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Abstract 

Metabolic networks are intricate systems comprising of interconnected biochemical 

reactions transforming source metabolites into target metabolites. This thesis presents a 

web-based tool called MAPPS: Metabolic network Analysis and Pathway Prediction 

Server (https://mapps.lums.edu.pk), for the prediction of metabolic pathways and 

comparisons of metabolic networks using traditional and ‘omics datasets. MAPPS provides 

an intuitive approach to answer biological questions focusing on the metabolic capabilities 

of an organism as well as differences between organisms or the evolution of different 

species by allowing pathway-based metabolic network comparisons at an organism as well 

as at a phylogenetic level. MAPPS also allows users to study the behavior of engineered 

metabolic networks and effects of metabolic availability/unavailability on metabolic 

pathways, identify potential drug targets, study host-microbe interactions, and build 

ancestral networks over a given phylogeny. MAPPS is used to understand the metabolic 

diversity and functional specialization in different strains of the bacteria belonging to genus 

Pseudomonas by performing whole-network and pathway-based comparisons relating to 

carbohydrate and energy metabolisms. Results suggest that pseudomonads with similar 

lifestyle tend to have a high degree of metabolic similarity and that species have adapted 

their metabolic networks to suit their diverse lifestyles. Finally, this thesis explores the 

changes occurring in the metabolic networks of two mango (Mangifera indica) cultivars, 

‘Sindhri’ and ‘Kala Chaunsa’ during fruit maturation. For this, metabolic maps of various 

KEGG pathway maps are developed by assigning metabolic annotations to a mango 

transcriptomic reference, which are further used to analyze metabolic pathways 

differentially expressed between immature and mature stages in the two cultivars by 

https://mapps.lums.edu.pk/
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identifying differentially expressed genes. Results suggest that carbohydrates, lipids and 

amino acids, and secondary metabolite pathways are differentially expressed in both 

cultivars, demonstrating the use of ‘omic data for better understanding of metabolic 

networks in today’s post-genomic era.  
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1 Introduction 

Metabolism is an essential process to sustain life. It is categorized into two parts; breaking 

down of food and other nutrients into small building blocks (catabolism) and combining 

them to form complex molecules (anabolism). This is achieved via a network of 

interconnected enzyme-catalyzed or spontaneous biochemical reactions, which is called a 

metabolic network (Figure 1.1) (Jeong et al., 2000). A biochemical reaction connects one 

or more metabolites called substrates, which combine to give one or more metabolites 

called products. A sequence of biochemical reactions in a metabolic network transforming 

a source metabolite into a target metabolite is known as a metabolic pathway (Jeong et al., 

2000). Over the years, novel pathways have been deciphered using experimental protocols 

(Fell, 1992), which have provided insights into the metabolic capabilities of different 

organisms. These findings have helped to unravel the mystery that despite the presence of 

many possible paths from one metabolite to another, some organisms have evolved to favor 

a particular pathway to produce or consume a compound (Planes and Beasley, 2009). 

Studies have found that most organisms have a core set of enzymes that are involved in 

energy metabolism and catalyze essential processes such as protein synthesis and DNA 

replication. However, a significant proportion of the enzymes present in different 

organisms are specific to the needs of individual organisms or tissues (Dandekar et al., 

1999; Smith and Morowitz, 2004; Mentzen et al., 2008).   

Traditionally, metabolic networks have been studied by grouping the reactions into 

smaller networks based on their involvement in different biological processes. An example 

network corresponding to glycolysis in humans is shown in Figure 1.2. However, with the 

emphasis on studying networks as a whole has led to the development of genome-scale 
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metabolic networks (Figure 1.3). Genome-scale metabolic networks are beneficial to 

understand the complex network of metabolic reactions happening inside cells (Reed et al., 

2003). A genome-scale metabolic network typically consists of thousands of reactions and 

metabolites, which capture vital metabolic pathways such as the energy metabolism, 

biosynthesis of amino acids and lipids, as well as transport of molecules inside the cells 

(Oberhardt et al., 2009). In recent years, the construction of such networks has increased 

tremendously, in part also due to the growing number of genomes sequenced (Monk et al., 

2014), providing insights into the metabolic activities of various organisms. This is aided 

by the availability of functional annotations and transcriptomic, proteomic and 

metabolomic (‘omic) datasets, which facilitate in providing a better understanding of the 

metabolic capabilities of organisms at a systems level.  

1.1 Analysis of metabolic networks 

Comparative and evolutionary analyses of metabolic networks have a broad range of 

applications, ranging from research into metabolic evolution through to practical 

applications in drug development, synthetic biology, and biodegradation. Comparative 

analyses of metabolic networks, for example, can be used to provide insight into the 

evolution of metabolic pathways, the environments that organisms occupy, and the 

selective pressures that have shaped their evolution. 
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Figure 1.1: An example of metabolic network. A metabolic network consists of enzymatic as well as spontaneous reactions which convert source metabolites 

into target metabolites. Image taken from Roche biochemical pathways  (Lee, 2012). 
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Besides this, by performing in silico analysis of metabolic networks based on 

transcriptomic data or in silico insertion and knock out experiments, it might be possible 

to develop testable hypotheses that explain experimental results or stimulate further 

investigation, thereby providing an insight into the metabolic functionality of organisms. 

Figure 1.2: The image shows KEGG reference map for glycolysis. Enzymes present in the human 

metabolic network are highlighted in green.  



5 

 

Several studies have used data from publicly available data repositories to compare 

metabolic networks across genomes and to investigate biological questions (Ma and Zeng 

2003; Light et al. 2005; Forst et al. 2006; Wang et al. 2006). However, due to the complex 

nature of metabolic networks and the unavailability of suitable tools for the analyses, most 

comparative analyses have been restricted to analyzing and summarizing network 

properties such as degree distribution, clustering coefficient, and average path length, or 

comparing small, well-characterized regions within metabolic networks. 

Figure 1.3: Genome scale metabolic network of Clamydomonas reinhardtii. Metabolites are divided into 

different compartments i.e., mitochondria (red), cytosol (blue), chloroplast (green) and extracellular (black). 

Reactions are shown in grey color. Image taken from (Perez-Garcia et al., 2016). 
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The graphical representation of metabolic network also provides a general 

framework to perform a variety of specialized analyses. Some of these include prediction 

of chokepoints for drug-target identification, which identifies the reactions which either 

consumes a unique substrate or produce a unique product and, therefore, can be used as 

potential drug targets (Taylor et al., 2013), prediction of the metabolic state of the pathogen 

during infection of the host by generating a combined host-pathogen metabolic model and 

adjusting the boundary conditions based on experimental data (Rienksma et al., 2019), 

understanding cooperative and competitive relationships between microbial species by 

analyzing the metabolic exchange and biosynthetic capabilities of each microbial species 

in the microenvironment (Ponomarova and Patil, 2015), and producing beneficial 

compounds in the microbes with the help of ‘omics data, in silico gene knockout/knock-in 

strategies, pathway prediction and enzyme engineering for metabolic networks (Chae et 

al., 2017).  

Another area that has gained interest in recent years is the study of metabolic 

evolution. Metabolic networks, like all other biological networks, are under a process of 

continuous evolution. However, evolutionary mechanisms are not yet known. It is unclear 

how these networks evolve and if there is a correlation between the evolution of metabolic 

capabilities and factors such as the network structure or the environment in which the 

organisms live. The availability of genomes for many closely related species offers the 

possibility of an in-depth analysis of metabolic pathways within an organism as well as 

between different organisms to comprehend the processes and attributes that affect the 

evolution of metabolic networks (Kreimer et al., 2008; Mithani et al., 2010). It is now 

possible to study how genomic events such as gene duplications may increase the metabolic 
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flux in the corresponding part of the network due to the availability of extra copy of the 

enzyme-coding gene, or how the evolution of an enzyme to catalyze a new substrate causes 

the edges in the metabolic network to be rewired (Chae et al., 2012). Thus, evolutionary 

analysis of metabolic networks can provide insights into the evolution of metabolic 

pathways, the environments that organisms occupy and the selective pressures that have 

shaped their evolution.  

1.2 Resources for metabolic network analysis 

Over the years, researchers have developed comprehensive databases that catalog genes, 

enzymes, reactions, and pathways that are predicted to be present in the genome-sequenced 

organisms and have developed tools for mining these datasets and predicting possible 

pathways for assimilation, synthesis and transformation of biological molecules (Jing et 

al., 2014). These are discussed in subsequent subsections. 

1.2.1 Public databases for metabolic network analysis 

A number of public databases exist for metabolic networks, which contain curated/non-

curated information on metabolic pathways, enzymes, and metabolites and are a very 

useful resource in studying metabolic networks. Some of the most popular databases are 

discussed below. 

Kyoto Encyclopedia of Genes and Genomes (KEGG), one of the most popular 

resources for metabolic networks, is a reference knowledge base and is widely used for 

analyzing not only genomics data but also transcriptomics, proteomics, glycomics, 

metabolomics, metagenomics, and other high-throughput data (Kanehisa et al., 2017). It 

facilitates researchers to study the conservation and variation of genes and genomes by 
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complementing the experimental protocols (Figure 1.4). Having started in 1995 with only 

four databases which included KEGG Pathway containing information of manually drawn 

pathway maps, KEGG Genes containing gene information collected from publicly 

available databases, KEGG Enzyme containing information of Enzyme Classification and 

Figure 1.4: Screenshot of KEGG webpage. Main page of KEGG shows list of databases and tools. 
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relation hierarchy for reactions and KEGG Compound consisting of chemical information 

of compounds including chemical structures, KEGG now has eighteen databases which 

contain a diverse set of information including genomes, orthologs, glycans, drugs, and 

health and disease-related information (Kanehisa et al., 2019) (Figure 1.4). Besides this, 

KEGG also provides different tools to analyze data available in the KEGG databases or 

user-provided inputs. These include PathPred for computing pathways between 

metabolites (Moriya et al., 2010), SIMCOMP/SUBCOMP for chemical similarity and 

substructure search (Hattori et al., 2010) and KEGG Automated Annotation Server for 

metabolic annotations of draft and incomplete genomes (Moriya et al., 2007).  

Another widely used resource for metabolic networks is BioCyc Database 

Collection (Figure 1.5). It is a collection of 16,822 Pathway/Genome Databases (PGDBs) 

in addition to different software tools for exploring them. Each PGDB contain the full 

Figure 1.5: Screenshot of BioCyc database. User can search for metabolic pathway, enzyme, reaction, or 

metabolite. It also allows users to search in organism specific databases called Pathway/Genome Databases 

(PGDBs) 



10 

 

genome and predicted metabolic network of one organism, including metabolites, 

enzymes, reactions, and metabolic pathways (Karp et al., 2018). Unlike KEGG which 

groups the reactions into traditional pathway maps based on their involvement in different 

biological processes, BioCyc provides information at individual pathway level. Besides 

this, BioCyc databases are categorized based on quality. Databases having the most 

accurate curated data with experimental support and manual curations are present in the 

Tier 1 while Tiers 2 and 3 consists of databases which have been predicted using different 

computational methods (Mishra et al., 2019). MetaCyc, a curated database of small-

molecule metabolism, which is part of the BioCyc Database Collection, is designated as 

the reference database. It is also used by the Pathway Tools software, available as a part of 

BioCyc, to predict the metabolic networks computationally and to develop PGDB of 

organisms that have sequenced and annotated genomes (Caspi et al., 2016).  

Besides KEGG and BioCyc, other specialized databases for metabolic networks are 

also available including BRENDA, REACTOME, BiGG and PubChem. BRENDA, the 

comprehensive enzyme database, provides molecular and biochemical information 

including functional parameters, enzyme structure and other useful information about 

enzymes involved in metabolic networks (Placzek et al., 2017). It also provides links to 

external protein sources like UniProt, and literature references. It compiles the information 

by manually extracting the information from the literature and using text mining and 

prediction algorithms. Similarly, ENZYME database also provides information about 

enzymes and facilitate the development of other metabolic databases (Bairoch, 2000). 

REACTOME is an organism specific database and focuses on different biological 

processes, including metabolism, of human cell (Jassal et al., 2020). BiGG  is a database 
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which stores high quality genome-scale metabolic models built from manually curated 

information available in public databases (King et al., 2016). PubChem, on the other hand, 

contains information about compounds and their biological activity, and it is 

complemented by various tools such as compound search and chemical structure sketcher 

(S. Kim et al., 2016). These and other databases provide necessary data for analyzing 

metabolic networks and pathways in a biologically meaningful way.  

