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Abstract

In this research work, the estimation of the spatio-temporal variation of water bodies

for state variables, velocity (m/s) and water surface elevation (m) for unsteady flows in

open channels has been investigated. For data assimilation, two methods are studies,

one is using conventional way to incorporate velocity data in system model and other

one is incorporating GPS locations in to augmented model, the GPS locations are

obtained from mobile sensors such as Lagrangian sensors, which have the ability to

float passively in water bodies. One-dimensional Saint-Venant equations are used for

a system model linearized by a Taylor series expansion. To obtain a discrete-time

state-space model, the coupled PDEs are discretized by Lax diffusive method in time

and space. For state estimation of the open channel, a Kalman filter is set up with

suitable filtering parameters for the channel’s model. In this research studies, the

augmented system model is developed to incorporate the GPS location. For data

assimilation in augmented model, the state dependent interacting multiple model

(SD-IMM) is implemented as system model is time varying. Eulerian (fixed) sensors

present at the head and tail of the canal provide the minimally required boundary

conditions to run the model. The trajectory of float is also estimated using water

velocity profiles as well as GPS locations. The system is simulated using HEC-RAS

simulation software. The estimated states are compared with actual values. The

system is also tested in real environment.
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Chapter 1

Introduction

1.1 Motivation

Water is one the most valuable resource in nature, which is used in household for

cooking, washing and other daily life application as well as in industry for almost every

kind of production site either it is steel industry or leather industry. As the need for

water is increasing in the world, the issues related to water are also increasing at an

unimaginable rate. As the population of the world grows and societies shift towards

urbanization, the demand for water is increasing for agriculture and domestic usage.

On the other hand, due to the development of industrial society, the water bodies

has become a major sink for industrial waste. The major motivation behind this

research is the dumping of untreated industrial waste into water bodies. According

to the United Nations, the amount of 1500 Km3 untreated wastewater is produced

each year in the world, which is six times the total water in the river all across the

world. In recent years, drinking water has become a major issue in Pakistan. The

water availability per capita in 1951 was 5000 m3 which decreased to 1200 m3 in

2000. The estimated water availability per capita in 2025 is 659 m3[8]. The 20 to

40 percent of all disease is due to contaminated drinking water in Pakistan[3], which

results in an income loss of Rs. 25-58 billion annually and these figures are increasing

tremendously. One of the major reason behind the contaminated drinking water is

the lack of monitoring of industrial wastewater, which is being dumped into water
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bodies. One such location is the hydyara drain in Lahore, Pakistan, which is sink to

a large number of industries, which are constructed along it. The current water and

health issues can be resolved by using proper equipment and scientific approach. To

solve issues of contaminated water, the first step is to monitor and understand the

behavior of contamination transportation and its effects, which requires knowledge

of hydrodynamic parameters of water bodies. This research study is a contribution

to monitoring the hydrodynamic parameters such as water level and water velocity,

which can be further used to visualize the water flows and sediment transport in the

water bodies.

1.2 Related Work

State estimation is an important part of the study for the control of water bodies.

The efficient use of water requires improved methods of monitoring water bodies at

very high spatio-temporal scales. In the recent past, monitoring techniques have

shifted from manual observation to the use of ICT powered sensor networks [15] as

part of the wider hydro-informatics revolution [12]. The data is typically collected at

specific locations using in-situ sensors at high frequencies, which enables the model-

ing and study of the temporal phenomenon at unprecedented scales. Similarly, such

telemetry systems have also enabled a revolution in water management, allowing the

enforcement of governance principles such as equity, transparency and water rights

in complex river basins [20]. The data is typically assimilated in dynamical models,

allowing higher temporal scales and more accurate estimates than what raw measure-

ments can promise [6]. However, many scientific applications and water governance

issues demand access to high-resolution data not only at a specific location but also

at multiple spatial points within a water body. Examples include the monitoring of

waste disposal in drains, unauthorized water diversion from irrigation channels and

contamination spread in wide rivers.

In the present era, new technologies have opened the possibility of exploiting

mobility as an enabler to expand the coverage of in-situ sensors. In a hydrological
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setting, a very important class of mobile sensors are the so-called Lagrangian sensors

that can float passively in water bodies and provide information on their position using

GPS. These sensors are cost efficient as they provide wide coverage exploiting the

natural movement of water and can perform simultaneous measurement of multiple

variables related to water quality and quantity [1]. Another type of mobile sensing

which is relevant to the framework used in this work (but not used here as a case study)

is social sensing, in which the mobile sensor is a human that can observe water-related

variables such as the height of water at different locations and share the values by using

social media as the communication medium [11]. The common challenge with the use

of mobile sensors is that these sensors provide asynchronous data at different steps in

time and space. The water dynamics of water bodies including water level and water

velocity can be estimated using data assimilation of sensor data in the 1-D or 2-D

hydrological models. However, there is always some error in the mathematical model

due to uncertainty in model parameters and selection of boundary conditions [10]. The

boundary conditions are obtained by using the so-called Eulerian sensors deployed at

the location of gates, which are fixed sensors deployed at fixed locations in the water

body of interest. The data assimilation can be done using multiple techniques related

to optimization and statistical models of uncertainty. The researchers working in the

field of control methods for water bodies has estimated the hydrodynamic variables

by using data assimilation of average velocity data, which is obtained by using basic

relation S = V t based on GPS location from Lagrangian sensors in hydrological

models [13], The computation of average velocity is the pre-processing on sensor

data. In the field of estimation, the pre-processing on sensor data which alters the

type of data is not encouraged. In literature, the state estimation of hydrodynamic

parameters is also done using quadratic programming, for which cost function is

defined [17]. To incorporate the GPS sensor measurement in the model, the modified

system is required as the location of the Lagrangian sensor also becomes a state of the

system. In the research study [9], an augmented system model is proposed, in which

the sensor motion model is augmented with the hydrological model. The augmented

system model requires improved data assimilation method, as the system becomes

3



time-dependent. In this research study, the state dependent interacting multiple

models (SD-IMM) inspired by the motion of ballistic missiles along the Kalman filter

is used. In SD-IMM, all the possible models are executed at the same time with

appropriate probabilities.

1.3 Summary

In this study, our focus is on understanding dynamic flow conditions in open chan-

nels similar to irrigation canals [5]. For the mathematical model, the Saint-Venant

partial differential equations are linearized by using appropriate linearized technique

around the steady-state values by using backwater curve steady state equations. The

Taylor series expansion is used for the linearization of one-dimensional Saint-Venant

equation, despite the fact that water bodies are nonlinear by nature, a linearized

mathematical model is expected to work efficiently for the setup of this research

study. As Saint-Venant equations are coupled partial differential equations [5], so

for discretization the Lax diffusive method is used in space and time with suitable

time step and spatial step. The discretized system is converted into a state space

model [16]. The Lagrangian sensor motion model is developed for one-dimensional

motion, which is augmented with Saint-Venant state space model. For the measure-

ment model, the vector of the three outputs is considered, which consist of Lagrangian

sensor position, water elevation of first and last cell obtained from Eulerian sensors

mounted at both ends. Position measurements are provided by a Lagrangian sensor

(GPS powered float) released from upstream. As the system is time-dependent, the

state dependent interacting multiple model technique along the Kalman filter is used.

In this research study, states estimation of hydrodynamic parameters is done by two

ways, (1) using augmented model along SD-IMM with GPS measurement (2) using

Saint-Vaint model along simple Kalman filter with average velocity as a measurement.

4



Chapter 2

System Model

2.1 Saint-Venant Equations

The water bodies can be mathematically explained by Saint-Venant equations [5].

These equations can be derived by using the law of conversation of mass and the

law of conservation of momentum. For one dimensional flow as shown in Fig. (2-

1), let us assume that a control volume of fluid in a water body has Q the rate of

Figure 2-1: control volume fluid in a reach

discharge(m3/s), V the flow velocity (m/s), Y the water level (m), D the depth of

channel (m), x the length of reach (m), t the time (s), B the extensive property (Mass

or Momentum of water) and β the intensive property. The x is measured positive
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along downward stream and negative along upward stream. Let assume the control

volume in a section of water body as shown in Fig. (2-2). First by law of conservation

Figure 2-2: Control volume fluid in a reach

of mass, let the extensive property B = M , where M is the mass:

∂M

∂t
= 0. (2.1)

By Reynolds transport theorem:

∂M

∂t
=

∂

∂t

∫ x2

x1

βρ∂V + (βρQ)out − (βρQ)in (2.2)

Where A is the flow area of fluid within the control volume and ρ is the mass density

of water. The inflow is considered positive and outflow as negative. The system is

considered to be closed contour or no sink without any lateral inflow. As intensive

property β = ∆m
∆m

= 1, the Equation (2.2) can be written as:

∂M

∂t
=

∂

∂t

∫ x2

x1

ρ∂v + (ρQ)out − (ρQ)in (2.3)

∂M

∂t
=

∂

∂t

∫ x2

x1

ρA∂x+ ρQ2 − ρQ1 − ρql(x2 − x1) (2.4)

6



Where ql is the lateral inflow. For the in-compressible fluid the ρ is constant for all

constant cross sections.

∂M

∂t
=

∂

∂t

∫ x2

x1

A∂x+Q2 −Q1 − ql(x2 − x1) (2.5)

if ql = 0, then mass is conserved and if it is not zero, it act as sink or source. Let

lateral inflow ql = 0,

∂M

∂t
=

∂

∂t

∫ x2

x1

A∂x+Q2 −Q1 (2.6)

As the Equation (2.6) is in integral form, we have to convert it into differential

form. The differential form can be obtained by using Leibnitz rule, which is shown

in Equation (2.7).

