison with

existing algorithms, the evaluations are carried out over a wide range of values for taskset

utilization [105].

5.4.2 Results

Different Configurations

Figure 5-5 displays the experimental results for various configuration settings on the het-

erogeneous platform. The results are shown as percentage energy savings achieved by our

proposed algorithm, THEAM, against HIT-LTF and a best-fit variant of TCHAP, for a wide

range of taskset utilization. The Y-axis represents the taskset utilization without DVFS

after it has been mapped onto the cores via THEAM. For each configuration, the utilization

is increased by 0.1 until the limit is reached. Each utilization step shows the energy savings

averaged over 300 different taskset simulations.

For all configurations, THEAM performs better than its competitors. Figure 5-5 (a)

shows the energy savings for a configuration where there is 1 cluster for each core-type

and the 4 cores within each cluster equally share the CPs. Percentage energy savings

achieved over HIT-LTF are better than TCHAP, showing an average of 15.73%, 13.0% and

a maximum of 35.0%, 31.7% against HIT-LTF and TCHAP, respectively. This is because

HIT-LTF does not consider the idle-power consumption and tries to balance tasks across all

energy-efficient cores. TCHAP, on the other hand, tries to minimize the number of active

cores to reduce idle-power consumption. This is apparent in Figure 5-6 (a) which shows the

average number of active cores for each core-type and algorithm as the taskset utilization is

increased. At low-workload conditions, HIT-LTF tries to maximize its active core count for

the LITTLE cluster (HIT-LTF-L) while both TCHAP and THEAM try to minimize their
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Figure 5-6: Comparison among THEAM, TCHAP and HIT-LTF (a) on active-core count
and (b) on the operating frequency as the taskset utilization is increased

LITTLE core count (TCHAP-L, THEAM-L). The same trend follows for the big active-core

count (HIT-LTF-b, TCHAP-b, THEAM-b) as well. The number of active cores for TCHAP

increases at a slower rate compared to THEAM. This is because TCHAP tries to effectively

minimize active cores via best-fit heuristic, while THEAM establishes a balance between

energy lost due to idle-power and energy consumed by the tasks. Furthermore, mapping

tasks across active-cores via WFD heuristic permits a lower DVFS setting. This is apparent

in Figure 5-6 (b) which shows the frequency for each core-type and algorithm as the taskset

utilization is increased. This along with the nonlinear cycle-count considerations enables

THEAM to achieve greater energy savings compared to others.

In Figure 5-5, at a low utilization (U<3.2), the energy savings achieved against HIT-LTF

and TCHAP are significant. As the utilization is increased from 0.1, the energy savings tend

to increase and are maximum when the active-core count equals the little-core count for

THEAM. As the utilization is increased further, the energy savings tend to decrease since

the higher utilization reduces the DVFS capabilities of the cores. At medium utilization
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setting

(3.2<U<5), TCHAP performs better than HIT-LTF as TCHAP maintains a lower active-

core count. At high utilization (U >5), all algorithms maintain a maximum core-count.

In this case, HIT-LTF performs better than TCHAP since the worst-fit allocation adopted

in HIT-LTF enables a lower DVFS setting. THEAM maintains its performance at higher

utilization, representing its effectiveness in mapping the tasks across the cores to minimize

energy consumption. The trend is consistent across all different configurations.

Selective Cache Partitions

Figure 5-7 affirms the observation made in Section 5.2 of assigning low φn tasks to cores

with greater CPs. In this experiment, CPs are assigned to cores according to Figure 5-4

where tasks with lower φn are assigned to cores with greater CPs. Figure 5-7 displays the

percentage energy savings against TCHAP achieved for a selective CP setting where cores

have CPs assigned in decreasing order, against an equal CP setting where all cores have

the same number of CPs. Results show a maximum of 3.3% and an average 0.23% gain

in energy savings for using the selective approach. The fluctuation and lower gains in the

energy savings are due to unequal execution lengths of the tasks and the fact that not all

tasks have the same execution time monotonic relationship with CPs. However, benefits in

energy savings are still apparent.

System-level Energy Minimization

This section presents the energy savings achieved when the energy consumption of both

cores and LLCs are considered. The cache energy is computed using the cache energy

model used presented in Chapter 3. The number of cache-accesses and cache-misses are
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Figure 5-8: System-level % energy savings of THEAM vs. TCHAP and HIT-LTF

determined via Gem5, while the cache energy parameters are computed using the HP-

CACTI power estimation tool at a 32 nm technology setting [109]. The cache is assumed

to consume constant static power when no tasks are running on the active cores and CPs

assigned to inactive cores are switched-off using the selective-way approach [122]. The

proposed algorithm THEAM is modified to consider both core and cache energy when

deciding to revert back to the previous task assignment / DVFS setting (Algorithm 7,

line:46). Figure 5-8 show an average 24.28%, 9.25% and a maximum 61.1%, 33.3% energy

savings against HIT-LTF and TCHAP, respectively. The significant gains against HIT-LTF

is due to the difference in active-core count and active-CPs.