1.2.2 Tools for the analysis of metabolic networks 

Metabolic databases have been complemented by the development of tools for analyzing 

and comparing metabolic networks. These tools have many applications: from 

understanding biological processes and studying the evolution of metabolic networks by 

predicting and comparing metabolic pathways, through to providing a platform technology 

to perform in silico metabolic engineering, and design novel pathways for biosynthesis and 

biodegradation enabling researchers to understand the adaptation and functional 

specialization in different species (Tomar and De, 2013).  Metabolic network analysis tools 

provide a theoretical framework to analyze the intertwined metabolic routes and functional 

capabilities of an organism or metabolic network. Some of these tools include Pathway 

Hunter Tool  (Rahman et al., 2005), Pathway Analyst (Pireddu et al., 2006), MetaPath 

Online (Handorf and Ebenhöh, 2007), MetaRoute (Blum and Kohlbacher, 2008), From 

Metabolite to Metabolite (Chou et al., 2009), Rahnuma (Mithani et al., 2009a), PathPred 

(Moriya et al., 2010), Metabolic Route Search and Design  (Xia et al., 2011), Metabolic 

Tinker (McClymont and Soyer, 2013), FogLight (Khosraviani et al., 2015) and Metabolic 

Route Explorer (Kuwahara et al., 2016).  These are further discussed in Chapter 2. 
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Currently available tools for analyzing and comparing metabolic networks and metabolic 

pathways have several limitations: 

• Many of the pathway prediction tools available typically compute shortest 

pathways between metabolites and do not report multiple pathways between 

metabolites 

• Pathway predictions and network comparisons are performed using graph-based 

models of metabolic networks and therefore do not capture dependencies between 

metabolites for reactions that involve more than one substrate and product.  

• Some pathway prediction tools fail to take reaction direction into account and treat 

all reactions as reversible, resulting in biologically improbable predictions. 

• Pathway prediction tools are typically limited to simple queries based on a single 

pair of metabolites in a single organism, and cannot easily be used to investigate 

complex questions such as the prediction of possible pathways for carbon or 

nitrogen assimilation starting from a specific nutrient source. 

• Many of the available tools do not allow metabolic pathway predictions and 

network comparisons on custom data or draft organisms thereby limiting their 

usability on only genome-sequenced organisms. 

• Although metabolic databases such as KEGG and BioCyc provide a user-friendly 

interface for visualizing metabolic network predictions for genome-sequenced 

organisms, they do not provide an intuitive way to ask biological questions 

focusing on differences between organisms, interactions between organisms or the 

evolution of metabolic networks.  
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• Current tools are unable to process data from the wide range of sources that users 

may want to analyze, such as transcriptomic and expressed sequence tag data, or 

genomic data generated using next-generation sequencing methods. 

A tool is, therefore, required that can overcome these limitations and provide an interactive 

and user-friendly interface for the analysis and comparison of metabolic networks allowing 

users to focus on the differences between organism, study their interactions and evolution 

at a metabolic level in today’s post-genomic era. 

1.3 Metabolic network analysis in post-genomic era 

With an increased focus on the understanding of the system as a whole, the challenge of 

predicting and analyzing the properties of metabolic networks based on ‘omics data has 

gained much attention in recent years (Faust et al., 2011). Since the completion of the first 

genome-scale metabolic model of Haemophilus influenza in 1995, many analytical and 

computational tools/approaches have been designed for the construction of metabolic 

models (Saha et al., 2014). The availability of genome-scale data has enabled scientists to 

decipher the links between different metabolic pathways and the underlying genes which 

code for the enzymes catalyzing the reactions involved in these pathways. The post-

genomic era has opened lots of avenues and challenges, which requires sophisticated 

approaches to understand the spatial and temporal variations and the interplay between 

different layers and components of biological systems. For example, integration of 

phenomics (Herrgård et al., 2006) and ‘omics data into metabolic networks (Ramon et al., 

2018) can help to understand the connections between different layers of cellular 

interactions. In recent years, integration of expression data with metabolic networks has 

been used to understand the effect of variation in gene expression on the genome-scale 
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metabolic networks (Blazier and Papin, 2012), extract the subset of reactions from a 

genome-scale metabolic network to perform specific analyses or build core models of 

plants (Pfau et al., 2018) and to understand the metabolic profiles in diseased networks 

(Graudenzi et al., 2018) in addition to various other studies. However, this has done 

manually and for limited datasets. There is an extensive scope to extend the capabilities 

and interconnectivity of tools and databases, particularly with respect to integration with 

transcriptomic, proteomic and metabolomic datasets to provide a better understanding of 

metabolic networks. Thus, the integration of ‘omics data to better understand the 

functioning of metabolic networks is one of the key challenges of post-genomic era (Huang 

et al., 2017). 

1.4 Overview of the thesis 

This thesis focuses on the development of a tool for metabolic network analysis and 

pathway prediction that can provide an interactive interface for metabolic network analysis, 

and integrate ‘omic datasets with existing models of metabolic networks in order to predict 

metabolic pathways and to analyze and compare pathways and metabolic networks across 

different species in today’s post-genomic era. It also investigates the evolution and 

functional specialization of metabolic pathways in the bacteria belonging to genus 

Pseudomonas. Finally, it identifies the metabolic changes that occur during ripening of 

mango fruit by performing metabolic pathway mapping of genes which are found to be 

differentially expressed during mango ripening. Each chapter ends with a discussion 

summarizing the work and outlining the possible extensions to the work presented in the 

chapter. The final chapter summarizes the overall thesis and presents the general extensions 

to the work presented in this thesis.  
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The thesis is organized as follows.  

• Chapter 1 outlines the problem statement and provides a general introduction to 

the thesis.  

• Chapter 2 presents a Metabolic network Analysis and Pathway Prediction Server 

(MAPPS), a web-based tool for performing a variety of analyses ranging from 

simple pathway prediction and comparisons to specialized analyses including 

identification of potential drug targets, in silico metabolic engineering, ‘omic 

filtering of metabolic networks, host-microbe interactions and ancestral network 

building. It also provides a number of case studies to demonstrate the applications 

of the tool.  

• Chapter 3 uses MAPPS and other bioinformatics analyses to investigate the 

evolution and functional specialization of metabolic pathways in the bacteria 

belonging to genus Pseudomonas by systematically performing pathway specific 

and whole network comparisons and evolutionary analysis of 111 genome-

sequenced pseudomonads available in KEGG. 

• Chapter 4 investigates the metabolic changes that occur during fruit maturation in 

Mango (Mangifera Indica) by performing differential expression analysis between 

immature and mature stages of two elite South Asian cultivars, namely Sindhri and 

Kala Chaunsa, and studying the differences in metabolic pathway mapping of the 

identified differentially expressed genes.  

• Chapter 5 summarizes the work presented in this thesis and discusses future 

directions. 
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2 MAPPS: A Web-Based Tool for 

Metabolic Pathway Prediction and 

Network Analysis in the Post-Genomic 

Era 

The fundamental processes of life, such as the generation of energy from light and food 

and the synthesis of biological molecules, are carried out by the enzymes that form the 

metabolic networks present in each living cell. Most organisms have a core set of reactions 

that catalyze essential processes such as protein synthesis and DNA replication, but a large 

proportion of the enzymes present in different organisms are specific to the needs of 

individual organisms or tissues. The availability of genome sequence data allows us to 

predict the functions of the enzymes present in different organisms, and how these enzymes 

might be organized into a metabolic network in which the product of one reaction becomes 

the substrate for another (Mithani et al., 2010). It also offers the possibility of an in-depth 

analysis of these metabolic pathways within an organism as well as between different 

organisms to comprehend the processes and attributes that affect the capabilities and 

evolution of metabolic networks. 

Over the years, researchers have developed comprehensive databases that catalog 

experimentally discovered genes, enzymes, reactions, and pathways of genome-sequenced 

organisms (Jing et al., 2014), such as the Kyoto Encyclopedia of Genes and Genomes  

(KEGG) (Kanehisa et al., 2017), Reactome (Fabregat et al., 2016), and BioCyc (Caspi et 

al., 2016), to study metabolic networks at a systems level. These databases have been 
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complemented by the development of tools for predicting and analyzing metabolic 

networks, comparing metabolic networks, performing in silico metabolic engineering, and 

designing novel pathways for biosynthesis and biodegradation to understand the adaptation 

and functional specialization in different species (Tomar and De, 2013). Some of the 

commonly used tools for metabolic network analysis are listed in Table 2.1. 

Although the available tools serve as useful resources for metabolic pathway 

prediction, their usability is limited by the fact that most of them are designed to allow 

users to examine the metabolism of a single organism or reference metabolic network 

rather than analyzing data for multiple organisms, which is essential to carry out metabolic 

comparisons. In addition, many tools including Pathway Hunter Tool (PHT) (Rahman et 

al., 2005), From Metabolite to Metabolite (FMM) (Chou et al., 2009), Metabolic Route 

Search and Design (MRSD) (Xia et al., 2011), PathComp (Ogata et al., 1998), PathPred 

(Moriya et al., 2010) and Metabolic Route Explorer (MRE) (Kuwahara et al., 2016) do not 

allow users to simultaneously predict pathways between multiple pairs of source and target 

metabolites making metabolic pathway analysis and comparison even within a single 

organism a tedious task for the end-user. Another limitation of the currently available tools 

is the lack of options to filter predicted pathways and to refine pathway searches. Although 

some tools allow users to define a limited number of constraints during pathway prediction, 

their usability is limited by the flexibility provided by these tools. For example, PHT allows 

a provision of requiring a metabolite to be present in the predicted pathways but does not 

allow metabolites to be avoided during pathway prediction. Similarly, MRSD only 

provides a provision of intermediary metabolites to be required during pathway prediction. 

MRE, on the other hand, allows the exclusion of multiple metabolites during pathway 
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prediction but does not provide an option to require one or more metabolites. Only 

MetaRoute allows the provision of both required and excluded metabolites/reactions but it 

is provided as a pathway filtering option once the pathways have been predicted between 

source and target metabolites and not at the time of pathway prediction itself. Besides this, 

there is limited support for specialized analyses such as effects of enzyme/reaction 

insertion and knock-out (MetaPath Online and PHT) on metabolic pathways, support for 

custom networks (PHT, NetCooperate, MetaRoute and MetQuest), and host-pathogen 

interactions (NetCooperate) in currently available tools. 

Metabolic networks, like all other biological networks, are under a process of 

continuous evolution. However, the evolutionary mechanisms of these networks are not 

well understood. It is unclear how these networks evolve and if there is a correlation 

between the evolution of metabolic capabilities and various factors such as the network 

structure and/or the environment in which these organisms thrive. The availability of 

genomes for many closely related species offers the possibility of tracing metabolic 

evolution on a phylogeny relating the genomes to understand the evolutionary processes 

and constraints that affect the evolution of metabolic networks. To the best of our 

knowledge, none of the currently available tools allows phylogeny-based analyses focusing 

on the evolution of metabolic networks. Furthermore, with an increased focus on the 

understanding of the system as a whole, the challenge of predicting and analyzing the 

properties of metabolic networks based on transcriptomic, proteomic and metabolomic 

data has gained much attention in recent years (Faust et al., 2011). 
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Table 2.1: Tools available for metabolic network analysis 

Tool Name 

Web-

based 

Tool 

Active 

Database 

Last 

Updated 

Supported Analyses 

Reference Pathway 

Prediction 

Comparative 

Analysis 

Support for 

Custom 

Networks 

Evolutionary 

Analysis 

Drug Target 

Identification 

Host-

Microbe 

Interaction 

ATLAS ✓ ✓ 2015† ✓      (Hadadi et al., 2016) 

BPAT-S/ 

BPAT-M 
✓ ✓ 20/06/2011 ✓      (Heath et al., 2011) 

FMM ✓ ✓ 01/10/2008 ✓ ✓     (Chou et al., 2009) 

FogLight  ✓ Unknown* ✓      (Khosraviani et al., 2015) 

Metabolic 

Tinker 
  N/A ✓      

(McClymont and Soyer, 

2013) 

MetaPath 

Online 
✓ ✓ 13/2/2007 ✓  ✓    

(Handorf and Ebenhöh, 

2007) 

MetaRoute ✓ ✓ 21/10/2007 ✓ ✓ ✓    
(Blum and Kohlbacher, 

2008) 

MetQuest  ✓ Unknown* ✓  ✓    (Ravikrishnan et al., 2018) 

MRE ✓ ✓ 01/10/2015 ✓      (Kuwahara et al., 2016) 

MRSD ✓  N/A ✓      (Xia et al., 2011) 

NetCooperate  ✓ Unknown*      ✓ (Levy et al., 2015) 

PathComp ✓ ✓ Real-time ✓      (Ogata et al., 1998) 

PathPred ✓ ✓ Real-time ✓      (Moriya et al., 2010) 

PHT ✓ ✓ 05/04/2011 ✓  ✓  ✓  (Rahman et al., 2005) 

Rahnuma ✓  N/A ✓ ✓  ✓   (Mithani et al., 2009a) 

†ATLAS database has been developed using KEGG 2015 reactions 
*Last updated date not available 
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Most of the currently available pathway prediction tools do not allow the user to 

map ‘omics data on the metabolic network and compare metabolic networks to see the 

effects of ‘omics data on the pathways between specific metabolites. Finally, currently 

available tools do not provide an interactive interface for visualizing pathway prediction 

results or exporting the results into standard Systems Biology Markup Language (SBML) 

for further analyses. A tool is, therefore, required that addresses these limitations and 

allows users to analyze a wide range of metabolic analyses, integrate ‘omic datasets in 

order to predict and compare metabolic networks, visualize pathway predictions in a 

biologically meaningful way and obtain insight into the functioning and evolution of 

metabolic networks.  