∂

∂t

∫ f2(t)

f1(t)

F (x, t)∂x =

∫ f2(t)

f1(t)

∂

∂x
F (x, t)∂x+F (f2(t), t)

∂f2

∂t
−F (f1(t), t)

∂f1

∂t
(2.7)

Now driving the differential form of the system. By Equation (2.6) and by Leibnitz

rule:

∫ x2

x1

∂A

∂t
∂x+ (Q2 −Q1) = 0 (2.8)

(x2 − x1)
∂A

∂t
+Q2 −Q1 = 0 (2.9)

∂A

∂t
+
Q2 −Q1

(x2 − x1)
= 0 (2.10)

7



∂A

∂t
+
∂Q

∂x
= 0 (2.11)

The above equation is one-dimensional Saint-Venant equation. Now converting this

equation into water level and velocity form. As the water level and velocity are the

state variables, which are being observed in this research work. The flow of fluid in a

reach length can be written in terms of flow area and velocity of fluid as follow:

Q = AV (2.12)

For a uniform channel, the change in flow area ∂A can be written as follows:

∂A = w∂Y (2.13)

Where w is the free surface width.

∂A

∂x
= w

∂Y

∂x
(2.14)

So equation (2.11) can be written as follows:

w
∂Y

∂t
+
∂(AV )

∂x
= 0 (2.15)

w
∂Y

∂t
+ V w

∂A

∂x
+ A

∂V

∂x
= 0 (2.16)

∂Y

∂t
+ V

∂Y

∂x
+
A

w

∂V

∂x
= 0 (2.17)

8



Now substitute D = A
w

in Equation (2.17), where D is the channel depth:

∂Y

∂t
+ V

∂(Y )

∂x
+D

∂V

∂x
= 0 (2.18)

This equation is the first equation of model used in this study based on law of con-

servation of mass. Now deriving the equation for law of conservation of momen-

tum. Let extensive property B = momentum of water= mV and intensive property

β = V ∆m
∆m

= V

By Newton’s law:

∂B

∂t
=
∑

F (2.19)

Again by Reynolds transport theorem:

∂B

∂t
=
∑

F =
∂

∂t

∫ x2

x1

ρAV ∂x+ V2ρA2V2 − V1ρA1V1 − Vxρql(x2 − x1) (2.20)

Let ql = 0,

∑
F =

∂

∂t

∫ x2

x1

ρQ∂x+ V2ρQ2 − V1ρQ1 (2.21)

By using Leibnitz rule,

∑
F =

∫ x2

x1

ρ∂Q

∂t
∂x+ V2ρQ2 − V1ρQ1 (2.22)

By solving the integral,

∑
F = (x2 − x1)

ρ∂Q

∂t
+ ρV2Q2 − ρV1Q1 (2.23)

∑
F = (x2 − x1)

ρ∂Q

∂t
+ ρ(V2Q2 − V1Q1) (2.24)

9



∑
F

(x2 − x1)
=
ρ∂Q

∂t
+ ρ

(V2Q2 − V1Q1)

(x2 − x1)
(2.25)

∑
F

∂x
= ρ

∂Q

∂t
+ ρ

∂(QV )

∂x
(2.26)

∑
F

ρ∂x
=
∂Q

∂t
+
∂(QV )

∂x
(2.27)

For simplicity, assume that the shear stress on flow surface due to wind and the

effect of corollas acceleration is negligible. These are valid assumptions. The pressure

Figure 2-3: Upstream cross section (1) and downstream cross section (2) with centroid
depth of ȳ1 and ȳ2

force acting on the upstream for the centroid depth ȳ1 for A1 is as follows:

F1 = ρgA1ȳ1 (2.28)

Where g is the gravitation force which is 9.8m/s2 similarly the pressure force acting

10



on the downstream end is:

F2 = ρgA2ȳ2 (2.29)

The force due to the weight of water in the direction of x can be written as:

F3 = ρg

∫ x2

x1

ASb∂x (2.30)

Sb is the channel bed slop. The frictional force or the shear force between channel

sides, bottom and water is:

F4 = ρg

∫ x2

x1

ASf∂x (2.31)

Where Sf is the frictional slope which can be calculated as follows:

Sf = CV
|V |m−1

Rp
(2.32)

The C,R and p depends on the channel structure.

Now the sum of all all forces can be written as:

∑
F = F1 + F2 + F3 + F4 (2.33)

∑
F = ρgA1ȳ1 − ρgA2ȳ2 + ρg

∫ x2

x1

ASb∂x− ρg
∫ x2

x1

ASf∂x (2.34)

∑
F = ρg(A1ȳ1 − A2ȳ2) + ρg

∫ x2

x1

A(Sb − Sf )∂x (2.35)
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∑
F = ρg(A1ȳ1 − A2ȳ2) + ρg(x2 − x1)A(Sb − Sf ) (2.36)

∑
F

ρ(x2 − x1)
=
g(A1ȳ1 − A2ȳ2)

(x2 − x1)
+ gA(Sb − Sf ) (2.37)

By re-arranging and applying central limit theorem the Equation (2.37) can be written

as:

∑
F

ρ∂x
=
−g∂(Aȳ)

∂x
+ gA(So − Sf ) (2.38)

Now by Equation (2.27) and Equation (2.38):

∂Q

∂t
+
∂(QV )

∂x
= −g∂Aȳ

∂x
+ gA(Sb − Sf ) (2.39)

∂Q

∂t
+
∂(QV + gAȳ)

∂x
= gA(Sb − Sf ) (2.40)

As,

∂gAȳ

∂x
= g

∂Aȳ

∂y

∂y

∂x
= gA

∂y

∂x
(2.41)

Using above expression in Equation (2.40),

∂Q

∂t
+
∂(QV )

∂x
+ gA

∂y

∂x
= gA(Sb − Sf ) (2.42)

∂AV

∂t
+
∂(QV )

∂x
+ gA

∂y

∂x
= gA(Sb − Sf ) (2.43)
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V
∂A

∂t
+ A

∂V

∂t
+ V

∂(Q)

∂x
+Q

∂(V )

∂x
+ gA

∂y

∂x
= gA(Sb − Sf ) (2.44)

V w
∂Y

∂t
+ A

∂V

∂t
+ V

∂(AV )

∂x
+ AV

∂(V )

∂x
+ gA

∂Y

∂x
= gA(Sb − Sf ) (2.45)

V w
∂Y

∂t
+A

∂V

∂t
+V A

∂(V )

∂x
+V V

∂(A)

∂x
+AV

∂(V )

∂x
+ gA

∂Y

∂x
= gA(Sb−Sf ) (2.46)

V w
∂Y

∂t
+A

∂V

∂t
+V A

∂(V )

∂x
+V V w

∂(Y )

∂x
+AV

∂(V )

∂x
+gA

∂Y

∂x
= gA(Sb−Sf ) (2.47)

V (w
∂Y

∂t
+ A

∂V

∂x
+ wV

∂Y

∂x
) + A(

∂V

∂t
+ V

∂V

∂x
+ g

∂Y

∂x
) = gA(Sb − Sf ) (2.48)

V (w
∂Y

∂t
+ A

∂V

∂x
+ wV

∂Y

∂x
) + A(

∂V

∂t
+ V

∂V

∂x
+ g

∂Y

∂x
− g(Sb − Sf )) = 0 (2.49)

The first term will be equal to zero due to law of conservation of mass.

A(
∂V

∂t
+ V

∂V

∂x
+ g

∂Y

∂x
− g(Sb − Sf )) = 0 (2.50)

∂V

∂t
+ V

∂V

∂x
+ g

∂Y

∂x
− g(Sb − Sf ) = 0 (2.51)

This is the Saint-Venant equation for conservation of momentum of fluid. The Equa-
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tions (2.51) and (2.18) are known as Saint-Venant equations. These equations are

non-linear and continuous. To implement the data assimilation, the state space mod-

els including linearization and discretization is discussed in next section.

2.2 State Space Model for Hydrological Systems

2.2.1 Linearization

The one dimensional Saint-Venant equation in the form of Equations (2.16) and

(2.51) are nonlinear. For linearization, multiple techniques are available which can be

implemented. The most prominent technique is the Taylor series expansion as shown

in Equation (2.52).

f(x+ x̄) = f(x) +
∞∑
n=1

(x̄)n

n

∂nf

∂xn
(2.52)

One of the important points is that in some of the techniques only perturbations

are considered as output. However, in the control system, the perturbation must

be added in steady states to analyze the characteristics of the non-linear system.

For linearization, the steady-state values are required, which are obtained by using

backwater curve steady state equations written as follows:

dV̄ (x)

dx
= − V̄ (x)

Ȳ (x)

dȲ (x)

dx
− V̄ (x)

w(x)

dw(x)

dx
, (2.53)

dȲ (x)

dx
=

Sb − Sf

1− F (x)2
. (2.54)

For this research study, the first order perturbation is considered, neglecting higher

order terms of Taylor series. The water level and water velocity for first order per-

14



turbation is given as follows:

Y = Ȳ + y (2.55)

V = V̄ + v (2.56)

The linearized form of the Saint-Venant equation is as follows:

∂y

∂t
+ Ȳ (x)

∂v

∂x
+ V̄ (x)

∂y

∂x
+ α(x)v + β(x)y = 0 (2.57)

∂v

∂t
+ V̄ (x)

∂v

∂x
+ g

∂y

∂x
+ γ(x)v + η(x)y = 0 (2.58)

The α, β, γ and η can be written as:

α(x) =
dȲ

dx
+
Ȳ

w

dw̄

dx
, (2.59)

β(x) = − V̄
Y

dȲ

dx
− V̄ (x)

w(x)

dw̄

dx
, (2.60)

γ(x) = 2gm2

∣∣V̄ ∣∣
Ȳ 4/3

− V̄

Ȳ

dȲ

dx
− V̄ (x)

w(x)

dw(x)

dx
, (2.61)

η(x) = −4

3
gm2 V̄

∣∣V̄ ∣∣
Ȳ 7/3

. (2.62)
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2.2.2 Discretization

The linearized system of equations is discretized in space as well as time. There are

multiple techniques are available for discretization, most prominent techniques are

grid discretization by finite difference method and Lax diffusive method. The finite

difference method can be used with forward, central or backward Euler method. For

this research work, Lax diffusive method is used. The Equations (2.63) and (2.64)

shows the working of Lax diffusive method.