5.5 Discussion

This chapter presented a holistic approach to minimize energy consumption on clustered

heterogeneous multicore systems while compensating for the simplistic assumptions made

in prior work. Factors affecting the independent memory latency cycles due to DVFS

and cache-partitioning techniques were thoroughly analyzed in order to design a heuristic

scheduling algorithm THEAM. Results show a maximum and average energy savings of

35.0% and 15.73% respectively for core-level energy consumption, and 61.1% and 24.28%

respectively for system-level energy consumption.
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Chapter 6

Dynamic Cache-Partitioned Schedulability

Analysis for Periodic Tasks

Recent integration of the cache partitioning model has ushered in new paradigms of research

in the predictability and schedulability analysis for real-time systems. This has resulted

in two general cache-partitioning techniques, i.e., dynamic CP and static CP schemes,

as described in Chapter 2. However, simplicity in the analysis framework has prompted

existing contributions to be biased towards a static CP scheme. The dynamic CP scheme

has largely been untackled despite its proficiency in schedulability, flexibility, and energy-

efficiency. In Chapter 4, we attempted to address this problem for the simpler frame-based

taskset. Since partitioned fixed-priority scheduling has become the de facto standard in the

automotive multicore real-time systems domain, e.g., mandated by AUTOSAR standard

for automotive systems [117], increasing its schedulability in the CP scenario is imperative

and can be achieved by adopting a dynamic CP scheme.

In this chapter, we make initial contributions to a dynamic CP schedulability analysis for

preemptive scheduling of fixed-priority periodic tasks. We devise a sufficient schedulability

test and then propose to refine the upper bound by adopting techniques to reduce the inter-

ference caused by cache contention. The schedulability test can be used for future dynamic

CP energy-efficient scheduling algorithms by ensuring all tasks meet their deadlines.

6.1 System Model and Problem Setting

We consider a set of N independent sporadic tasks represented as Γ={τ1, τ2, .., τN} par-

titioned across a multicore system with M identical cores O={o1, o2, .., oM}. Each core

has access to a shared-cache similar to the model presented in [28, 122] where the cache

is divided into A partitions represented as W={w1, w2, .., wA}. Each CP is treated as a

mutually exclusive and preemptive resource, and a ready task must acquire the required

CPs before it can execute on its assigned core. The cache-management technique proposed

by Xu et al. [122] for dynamically administering the CPs to ready HPTs, which can be

implemented at the OS-level, is assumed in this work.
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Figure 6-1: Problem setup with three tasks τ1, τ2 and τ3 scheduled onto a (M=2, A=8)
multicore system with both core- and cache-blocking.

Each task τi(ei, Di, Ti, cpi, oi, πi, φi) is defined by a WCET ei, a relative deadline Di, an

inter-arrival time Ti, CP requirement cpi, a local priority among tasks assigned to the same

core πi, and a global priority due to the globally shared CPs φi such that φi has a higher

priority than φj for all i<j. Implicit task deadlines (Di=Ti) permit the utilization of a task

to be defined as ui=ei/Ti. τi is further characterized by a sequence of jobs where rJi and

dJi is the release-time and deadline of a specific job τJi , respectively and the response-time

Ri is the worst-case finish time of all jobs in τi. Thus, a taskset is only schedulable if Ri

of each τi is less than Di. Similar to [122], cpi is chosen to be the smallest CPs that lead

to a minimum ei. All non-negligible overheads are factored into the WCET of the tasks to

ensure simplicity in the analysis framework.

Figure 6-1 depicts such a dynamic CP setup with tasks τ1(1, 3, 3, 7, 1, 1, 1), τ2(2, 3, 3, 4, 1, 2, 2)

and τ3(2, 4, 4, 4, 2, 1, 3) scheduled onto a (M=2, A=8) multicore system. τ2 is blocked by

HPT τ1 executing on the same core while τ3 is also blocked due to insufficient CPs dur-

ing HPT τ1’s execution despite being allocated on a different core. However, τ3 resumes

execution in parallel with τ2 since the cache can easily accommodate the cumulative CP

requirements of τ2 and τ3. It must be noted that a core-based scheduling scheme, on the

other hand, fails to schedule the taskset with the same system setting since 7 CPs would be

statically allocated to o1 to accommodate cp1. The remaining 1 CP allocated to o2 would

be insufficient to allow τ3 to execute.
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Figure 6-2: Problem window to calculate upper-bound interference on τk.