This chapter describes a tool called MAPPS: Metabolic network Analysis and 

Pathway Prediction Server that provides an interactive platform to analyze metabolic 

networks using traditional as well as ‘omics data. MAPPS is a web-based tool available at 

https://mapps.lums.edu.pk and builds upon the existing architecture of Rahnuma (Mithani 

et al., 2009a), a tool which was published over a decade ago but is no longer available for 

use. Although Rahnuma had a variety of distinctive features that are not available in many 

of the available tools including multi-network pathway prediction, and network 

comparison between two or more organisms or at different levels of a phylogeny, its utility 

as a tool for studying network evolution, predicting metabolic capabilities and analyzing 

‘omic data was limited by its basic user interface, text-based output, and reliance on 

KEGG-derived annotations of completely sequenced genomes (see Section 2.1). MAPPS 

has been designed to overcome these limitations by providing an interactive user interface 

for job submission and graphical result visualization and allowing users to upload custom 

https://mapps.lums.edu.pk/
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data to enable analyses on draft and custom genomes in addition to providing diverse 

functionalities. Like its predecessor, MAPPS represents metabolic networks as 

hypergraphs, rather than the commonly used graph representation. A hypergraph is a 

generalization of a regular graph where an edge, called a hyperedge, can connect more than 

two vertices (Berge and Minieka, 1973). Since a reaction is treated as a single entity in a 

hypergraph, it can be used to capture relationships between multiple metabolites involved 

in a reaction, unlike regular graphs where each edge is independent. Hypergraphs have 

been used to represent metabolic networks in different studies (Yeung et al., 2007; Mithani 

et al., 2009b). Overall, MAPPS aims to provide a single powerful resource for the analysis 

and comparison of metabolic networks and for the study of metabolic evolution by 

allowing pathway-based metabolic network comparisons at the organism as well as 

phylogenetic levels. 

2.1 Rahnuma: hypergraph-based tool for metabolic pathway 

prediction and network comparison 

Rahnuma, a web-based tool for metabolic pathway prediction and network comparison 

(Figure 2.1), was published in 2009 (Mithani et al., 2009a) but is no longer available for 

use. Rahnuma represented metabolic networks as hypergraphs rather than the commonly 

used graph representation and considered reaction directions while predicting pathways 

between metabolites by using directed hyperedges. Analyses provided by Rahnuma were 

grouped into three categories: (i) Pathway Analysis for pathway predictions on more or 

more organisms, (ii) Comparative Analysis for pathway based and full-network 

comparison between two networks, and (iii) Network Analysis for phylogenetic-based 

analysis. Rahmuma provided a variety of distinctive features including multi-network 
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pathway prediction, and network comparison between two or more organisms or at 

different levels of a phylogeny.  

Rahnuma’s utility as a tool for predicting metabolic capabilities, comparing 

metabolic networks and studying network evolution was, however, limited due to its strong 

reliance on KEGG-derived annotations of completely sequenced genomes. Rahnuma, for 

example, allowed user to perform simple pathway prediction between two or more 

Figure 2.1: Rahnuma interface for job submission. Rahnuma, a web-based tool for metabolic pathway 

prediction and network comparison, was published in 2009 (Mithani et al., 2009b) and provided a basic 

interface for job submission and had limited options available. 
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metabolites in addition to identifying reactions involved in pathways from only one of the 

given start metabolites and reactions that, if deleted from the network, would result in all 

pathways being removed between the specified metabolites. This, however, was restricted 

to the networks built using underlying data downloaded from KEGG. It did not allow user 

to alter metabolic networks by allowing addition or removal of metabolites or reactions 

from the network or run these analyses on user-defined networks thus limiting its 

capabilities for answering diverse biological questions. Similarly, comparative and 

phylogenetic analyses were allowed only on the KEGG data with no option to perform in 

silico modification of the network. Comparison of modified network with the original 

network is an important aspect of metabolic network analysis in today’s post-genomic era 

enabling user to study the behavior of diseased or engineered metabolic network (Tomar 

and De, 2013). Moreover, the all-but-one comparison (see Section 2.2.4.1), which 

facilitates the identification of reactions or pathways that are present in only one organism 

in a group but absent in all other organisms and vice versa was only available for single 

organisms in Rahnuma thereby limiting its usability. Allowing all-but-one comparison 

between groups of organisms can enable users to compare metabolic networks between 

different species or genera thereby enabling them to study metabolic capabilities of 

organisms at a broader level. Besides this, metabolic network analysis at phylogenetic 

level, a unique aspect of Rahnuma, provided only three algebraic modes (union, 

intersection and reaction neighborhood) to build metabolic networks on the user-defined 

phylogeny. It did not provide any provision to infer phylogeny based on metabolic network 

data. 



24 

 

Besides this, since Rahnuma did not allow any metabolite to be added as an 

intermediate metabolite if it was present as a substrate in any of the reactions of the 

predicted pathway, it failed to capture many pathways by ignoring substrates of 

participating reactions. For example, consider the four-step metabolic pathway from -D-

galactose (KEGG ID: C00984) to UDP-glucuronate (KEGG ID: C00167) shown in Figure 

2.2. In this pathway, -D-galactose is converted into -D-galactose-1-phosphate (KEGG 

ID: C00446) via reaction R01092, which is subsequently converted into D-glucose-1-

phosphate (KEGG ID: C00103) by the reaction R00955. In the next step, UDP-glucose 

(KEGG ID: C00029) is added as an intermediate metabolite in the pathway by the reaction 

R00289 to reach to the destination metabolite (UDP-glucuronate). Rahnuma could not 

predict this pathway since UDP-glucose (KEGG ID: C00029) is also present as a substrate 

in the reaction R00955 (Figure 2.2). MAPPS overcomes this limitation by allowing a 

metabolite to be added as an intermediate metabolite even if it is present as a substrate in 

any of the participating reactions of the predicted pathway (see Section 2.2.4.1).  

Figure 2.2: An example pathway to demonstrate limitation of pathway prediction algorithm of 

Rahnuma. It shows MAPPS output of pathway prediction -D-galactose to UDP-glucuronate. Metabolite 

which acts as a substrate in already added reaction (yellow box) is highlighted (red box). 
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In addition, Rahnuma’s utility as a tool was also limited by its basic user interface 

(Figure 2.1), which prevented the user from studying complex questions focusing on 

metabolic capabilities of different organisms, and text-based output (Figure 2.3) 

preventing user to visualize the results in an interactive graphical user interface. Rahnuma 

did not allow the user to build metabolic network for multiple organism sets in a single job 

(Figure 2.4) forcing them to submit multiple jobs with same parameters for each organism 

set. In addition, although the user could choose  multiple start and end metabolites in 

Rahnuma, it lacked the flexibility to allow user-defined constraints on intermediary 

metabolites (Figure 2.4, see Section 2.2.4.1).  

In summary, Rahnuma allowed answering biological questions focusing on 

metabolic differences between organisms by allowing reaction and pathway based 

metabolic network comparisons in an organismal and phylogenetic context and provided 

Figure 2.3: Plain text output of pathway-based comparison of Rahnuma. It did not provide a graphical 

interface for results visualization results.  
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basic architecture for it but it lacked the scalability and user-centric design required to 

answer complex biological questions by specifying constraints at metabolite-, reaction- and 

enzyme-levels, and did not provide a graphical interface for results visualization. 

2.2 MAPPS: Metabolic Network Analysis and Pathway 

Prediction Server 

MAPPS: Metabolic network Analysis and Pathway Prediction Server is a web-based tool 

available at https://mapps.lums.edu.pk. MAPPS presents an interactive platform to analyze 

Figure 2.4: Screenshot of Rahnuma interface to select organisms and metabolites. User can select 

multiple organisms to build a metabolic network, and choose multiple start and end metabolites for pathway 

prediction 

https://mapps.lums.edu.pk/
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metabolic networks using traditional as well as ‘omics data by offering an intuitive, easy 

to use and biologically meaningful graphical interface to the user. It provides a powerful 

resource for metabolic pathway prediction and comparison as well as specialized analyses 

including identification of metabolic drug targets, detection of metabolite-specific 

reactions, analyzing the effects of host-microbe interactions, and studying metabolic 

evolution using traditional as well as stochastic models (Figure 2.5). MAPPS also allows 

users to upload custom data in addition to using data from KEGG, thus enabling metabolic 

analyses on draft and custom genomes, enables in silico metabolic engineering by 

adding/removing metabolic reactions or enzymes and has an ‘omics pipeline to refine the 

pathway results using transcriptomic, proteomic, or metabolomic data to provide a greater 

insight into the metabolic capabilities of organisms, making it relevant in today’s 

postgenomic era. The tool is described in detail in subsequent sections followed by a few 

case studies highlighting important features of the tool.  

2.2.1 MAPPS architecture 

MAPPS is built on .Net framework and is hosted on a Dell PowerEdge R740 Server with 

two Intel(R) Xeon Silver 4110 2.1 GHz CPUs with eight cores each and 64GB of Memory 

running Windows Server 2012 attached to Dell Power Vault MD1200 storage box with 

10TB of storage space. MAPPS is designed in a way to minimize the dependency among 

its components and enhance scalability (Figure 2.6). It is divided into the following parts. 

2.2.1.1 Database 

MAPPS uses KEGG as the primary data source for organisms, compounds, reactions, and 

metabolic pathway maps (Kanehisa et al., 2017). External mapping for compounds and 
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enzymes to other public databases is obtained through the KEGG API and reaction 

directions are extracted by parsing KEGG Markup Language (KGML) files of reference 

reaction maps. MAPPS provides an option to use reaction energies and metabolic structural 

Figure 2.5: Overview of MAPPS. MAPPS uses data from the KEGG database in addition to allowing users 

to upload custom metabolic networks containing KEGG or non-KEGG identifiers. KEGG-based networks 

can be refined based on ‘omics (transcriptomics, proteomics and metabolomics) datasets. MAPPS provides 

several analyses including pathway prediction and comparison, ancestral network building/comparison, host-

microbe interaction, identifying potential drug targets, metabolite reachability, network enumeration and 

comparison, metabolic similarity analysis, metabolite-specific pathways, estimation of evolution parameters 

and interactive network viewer. Users can also modify networks using in silico enzyme/reaction insertion or 

knock-out. MAPPS output can be generated in multiple output formats including Hyper Text Markup 

Language (HTML) file containing hyperlinks to KEGG for compound and reaction entities, Systems Biology 

Markup Language (SBML) file, tab-delimited text file and interactive graphical format. 
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similarity into the pathway scoring scheme (see Section 2.2.7). For this, standard Gibbs 

energies of KEGG reactions for pH values ranging from 5 to 9 were downloaded from 

eQuilibrator (Flamholz et al., 2012) and structural similarity scores of metabolites were 

obtained through the REST API of SIMCOMP2 (Hattori et al., 2010). Data is stored in a 

relational database (see Appendix A) running on a MySQL server. The database also stores 

external links, login information, and job parameters. KEGG data is updated in the database 

fortnightly. The results are stored in the database for three days for guest users and fifteen 

days for registered users. 

Figure 2.6: MAPPS architecture. MAPPS has a modular architecture to minimize the dependency among 

its components and enhance scalability. It consists of a listener program which is written in C#, a MySQL 

database for storing data and job-related information, Web Application Programming Interface (API) which 

communicates between the MAPPS website and the database, in addition to providing a public interface for 

programmatic access, and the interactive MAPPS website for job submission and result visualization as well 

as quick access to relevant public databases. 
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2.2.1.2 Website 

The MAPPS website provides an interactive platform to submit complex queries. It is 

developed in ASP.net, HTML, CSS, and various JavaScript libraries (JQuery, AJAX, 

JointJS, Bootstrap, Dagre, and Vectorizer) are used to make it more interactive. MAPPS 

provides a seamless four-step job submission process for various metabolic network 

analyses. Jobs can be submitted as a registered user or guest user; registered users can save 

their job parameters to submit later and retrieve the results of previous jobs. MAPPS 

website communicates with the database through web API for retrieving data and 

submitting jobs (Figure 2.6) and provides quick access to relevant public databases 

through an interactive interface. 

2.2.1.3 Application Programming Interface (API) 

The API provides a public interface between client and server. In MAPPS, API facilitates 

the communication between the website and the MAPPS database. It retrieves the data 

from the database and sends it to the website and takes the job parameters submitted by the 

user from the website, validates it, and submits the job in the database. The Listener takes 

this job and executes it; when the execution is completed, and job status is updated in the 

database, the API fetches the result from the database and sends it to the website on the 

client’s browser. 

2.2.1.4 Listener 

A desktop application written in C#, named as Listener, runs all the core algorithms of 

MAPPS. This application runs as a multithread process and performs three primary 

functions, database polling, job status monitoring, and job execution. The database polling 

thread samples the database at regular intervals to fetch newly submitted jobs. If the user 
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submits a new job, the database polling thread adds it to the job queue, which is a priority 

queue. Another thread actively monitors the status of queued entries, and it starts an 

independent thread to execute the job and remove it from the job queue. Now the job is 

moved to the ‘active jobs’ list. Currently, MAPPS can execute ten jobs in parallel using a 

multithreading approach. When a job is completed, job status is updated in the database 

and results are saved on the server. If the number of active jobs is less than 10, a new job 

is executed from the job queue, and this process goes on. Multiple threads work together 

to fetch the job from the database, execute it, update its status in the database and move to 

the next job.  