∂f

∂t
=
fk+1
i − 1

2

(
fk
i+1 + fk

i−1

)
∆t

(2.63)

∂f

∂x
=
fk+1
i − fk

i−1

2∆t
(2.64)

The discretized form of these system equations is shown in Equation (2.65) and

(2.66) as follows:

yk+1
i = yki+1

[
1

2
− ∆t

4∆x
(v̄i+1 + v̄i−1)− ∆t

2
βi+1

]
+yki−1

[
1

2
+

∆t

4∆x
(v̄i+1 + v̄i−1)− ∆t

2
βi−1

]
+vki+1

[
− ∆t

4∆x
(ȳi+1 + ȳi−1)− ∆t

2
αi+1

]
+vki−1

[
∆t

4∆x
(ȳi+1 + ȳi−1)− ∆t

2
αi−1

]
,

(2.65)

vk+1
i = vki+1

[
1

2
− ∆t

4∆x
(v̄i−1 + v̄i+1)− ∆t

2
γi+1

]
+vki−1

[
1

2
+

∆t

4∆x
(̄vi+1 − v̄i−1)− ∆t

2
γi−1

]
+yki+1

[
−g ∆t

2∆x
− ∆t

2
ηi+1

]
+yki−1

[
g

∆t

2∆x
− ∆t

2
ηi−1

]
.

(2.66)

16



Figure 2-4: Discretization of water body in cells

The physical interpretation of discretization is shown in Fig. (2-4). For the stability

of the system, the Courant-Friedrich-Lewy (CFL) condition must be satisfied. The

condition is as follows,

∆t

∆x
|V | ≤ 1. (2.67)

2.2.3 Boundary Conditions

The boundary conditions for the water elevation at both ends of channel are given as

follows:

yk1 = hk1, (2.68)

ykN = hkN . (2.69)

The boundary conditions for water velocities are calculated by using overshot-gate/weir

equation [19] as shown in Equations (2.70) and (2.71).

v(x = 0, t) =
0.6
√
gT

y1w
(y1 − p)3/2, (2.70)

v(x = L, t) =
0.6
√
gw

yNw
(yN − p)3/2, (2.71)
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where T is the gate width, w channel width, y1 water level in first cell and yN water

level in last cell. y is approximated at t = k∆t , v at x = ∆x and N is the number

of cells. The undershot gate equations are as follows:

v(t) = Cd

√
2gyu (2.72)

Cd =
Cc√

1 + Cc(p/yu)
(2.73)

Cc = yd/p, (2.74)

where yu is the upstream water level of the undershot gate and yd is the downstream

water level of the gate. These boundary values are obtained by using Eulerian sensors

at both ends. The state space model is derived with y and v as state variables [16].

The general state space model is given by:

x(k + 1) = Ax(k) +Bu(k) +W (k), (2.75)

y(k) = C(k)x(k) +Du(k) + r(k). (2.76)

The state vector for the above model is as follows:

x(k) =
[
vk2 . . . v

k
N−1y

k
2 . . . y

k
N−1

]T
. (2.77)
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Figure 2-5: Movement of Lagrangian sensor water body across cells

The input vector u is given by:

u(k) =


vk1

vkN

yk1

ykN

 . (2.78)

The boundary conditions are used as input to the state space model. The process

noise W (k) is modeled by i.i.d. Gaussian random variables. The dimensions of matrix

A is (2N − 4)×(2N − 4) while dimension of B is (2N − 4)×(4). The details of these

matrices are omitted for brevity but can be derived easily from the discretization

scheme above.

2.3 Lagrangian Sensor Motion Model

The Lagrangian sensor has the capability to float passively along the water body.

These sensors provides GPS location at each spatial step and temporal step. The

motion of Lagrangian sensor is based on the velocity of water as shown in Fig. (2-

5). The water velocity varies in each cell of water body, which effects the motion

of Lagrangian sensor. Let pos be the position of sensor, v velocity of water in a

particular cell i, ∆t the time step for sensor measurement. The motion model for
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Lagrangian sensor can be written as follows,

pos(k) = pos(k − 1) + vi(k)∆t. (2.79)

2.4 Augmented Model

As the Lagrangian sensors provide only the GPS location, it is common practice to

compute the velocity of Lagrangian sensor by S = V∆t relation. As it is not an

appropriate way to assimilate sensor data into system model. In this way, sensor

data is pre-processed which act as another estimator. In order to assimilate the GPS

location directly to system model and preserve the application of Lagragian sensor, an

augmented model is required. For this purpose, the Lagrangian sensor motion model

is developed in the previous section. As discussed above that states space model

consist of only water level and water velocities, now the position of Lagrangian sensor

is also included in state vector. The state space model defined in Equation (2.75) is

modified as follows,

x(k + 1) =

1 1(i)t

0 A

x(k) +Bu(k) (2.80)

The state vector for modified model is as follows:

x(k) =
[
pos(k)vk2 . . . v

k
N−1y

k
2 . . . y

k
N−1

]T
. (2.81)

The augmented input vector u is given by:

u(k) =


vk1

vkN

yk1

ykN

 . (2.82)
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The state transition matrix and input transition matrix defined in Equation (2.80)

and (2.81) are time dependent.

2.5 Measurement Model

For measurement model, the model described in equations (2.83), (2.84) and (2.85)

of three outputs is considered.

Y k
1 = hk2, (2.83)

Y k
2 = vkn, (2.84)

Y k
3 = hkN−1, (2.85)

Where n is the number of cell in which the Lagrangian sensor is moving. C is

3×(2N − 4) matrix in which the first and last row of the matrix will remain the

same because water level at 2nd and N-1 point is being measured by Eulerian sensors

at fixed locations. The middle row will change as sensor moves along the channel,

providing the velocity of the each cell.
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Chapter 3

Sensors

3.1 Lagrangian Sensors

The mobile sensors used in our work are called Lagrangian sensors, also popularly

known as drifters or floats. These sensors passively float with water velocity in water

body. Lagrangian sensors are usually equipped with multiple modalities of sensing

such as temperature, pH, salinity, turbidity and other physico-chemical parameters.

An important component of Lagrangian sensors is GPS to provide position at each

step. Sensors for our work are inspired by drifters developed by our group and re-

ported in [1], where we have deployed such sensors to observe water quality data in

canals and rivers. A photograph of our sensor deployed in a canal in Pakistan is show

in Fig. (3-1). The GPS measurements can be used to estimate the velocity of the

drifter and thereby of a steady channel. However, due to the inherent spatial varia-

tion in fluid flow due to variation in channel geometry and the occasional deviation

of the sensor from forward movements, a simple method such as averaging does not

yield good results in unsteady flows, when the channels are unstructured or when the

measurements may be intermittent.
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Figure 3-1: Lagrangian sensor equipped with GPS floating in a canal.

3.2 Eulerian Sensors

The static sensors in this work are Eulerian and also inspired from sensors developed

and deployed by our group [14]. These sensors measure water height using ultrasonic

or radar based ranging. Eulerian sensors provide data at regular time intervals at

a specific location. From a modeling perspective, the sensor model is time-invariant

and does not provide directly measured data away from its location. The accuracy

of these sensors is usually high and are not prone to the type of errors present in

Lagrangian sensors. An field setting of such a sensor providing water height and

derived flow is shown in Fig. (3-2).

Figure 3-2: Eulerian sensor providing the data of water level in canal.
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Chapter 4

Data Assimilation

Data assimilation is the process of estimation of the unknown states or some of the

unknown states of the system by combining the measurements received from sensors

and model[18]. Whereas, numerical solutions of mathematical models may not pro-

vide the exact solution due to uncertainty in modeling but covers the whole area of

observation. By combining the model and measurements from sensor leads to better

estimation of the values. There are many data assimilation techniques being prac-

ticed. Some of the techniques are variational data assimilation techniques, filtering

methods, statistical assimilation and Newtonian relaxation. The most common used

data assimilation technique is Kalman filter.

4.1 Kalman filter

Kalman filter has been considered as one of optimal filter for the purposes of tracking,

estimation and smoothing. The Kalman filter is based on minimum mean square error

technique[2]. The Kalman filter mainly includes three steps: prediction, Kalman gain

calculation and update. The Equations (4.1) and (4.2) show the prediction of state

vector and error covariance matrix.

x(k + 1) = Ax(k) +Bu(k), (4.1)
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P
′
(k + 1) = AP (k)AT +Q, (4.2)

The equation (4.3) shows the computation of Kalman gain.