6.2 Schedulability Analysis

In this section, we derive a schedulability test for the problem setup defined in the previous

section. We utilize the problem window approach to determine the maximum response time

of the problem task τk. Figure 6-2 shows the execution of τJk in its problem window along

with the execution of its HPTs, where τk is assigned to o1. The problem window is defined

between intervals [rJk , d
J
k ]. τJk can be seen to experience two types of blocking. İk is the

interference caused due to execution of HPTs on the same core as τk, i.e., τi ∈ Ṗk, where Ṗk

represents the set of HPTs of τk allocated to the same core as τk. However, when no HPTs

are executing on o1, τJk can still be prevented from execution during certain intervals. Since

the scheduling algorithm is work-conserving, this blocking must be due to CP contention

of executing HPTs on other cores which can occur whenever the combined CPs utilized by

these HPTs is greater than the CPs required by τk, i.e., at any time instant, τk is blocked

from execution if
∑
cpi ≥ ĉpk, for τi ∈ P̈k where P̈k represents the set of HPTs of τk not

allocated to the same core as τk, and ĉpk = A− cpk + 1. We classify this interference as Ïk.

This can be further elobrated in Figure 6-3 where both interferences from Figure 6-2 are

segregated into seperate blocks and a minimum of ĉpk CPs are required to prevent τk from

executing.

The resultant schedulability test for τk can be rendered as:

ek +max(İJk + ÏJk ) ≤ Dk ∀J ∈ τk (6.1)

An upper-bound for İJk is first determined. Isolating İJk enables a direct relation with

the interference experienced by tasks executing in fixed priority preemptive scheduling al-

gorithms for single-core processors, where a task can only be blocked by HPTs execut-

ing on the same core. On single-cores, the critical instant is known and corresponds to
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Figure 6-3: Interference from HPTs seperated into seperate blocks to represent how τk is
blocked within its problem window.

the synchronous release of HPTs. Thus, Audsley’s iterative response-time analysis (RTA)

schedulability test [35] can be used to find the maximum response time:

Ṙk = ek +
∑
τi∈Ṗk

⌈
Ṙk
Ti

⌉
ei (6.2)

where İk is implicitly included in the resultant response time as İk = Ṙk − ek.

For Ïk, since the CPs are a global resource and P̈k can acquire any of the A CPs to

preemptively execute and ensure a work-conserving schedule, the critical instant cannot be

assumed to be the synchronous release of its HPTs. Therefore, an upper-bound on the

interference must be found.

As such, it is important to define the workload of a task τi during interval [rJk , d
J
k ] as

W i
k(r

J
k , d

J
k ) and its corresponding interference on τk as Iik(r

J
k , d

J
k ). W i

k(r
J
k , d

J
k ) represents

on the amount of computation time that τi requires within the specified interval. An

HPT’s interference cannot be greater than its workload within the specified interval and

determining the workload of each HPT is a first step to calculating the interference Ïk [12].

Given that an HPT executes for W i
k(r

J
k , d

J
k ) time units while occupying cpi CPs within

the problem window and since a minimum number of ĉpk CPs can block τk from execution,

the combined CPs that need to be occupied by P̈k during the problem window can be

bounded by [122]:

∑
τi∈P̈k

min(cpi, ĉpk)W
i
k(r

J
k , d

J
k ) (6.3)

Therefore, an upper bound on the interfrence time Ïk caused by such HPTs can be found

by dividing their combined CP usage (Eq. 6.3) by the minimum number of CPs to block
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τk:

Ïk(r
J
k , d

J
k ) ≥

∑
τi∈P̈k min(cpi, ĉpk)W

i
k(r

J
k , d

J
k )

ĉpk
(6.4)

Bertogna et al. [12] proposed a method to determine the workload of each HPT by

characterizing their jobs as carry-in, carry-out and body jobs, resulting in:

W i
k(r

J
k,d

J
k )=Ni(r

J
k,d

J
k )ei +min(ei,(d

J
k − rJk ) +Di − ei −Ni(r

J
k,d

J
k )Ti) (6.5)

where Ni(r
J
k , d

J
k ) =

⌊
(dJk−r

J
k )+Di+ei
Ti

⌋
.