2.2.2 Working of the tool 

2.2.2.1 Registration 

User can use MAPPS by creating an account or as a “Guest User” (Figure 2.7). MAPPS 

allows user to create an account using a simple registration process (Figure 2.8). An email 

address is used as a unique identifier to create a new account, after submitting the 

registration form an activation link will be sent to the given email address for verification. 

Once the email address is verified, the account will be activated, and user can login to use 

MAPPS. Registered users can use additional features of MAPPS like they can save the job 

parameters of unsubmitted jobs to edit and submit later (Figure 2.9), and results of 

completed jobs will be accessible for 15 days. While on the other hand, guest users can 

access the results only for three days. 



32 

 

 

Figure 2.7: MAPPS login page. Users can log in with a registered email address or use MAPPS as a guest 

user. Registered users can save job parameters of unsubmitted jobs, and access completed jobs. 

Figure 2.8: MAPPS interface for user account registration. User can register using an email address, 

which will be used as user ID for sign in.  
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2.2.2.2 Job submission 

Once logged in, user can submit jobs in MAPPS. Job submission in MAPPS consists of 

four main steps (Figure 2.10):  

2.2.2.2.1 Define job 

At the first step of job submission (Figure 2.11), the user provides a job name and selects 

the analysis to be performed. MAPPS provides ten different analyses (see Section 2.2.4), 

which are grouped into four categories namely pathway-based analyses, network-based 

analyses, specialized analysis and interactive network viewer. Users also chooses the 

output format for the results (see Section 2.2.3).  

Figure 2.9: MAPPS interface to reload previously saved jobs. The user can save multiple jobs which can 

be subsequently reload. Reloading the previously saved jobs allows the user to edit the job parameters and 

submit the jobs. 
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Select analysis

Build network(s)

Enter job parameters

Review and submit job

Analysis specific 
parameters

Start

Graphical 
output?

Download results

Visualize results
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End
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Figure 2.10: Flowchart describing MAPPS workflow. The job submission process starts with the selection 

of analysis followed by the user definition of the dataset and organism set(s) to build metabolic network(s). 

The user then enters job-specific parameters (if applicable), and finally reviews and submits the job. After 

the job completes, if the selected output format is graphical, the user will be redirected to the interactive 

result visualizer; otherwise the user can download the result (HTML, SBML or text) file. 
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2.2.2.2.2  Build network  

In the second step of job submission, user selects the data source, i.e. KEGG pathways or 

uploads custom data to build a metabolic network(s). In the case of custom data, users can 

upload metabolic network(s) in SBML format, and for the KEGG pathways, networks can 

be built at an organism level by specifying one or more organism sets, each set can have 

multiple organisms, using search box or taxonomy viewer to search for the organism(s) 

(Figure 2.12 and Figure 2.13) or over a phylogeny (Figure 2.14). MAPPS allows user to 

choose up to 10 organisms sets in a single job to build metabolic networks, in addition to 

compare the results it helps to avoid the hassle of submitting multiple jobs for the same 

parameters. Autofill feature of search box can help user to find the organism intuitively 

and the taxonomy view is to facilitate the specie identification by their taxonomic 

Figure 2.11: MAPPS graphical user interface for job submission. The screenshot shows the first step of 

job submission listing the different analyses available in MAPPS. Job submission in MAPPS consists of four 

steps: (1) define job (2) build network (3) enter job parameters (if applicable), and (4) review and submit the 

job. Users can provide a meaningful job name and select the desired output format. 
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classification of KEGG (Figure 2.12). MAPPS allows the user to make changes in the 

metabolic networks by adding or removing reactions/enzymes from these networks using 

Figure 2.12: Building metabolic networks by specifying organism(s) using search box or taxonomy 

viewer. Each organism set can be defined on one or more species. MAPPS allows user to select one or more 

organism(s) using search box or hierarchical checkboxes which represent the taxonomical classification of 

organism. 
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in silico metabolic engineering (see Section 2.2.5) and/or filtered by user-provided  ‘omics 

datasets (see Section 2.2.6).  

Figure 2.13: Specifying one or more organism set(s) to build a metabolic network(s) in MAPPS. If more 

than one organism sets are created, users can perform comparative analysis. Users can also choose to build a 

network using all pathway maps available in KEGG or select one or more pathway maps by selecting the 

appropriate dataset. 



38 

 

2.2.2.2.3 Enter job parameters  

User enters the job parameters required to perform the analysis on the metabolic 

network(s). Users can select one or more source/target metabolites, define pathway length 

and other parameters for pathway prediction. Users can apply constraints at metabolite 

and/or reaction/enzyme and/or element level for computing pathways (Figure 2.15). This 

step is only available for pathway-based analyses.  

Figure 2.14: Building metabolic network over a phylogeny. MAPPS allows user to enter phylogeny in 

strict Newick format using KEGG organism codes. 
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Figure 2.15: MAPPS interface for specifying pathway-related parameters. In addition to specifying one 

or more start/end metabolites, the user can also define constraints at metabolite and/or enzyme/reaction level 

during pathway-based analyses requiring them to be present or ignored during pathway prediction. Besides, 

the user can also specify which elements are required or to be ignored in the pathway prediction. The user 

can use metabolite pairing where all possible pairs between substrates and products of a given reaction are 

considered, or select KEGG reactant pairs to establish the connection between reactions and choose to 

incorporate structural similarity between consecutive metabolites while predicting metabolic pathways, in 

addition to specifying a range for the length of predicted pathways. 
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2.2.2.2.4 Review and submit job  

This is the last step in the job submission process, the user can review the job parameters 

and submits the job (Figure 2.16).  

Figure 2.16: Review and submit the job. The user can review the job parameters, edit the parameters for 

the selected analysis (if required) and submit the job. 
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2.2.2.3 Results retrieval 

When a user submits a job successfully, Listener (see Section 2.2.1.4) starts the job 

processing and the user will be redirected to results page if the user is signed in with a 

registered account, where all the jobs completed within the past 15 days can be accessed 

(Figure 2.17). The user is also notified via email when the current job is completed. If the 

Figure 2.17: MAPPS interface showing list of completed jobs for registered user. User can download 

the results (plain text, HTML or SBML) or visualize the results (graphical output) by clicking on the link 

button (green color). 
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job is, however, submitted as a guest user, they will be redirected to the job progress page 

which checks the job status from the database every ten seconds (Figure 2.18). The user 

can wait for the job to complete or save the page link to access the results later. Results for 

the guest user are stored for three days after the job completion. MAPPS generates results 

in various formats including iterative graphical output, plain text, HTML and SBML.   

2.2.3 MAPPS output 

MAPPS offers multiple output formats including graphical, plain text, HTML, SBML. 

These are described below. 

2.2.3.1 Graphical output 

User can visualize results in a graphical format to navigate through the results easily and 

explore the output by manipulating the parameters. MAPPS allows the user to visualize 

predicted pathways as a merged subnetwork or as individual pathways sorted on pathway 

score. User can filter the predicted pathways by length, delete one or more metabolites 

and/or reactions to analyze the effects of reported pathways, visualize metabolite and 

reaction details and provides single-click access to related information in relevant 

Figure 2.18: MAPPS interface showing the job status for guest users. This page refreshes automatically 

and checks for job progress, the user can retrieve the results by using this page link. 
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databases. Figure 2.19 shows an example of the graphical output of pathway prediction 

analysis where the start metabolite is shown as green rectangles, intermediary metabolites 

Figure 2.20: An example of plain text output for pathway prediction of MAPPS. The output is a 

descriptive text format which contains information about the job parameters, predicted pathways, pathway 

scores, number of pathways predicted of each length, and number of reversible reactions in plain text. 

Figure 2.19: An example of the interactive graphical output for pathway prediction. Green box 

represents the start metabolite, blue boxes show the intermediate metabolites, and the red box shows the end 

metabolite. Arrows between the metabolites correspond to the reactions. The graphical result can also be 

saved in PNG and PDF formats. 
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are shown in light blue color, destination metabolites are shown as red rectangles and 

reactions are shown as grey rectangles on each edge.  

2.2.3.2 Plain text 

MAPPS allows user to choose output format as plain text, which shows pathways and 

reactions of the results in a tab-delimited format. An example of pathway prediction result 

in plain text format is shown in Figure 2.20. 

2.2.3.3 HTML 

User can also get results in HTML format. MAPPS HTML format has hyperlinks to 

participating metabolites, reactions, and organisms for KEGG database. An example of 

HTML output of the pathway prediction analysis is shown in Figure 2.21.  

Figure 2.21: An example of HTML output for pathway prediction. Pathway codes, organism codes, 

metabolites and reactions are hyperlinked to KEGG entries. Columns show the relevant information related 

to the predicted pathway for example pathway length, pathway score, number of reversible reactions etc. 
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2.2.3.4 SBML 

MAPPS also generate output in the Systems Biology Markup Language (SBML) format, 

which can be uploaded to MAPPS or other software packages such as Cytoscape (Shannon 

et al., 2003) for further analysis. An example of SBML output of the pathway prediction 

analysis is shown in Figure 2.22.  

2.2.4 Analyses provided by MAPPS 

MAPPS is a versatile tool, which offers a distinct range of analyses for metabolic pathway 

prediction and comparison and network analysis (see Figure 2.5). These analyses are 

Figure 2.22: An example of SBML output for pathway prediction. Each organism set is represented as a 

model, participating metabolites are represented as listOfSpecies and reactions as listOfReactions. SBML file 

can be used for further analysis or visualization in any other SBML-compatible tool. 
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described in the subsequent sections. Tutorials highlighting various features of MAPPS are 

available at https://mapps.lums.edu.pk/tool/docs.aspx. 

2.2.4.1 Pathway prediction and comparison 

MAPPS allows the user to predict metabolic pathways over one or more organisms sets 

based on KEGG reference network or custom data (see Section 2.2.2.2.2), specify multiple 

organism sets and select more than one source/target metabolite(s) to in a single job. 

Furthermore, MAPPS provides an option to perform a pathway-based comparison between 

two or more organism sets to identify pathways or reactions involved in the predicted 

pathways that are present in one organism set but absent in other organism sets and vice 

versa. MAPPS also predicts metabolic pathways on a user-defined phylogeny. In this 

mode, users can perform pathway prediction on leaf nodes as well as ancestral nodes 

predicted using one of many available phylogeny building modes (see Section 2.2.4.4). 

Pathway prediction on a phylogeny can help in identifying the functional differences at 

various levels of the phylogeny and provide clues about the metabolic evolution of various 

species (Mithani et al., 2011). 

MAPPS computes pathways using a depth-first search of metabolic networks and 

reports all possible pathways between the source and target metabolites. A pathway 

between two metabolites is defined as a connected sequence of reactions such that the 

product of one reaction acts as a substrate in the next reaction that satisfies user-defined 

constraints. User can select KEGG Reaction Class (RCLASS) (Kanehisa et al., 2017) 

which contains information relating to the main reactant pairs of KEGG reactions to 

compute connections between metabolites thus allowing pathway searches to be optimized 

(Kanehisa, 2006) or use metabolite pairing where all possible pairs between substrates and 

https://mapps.lums.edu.pk/tool/docs.aspx
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products of a given reaction are considered to establish the connection between reactions. 

While predicting metabolic pathways, MAPPS takes into account reaction directions and 

computes all possible pathways between the source and target metabolites. MAPPS does 

not allow metabolites or reactions to be repeated in a pathway, thus avoiding cycles and 

reports only direct routes between metabolites. Unlike Rahnuma, it allows pathways 

through metabolites which are used as substrates in one or more reactions enabling it to 

report pathways missed by Rahnuma (see Section 2.1). While submitting a pathway 

prediction job, users must specify minimum and maximum lengths of the pathways to be 

reported. All pathways outside of the specified range are ignored. Pathways up to 10 

reactions in length can be computed by MAPPS.  

To refine the pathway search, users can define additional constraints on metabolites 

and/or reactions/enzymes during pathway prediction (Figure 2.15). At the metabolite 

level, users can specify a list of metabolites to be avoided or required during pathway 

prediction. Pathways passing through metabolites which as designated to be ignored are 

not reported. By default, ubiquitous metabolites such as ATP, AMP, O2, H2O and CO2 are 

ignored during pathway prediction. The complete list of metabolites ignored by default in 

MAPPS is provided in Appendix B. If one or more metabolites are stipulated to be 

required, then only those pathways that contain these required metabolite(s) are reported. 

In addition, MAPPS also provides an option to filter metabolites based on their 

connectivity scores (see Section 2.2.7) since it has been previously reported that metabolite 

filtering by assigning weights to metabolites based on their connectivity in the metabolic 

network narrows down the search space and helps in reporting biologically relevant 

pathways (Croes et al., 2006). To this end, user can specify a metabolite connectivity cut-
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off value to filter compounds based on their degree in the underlying metabolic network. 