K(k) = P
′
(k)HT (HP

′
(k)HT +R)−1. (4.3)

The equations (4.4) and (4.5) show the process to update state vector and error

covariance matrix.

x(k) = x
′
(k) +K(k)(z(k)− Cx′(k)), (4.4)

P (k) = (I −K(k)H)P
′
(k). (4.5)

The Q is the covariance matrix of model noise as follows:

Q = E[w(k)w(k)T ], (4.6)

where w is the model noise. The R is the covariance matrix of sensor noise, which

can be written as follows:

R = E[r(k)r(k)T ], (4.7)

where r is the measurement or sensor noise. The P is the covariance matrix of error

e, which can be written as:

P = E[e(k)eT (k)]. (4.8)
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4.1.1 Filter Performance Analysis

The performance of filter used in data assimilation is a critical point for the validation

of results. As it is possible that visually cyber system is tracking the actual physical

system but it is the states are not correct. To validate the performance of filter,

some method is required. We can’t measure the performance by the state error

measurement because actual states are not available. So the performance of filter is

measured by the output error, which is computed during filtering known as innovation

in Kalman filter. There are two ways to check the performance of Kalman filter, which

are:

� To check that error is consistent with its covariance by verifying that the mag-

nitude of the innovation is bounded by ±
√

2Sk.

� In order to test the unbiasness we calculate the normalised innovation squared

qk+1 for k trials of Kalman filter. The qk+1 is computed as follows:

qk+1 = ek+1S
−1
k+1ek+1 (4.9)

where S is the innovation covariance matrix computed during Kalman filter

execution.

� Perform auto-correlation at error vector.

4.2 State Dependent Interacting Multiple Models

(SD-IMM)

The approach to use multiple filter in parallel is practised in the area of target

tracking[7], in which target does not follow a straight line motion model [4]. So

the tracking of target is difficult using single motion model. In this research study,

the Lagrangian sensor is referred as target. In order to get good estimate of the tar-

get maneuver states, run multiple models in parallel and assign probabilities to each

model as shown in Fig. (4-1).
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Figure 4-1: N parallel models filter bank

These probabilities are based on the likelihood of the models to be executed at a

particular time based on Bayes’s rule and residuals. These probabilities are updated

with time. This process is also known as Markove chain. The output of these parallel

models is weighted with probabilities. To implement the Markove chain, at each

iteration, there is a transition probability matrix Pij that the Lagrangian sensor has

moved from ith cell to jth cell, so jth model will have more probability. The number

of models depend on the number of cells. The matrix Pij is defined as follows:

Pij =


P1,1 P1,2 . . . P1,N

P2,1 P2,2 . . . P2,N

...
...

. . .
...

PN,1 PN,1 . . . PN,N

 (4.10)
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The matrix Pij is defined perior of the iterations. The sum of probabilities of all

models in each row should be equal to 1.

N∑
j=1

Pij = 1 (4.11)

The flow chart in Fig. (4-2) shows the complete procedure for clear understanding of

IMM technique.

Figure 4-2: IMM flowchart
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4.2.1 IMM Mixing

IMM mixing is the process to track Kalman filter estimated states and covariance

matrix according to the transition probabilities that the Lagrangian sensor makes a

transition. To understand the IMM mixing process, following terms are necessary to

understand.

x̂i(k − 1|k − 1) = Estimated states from Kalman filter at k − 1 by model i

Pi(k − 1|k − 1) = Covariance matrix from Kalman filter at k − 1 by model i

µi(k − 1) =Probability that target is in model i

µij(k− 1) =Transition probability that target made transition from ith model to jth

model

The µij is calculated as follows:

µij(k − 1) = Pijµi(k − 1)/Cj(k − 1) (4.12)

The Cj is the probability of jth model after transition, which is calculated as follows:

Cj(k − 1) =
N∑
i=1

Pijµi(k − 1) (4.13)

After the computation of transition probabilities, the mixing process produces new

filtered state estimates and covariance matrices, which are calculated as follows:

x0
j(k − 1|k − 1) =

N∑
i=1

µij(k − 1)x̂i(k − 1|k − 1) (4.14)

P 0
j (k − 1|k − 1) =

N∑
i=1

µij(k − 1)[Pi(k − 1|k − 1) +DPij(k − 1)] (4.15)

The DPij is the increment term, which is calculated as follows:

DPij(k − 1|k − 1) = Dxij(Dxij)
T (4.16)
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Dxij(k − 1) = x̂i(k − 1|k − 1)− x̂0
j(k − 1|k − 1) (4.17)

The next step is prediction of states and covaraince matrix by using system model

for time step k.

4.2.2 Gating and Data Association

As the result of prediction step, each track will have estimated state vector and

covariance matrix for time step k. The next step is the gating and data association.

In this process the estimates are multiplied and add at for each model. There are two

alternatives as follows:

� Predict and combine

� Combine and predict

The gating and data association works fine in both above mentioned ways. The

equations used in gating and data association are as follows:

x̂(k|k − 1) =
N∑
j=1

Cj(k − 1)x̂j(k|k − 1) (4.18)

P̂ (k|k − 1) =
N∑
j=1

Cj(k − 1)P̂j(k|k − 1) (4.19)

The gating and data association will lead to the observation to track assignment. In

most of application of IMM, the sensor data is not assigned to all models while in

this study sensor data is assigned to all models as Lagragian can be anywhere in the

channel so it is important to assign the sensor data to all of the models.
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4.2.3 Model Probabilities Calculation

The updated model probabilities are calculated using Baye’s rule as follows:

µi(k) = Λi(k)Ci(k − 1)/C (4.20)

where Λi(k) is the likelihood function for the measurement of ith model and C is the

normalizing constant, which are calculated as follows:

C =
N∑
j=1

Λj(k)Cj(k − 1) (4.21)

Λi(k) =
exp[−d2(k)/2]√

(2π)M |Si(k)|
(4.22)

where d2 is the distance of an observation to track assignment, which is calculated as

follows:

d2 = ỹTS−1ỹ (4.23)

The ỹ is the innovation between sensor output and model output, the S is the inno-

vation covariance matrix. The following Kalman filter equations are used to calculate

these quantities.

ỹ = y(k)−Hx̂(k|k − 1) (4.24)

S(k|k − 1) = HP (k|k − 1)HT +R (4.25)
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Chapter 5

Simulations

5.0.1 Simulation Scenario

The channel of length 2640 m is simulated for this research work. The channel is

discretized into 11 equal cells. The Eulerian sensors are considered at both ends to

provide the water elevation at regular time interval. The single drifter is considered for

this study, which moves along the channel and provide the data about water velocity

at each time and spatial step. The simulation scenario used for this study is shown

in Fig. (5-1). The constant surface width of 5 m is considered for the rectangular

channel.

Figure 5-1: Simulation setup for a channel of 2640 meter length with 5 meter wide
cross-section.
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5.0.2 Model Simulation

The state space model of the system described in section-II is simulated in MATLAB.

The parameters used in this simulation are given in table (5.1). The steady state

Table 5.1: Simulation parameters for system model.

Parameters Values
Channel depth (m) 3
Channel width (m) 5
Channel length (m) 2640

No. of cells 11
Cell step (m) 240
Time step (s) 60

values for linearized state space system model, which are calculated by backwater

curve steady state equations, are shown in Fig. (5-2). The model simulation results are

Figure 5-2: The steady state values for Saint-Venant model, calculated by backwater
curve steady state equations.

shown in Fig. (5-3). The model results from 20 minutes to 50 minutes are important as

during this time period, the water level in the first cell increases showing the increase

in water flow at upstream end, showing the physical phenomenon of opening a gate.
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The water elevation in the channel remains constant till increase in water elevation in

Figure 5-3: The states of water level and velocity 1st cell, 2nd cell, 5th cell and last
cell.

1st cell at 20 minutes of simulation after that the wave starts propagating in channel

and increases water level of other cells as well. The water elevation in all cells gets to

the minimum value again at 50 minutes. The velocity of channel starts increasing at

20 minutes of simulation as well. The decrease in velocity values shows the backwater

effect or natural slow velocity of water in the channel. As the water velocity and water

level in last cell is constant as boundary conditions are constant in last cell.

5.0.3 HEC-RAS Simulation

For data assimilation, the system values are generated by HEC-RAS simulation soft-

ware. HEC-RAS is the River Analysis Software by Hydrological Engineering Center,

USA. This software simulates the hydraulic systems close to the real environment and

solves 1-D/2-D Saint-Venant equations according to user given specifications. The

cross section of simulated channel in HEC-RAS is showed in Fig. (5-4). The parame-

ters used for HEC-RAS simulation are given in table. (5.2). The system in HEC-RAS

is simulated for unsteady flow. For the upstream cross-section, a stage hydrograph is
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Figure 5-4: Cross-section of a channel with rectangular geometry in HEC-RAS.

used as boundary condition as shown in Fig. (5-5). The normal depth is considered

for downstream end as boundary condition. The normal depth as boundary condition

is suitable for an open end channel. Under normal depth boundary conditions, the

water level at boundaries is calculated on the basis of flow at each temporal and spa-

tial step by using manning equation. For the better data generation the MATLAB

model results are compared with HEC-RAS generated results. The comparison is

shown in Fig. (5-6) The results of water level and water velocity in HEC-RAS are

similar to MATLAB results.

Table 5.2: Simulation parameters for system model in HEC-RAS.

Parameters Values
Channel depth (m) 3
Channel width (m) 5

Channel edges height from sea level (m) 183.88
Channel bed height from sea level (m) 180.88

Channel length (m) 2640
No. of cells 11

Cell step (m) 240
Time step (s) 60

Simulation time (minutes) 100
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Figure 5-5: Stage hydrograph as upstream boundary condition in HEC-RAS for 100
minutes.

Figure 5-6: Comparison between MATLAB and HEC-RAS data for water elevation
and velocity.
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Figure 5-7: The estimated states of water level and water velocity in cell number 3
along with the true values from HEC-RAS.