The interference Ïk can now be estimated by performing RTA on τk. The workload of

each τi ∈ P̈k is calculated at each iteration using Eq. (6.5) between intervals defined by the

monotonically increasing problem window size specified in each iteration. Therefore, the

maximum response time of τk due to Ïk can be calculated as:

R̈k = ek +

⌊∑
τi∈P̈k min(cpi, ĉpk)W

i
k(R̈k)

ĉpk

⌋
(6.6)

where W i
k(R̈k) can be calculated from Eq. (6.5) for the interval specified by R̈k and Ïk .

Based on Eqs. (6.2), (6.4) and (6.6), an upper-bound on the total interference on τk can be

calculated as:

Rk = ek +
∑
τi∈Ṗk

⌈
Rk
Ti

⌉
ei+

 1

ĉpk

∑
τi∈P̈k

min(cpi, ĉpk)W
i
k(Rk)

 (6.7)

6.3 Discussion

In this chapter, we presented a schedulability analysis for dynamic CP scheduling on mul-

ticore real-time systems. However, the response time attained through this method can

be pessimistic since it does not consider the specific combinations of τi ∈ P̈k that can

block τk and, thus, fails to reflect the low contention scenario, i.e., time instants when∑
cpi< ĉpk ∀τi ∈ P̈k. Therefore, we are currently working on devising improvements to

Eq. (6.7) to tighten the upper-bound on cache interference. Towards this aim, we must

determine how a given set of HPTs τi ∈ P̈k can block τk, i.e., could a single HPT block

τk or would there be combinations of HPTs that, when run in parallel, could cause enough

cache interference to block τk from execution.
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Chapter 7

Conclusion

Energy-efficiency has become a growing concern worldwide. Particular to real-time sys-

tems, the constant demand for higher performance, portability and reliability has led to a

proliferation of energy-efficient algorithms for both homogeneous and heterogeneous multi-

core system. However, existing algorithms are oblivious to unpredictable nature of shared

caches.

This thesis introduced and evaluated various aspects of cache-partitioning on energy-

efficient scheduling algorithms for both homogeneous and heterogeneous multicore real-

time systems in order to cater for the unpredictability posed by shared caches and to

accommodate the shared cache energy into the energy minimization problem.

An improved system and task model was first introduced in order to incorporate the

shared cache along with its non-linear memory latency scaling. The presented model was

evaluated for frame-based tasksets on a single-core system. This work was then extended for

the homogeneous multicore system where a cache-dependency graph was developed to model

the dynamic cache-partition interference between tasks allocated to different cores, thus, al-

lowing existing well-established algorithms to utilize this model in their energy-minimization

problem. Since existing algorithms primarily focus on minimizing only core-level energy con-

sumption, energy-efficient scheduling algorithms for the cache-level and system-level were

also proposed. The experimental results showed a 5× improvement in percentage energy

savings for system-level energy minimization against the base-line approach.

The same problem was then introduced into the heterogeneous multicore domain, where

a holistic approach to minimize system-level energy consumption was proposed for periodic

tasks in a static CP scheme. Factors affecting the independent memory latency cycles

and cache-paritioning techniques were thorougly analyzed in order to design a heuristic

scheduling algorithm. Results show an average of 24.28% 9.25% and maximum of 61.1%,

33.3% percentage energy savings for system-level energy minimization against two state-of-

the-art algorithms, respectively.

Finally, a dynamic CP schedulability analysis for periodic tasks was proposed. This
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schedulability analysis is currently a work in progress and is intended for future techniques

on dynamic CP energy-efficient scheduling of periodic tasks on multicore real-time systems.

The experimental results of this thesis prove our hypothesis that improved task-models

along with inclusion of the shared-cache into the energy-minimization problem can result

in energy-saving gains for system-level energy consumptions.

7.1 Future Prospects

Thermal-aware scheduling has received significant interest lately for both homogeneous and

heterogeneous multicores [1, 39, 75]. Concentration of specific components of the CPU for

computation or resource handling can produce thermal hotspots on the CPU die. These

hotspots can threaten processor performance and reliability and, therefore, are a high risk

factor for time and safety critical applications. [75,111]. Depending upon the task allocation

strategy and CP scheme adopted, thermal hotspots may arise on specific CPs that are

constantly and repeatedly used by a core. Determining the impact that CP techniques have

on the thermal condition of the processor is an interesting future extension of the work

proposed in this thesis.

Game theoretical models have shown potential in solving complex resourse management

problems especially in the domain of control systems [58,59]. This has motivated researchers

to utilize such models for the computing domain to effectively schedule tasks onto multicore

and manycore systems [97]. Introducing game theoretical models into real-time systems

scheduling, particularly in the cache-aware domain, can produce favourable results for both

increasing schedulability and minimizing energy consumption.
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