Besides metabolites, users can also specify whether one or more reactions/enzymes must 

be present or are to be avoided during pathway prediction. To enhance the reporting of 

biologically meaningful pathways, MAPPS also provides an option of filtering 

intermediate metabolites by presence or absence of constituent elements including 

nitrogen, oxygen, phosphorus, sulfur, bromine, manganese and zinc to enable element 

tracing while computing pathways between source and target metabolites. The user has the 

flexibility to define one or more chemical elements as required (element(s) must be present 

in all intermediate metabolites of the predicted pathway) or ignored (element(s) must not 

be present in the intermediary metabolites). By default, all elements are regarded as 

optional (Figure 2.15). Finally, users can also choose to incorporate structural similarity 

between consecutive metabolites while predicting metabolic pathways. Structural 

similarity score are calculated using SIMCOMP2 (Hattori et al., 2010) and a user-specified 

cutoff is used to filter out intermediary metabolites during pathway prediction. The 

pseudocode for the pathway prediction algorithm is given in Box 2.1.  

2.2.4.2  Metabolite reachability 

The reachability of a metabolite is defined as a set of metabolites reachable from the start 

metabolite in given number of steps and is very useful in identifying the essential 

metabolites being produced from pre-cursor metabolites in a given metabolic network 

(Karp et al., 2009). This analysis is particularly useful in focusing on nutrient assimilation 

pathways (Ferguson et al., 2010; Mithani et al., 2011; Koprivova and Kopriva, 2014) since 

it allows users to analyze the connectedness and scope of the metabolites in the metabolic 

network(s) under study. Traditionally, 13C tracer experiments have been used to identify 
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intermediary metabolites produced from a given start metabolite with metabolomic data 

being used in the recent years (Buescher et al., 2015; Fuhrer et al., 2005; Zhang et al., 

2016). However, this has primarily been done in prokaryotes or for subsets of metabolic 

networks due to high experimental costs for large networks (Sauer, 2006).  

MAPPS provides comprehensive functionality for users to identify metabolites 

reachable from one or more start metabolites in a given range of steps (see Figure 2.23) 

Box 2.1: Pseudocode for pathway prediction algorithm 

Input: 

n = metabolic network of the current organism set 

Sm = List of start metabolites 

Im = List of ignore metabolites 

Ie = List of ignore elements 

Rm = List of required metabolites 

Rr = List of required reactions 

Rc = List of required enzymes 

Re = List of required elements 

Tm = List of target metabolites 

Output: 

P = List of predicted pathways 

Algorithm: 

Let Rs denotes the list of reactions of metabolic network n in which s Sm  is acting as 
a substrate  

for each reaction r  Rs do 
Let p denotes the predicted pathway 

If r is present in p then 

  continue to next r 

 Let Cs denotes the list of outgoing connections from s in  r 

 for each connection c  Cs  do 
  Let m denotes the end metabolite of connection c 

  Let Lp denotes the length of p 

  Let Lmin denotes minimum length cutoff and Lmax denotes maximum length 

cutoff 

      if Tm contains m then 

   if Lmin <= Lp <= Lmax and p contains any Rm, Rr and Rc then 

    calculatePathwayScore(p) 

    save the pathway p in P 

    go to next start metabolite 

   else 

if m is already present in p as intermediate node then 

     continue to next c 

    if m is present in Im then 

     continue to next c 

    if m contains any element of Ie then 

     continue to next c 

    if m does not contain any element of Re then 

     continue to next c    

    

    Let Xsim denotes the similarity score between m and s 

    Let Lsim denotes the similarity score cutoff defined by user 

 

          if Xsim < Lsim then 

            continue to next c 

          

    Add m  as new node in the pathway p  

    

          CALL pathwayPrediction function with s = m  
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taking into account all the constraints available for pathway prediction (see Section 

2.2.4.1). Like pathway prediction, user can build up to 10 metabolic networks in a single 

job and perform reachability analysis simultaneously in addition to applying constraints at 

metabolite, reaction, enzyme and element levels for KEGG based metabolic networks (see 

Figure 2.24). Unlike pathway prediction, no end metabolite is required for this analysis. 

For each metabolic network, MAPPS searches the network space starting from the source 

metabolite and extracts the products of all those reactions in which the source metabolite 

is participating and the list of reachable compounds is returned to the user as output. The 

pseudocode of metabolic reachability is given in Box 2.2. 

2.2.4.3  Metabolite-specific reactions 

Metabolite-specific reactions are defined as reactions that are involved in pathways from 

only one of the given start metabolites (Mithani et al., 2009a). Exploring a metabolic 

Figure 2.23: Graphical output for metabolic reachability. Green circles represent metabolites that are 

reachable from the selected metabolite shown in the middle (C00024: Acetyl-CoA). Gray rings represent the 

number of steps/reactions (shown in grey circles) required to produce the respective metabolites. Users can 

also select a particular number of steps by clicking on the gray circle. Metabolites reachable in the selected 

number of steps are shown in red color. Users can turn on or off one or more steps using the checkboxes at 

the top right corner. 
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network to identify reactions/enzymes that are exclusive to a particular metabolic route has 

many applications ranging from potential therapeutic targets to metabolic engineering 

(Taylor et al., 2013; Tomar and De, 2013). MAPPS provides an option to identify 

metabolite-specific reactions, which is built upon the pathway prediction module. 

However, unlike pathway prediction, it takes as input at least two start metabolites and 

identify reactions which are present in pathways from only one of the given start 

metabolites. For this, MAPPS computes pathways from each start metabolite to target 

metabolites, and then it extracts the reactions participating in the predicted pathways. By 

comparing the participating reactions, MAPPS identifies those reactions which are present 

Figure 2.24: MAPPS interface for entering job parameters for reachability analysis. It requires one or 

more start metabolites (but no end metabolite) to calculate their reachability in the metabolic network. 
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in the pathways from only one start metabolite but absent from all others.  The pseudocode 

for identifying metabolite-specific reactions is given in Box 2.3.  

2.2.4.4 Ancestral network-building/comparison 

Metabolic networks are under a process of continuous evolution. The availability of 

genomes for many closely related species offers the possibility of tracing metabolic 

evolution on a phylogeny relating the genomes to understand the evolutionary processes 

and constraints that affect the evolution of metabolic networks (Mithani et al., 2009a, 

2011). MAPPS provides an interface for studying metabolic evolution where the user can 

build and compare metabolic networks at internal nodes of phylogeny using various 

Box 2.2: Pseudocode for metabolite reachability algorithm 

Input: 

N = list of the metabolic network of organism set 

Sm = List of start metabolites 

Ie = List of ignore metabolites 

Ie = List of ignore elements 

Re = List of required elements 

 

Output: 

Mreach = List of reachable compounds 
 

Algorithm: 

Let Lmin and Lmax denotes the reachability range defined by the user 

Let Rs denotes the list of reactions of metabolic network n in which s is acting as 

substrate  

Let Mproducts  denotes the list of product metabolites of each step 

for each metabolic network n N do 

for each start metabolite s Sm do 
step = 1 

Mproducts = FindProducts(s) 

while step is less than or equal to Lmax do 

for each product metabolite b Mbranches do 
append results of FindProducts(b) to Mproducts 

 

if step is less than or equal to Lmax and greater than or equal 

to Lmin then 

    for each product metabolite b Mbranches do 
        if b contains any element of Ie then 

     continue to next b 

        if b does not contain any element of Re then 

     continue to next b 

        Let Xsim denotes the similarity score between b and s 

        Let Lsim denotes the similarity score cutoff defined by

        user 

            if Xsim < Lsim then 

          continue to next b 

        add b to the list of reachable compounds, Mreach, for 

        start metabolite s 

   step=step+1 

 



53 

 

methods (Figure 2.25). Various phylogeny building modes are being used at the sequence 

level, but their application is not much exploited at the network level (Felsenstein, 2004).  

MAPPS allows user to utilize these existing methods for metabolic networks. This includes 

maximum parsimony and its variants (Sankoff, Dollo and Polymorphism parsimony), 

algebraic methods (union, intersection and reaction neighborhood) (Forst et al., 2006; 

Mithani et al., 2009a) distance-based methods (UPGMA and neighbor-joining) 

(Felsenstein, 2004), and stochastic models of metabolic evolution (Mithani et al., 2010). 

For parsimony and its variants, algebraic methods and stochastic models, MAPPS takes a 

user-defined phylogeny as input and builds metabolic networks at the internal nodes of the 

phylogeny whereas for the distance-based method, MAPPS takes three or more Organism 

Sets as input instead of phylogeny and constructs a phylogeny based on metabolic networks 

Box 2.3: Pseudocode for identifying metabolite-specific reactions 

Input: 

N = List of metabolic networks 

Sm = List of start metabolites 

Im = List of ignore metabolites 

Ie = List of ignore elements 

Rm = List of required metabolites 

Rr = List of required reactions 

Rc = List of required enzymes 

Re = List of required elements 

Tm = List of target metabolites 

Output: 

E = List of metabolite-specific reactions 

 

Algorithm: 

Let ExRxn denotes the list of reactions extracted from predicted pathways 

Let n denotes a metabolic network of an organism set 

for each network n  N do 

for each substrate s  Sm do 
CALL predictPathways(n) 

  Let Ps denotes the pathways predicted from start metabolite s 

  Let Rp denotes the list of reactions extracted from predicted pathways 

for start metabolite s 

 

  for each pathway p Ps do 
   extractReactions(p) 

   Let r denotes the list of reactions extracted from pathway p 

   Add r in Rp 
   Save Rp in ExRxn  

 

for each Rp in ExRxn do 

   save reactions rx to E which are only present in Rp 
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and then build metabolic networks at the internal nodes of the phylogeny. Metabolic 

networks at the leaf nodes can be built using KEGG data using all or a subset of KEGG 

pathways or using the custom data provided by the user. MAPPS also allows the user to 

compare two ancestral metabolic network building modes; for example, metabolic 

networks built at internal nodes using union and intersection modes can be compared and 

analyzed (Figure 2.25). It is important to note that comparing ancestral networks is 

different from pathway-based comparison on ancestral networks (see Section 2.2.4.1) as 

the latter is pathway specific and is only able to identify pathway-specific differences 

between given source/target metabolites on the given phylogeny whereas the former 

provides an overall comparison of the metabolic networks in terms of reactions present or 

absent at various levels of the phylogeny under different phylogenetic modes.  

Figure 2.25: MAPPS interface for ancestral network building. Users can choose from multiple phylogeny 

modes, and also can compare two different phylogeny modes. 
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2.2.4.5 Network enumeration/comparison 

The network enumeration and comparison options in MAPPS allow users to enumerate 

and/or compare one or more metabolic networks (Figure 2.26). Network enumeration 

reports the reactions present in one or more organism set(s) along with the metabolites 

involved in these reactions in one of the allowed output formats. This option provides users 

an opportunity to exploit functionalities offered by MAPPS for generating input data for 

other tools, for example by performing in silico metabolic engineering on a metabolic 

network created using KEGG data and exporting the resulting network in SBML format 

for visualization and topological analysis in Cytoscape (Shannon et al., 2003).  

Figure 2.26: MAPPS interface for network enumeration/comparison. Users can build networks on 

multiple organism sets to enumerate the metabolic networks or compare reactions in the metabolic networks. 
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Network comparison compares reactions present between metabolic networks built 

over two or more organism set(s) irrespective of their involvement in a particular metabolic 

pathway. If two organism sets are provided then a standard comparison is performed, which 

identifies reactions present or absent in their respective metabolic networks whereas for 

more than two organism sets an all but one comparison is performed, which identifies 

reactions present (or absent) in only one organism set but absent (or present) in all the 

others.  

2.2.4.6 Metabolic similarity analysis 

Metabolic network comparison is a powerful method in comparative genomics providing 

insights into the characteristic metabolic features of organisms under study (Mithani et al., 

2011). By grouping the organisms based on their metabolic capabilities, specific 

hypotheses relating to specialization of metabolic networks can be generated which can 

then be experimentally tested in the lab. MAPPS offers metabolic similarity analysis by 

allowing users to perform agglomerative hierarchical clustering of metabolic networks of 

three or more organism sets based on KEGG data only (Figure 2.27). Hierarchical 

clustering is an unsupervised machine learning technique that iteratively groups the data 

into clusters based on a similarity measure (Sarle et al., 1990). In MAPPS, metabolic 

networks can be clustered based on their similarity between reactions, enzymes or 

metabolic pathways between a given source and target metabolites. The user can choose 

from three different clustering methods, single, average or maximum linkage method 

enabling users to explore the effects of selecting different methods on the resulting 

dendrogram. Single linkage selects the clusters containing the closest pair of elements for 

joining together, whereas maximum linkage selects the clusters with the farthest pair of 
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elements. Average linkage, on the other hand, combines the clusters with a minimum 

average distance between all pairs of elements present in the clusters. These methods are 

used to calculate distances between the metabolic networks based on the occurrence of 

reactions, enzymes or pathways from specified source and target metabolites in the given 

networks. Subsequently, the metabolic networks using the distance matrix and are clustered 

together hierarchically and output is in the form of a dendrogram (see Figure 2.28).  

Figure 2.27: MAPPS interface for metabolic similarity analysis. MAPPS only allows KEGG as data 

source for metabolic similarity analysis and it requires at least three organism sets to perform this analysis. 
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2.2.4.7 Host-microbe interaction 

The interaction between host and microbe sharing an environment leads to the sharing of 

metabolites and can result in emergent pathways, for example, as shown by a detailed 

analysis of co-metabolism among host and its commensal microbe in a recent study 

(Heinken et al., 2013). MAPPS provides a methodical approach to study interactions 

between different organisms, such as host and microbe, at a metabolic level.  