5.0.4 State Estimation using Velocity Data

For the task of data assimilation, the Kalman filter is used which is explained in

chapter-IV. The Kalman filter is performed for simulation time of 100 minutes as

Lagrangian sensors covers the 2270 meter in 100 minutes along the flow of water,

during this time the drifter covers all 10 cells. The values of velocity from each cell

are incorporated in the model. The Fig. (5-7) shows estimated states of cell number

3 along the comparison with actual HEC-RAS values. The estimated states of cell

number 6 along the comparison with actual HEC-RAS values are shown in Fig. (5-8).

The estimated water level and water velocity in cell number 9 with comparison to

HEC-RAS data is shown in Fig. (5-9).

In results, the rectangular box shows the movement of Lagrangian sensor. The

most critical part of a model for data assimilation is the boundary conditions. The

boundary conditions of velocity and water elevation are shown in Fig. (5-18) The

Kalman filter estimated the sates with significant low error for both the velocity and

water elevation. The path followed by Lagrangian sensor is also calculated by using
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Figure 5-8: The estimated states of water level and water velocity in cell number 6
along with the true values from HEC-RAS.

Figure 5-9: The estimated states of water level and water velocity in cell number 9
along with the true values from HEC-RAS.
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Figure 5-10: The boundary conditions of 1st and last cell for data assimilation.

information of velocity from HEC-RAS and appropriate time step. The path followed

by Lagrangian sensor is shown in Fig. (5-11). To analyze the performance of the

Kalman filter in this scenario, the Chi-Squared error analysis and auto-correlation

in error is performed. The performance is shown in Fig. (5-12) and (5-13). The

chi-squared analysis a significant low error values. It is visible that the chi squared

error increases as the input water flow is increased which is the phenomenon of gates

opening. The auto-correlation error analysis shows the correlation between error at

each time step with other time steps. It is prominent that the error correlation is

increased during the gate opening, which results the unsteady behavior of hydrological

systems.

5.0.5 State estimation using Position Data

For the task of data assimilation using position data, the state dependent interacting

multiple model(SD-IMM) along Kalman filter is used which is explained in chapter-IV.

The data assimilation is performed for simulation time of 100 minutes as Lagrangian

sensors covers the 2270 meter in 100 minutes along the flow of water, during this time
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Figure 5-11: The path followed by Lagrangian sensor (Float).

Figure 5-12: The Chi-Squared analysis for the state estimation using Kalman filter
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Figure 5-13: The Auto-correlation error analysis for the state estimation using
Kalman filter

the drifter covers all 10 cells. The values of velocity from each cell are incorporated

in the model. The Fig. (??) shows estimated states of cell number 2 along the

comparison with actual HEC-RAS values. The estimated states of cell number 5

along the comparison with actual HEC-RAS values are shown in Fig. (5-15). The

estimated water level and water velocity in cell number 6 with comparison to HEC-

RAS data is shown in Fig. (5-17).

The estimated water level and water velocity in cell number 9 with comparison to

HEC-RAS data is shown in Fig. (??).

In results, the rectangular box shows the movement of Lagrangian sensor. The

most critical part of a model for data assimilation is the boundary conditions. The

boundary conditions of velocity and water elevation are shown in Fig. (5-18) The

Kalman filter estimated the sates with significant low error for both the velocity and

water elevation. The path followed by Lagrangian sensor is also estimated. The path

followed by Lagrangian sensor is shown in Fig. (5-19). To analyze the performance

of the Kalman filter in this scenario, the minimum mean square error(MMSE) error
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Figure 5-14: The estimated states of water level and water velocity in cell number 2
along with the true values from HEC-RAS.

Figure 5-15: The estimated states of water level and water velocity in cell number 5
along with the true values from HEC-RAS.
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Figure 5-16: The estimated states of water level and water velocity in cell number 6
along with the true values from HEC-RAS.

Figure 5-17: The estimated states of water level and water velocity in cell number 9
along with the true values from HEC-RAS.
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Figure 5-18: The boundary conditions of 1st and last cell for data assimilation.

Figure 5-19: The path followed by Lagrangian sensor (Float).
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Figure 5-20: The error analysis for the state estimation using Kalman filter

analysis is performed. The performance is shown in Fig. (5-20). The error analysis a

significant low error values. The MMSE analysis shows high error in position at start

but drops to low values as time passes.
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Chapter 6

Experimental Testing

6.1 Experimental Setup

The experiments are conducted at Raiwind-1 canal at Bedian distributary, Lahore,

Pakistan as shown in Fig (6-1). The experimental section of the canal is 3 Km in

Figure 6-1: The experimental canal site of Raiwind-1 canal with length of 3 Km at
Bedian distributary, Lahore, Pakistan.

length. The canal has smooth and paved structure. The cross sections are smooth

and constant throughout the canal as shown in Fig (6-2). The canal width is ap-

proximately around 13-15 feet and it has depth around 3-5 feet. The experimental

scenario is shown in Fig (6-3). The canal has an undershot gate at start which links

it to the main canal as shown in Fig (6-4). At the end of the experimental site, an

virtual over shot gate is assumed which is completely opened. For the calculations of

water level and water velocity due to undershot gate at boundary condition at start

of canal, two static sonar sensors are mounted, one is at main MBL canal before the

gate and other is after the gate mounted at start of Raiwind-1 canal as shown in
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Figure 6-2: The experimental Raiwind- 1 canal view with uniform and paved struc-
ture.

Figure 6-3: The experimental scenario showing sonar sensor, mobile sensor and gates
at both ends.

Fig (6-5). For the boundary condition values at the end an static sensor is mounted

at the end of experimental canal for overshot gate. For the validation of estimated

values, two middle point validation static sensors are also mounted 1 Km apart from

each-other as shown in Fig (6-6).

6.1.1 State estimation using Position Data

For the task of data assimilation using position data, the state dependent interacting

multiple model(SD-IMM) along Kalman filter is used which is explained in chapter-

IV. The experiment duration is around 90 mints. The sampling time of static sonar

sensors is around 1 minute with transmission time to the server is around 2 min-

utes. The gate at start of the canal is opened to maximum height after 20 minutes

of experiments and it remained open for around 30 minutes. After 50 minutes of
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Figure 6-4: The undershot gate at the start of canal to control the water flow in canal
and provide boundary condition values.

Figure 6-5: The static water level sonar sensors upstream and downstream end of the
undershot gate at the start of canal.

experiment, the gate was closed to the original position. The release of mobile sensor

is shown in Fig (6-7). One of the major challenges was the asynchronous arrival of

data. The sonar sensor provided the values at specific time interval but GPS values

from float were arriving at random time intervals as shown in the Fig (6-8). One

of the other challenge during the experiment was the missing values of GPS as till

first 31 minutes, GPS had transmission issues as GPS antenna was inside the mobile

sensor case and also the tree canopy above the canal. In the light of this challenge,

the data assimilation is only provided when GPS data is arrived else only prediction

step is performed. The sonar sensor data is shown in Fig (6-9). In data assimilation

only GPS data of mobile sensor, water level data from start and end point is used
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Figure 6-6: The static water level sonar sensors at 1 Km and 2 Km from sensor
mounted at downstream of undershot gate.

Figure 6-7: The release of mobile sensor into the water body at upstream end of
experimental canal

other two middle point sensor data is used for validation of estimated values. The

input to the system model consist of water level and water velocity from gates at

both ends. The output sensor vector consist of only start and end point sensor. The

experimental site is divided into 12 cells of length 270 meters each. The estimated

values for the 1 Km validation point is shown in Fig (6-10). The data assimilation

algorithm estimated the values with significant low error even the GPS had highest

error till 31 minutes of experiment. The movement of mobile sensor by the 1 Km

validation point is shown in Fig (6-11). The estimated values for the 2 Km validation

point is shown in Fig (6-12). The movement of mobile sensor by the 2 Km validation

point is shown in Fig (6-13). The mobile sensor arrived at the end of experimental

site within duration of 90 mints as shown in Fig (6-14). The estimated trajectory

of mobile sensor with the comparison to the actual trajectory obtained by GPS co-

ordinates is shown in Fig (6-15). The straight line in the Fig (6-15) shows that no

GPS data was received due to the issue with mobile sensor and tree canopy over the
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Figure 6-8: The graphical representation of arrival of asynchronous sensor data during
experiment

Figure 6-9: The water level data from static sensor at downstream of undershot
gate, 1 Km validation point, 2 Km validation point and 3Km downstream end of the
experimental site

canal. these issues were fixed within the time span of 10 minutes on the run. As GPS

reading were received at the varying rates of sampling so the time scale is little bit

different from sonar sensors but the in total it contains values of 90 minutes experi-

ment. At some time of around 65 mints the water wave with high velocity and water

level due to gate opening hits the mobile sensor and increase the velocity of mobile

sensor. To validate the estimated values, the error analysis is performed at both

validation points for water levels and mobile sensor position as shown in Fig (6-16).

The error in estimated position is high till 31 minutes of experiments due to the GPS

issue in mobile sensor, after that the error is relatively low. The error in estimated
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Figure 6-10: The estimated water level with comparison to sensor data from 1 Km
validation point at experimental site.

in water level at both validation points is significant low which shows that the data

assimilation algorithm performed very well.
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Figure 6-11: The passing of mobile sensor by 1 Km validation point at experimental
site.

Figure 6-12: The estimated water level with comparison to sensor data from 2 Km
validation point at experimental site.
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Figure 6-13: The passing of mobile sensor by 2 Km validation point at experimental
site.

Figure 6-14: The arrival of mobile sensor at the end point of experimental site after
floating passively into water for 3 Km.
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Figure 6-15: The estimated trajectory of mobile sensor with the comparison to the
actual trajectory.

Figure 6-16: The error analysis of estimated water level at both validation points and
estimated position of mobile sensor.
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Chapter 7

Conclusion

In this research work, states of water bodies are estimated by using mobile sensors.

Mobile sensors are good passive floating source for cost effective sensing in water bod-

ies which provide only GPS locations along the channel. The state estimation of water

bodies by linearized one dimensional Saint-Venant equations using mobile sensor data

is simulated successfully in MATLAB. The system is simulated in the HEC-RAS for

rectangular cross sections. The estimated states from Kalman filter are also com-

pared with actual data generated from HEC-RAS. The states estimation is done by

using velocity data as well as position data. For position data, the state dependent

interacting multiple models (SD-IMM) is used. The data assimilation algorithm is

tested in real world at Raiwind-1 canal. Low cost mobile sensors can provide good

estimation results by using simplified models for the purposes of tracking of unau-

thorized activity in channel, irrigation system and track the flow of contamination

in channel. For future work, this successful simulated data assimilation method can

also be implemented for social sensors to estimate the hydrodynamics in urban areas

and for flood mapping.
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Chapter 8

MATLAB: Codes

8.1 Data Assimilation Algorithms

8.1.1 Saint Venant State Space Model

1 function [A,B,A size,N,hbar,vbar]=matrix2(L,t,del x,Vo,Ho)

2 yo = [Vo; Ho];

3 [x,y]=steady values(L,yo);

4 N=ceil(L/del x);

5 pick=1;

6 size y=size(y);

7 for k=1:1:N

8 hbar(k)=y(pick,2);

9 vbar(k)=y(pick,1);

10 pick=pick+del x−1;

11 end

12 m=0.02;

13 g=9.8; %Gravitaional Force

14 %Length of Each Grid Point

15 del t=t; %Time Step

16 A size=(N*2)−4;

17 B size=4;

18 A=zeros(A size,A size);
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19 alpha(1)=(hbar(2)−hbar(1))/del x;

20 alpha(N)=(hbar(N)−hbar(N−1))/(del x);

21 beta(1)=−(vbar(1)/hbar(1))*((hbar(2)−hbar(1))/(del x));

22 beta(N)=−(vbar(N)/hbar(N))*((hbar(N)−hbar(N−1))/(del x));

23 gema(1)=2*g*(mˆ2)*(vbar(1)/(hbar(1)ˆ(4/3)))+(vbar(1)/hbar(1))*((hbar(2)−hbar(1))/(del x));

24 gema(N)=2*g*(mˆ2)*(vbar(N)/(hbar(N)ˆ(4/3)))+(vbar(N)/hbar(N))*((hbar(N)−hbar(N−1))/(del x));

25 eta(1)=−(4/3)*g*(mˆ2)*((vbar(1)*abs(vbar(1)))/(hbar(1)ˆ(7/3)));

26 eta(N)=−(4/3)*g*(mˆ2)*((vbar(N)*abs(vbar(N)))/(hbar(N)ˆ(7/3)));

27 w=2;

28 for i=1:N−2

29 alpha(i)=(hbar(w+1)−hbar(w−1))/(2*del x);

30 beta(i)=(−vbar(w)/hbar(w))*((hbar(w+1)−hbar(w−1))/(2*del x));

31 gema(i)=2*g*(mˆ2)*(vbar(w)/(hbar(w)ˆ(4/3)))−(−vbar(w)/hbar(w))*((hbar(w+1)−hbar(w−1))/(2*del x));

32 eta(i)=−(4/3)*g*(mˆ2)*((vbar(w)*abs(vbar(w)))/(hbar(w)ˆ(7/3)));

33 w=w+1;

34 end

35 vshift=1;

36 hshift=1;

37 A(1,:)=[0 ...

(1/2)−(del t/(4*del x))*(vbar(3)+vbar(1))−((del t/2)*gema(3)) ...

zeros(1,N−3) (−g*(del t/(2*del x))−(del t/2)*eta(3)) zeros(1,N−4)];

38 A(A size/2,:)=[zeros(1,N−4) ...

(1/2)+(del t/(4*del x))*(vbar(N)−vbar(N−2))−(del t/2)*gema(N−2) ...

zeros(1,N−3) (g*(del t/(2*del x))−(del t/2)*eta(N)) 0];

39 w=3;

40 for i=2:1:(A size/2)−1

41 A(i,:)=[(1/2)+(del t/(4*del x))*(vbar(w+1)−vbar(w−1))−(del t/2)*gema(w−1) ...

0 ...

(1/2)−(del t/(4*del x))*(vbar(w+1)+vbar(w−1))−(del t/2)*gema(w+1) ...

zeros(1,N−5) (g*(del t/(2*del x))−(del t/2)*eta(w−1)) 0 ...

(−g*(del t/(2*del x))−(del t/2)*eta(w+1)) zeros(1,N−5)];

42 if i>2

43 A(i,:)=circshift(A(i,:),[vshift,1]);

44 vshift=vshift+1;

45 end

46 w=w+1;



47 end

48 A((A size/2)+1,:)=[0 ...

(−del t/(4*del x))*(hbar(3)+hbar(1))−(del t/2)*alpha(3) ...

zeros(1,N−3) ...

((1/2)−(del t/(4*del x)*(vbar(3)+vbar(1)))−(del t/2)*beta(3)) ...

zeros(1,N−4)];

49 hrow=(A size/2)+2;

50 for i=3:1:(A size/2)

51 A(hrow,:)=[(del t/(4*del x))*(hbar(i+1)+hbar(i−1))−(del t/2)*alpha(i−1) ...

0 (−del t/(4*del x))*(hbar(i+1)+hbar(i−1))−(del t/2)*alpha(i+1) ...

zeros(1,N−5) ...

((1/2)+(del t/(4*del x)*(vbar(i+1)+vbar(i−1)))−(del t/2)*beta(i−1)) ...

0 ...

((1/2)−(del t/(4*del x)*(vbar(i+1)+vbar(i−1)))−(del t/2)*beta(i+1)) ...

zeros(1,N−5)];

52 if hrow>(A size/2)+2

53 A(hrow,:)=circshift(A(hrow,:),[hshift, 1]);

54 hshift=hshift+1;

55 end

56 hrow=hrow+1;

57 end

58 A(A size,:)=[zeros(1,N−4) ...

((del t/(4*del x))*(hbar(N)+hbar(N−2)))−((del t/2)*alpha(N−2)) ...

zeros(1,N−3) ...

(1/2)+((del t/(4*del x)*(vbar(N)+vbar(N−2))))−((del t/2)*beta(N−2)) ...

0];

59 B=zeros(A size,B size);

60 B(1,:)=[(1/2)+(del t/(4*del x))*(vbar(3)−vbar(1))−(del t/2)*gema(1) ...

0 (g*(del t/(2*del x)))−(del t/2)*eta(1) 0];

61 B(A size/2,:)=[0 ...

(1/2)−((del t/(4*del x))*(vbar(N)+vbar(N−2)))−((del t/2)*gema(N)) ...

0 (−g*(del t/(2*del x))−(del t/2)*eta(N))];

62 B((A size/2)+1,:)=[((del t/(4*del x))*(hbar(3)+hbar(1)))−((del t/2)*alpha(1)) ...

0 (1/2)+(del t/(4*del x))*(vbar(3)+vbar(1))−(del t/2)*beta(1) 0];

63 B(A size,:)=[0 ...

((−del t/(4*del x))*(hbar(N)+hbar(N−2)))−((del t/2)*alpha(N)) 0 ...



(1/2)−((del t/(4*del x))*(vbar(N)+vbar(N−2)))−((del t/2)*beta(N))];

8.1.2 Algorithm for Position Data Assimilation

1 function []=Aug DA Exp()

2 close all

3 dt f=0;

4 %Reading GPS data for Float

5 fileID = fopen('position2.txt');

6 C = textscan(fileID,'%f');

7 fclose(fileID);

8 whos C;

9 pos=[C{1}];

10 %Reading Sonar sensor data at 1km range.

11 fileID = fopen('1KM rangedata.txt');

12 C = textscan(fileID,'%f');

13 fclose(fileID);

14 whos C;

15 h1km=flipud([C{1}]);

16 h1km=h1km./1000; %Converting to meters from milimeters

17 %Reading sonar sensor data at 2km

18 fileID = fopen('2KM rangedata.txt');

19 C = textscan(fileID,'%f');

20 fclose(fileID);

21 whos C;

22 h2km=flipud([C{1}]);

23 [h2km]=interpolation(h2km);

24 h2km=h2km./1000;

25 del x=270; %Cell size

26 [y2,y3,v1,v3]=boundary cond(); %Computing boundary conditions.