Host-microbe interaction analysis in MAPPS takes two organism sets, host set and 

microbe set (Figure 2.29), and identifies emergent pathways in the combined (host & 

microbe) metabolic network. MAPPS uses the user-defined parameters to build host 

metabolic network, microbe metabolic network, and a combined metabolic network by 

merging the reactions and metabolites of both host and microbe metabolic networks. 

Metabolic pathways are computed from the given source metabolite(s) to target metabolite 

in all the three metabolic networks by taking into account all the constraints available for 

pathway prediction (see Section 2.2.4.1). By systematically comparing the predicted 

Figure 2.28: An example dendrogram resulting from metabolic similarity analysis between three 

organisms. MAPPS performs agglomerative hierarchical clustering of three or more organism sets based on 

reactions, enzymes or pathways between one or more source and target metabolites. 
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pathways, MAPPS extracts those pathways which are predicted to be present in the 

combined network but absent in host network and microbe network. These pathways are 

termed as emergent pathways, which are formed due to the interaction of host and microbe 

metabolic networks. In addition to reporting emergent pathways, MAPPS also reports the 

metabolic pathways predicted in the host and the microbe networks thus allowing the user 

to study and compare metabolic pathways in the original as well as the combined networks 

(Figure 2.30). The pseudocode of host-microbe interaction is given in Box 2.4. 

2.2.4.8 Potential drug targets 

Identification of potential drug targets in a metabolic network is an analysis that is useful 

from a drug discovery point of view. A number of studies have reported key metabolic 

enzymes as potential drug targets since they uniquely produce or consume a metabolite, 

Figure 2.29: MAPPS job submission interface for host-microbe interaction. User can study emergent 

pathways resulting due to host-microbe interaction on KEGG or custom data. Two organism sets, one for the 

host and the other for the microbe, are required for this analysis. 
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and their disruption leads to all related pathways being rendered as dysfunctional (Martz 

et al., 1996; Yeh et al., 2004; Taylor et al., 2013). To this end, MAPPS provides an interface 

to search for potential drug targets by identifying reactions acting as bridges in a metabolic 

network (see Section 2.3.4). Bridge reactions are the reactions which if removed from the 

metabolic network will result in all pathways being eliminated between the specified 

source and target metabolites (Mithani et al., 2009a). These reactions are termed as 

potential drug-targets in MAPPS because their removal from the underlying metabolic 

network can be used to disrupt the desired metabolic capabilities of an organism. Like 

pathway prediction, the user can choose one or more organism set(s) to build metabolic 

networks allowing them to compare the vulnerabilities in the metabolic architectures of 

multiple organisms sets in a single job in addition to specifying one or more start and end 

metabolites. All the pathways predicted from any given start and end metabolites are 

Box 2.4: Pseudocode for host-microbe interaction analysis algorithm 

Input: 

Nh = Host network 

Nm = Microbe network 

Sm = List of start metabolites 

Im = List of ignore metabolites 

Ie = List of ignore elements 

Rm = List of required metabolites 

Rr = List of required reactions 

Rc = List of required enzymes 

Re = List of required elements 

Tm = List of target metabolites 

Output: 

P = List of predicted pathways 
 

Algorithm: 

Let Nc denotes the combined (host-microbe) network  

Nc = Nh  Nm 
CALL predictPathways(Nh) 

CALL predictPathways(Nm) 

CALL predictPathways(Nc) 

 

Let Pch denotes the list of pathways present in  Nc  but absent in Nh 
Let Pcm denotes the list of pathways present in  Nc  but absent in Nm 

 

Pch = compareNetworksByPathways(Nc , Nh) 

Pcm = compareNetworksByPathways(Nc , Nm) 

 

Let Pemergent  denotes the list of emergent pathways which are only possible due to 

interaction 

Pemergent = Pch  Pcm 
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further processed to identify bridge reactions in the underlying metabolic network, if 

present. The pseudocode of this analysis is given in Box 2.5.  

2.2.4.9 Estimate evolution parameters 

The evolution of metabolic networks is characterized by loss and gain of reactions (or 

enzymes) connecting two or more metabolites (Mithani et al., 2009b, 2010). It is possible 

to study how metabolic networks evolve by using simple (independent loss/gain of 

reactions) or complex (incorporating dependencies among reactions) stochastic models of 

metabolic evolution. Stochastic models of metabolic network evolution which describe 

metabolic evolution as a continuous-time Markov chain (Mithani et al., 2009b, 2010) are 

incorporated into MAPPS, which allows users to estimate evolution parameters (insertion 

rate, deletion rate, reaction dependencies) between two organism set(s) as well as over a 

phylogeny providing better insights into the evolution mechanisms of metabolic networks 

(Figure 2.31). Using statistical models of network evolution to analyze metabolic networks 

will also enable users to test various biological hypotheses such as specialization of 

genomes and identification of regions of metabolic networks that are under high selection 

Figure 2.30: Graphical output showing pathways resulting due to host-microbe interactions. Reactions 

belong to the only host are shown in yellow color, reactions contributed by the microbe are shown in orange 

color. In this example, only one reaction is present in both host and microbe, shown in blue color. 
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and to investigate how the evolution of metabolic networks relates to the evolution of 

underlying genomes and the environment.  

2.2.4.10 Visualize metabolic networks/pathways 

MAPPS provides an option for interactive visualization of metabolic networks and 

pathways. This option is not limited to the visualization of MAPPS output and can also be 

used to visualize user-defined metabolic networks or pathways. It takes as input an SBML 

file containing KEGG or  custom data and allows user to visualize and manipulate the 

resulting network/pathways in an interactive environment with an option to download the 

result in PNG and PDF formats.  

2.2.5 In silico metabolic engineering 

With the recent advances in high-throughput sequencing, metabolic engineering has 

opened new opportunities to design and analyze heterologous biosynthetic systems 

Box 2.5: Pseudocode for potential drug-targets identification algorithm 

Input: 

N = List of metabolic networks 

Sm = List of start metabolites 

Im = List of ignore metabolites 

Ie = List of ignore elements 

Rm = List of required metabolites 

Rr = List of required reactions 

Rc = List of required enzymes 

Re = List of required element 

Tm = List of target metabolites 

Output: 

drRxn  = List of potential drug targets 

 

Algorithm: 

Let n denotes a metabolic network of an organism set 

for each network n  N do 

for each substrate s  Sm do 
CALL predictPathways(n) 

 Let Ps denotes the pathways predicted from start metabolite s 

 Let Rp denotes the list of reactions with frequencies extracted from predicted 

pathways for start metabolite s 

 

 for each r Rp do 
  Let rFreq denotes the frequence of reaction r in Ps 

  if rFreq is equal to count(Ps) then 

   Save r in drRxn 
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(Prather and Martin, 2008; Tomar and De, 2013). To facilitate the process of metabolic 

engineering, MAPPS provides a provision to perform in silico metabolic engineering by 

adding and/or removing reactions or enzymes while building metabolic networks (Figure 

2.32). This option is available for all organism-based analyses described above involving 

Figure 2.31: MAPPS job submission interface for estimate evolution parameters analysis. MAPPS 

implements stochastic models of metabolic network evolution (Mithani et al., 2009b, 2010), which allows 

users to estimate evolution parameters (insertion rate, deletion rate, reaction dependencies) between two 

organism set(s) as well as over a phylogeny. 
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KEGG data and can be used to study the effects of in silico knockout and knock-in 

metabolic mutations on organisms’ metabolic capabilities while performing different 

analyses. For example, addition of enzymes/reactions in a metabolic network enables users 

to determine the feasibility of engineering novel metabolic pathways in the network while 

removal of existing enzymes/reactions provides insight into the robustness of a metabolic 

network by detecting alternative routes between metabolites, and prediction of the potential 

effect of the knock-out on resulting metabolic pathways. To the best of our knowledge, no 

other tool provides the flexibility of simultaneously studying the effects of in silico knock-

out (see Section 2.3.2) and knock-in metabolic (see Section 2.3.3) mutations. In addition, 

users can compare the results of metabolic engineering by running the analyses 

simultaneously on the original and modified networks, a feature not available in other tools. 

Figure 2.32: Performing in silico metabolic engineering in MAPPS. Users can add or remove one or more 

reaction/enzyme while building metabolic networks. 
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2.2.6 Network filtering using ‘omics data 

Another distinguishing feature that sets MAPPS apart from the currently available tools is 

the support for ‘omics data. Allowing users to compare metabolic annotations with other 

‘omic datasets can provide greater insight into the metabolic capabilities of organisms. For 

example, incorporation of expression data into pathway prediction helps to identify 

enzymes that are co-expressed to give a functionally viable pathway, and in mapping 

functionally related genes to gene clusters. Similarly, metabolomic data mapping during 

pathway prediction can help in identifying pathways that are active under different 

experimental conditions and provide a detailed picture of what is going on inside a cell at 

a metabolic level.  

MAPPS allows users to refine metabolic networks using ‘omics data at the network 

building step (Figure 2.33). To provide flexibility to users, MAPPS supports several public 

databases for ‘omics filtering. These include KEGG and NCBI identifiers of genes for 

transcriptomics data, UniProt (The UniProt Consortisum, 2015) identifiers of enzymatic 

proteins  for proteomics data, and KEGG, ChEBI (Hastings et al., 2013) and PubChem (S. 

Kim et al., 2016)  identifiers for metabolites. The user can upload a tab-delimited file 

containing a list of unique identifiers for genes/proteins/metabolites from one of the 

supported public databases along with their expression/concentration values in addition to 

specifying a cut-off threshold, which is used to filter the metabolic networks. The 

nodes/edges that do not meet the required cut-off values are eliminated from the metabolic 

network. In the case of transcriptomic data, metabolic reactions (edges) are filtered using 

gene-enzyme-reaction mapping of provided genes. For proteomics data, the user provides 

a list of enzymatic proteins to filter reactions catalyzed by these enzymes. In the case of 
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metabolomics data, reactions are filtered based on the presence/absence of metabolites 

acting as substrates in those reactions.  

Figure 2.33: Network filtering using ‘omics data. MAPPS allows users to refine metabolic networks using 

processed ‘omics (transcriptomics/proteomics/metabolomics) data at the network building step. (a) For 

filtering based on transcriptomic data, a file containing a list of genes with KEGG or NCBI identifiers can be 

uploaded to filter the enzymes encoded by these genes in the metabolic network (b) For filtering based on 

proteomic data, a list of proteins with UniProt identifiers can be uploaded to filter enzymes of the metabolic 

network. (c) For filtering based on metabolomics data, metabolic networks can be filtered by uploading a file 

containing a list of metabolites with KEGG, PubChem or ChEBI identifiers. For (a)-(c), users must also 

specify a threshold value to consider the gene/protein/metabolite as being present or active in the network. 
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2.2.7 Pathway ranking 

MAPPS reports all possible pathways between source and target metabolites that satisfy 

user constraints enabling discovery of previously unknown pathways. To help focus on 

biologically meaningful pathways, pathways can be ranked based on pathway length, the 

number of reversible reactions, pathway connectivity score, and a pathway score based on 

the scoring scheme introduced by Huang et al. (Huang et al., 2017).  

The pathway connectivity score is calculated as follows. For each metabolite 

present in the underlying network, first, all reactions in which that metabolite is acting as 

a substrate are identified. Next, the total number of metabolites acting as products in these 

reactions is calculated by adding the number of product metabolites in individual reactions. 

This number is then normalized by dividing it with the maximum value for all the 

metabolites to get the metabolite connectivity score for that metabolite. The pathway 

connectivity score is then calculated as the sum of the log of metabolite connectivity scores 

of all intermediary metabolites involved in the pathway.  

The scoring scheme introduced by Huang et al. (Huang et al., 2017) combines 

reaction thermodynamics information and structural similarity to calculate the similarity 

between any two metabolites. MAPPS computes a pathway score using the similarity 

scores between consecutive metabolites in a metabolic pathway. In this scheme, the score 

Wij between any two consecutive metabolites vi and vj in a metabolic pathway is calculated 

as (Huang et al., 2017) 

𝑾𝒊𝒋 = 𝜶 (𝟏 − 𝒔𝒊𝒎(𝒗𝒊, 𝒗𝒋)) +  (𝟏 −  𝜶) (𝟑𝟐𝟎𝟎 + 𝒇𝒆(𝒓𝒊𝒋))/𝟏𝟎𝟎𝟎𝟎 
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where  is the proportional contribution of compound similarity and Gibbs free energy in 

the score (set to 0.5 in MAPPS), sim(vi, vj) is the structural similarity between metabolites 

vi and vj (obtained using SIMCOMP2 (Hattori et al., 2010) in MAPPS, see Section 2.2.1.1), 

and fe(rij) is the Gibbs free energy of the reaction involving vi and vj (downloaded from 

eQuilibrator (Flamholz et al., 2012), see Section 2.2.1.1). MAPPS then calculates the 

pathway score by averaging the similarity scores across the length n of the pathway, as 

shown below. 

𝑷𝒂𝒕𝒉𝒘𝒂𝒚 𝑺𝒄𝒐𝒓𝒆 =
∑ 𝑾𝒊𝒋

𝒏⁄  

An example of pathway score calculation using this scheme is shown in Figure 2.34. 