27 h1km=h1km+0.2;

28 h2km=h2km+0.22;

29 y3=y3+0.2;

30 [pos1,steps]=dis(del x); %Cumputing Euclidian distance and number of ...

measurmentss within each cell



31 %Definig parameters to compute matrix A and B

32 Pos=pos;

33 time=length(pos);

34 L=pos(end); %Channel Length in meters

35 t=1; %time step between two cell for discretization

36 %Initial values for steady state back water curve

37 Vo=v1(1);

38 Ho=y2(1);

39 % Defining system

40 [A,B,A size,n,hbar,vbar]=matrix2(L,t,del x,Vo,Ho);

41 len A=length(A) ;

42 %Defining System matrix H

43 H(1,:)=[0 zeros(1,(A size/2)) 1 zeros(1,(A size/2)−1)];

44 H(2,:)=[1 zeros(1,(A size))];

45 H(3,:)=[zeros(1,(A size)) 1];

46 %Initial states

47 X=[pos(1) vbar(2:end−1) hbar(2:end−1)]';

48 %Defining state transition matrix

49 Pt=n;

50 Pmatrix=conv2(eye(Pt),[0.1 0.8 0.1],'same');

51 Pmatrix(1,2)=0.2;

52 Pmatrix(n,n−1)=0.2;

53 % Definig ui, probability that target is in the state i as computed just

54 % after the data is received

55 ui=[0.75 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]';

56

57 %Conditional Probability given that the tragte is in state j that the

58 %transition occured from state i

59 uij=zeros(Pt,Pt);

60 %Defining Kalman filter coveriance matrixes

61 Q=eye(A size+1);

62 P=eye(A size+1);

63 R=eye(3);

64 %Defining multistep Q (cont. time). For discrete time multiply by ...

dominant

65 %dt term



66 for i=1:A size+1

67 if i==1

68 Q(i,i)=0.015 %Position ¬25% of baseline 0.5 m/s due to air ...

gusts (0.015)

69 elseif i>1&&i<((A size/2)+1)

70 Q(i,i)=0.01 %Velocity ¬25% of baseline 0.5 m/s due to ...

modeling errors (0.01)

71 else

72 Q(i,i)=0.0001 %Water level (+/− 1 cm error) (0.0001)

73 end

74 end

75 %Defining multistep P

76 for i=1:A size+1

77 if i==1

78 P(i,i)=30 %Position

79 elseif i>1&&i≤((A size/2)+1)

80 P(i,i)=30 %Velocity

81 else

82 P(i,i)=30 %Water level

83 end

84 end

85 for i=1:3

86 if i==1

87 R(i,i)=0.0001 %Start water level

88 elseif i==2

89 R(i,i)=0.001 %Position

90 else

91 R(i,i)=0.0001 %Water level

92 end

93 end

94 %Creating n state vectors

95 for i=1:n

96 Xj{i}=X;

97 end

98 sta=X;

99 % Defining IMM



100 for k=1:time %loop on time.

101 output(:,k)=H*sta;

102 State(:,k)=sta;

103 %Sensor output vector for Kalman Filter

104 z=[y2(k) Pos(k) y3(k)];

105 %Input vector for System

106 u=[v1(k) v3(k) y2(k) y3(k)];

107 Pro(:,k)=ui;

108 %IMM Mixing

109 %Computing Cj

110 C=Pmatrix*ui;

111 %Computing uij

112 for i=1:n

113 for j=1:n

114 uij(i,j)=(Pmatrix(i,j)*ui(i))/C(j);

115 end

116 end

117 for cell=1:n

118 %Computing Xj

119 for i=1:n

120 Xtemp{i}=uij(i,cell)*Xj{i};

121 end

122 Xj{cell}=0;

123 for i=1:n

124 Xj{cell}=Xj{cell}+Xtemp{i};

125 end

126 %Computing Pj

127 for i=1:n

128 Ptemp{i}=uij(i,cell)*(P+((Xj{i}−Xj{cell})*(Xj{i}−Xj{cell})'));

129 end

130 Pj{cell}=0;

131 for i=1:n

132 Pj{cell}=Pj{cell}+Ptemp{i};

133 end

134 %Defining Augmented models

135 if cell==1



136 A aug=[1 zeros(1,(len A));

137 zeros(len A,1) A];

138 B aug=[60 zeros(1,3); B];

139 elseif cell==n

140 A aug=[1 zeros(1,(len A));

141 zeros(len A,1) A];

142 B aug=[0 60 zeros(1,2); B] ;

143 else

144 A aug=[1 zeros(1,cell−2) 60 zeros(1,(len A)−(cell)+1);

145 zeros(len A,1) A];

146 B aug=[zeros(1,4); B];

147 end

148 %Applying Kalman filter

149

150 [Xj{cell}, Pi{cell}] = predict(Xj{cell}, Pj{cell}, A aug, Q, ...

B aug, u); %State Prediction

151 if Pos(k) 6=−1 %Condition to cehck if GPS data is available ...

or not

152 [nu{cell}, S{cell}] = innovation(Xj{cell}, Pi{cell}, z, H, ...

R); %Computing Innovaton/error

153 [Xj{cell}, Pi{cell},c out] = innovation update(Xj{cell}, ...

Pi{cell}, nu{cell}, S{cell}, H); %Updating states by ...

using kalman gain and innovation

154 %computing statistical distance of an obervation−to−track ...

assignment

155 d(cell)=nu{cell}'*inv(S{cell})*nu{cell};

156 sigma(cell)=exp(−d(cell)/2)/sqrt(((2*pi)ˆ3)*det(S{cell}));

157 end

158 end

159 %Updating Probabilities

160 if Pos(k) 6=−1

161 Ctemp=0;

162 for i=1:n

163 Ctemp=Ctemp+(sigma(i)*C(i));

164 end

165 for i=1:n



166 ui(i)=(sigma(i)*C(i))/Ctemp;

167 end

168 end

169 P=0;

170 %Combining State vector and Covariance matrix from all models

171 for i=1:n

172 St temp{i}=C(i)*Xj{i};

173 P temp{i}=C(i)*Pi{cell};

174 %Pi temp2{i}=C(i)*Pi{i};

175 P=P+P temp{i};

176 end

177 sigma heat(:,k)=sigma;

178 cel2mat=cell2mat(St temp);

179 sta=sum(cel2mat,2);

180 end

181 %Plotting

182 for cell=1:n−2

183 figure(cell) %Plotting estimated values of current cell

184 subplot(2,1,1)

185 %hold on

186 plot(State((A size/2)+cell+1,:),'g','MarkerSize',5)

187 hold on

188 plot(State((A size/2)+cell+1,1:31),'r','MarkerSize',5)

189 hold off

190 if cell+1==4

191 hold on

192 plot(h1km,'k','MarkerSize',5)

193 hold off

194 end

195 if cell+1==8

196 hold on

197 plot(h2km,'k','MarkerSize',5)

198 hold off

199 end

200 %hold on

201 str = sprintf(' Water level of Cell # %d', cell+1);



202 title(str)

203 xlabel('Time(minutes)')

204 ylabel('Water Level(m)')

205 xlim auto

206 ylim auto

207 %ax.YDir = 'reverse'

208 legend('Estimates with Good GPS','Estimates With High GPS ...

Error','Location','southeast')

209 legend('boxoff')

210 ax=gca;

211 Ylim=get(ax,'YLim');

212 ax.YDir = 'reverse';

213 hold off

214 subplot(2,1,2)

215 plot(State((cell)+1,:),'g−','MarkerSize',5)

216 hold on

217 plot(State(cell+1,1:31),'r','MarkerSize',5)

218 %plot(vel((1:time),cell+1),'k−o','MarkerSize',5)

219 hold off

220 str = sprintf(' Water velocityl of Cell # %d', cell+1);

221 title(str)

222 xlabel('Time(minutes)')

223 ylabel('Water Velocity(m/s)')

224 xlim auto

225 ylim auto

226 legend('Estimates with Good GPS','Estimates With High GPS ...

Error','Location','southeast')

227 legend('boxoff')

228 ax=gca;

229 ax.YDir = 'reverse';

230 Ylim=get(ax,'YLim');

231 hold off

232 end

233 affa=1;

234 figure(cell+1)

235 for i=1:1:length(pos)



236 if Pos(i) 6=−1

237 position(affa)=State(1,i);

238 affa=affa+1;

239 end

240 end

241 plot(pos1,'k−o','MarkerSize',5)

242 hold on

243 plot(position,'r−o','MarkerSize',5)

244 str = sprintf('Position Tracking');

245 title(str)

246 xlabel('Time(minutes)')

247 ylabel('Distance(m)')

248 xlim auto

249 ylim auto

250 ax=gca;

251 legend('Position by GPS','Estimated','Location','southeast')

252 figure(cell+2)

253 subplot(2,1,1)

254 plot(v1,'r−o','MarkerSize',5)

255 hold on

256 plot(y2,'b−*','MarkerSize',5)

257 hold off

258 str = sprintf('Boundary Conditions for Upstream');

259 title(str)

260 xlim auto

261 ylim auto

262 ax=gca;

263 ax.YDir = 'reverse'

264 xlabel('Time(minutes)')

265 ylabel('Boundary Values')

266 legend('Water Velocity','Water Level','Location','northwest')

267 legend('boxoff')

268 subplot(2,1,2)

269 plot(v3,'r−o','MarkerSize',5)

270 hold on

271 plot(y3,'b−*','MarkerSize',5)



272 hold off

273 str = sprintf('Boundary Conditions for Downstream');

274 title(str)

275 xlim auto

276 ylim auto

277 ax=gca;

278 ax.YDir = 'reverse'

279 xlabel('Time(minutes)')

280 xlim auto

281 ylim auto

282 ylabel('Boundary Values')

283 legend('Water Velocity','Water Level','Location','northwest')

284 legend('boxoff')

285 s pro=Pro;

286 figure(cell+3)

287 h = heatmap([1:time],[1:n],Pro);

288 str = sprintf('Heatmap for Probabilities of Models in IMM');

289 title(str)

290 xlabel('Time(minutes)')

291 ylabel('Model')

292 figure(cell+4)

293 h = heatmap([1:time],[1:n],sigma heat);

294 str = sprintf('Heatmap for sigma of Models in IMM');

295 title(str)

296 xlabel('Time(minutes)')

297 ylabel('Model')

298 figure(cell+5)

299 %SENSOR DATA Plotting

300 plot(y2,'r')

301 hold on

302 plot(h1km,'g')

303 hold on

304 plot(h2km,'k')

305 hold on

306 plot(y3,'b')

307 ax=gca;



308 ax.YDir = 'reverse'

309 title('Water Level Sensor Data')

310 xlabel('Time(minutes)')

311 xlim auto

312 ylim auto

313 ylabel('Water level (m)')