2.3 Applications of MAPPS 

MAPPS is a versatile tool allowing a variety of analyses to be performed, ranging from 

simple pathway prediction to pathway-based network comparisons and phylogenetic 

analysis based on metabolic networks. Some important functionalities of MAPPS are 

demonstrated below by analyzing the data from published studies and comparing the 

Figure 2.34: An example of pathway score calculation using reaction thermodynamics and structural 

similarity in MAPPS. Metabolite similarity score between two intermediate metabolites obtained using 

SIMCOMP2 (Hattori et al., 2010) is shown in blue, and the reaction energies downloaded from eQuilibrator 

(Flamholz et al., 2012) are shown in yellow. 



69 

 

results obtained from some of the commonly used tools for metabolic pathway prediction 

and network analysis.  

2.3.1 Predicting biologically meaningful metabolic pathways by tracing 

specific elements 

In KEGG, the conversion of sulfate (KEGG ID: C00059) to L-cysteine (KEGG ID: 

C00097) corresponds to a four-step pathway in the sulfur metabolism map (KEGG map: 

00920) (Figure 2.35). To demonstrate the application of MAPPS, abovementioned 

pathway in Arabidopsis thaliana starts when sulfur is taken up by roots and reduced to 

sulfide, then incorporated into activated O-Acetyl-L-serine to form cysteine (Nikiforova et 

al., 2004) (Figure 2.36a) and cysteine itself serves as a building stone for all further derived 

reduced sulfur-containing compounds such as methionine, proteins, glutathione, 

phytochelatins, biotine, thiamine, S- adenosylmethionine (SAM) and glucosinolates. 

Figure 2.35: KEGG pathway map of sulfur metabolism. Red circles represent the participating 

metabolites of the reported pathway from sulfate to L-cysteine. Red rectangles are the reported enzymes for 

catalyzing the intermediate steps. 
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Metabolic pathways are predicted from sulfate to L-cysteine using MAPPS, restricting the 

search to the sulfur metabolism map. MAPPS successfully computed the reported pathway 

(Figure 2.36b). As noted above, MAPPS allows users to define one or more elements as 

required or to be excluded in the pathway search (Section 2.2.4.1), which helps in tracing 

or avoiding a specific element in the reported metabolic pathways. To demonstrate the 

usability of tracing constituent elements, firstly pathways are computed from sulfate to L-

cysteine across all KEGG pathway maps using metabolite pairing, which considers all 

Figure 2.36: Sulfate assimilation pathway in Arabidopsis thaliana. (a) Schematic diagram of the sulfate 

assimilation pathway (adapted from (Koprivova and Kopriva, 2014))  (b) Pathway predicted by MAPPS from 

sulfate (KEGG ID: C00087) to L-cysteine  (KEGG ID: C00097) corresponding to the experimentally 

validated pathway shown in (a). (c) FMM predicted pathway from sulfate to L-cysteine with correct 

intermediate metabolites but used an incorrect enzyme (EC 1.8.99.2) at the second step of the pathway (shown 

in red) instead of EC 1.8.4.9 for adenylyl-sulfate reductase, which is present in A. thaliana. (d) A seven-step 

pathway from sulfate to L-cysteine predicted by PHT containing non-sulfur containing ubiquitous metabolite, 

AMP (shown in red). Enzymes and their corresponding EC numbers are shown in blue whereas KEGG 

reaction ids are shown in green. Sulfur tracing is shown by the yellow circle. 



71 

 

possible pairs between source and target metabolites in a reaction without element tracing. 

MAPPS reported a total of six pathways from sulfate to L-cysteine including the pathway 

shown in Figure 2.36b. Out of these, four pathways, however, did not contain sulfur in 

one or more intermediary metabolites. Then, sulfur is designated as a required element and 

again pathway prediction was performed. This time MAPPS reported only two pathways 

with all sulfur-containing metabolites including the experimentally validated pathway 

described above. The other pathway differed by only one reaction/enzyme from the 

pathway shown in Figure 2.36a suggesting an alternate route to L-cysteine (Figure 2.37). 

Results  of MAPPS were compared with the results of other pathway prediction tools 

including FMM (Chou et al., 2009), PHT (Rahman et al., 2005), PathComp (Ogata et al., 

1998), MetaRoute (Blum and Kohlbacher, 2008), ATLAS (Hadadi et al., 2016) and 

MetQuest (Ravikrishnan et al., 2018). A significant limitation of the existing tools is that 

they do not allow the user to restrict the search space to some selected KEGG pathway(s), 

which results in irrelevant and out of context predictions. Besides, they do not allow tracing 

of a specific chemical element in the reported pathways thus resulting in biologically 

incorrect pathways. For example, FMM predicted 30 pathways from sulfate to L-cysteine. 

However, many of the predicted pathways did not pass through sulfur-containing 

metabolites (Figure 2.38). Although, it reported a pathway consisting  of the same 

Figure 2.37: An alternate pathway from sulfate to L-cysteine predicted by MAPPS. Sulfur tracing is 

shown by the yellow circle. The alternate reaction compared to Figure 2.36b is shown in the red box. 
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intermediary metabolites as the experimentally validated pathway it failed to assign the 

correct enzyme (adenylyl-sulfate reductase, EC 1.8.4.9) corresponding to genes APR1, 

APR2 and APR3 in A. thaliana at the second step of the pathway (Setya et al., 1996) 

(Figure 2.36c). PHT, on the other hand, reported only one seven-step pathway from sulfate 

Figure 2.38: Examples of incorrect pathways predicted by FMM from sulfate to L-cysteine. FMM 

reported pathways utilizing non-native enzymes (red color) and non-sulfur containing intermediate 

metabolites (red boxes). 
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to L-cysteine, however this passed through adenosine monophosphate (AMP), a ubiquitous 

metabolite, rendering it biologically incorrect (Figure 2.36d). To minimize incorrect 

predictions, MAPPS is set by default to ignore ubiquitous metabolites such as AMP, ATP, 

and H2O while predicting metabolic pathways (see Section 2.2.4.1) since including them 

during pathway prediction can lead to incorrect predictions (Ma and Zeng, 2003; Mithani 

et al., 2009a). PathComp, a tool from KEGG, predicted three pathways from sulfate to L-

cysteine however none of them matched the experimentally validated pathway described 

above. MetaRoute allows users to restrict pathways based on atom tracing however in this 

case it failed to predict any pathway between the two metabolites. No pathway was found 

in ATLAS between sulfur and L-cysteine using KEGG reactions. Finally, MetQuest, a 

recently published tool, was used to predict pathways from sulfate to L-cysteine in A. 

thaliana.  Since MetQuest is not linked to any database and requires an SBML file of the 

metabolic network, an SBML file of A. thaliana metabolic network was generated using 

the Network Enumeration option available in MAPPS (see Section 2.2.4.5). MetQuest also 

requires a seed metabolite set to guide the pathway search. For this, the list of ubiquitous 

metabolites (Appendix B) in addition to sulfate was added to the seed set and pathway 

prediction was performed. MetQuest predicted cyclic and branched pathways from various 

ubiquitous metabolites to L-cysteine but failed to predict any pathway from sulfate.  

2.3.2 Studying the effects of in silico metabolic knock-out mutation 

 A distinguishing feature of MAPPS is that it can be used to perform in silico metabolic 

engineering to study the effects of knock-out and knock-in metabolic mutations on 

metabolic pathways (see Section 2.2.5). For knock-out mutations, a published study 

relating to galactose metabolism is used to demonstrate this feature. -D-galactose is 
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metabolized in humans via a sequential pathway known as Leloir pathway (Figure 2.39a), 

where -D-galactose is first phosphorylated by the enzyme galactokinase (GALK, EC 

2.7.1.6) to produce -D-galactose-1P, which is then converted into UDP-galactose using 

the enzyme galactose-1-P uridylyltransferase (GALT, EC 2.7.7.12), followed by 

interconversion of UDP-galactose to UDP-glucose through UDP-galactose 4’-epimerase 

(GALE, EC 5.1.3.2). Individuals with defects in any one of these enzymes are unable to 

properly metabolize milk sugar leading to Galactosemia, which is an inherited metabolic 

disorder (Fridovich-Keil, 2006). Pathway prediction between -D-galactose (KEGG ID: 

Figure 2.39: Leloir pathway in humans metabolizing -D-galactose to produce UDP-glucose. (a) 

Schematic diagram showing the Leloir pathway for metabolizing -D-galactose in humans. (b) Metabolic 

pathways from -D-galactose to UDP-glucose predicted by MAPPS in the human metabolic network. In 

addition to reporting the Leloir pathway shown in (a), MAPPS also reports an alternate route to UDP-glucose 

via D-glucose-1P. In silico knock-out of 2.7.1.6 and/or 2.7.7.12 from the human metabolic network results 

in both pathways between -D-galactose and UDP-glucose being eliminated whereas removal of 5.1.3.2 

results in the Leloir pathway being eliminated. Enzymes and their corresponding EC numbers are shown in 

blue whereas KEGG reaction ids are shown in green. 
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C00984) and UDP-glucose (KEGG ID: C00029) using MAPPS on human galactose 

metabolic network (KEGG map: 00052) resulted in two pathways being reported including 

the Leloir pathway (Figure 2.39b). The alternate pathway only differs at the last step which 

uses -D-glucose-1P to produce UDP-glucose using enzyme UTP-glucose-1-phosphate 

uridylyltransferase (UGP2, EC 2.7.7.9) instead of using UDP-galactose and forms a part 

of the UDP-α-D-glucose biosynthesis I pathway in MetaCyc (Caspi et al., 2016). Next, in 

silico metabolic engineering option (see Section 2.2.5) was used to remove the enzyme 

galactokinase from the human metabolic network and pathway prediction was performed 

again. No metabolic pathways were reported in this case (Figure 2.40a). A similar result 

was obtained when the enzyme galactose-1-P uridylyltransferase was removed (Figure 

Figure 2.40: Effect of in silico knockouts on predicted pathways between -D-galactose and UDP-

glucose in human galactose metabolic network. The enzymes (and the corresponding reactions) removed 

from the network are shown by a red cross and pathway(s) eliminated as a result of the knock-out are shown 

in gray color. 
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2.40b) and  only one pathway through -D-glucose-1P was reported when UDP-galactose 

4’-epimerase was removed from the human metabolic network (Figure 2.40c). PHT also 

allows users to predict pathways by excluding one or more enzymes during pathway 

prediction but, unlike MAPPS, does not allow modification of the underlying network. 

However, in this case, PHT failed to predict any pathway from -D-galactose and UDP-

glucose in the human metabolic network and, therefore, could not be used for studying the 

knockout of enzymes involved in Leloir pathway.  

2.3.3 Designing heterologous pathways using in silico metabolic knock-

in mutations 

In silico metabolic engineering can be used to design heterologous biosynthetic pathways 

by incorporating foreign enzymes into a host. To demonstrate this, the in silico metabolic 

engineering option available in MAPPS (see Section 2.2.5) was used to reproduce a 

heterologous pathway for flavonoid  production from L-tyrosine in Escherichia coli 

(Santos et al., 2011) (Figure 2.41). Four enzymes were added namely tyrosine ammonia 

lyase (TAL, EC 4.3.1.23), 4-coumarate:CoA ligase (4CL, EC 6.2.1.12), chalcone synthase 

(CHS, EC 2.3.1.74) and chalcone isomerase (CHI, EC 5.5.1.6) to the E. coli metabolic 

network and compared pathways from L-tyrosine (KEGG ID: C00082) to the main 

Figure 2.41: A heterologous pathway for flavonoid production in Escherichia coli. A heterologous 

biosynthetic pathway for producing flavonoid precursor naringenin from L-tyrosine in Escherichia coli 

(Santos et al., 2011) is shown. MAPPS reports this heterologous pathway in the modified E. coli metabolic 

network with enzymes tyrosine ammonia lyase (TAL, EC 4.3.1.23), 4-coumarate:CoA ligase (4CL, EC 

6.2.1.12), chalcone synthase (CHS, EC 2.3.1.74) and chalcone isomerase (CHI, EC 5.5.1.6) added through 

in silico metabolic engineering. Enzymes and their corresponding EC numbers are shown in blue whereas 

KEGG reaction ids are shown in green. 
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flavonoid precursor naringenin (KEGG ID: C00509) in the original and modified E. coli 

network (Figure 2.42). While there was no pathway reported in the original network 

between L-tyrosine and naringenin, a pathway utilizing the newly added enzymes was  

reported in the modified E. coli network (Figure 2.42). MRE, which also predicts this 

heterologous pathway, however, takes a slightly different approach for predicting 

engineered pathways. It takes an organism as input and first predicts the pathway between 

a start metabolite and an end metabolite on the KEGG reference network. It then identifies 

Figure 2.42: Comparing Escherichia coli metabolic network with and without in silico knock-in 

mutations. Four enzymes, namely tyrosine ammonia lyase (TAL, EC 4.3.1.23), 4-coumarate:CoA ligase 

(4CL, EC 6.2.1.12), chalcone synthase (CHS, EC 2.3.1.74) and chalcone isomerase (CHI, EC 5.5.1.6) were 

inserted into the E. coli metabolic network to reproduce the heterologous metabolic pathway from L-tyrosine 

to naringenin (Santos et al., 2011). 
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native and foreign enzymes present in the reported pathways. This makes the results 

pathway-specific and does not provide a complete picture at the network level. Moreover, 

MRE does not allow users to study the effects of knock-out mutations on metabolic 

pathways. MAPPS, on the other hand, provides a biologically intuitive platform by 

allowing users to modify the original network enabling users to study the effects of knock-

out and/or knock-in mutations on the metabolic network. Besides, MAPPS provides an 

option for direct comparison between metabolic networks allowing users to study the 

effects of different in silico modifications on the predicted pathways from start 

metabolite(s) to end metabolite(s) in the underlying network (Figure 2.42). 