314 legend('0km','1km','2km','3km')

315 %Computing Error

316 Error pos=abs(pos1−position)

317 Error level2=abs(State((A size/2)+3+1,:)'−h1km)

318 Error leveln=abs(State((A size/2)+7+1,:)'−h2km)

319

320 figure(cell+5)

321 subplot(2,1,1)

322 plot(Error pos,'b')

323 str = sprintf('Error in Position for IMM');

324 title(str)

325 xlabel('Time(minutes)')

326 ylabel('Error')

327 subplot(2,1,2)

328 plot(Error level2,'r')

329 hold on

330 plot(Error leveln,'b')

331 hold off

332 %plot(output(2,:),'b')

333 str = sprintf('Error in Hydrodynamics for IMM');

334 title(str)

335 xlabel('Time(minutes)')

336 ylabel('Error')

337 legend('Water Level Error at 1km','Water Level Error at 2km')

338 legend('boxoff')

339 %Defining Kalman Filter Functions

340 function [Xpred, Ppred]=predict(x,P,F,Q,B,u)

341 Xpred=F*x+B*u';

342 Ppred=F*P*F'+Q;

343 end



344 function [nu,S]=innovation(Xpred,Ppred,z,H,R)

345 nu=z'−(H*Xpred);

346 S=R'+(H*Ppred*H');

347 end

348 function [Xnew,Pnew,c out]=innovation update(Xpred,Ppred,nu,s,H)

349 K=Ppred*(H'*inv(s));

350 Xnew=Xpred+(K*nu);

351 c out=H*Xnew;

352 Pnew=Ppred−(K*s*K');

353 end

354 end

8.1.3 Algorithm for Velocity Data Assimilation

1 function []=new model KF2()

2 %Physical System output /Sesnor output

3 no out=100;

4 fileID = fopen('ifac.txt');

5 C = textscan(fileID,'%f %f %f %f %f');

6 fclose(fileID);

7 whos C

8 out=[C{1} C{2} C{3} C{4}] ;

9 len=length(out);

10 vel= reshape(out(:,4),[no out,11]);

11 level=reshape(out(:,3),[no out,11]);

12 vel=vel

13 level=level

14 j=1;

15 Vo=vel(1,2);

16 Ho=level(1,2);

17 del x=240;

18 Pos=0;

19 dis=del x;

20 %Calculating Position of float

21 for i=1:no out



22

23 Pos(i+1)=Pos(i)+vel(i,j)*60 %Computing Position

24 if Pos(i+1)≥dis

25 dis=dis+del x

26 steps(j)=i

27 j=j+1

28 i=i

29 end

30 if Pos(i+1)>2400

31 steps(j)=i

32 break

33 end

34 if i+1>no out

35 steps(j)=i

36 break

37 end

38 end

39 %Defining System

40 L=dis %Channel Length in meters

41 t=1 ;%time step between two cell for discretization

42 [A,B,A size,N]=matrix2(L,t,del x,Vo,Ho)

43 j=0;

44 A size=A size

45 len A=length(A)

46 n=N %No. of cells in river channel

47 %Defining coverience matrixes

48 r=10;

49 q=30;

50 p=10;

51 Q=q*eye(A size);

52 P=p*eye(A size);

53 R=r*eye(3);

54 %code varaibles

55 cy state=[];

56 cy output=[];

57 p st=1;



58 st=1;

59 H=[];

60 %initial states for cyber system

61 ini v=vel(2,2);

62 ini h=level(2,2);

63 ini pos=0

64 X = [repmat(ini v,1,A size/2) repmat(ini h,1,A size/2)];

65 x cy=X';

66 %Defining System matrix C

67 H(1,:)=[zeros(1,(A size/2)) 1 zeros(1,(A size/2)−1)];

68 H(2,:)=[1 zeros(1,(A size)−1)];

69 H(3,:)=[zeros(1,(A size)−1) 1];

70 st=steps(1)+1

71 loop=steps(2)−steps(1)

72 State=[]

73 s=1;

74 for cell=1:n−2

75 u=[];

76 z=[];

77 se=steps(cell+1)

78 z=[level((st:se),2) vel((st:se),cell+1) level((st:se),n−1)];

79 u=[vel((st:se),1) vel((st:se),n) level((st:se),1) level((st:se),n)];

80 state=[];

81 output=[];

82 for k=1:1:loop

83 state(:,k)=x cy; %Saving states at each time step

84 [xpred, Ppred] = predict(x cy, P, A, Q,B,u(k,:)); ...

%State Prediction

85 [nu, S] = innovation(xpred, Ppred, z(k,:), H, R); ...

%Computing Innovaton/error

86 [x cy, P,c out] = innovation update(xpred, Ppred, nu, S, H); ...

%Updating states by using kalman gain and innovation

87 cy st=x cy;

88 state(:,k)=x cy;

89 State(:,s)=x cy

90 q(:,s) = nu'*inv(S)*nu



91 error(:,s)=nu

92 s=s+1;

93 output(:,k)=c out;

94 cy out=c out;

95 end

96 H(2,:)=circshift(H(2,:),[1, 1]);

97 if cell+1>n−1

98 break

99 end

100 st=steps(cell+1)+1

101 loop=steps(cell+2)−steps(cell+1)

102 j=cell

103 A aug=[1 zeros(1,j) t zeros(1,(len A−1)−j);

104 zeros(len A,1) A]

105 end

106 st=steps(1)+1;

107 for cell=1:n−2

108 figure(cell) %Plotting estimated values of current cell

109 subplot(2,1,1)

110 se=steps(cell+1);

111 plot([steps(1)+1:steps(end−1)],State(cell,:),'r−*','MarkerSize',5)

112 hold on

113 plot([steps(1)+1:steps(end−1)],vel([steps(1)+1:steps(end−1)],cell+1),'k−o','MarkerSize',5)

114 hold on

115 loop=se−st;

116 rectangle('Position',[st −1 loop 6])

117 hold off

118 str = sprintf('Water Velocity Cell# %d ',cell+1);

119 title(str)

120 xlabel('Time(minutes)')

121 ylabel('Water Velocity(m/s)')

122 xlim auto

123 ylim auto

124 legend('Estimated', 'HEC−RAS' ,'Location','northwest')

125 legend('boxoff')

126 subplot(2,1,2)



127 plot([steps(1)+1:steps(end−1)],State(cell+(A size/2),:),'g−*','MarkerSize',5)

128 hold on

129 plot([steps(1)+1:steps(end−1)],level([steps(1)+1:steps(end−1)],cell+1),'b−o','MarkerSize',5)

130 hold on

131 rectangle('Position',[st 1 loop 3]);

132 hold off

133 str = sprintf('water level from cell# %d',cell+1);

134 title(str)

135 xlabel('Time(minutes)')

136 xlim auto

137 ylim auto

138 ylabel('Water Level(m)')

139 legend('Estimated','HEC−RAS','Location','northwest')

140 legend('boxoff')

141 st=steps(cell+1)+1;

142 end

143 figure(cell+1)

144 plot(Pos,'−*','MarkerSize',5)

145 xlim auto

146 ylim auto

147 xlabel('Time (minutes)')

148 ylabel('distance (m)')

149 title('Movement of Float')

150 figure(cell+2)

151 subplot(2,1,1)

152 plot(vel(:,1),'r−o','MarkerSize',5)

153 hold on

154 plot(level(:,1),'b−*','MarkerSize',5)

155 hold off

156 str = sprintf('Boundary Conditions for Upstream');

157 title(str)

158 xlim auto

159 ylim auto

160 xlabel('Time(minutes)')

161 ylabel('Boundary Values')

162 legend('Water Velocity','Water Level','Location','northwest')



163 legend('boxoff')

164 subplot(2,1,2)

165 plot(vel(:,n),'r−o','MarkerSize',5)

166 hold on

167 plot(level(:,n),'b−*','MarkerSize',5)

168 hold off

169 str = sprintf('Boundary Conditions for Downstream');

170 title(str)

171 xlim auto

172 ylim auto

173 xlabel('Time(minutes)')

174 xlim auto

175 ylim auto

176 ylabel('Boundary Values')

177 legend('Water Velocity','Water Level','Location','northwest')

178 legend('boxoff')

179 for i=1:3

180 error cov(i,:)=xcorr(error(i,:))

181 end

182 sumq=sum(q);

183 figure(cell+3)

184 plot([steps(1)+1:steps(end−1)],q/steps(end))

185 str = sprintf('Chi square analysis');

186 title(str)

187 xlim auto

188 ylim auto

189 xlabel('Time(minutes)')

190 xlim auto

191 ylim auto

192 ylabel('error')

193 figure(cell+4)

194 plot((error cov(steps(end):2*steps(end)−1))/(error cov(steps(end))))

195 str = sprintf('Error Autocorrelation Analysis');

196 title(str)

197 xlim auto

198 ylim auto



199 xlabel('Time(minutes)')

200 xlim auto

201 ylim auto

202 ylabel('Error')

203 %%Kalman filter functions

204 function [Xpred, Ppred]=predict(x,P,F,Q,B,z1)

205 Xpred=F*x+B*z1';

206 Ppred=F*P*F'+Q;

207 end

208 function [nu,S]=innovation(Xpred,Ppred,z,H,R)

209 nu=z'−(H*Xpred);

210 S=R'+(H*Ppred*H');

211 end

212 function [Xnew,Pnew,c out]=innovation update(Xpred,Ppred,nu,s,H)

213 K=Ppred*(H'*inv(s));

214 Xnew=Xpred+(K*nu);

215 c out=H*Xnew;

216 Pnew=Ppred−(K*s*K');

217 end

218 end
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