2.3.4 Identification of potential drug targets 

MAPPS allows users to identify potential drug targets in a metabolic network by 

identifying reactions which if removed from the metabolic network, will result in all 

pathways being eliminated between the specified source and target metabolites. For 

example, prostaglandin-  endoperoxide synthase (EC 1.14.99.1) is a reported target of 

many anti-inflammatory drugs including aspirin and ibuprofen and catalyzes the 

conversion of arachidonic acid (KEGG ID: C00219) to prostaglandin H2 (PGH2, KEGG 

ID: C00427) via prostaglandin G2 (PGH2, KEGG ID: C05956) in two steps (Funk, 2001). 

PGH2 is the precursor for all prostanoids including prostaglandins, thromboxanes and 

prostacyclins and is a key metabolite in arachidonic acid metabolism (Figure 2.43). 

MAPPS reports the two reactions (R00073 and R01590) catalyzed by the enzyme 

prostaglandin-endoperoxide synthase as potential drug targets for disrupting metabolic 

pathways from arachidonic acid to various prostanoids (Figure 2.43).  
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Another example demonstrating the efficacy of MAPPS in identifying potential 

drug targets relates to the phosphotransferase system (PTS) for transporting sugar into 

bacteria. PTS, which is crucial for the survival of bacterial growth, is specific to 

prokaryotes and thus can serve as a potential drug target (Ren et al., 2018). It has been 

reported that replication and survival of Salmonella enterica serovar Typhimurium (S. 

Typhimurium), which causes gastroenteritis and fatal typhoid, in mice depend on glucose 

and glycolysis (Bowden et al., 2009). To identify potential enzymes from the PTS which 

can be used as drug targets, the drug target identification module in MAPPS (see Section 

2.2.4.8) was used to predict the metabolic pathways between D-glucose (KEGG ID: 

C00031) and pyruvate (KEGG ID: C00022) considering the whole carbohydrate 

metabolism. 

Figure 2.43: An application of potential drug target identification in MAPPS. The enzyme 

prostaglandin-endoperoxide synthase (EC 1.14.99.1) catalyzes two-step conversion of arachidonic acid to 

prostaglandin H2, the precursor for all prostanoids including those shown here, and is a reported target of 

many anti-inflammatory drugs including aspirin and ibuprofen. MAPPS identified both reactions (R00073 

and R01590) catalyzed by this enzyme as potential drug targets for disrupting metabolic pathways from 

arachidonic acid to various prostanoids. Enzymes and their EC numbers are shown in blue. 
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Figure 2.44: Identification of Enzyme IIGlc (EC 2.7.1.11) as a potential drug target in Salmonella enterica serovar Typhimurium. MAPPS output showing 

reaction R02738 (shown in red), which is catalyzed by Enzyme IIGlc, as a potential drug target in S. Typhimurium carbohydrate metabolism. 
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MAPPS reported reaction R02738 which is catalyzed by Enzyme IIGlc (EC 

2.7.1.199) as the potential drug target (Figure 2.44). Enzyme  IIGlc is a key component in 

the PTS system and is involved in the transport of glucose across the membrane as well as 

its phosphorylation (Ren et al., 2018). To confirm the effect of enzyme removal, the 

metabolic pathways from glucose to pyruvate in the original S. Typhimurium metabolic 

network were compared against the one with Enzyme IIGlc removed using in silico 

metabolic engineering (see Section 2.2.5). While multiple pathways were reported in the 

unmodified network, no pathway was reported in the modified network suggesting that 

Enzyme IIGlc can indeed be used as a potential drug target to prevent S. Typhimurium 

infection in mammals.  

2.3.5 Studying emergent pathways resulting from host-microbe 

interaction 

MAPPS allows users to identify novel pathways emerging due to interaction between host 

and microbe enabling them to study the metabolic basis of the host-microbe interface. It is 

demonstrated by exploring a hypothesis relating to isoprenoid biosynthesis, discussed in 

detail elsewhere (Ahyong et al., 2019), that Rickettsia parkeri, a gram-negative obligate 

intracellular parasite that causes typhus and spotted fever in humans lacks necessary 

enzymes to produce isopentenyl pyrophosphate (IPP; KEGG ID: C00129), the central 

precursor molecule for producing isoprenoids, and its isomer dimethylallyl diphosphate 

(DMAPP; KEGG ID: C00235). Instead, R. parkeri uses the human mevalonate (MEV) 

pathway as the upstream source of IPP for its production of bactoprenols, which are 

essential building blocks for peptidoglycan and other cell wall polysaccharides, and 

ubiquinone, a coenzyme involved in electron transport chain (Heuston et al., 2012). To 
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investigate the metabolic interaction between R. parkeri and human in the isoprenoid 

biosynthetic pathway, the host-microbe interaction option available in MAPPS (see 

Section 2.2.4.7) was used by setting human and R. parkeri as host and microbe networks 

respectively, and predicted metabolic pathways from mevalonate (KEGG ID: C00418) to 

Octaprenyl diphosphate (C8-PP;  KEGG ID: C04146) and Undecaprenyl diphosphate (C55-

PP; KEGG ID: C04574), which are precursors for ubiquinone and peptidoglycan synthesis 

respectively in gram-negative bacteria (Ahyong et al., 2019). 

While no pathways were reported in the host or microbe networks separately, 

MAPPS predicted multiple emergent pathways between mevalonate and the two precursor 

metabolites C8-PP and C55-PP in the combined network (Figure 2.45), which use the 

human MEV pathway for the upstream source of isoprene units for the synthesis of 

bacterial bactoprenols and ubiquinone. The reported pathways not only match the route 

suggested to be taken by R. parkeri for isoprenoid biosynthesis (Ahyong et al., 2019) but 

Figure 2.45: Prediction of emergent pathways arising due to the interaction between Rickettsia parkeri 

and humans. R. parkeri lacks upstream enzymes to produce isopentenyl pyrophosphate (IPP) from 

mevalonate (MEV) biosynthesis pathway. It uses human MEV pathway to produce Octaprenyl diphosphate 

(C8-PP) and Undecaprenyl diphosphate (C55-PP) which are precursors for ubiquinone synthesis and 

peptidoglycan synthesis respectively. MAPPS correctly predicted metabolic pathways from Mevalonate, via 

IPP produced by human metabolic enzymes, to C8-PP and  C55-PP. Enzymes and their corresponding EC 

numbers are shown in blue, reaction present in both, host and microbe, is shown in green, while reactions 

present in only humans are shown in yellow and the microbe-specific reactions are shown in orange color. 
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rightly identify enzyme isopentenyl diphosphate isomerase (EC 5.3.3.2) catalyzing the 

reversible conversion of IPP to DMAPP (Berthelot et al., 2012) as the only enzyme to be 

present in both humans and R. parkeri in this pathway thus demonstrating the potential of 

MAPPS in studying pathway-based host-microbe interactions. To the best of our 

knowledge, no other tool allows the pathway-based analysis of host-microbe interactions.  

2.4 Discussion 

This chapter presented MAPPS, a web-based tool for metabolic pathway prediction and 

network analysis on groups of organisms as well as on a phylogeny. A number of case 

studies showing the efficacy of MAPPS in predicting metabolic pathways and analyzing 

metabolic networks were also presented. MAPPS uses data from KEGG in addition to 

allowing users to upload custom data, and can be used to compare metabolic networks of 

two or more sets of organisms, report all possible pathways between two or more 

metabolites, provide insights into the behavior of engineered metabolic networks, study 

host-pathogen interaction, identify potential drug targets, analyze the effects of 

availability/unavailability of metabolites on the reported metabolic pathways through in 

silico metabolic engineering, and build ancestral networks over a given phylogeny. It also 

provides an intuitive approach to answer biological questions focusing on metabolic 

capabilities of an organism as well as differences between organisms or the evolution of 

different species by allowing pathway-based comparisons of the metabolic network at an 

organism as well as at a phylogenetic level. Stochastic models of metabolic evolution 

(Mithani et al., 2010) are also incorporated in MAPPS enabling users to study the evolution 

of metabolic networks and to predict metabolic networks at the ancestral levels of a 

phylogeny. MAPPS also provides an interactive graphical user interface for job submission 
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and result visualization providing single-click access to relevant information in publicly 

available databases and explore the output by manipulating the parameters in addition to 

generating the output in standard SBML format, which provides the flexibility to upload 

the file to other software for further analysis. Importantly, MAPPS has an ‘omics pipeline 

to refine the pathway results using transcriptomic, proteomic or metabolomic data to 

provide a greater insight into the metabolic capabilities of organisms making it relevant in 

today’s post-genomic era. 

Provision of filtering metabolic networks based on omics data is a distinguishing 

feature of MAPPS and is not offered by most of the available tools. A cell regulates its 

enzyme production and behavior depending on its requirements. This is achieved through 

several regulatory mechanisms which allow an organism to adapt to the environmental 

changes (Gonçalves et al., 2013; Rodriguez-Martinez et al., 2016). Filtering of metabolic 

networks based on ‘omics data allows user to study the effect of these changes on metabolic 

pathways, for example, by identifying the set of metabolites being affected by any internal 

or external stimuli (Barupal et al., 2012). Similarly, ‘omics data can help to identify genes 

or metabolites that are expressed under different conditions (for example healthy versus 

cancer). By identifying metabolic pathways active under each condition can provide 

insights into metabolic responses of an organism to different conditions. At present, 

MAPPS allows filtering of metabolic networks based on a user-defined cutoff. This can be 

further expanded by allowing user to identify differential metabolites or enzymes in the 

predicted metabolic pathways by mapping expression data on to the networks thereby 

reporting the flux passing through the computed pathways (Ganneru et al., 2019).  
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An interactive user interface is an essential requirement for any metabolic pathway 

prediction and network comparison tool for answering complex biological questions. 

Graphical results visualization interface of MAPPS enables user to manipulate the output 

by allowing them to filter predicted pathways, remove one or more metabolites/reactions 

to see its effect on the topology of predicted pathways or networks. Large outputs, however, 

hamper the speed of graphical results visualization in MAPPS since each manipulation of 

the output requires re-rendering of the results. This can be improved by utilizing state-of-

the-art methods such as GPU accelerated rendering methods. Moreover, MAPPS provides 

an option to download the graphical output in PDF and PNG formats. Allowing users to 

download the graphical output in other image formats such as Scalable Vector Graphics 

(SVG) and Enhanced Metafile (EMF) which will help user to generate high-quality images 

for diverse applications.  

Besides this, MAPPS currently uses KEGG as its primary data source with an option 

to upload custom data to build metabolic networks. Adding other data sources such as 

Reactome (Fabregat et al., 2016) and BioCyc (Caspi et al., 2016) would enhance the 

capabilities of MAPPS and make it more useful to the scientific community. In addition, 

MAPPS uses depth-first search of the metabolic graphs to compute pathways between 

metabolites. Consequently, jobs which employ exhaustive search by using metabolite 

pairing to establishing connection between metabolites or use all KEGG pathways as the 

underlying dataset require a long time to run due to an exponential increase in the search 

space. This can be sped up by using parallel programming and hybrid search algorithms to 

optimize pathway searches.  
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MAPPS predicts all theoretically possible metabolic routes between given source and 

target metabolites that match the criteria specified by the user through job parameters. 

While different type of constraints can be applied at enzyme, reaction, and metabolite 

levels which allow users to focus the pathway search on specific biological questions, 

tagging the experimentally validated pathways using public databases such as BioCyc can 

help users in filtering out false positive pathways. Similarly, by adding information about 

the co-expression and co-localization of metabolic enzymes into MAPPS will help users 

in predicting biologically intact pathway inside the cell as some of the enzymes catalyzing 

the reactions in the reported pathway may not be present in the same cellular compartment 

or may be expressed under different physiological conditions (Zecchin et al., 2015). 

In summary, MAPPS provides a powerful resource for metabolic pathway prediction 

and comparison, specialized analyses such as drug target identification, in silico metabolic 

engineering by adding/removing metabolic reactions or enzymes, detection of metabolite-

specific reactions, analyzing the effects of host-microbe interactions, and to study 

metabolic evolution using traditional as well as stochastic models. Omics filtering, 

interactive interface, provision for custom data, flexibility to apply constraints and 

alterations in the metabolic network and comparison of multiple networks are some of the 

distinguishing features in MAPPS making it an effective and useful resource for metabolic 

network analysis in the years to come.   
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3 Metabolic Diversity and Functional 

Specialization in Pseudomonas 

The genus Pseudomonas is one of the most complex bacterial genera and is currently the 

genus of Gram-negative bacteria with the most significant number of species (Gomila et 

al., 2015). Pseudomonas are found in all of the major natural environments and show 

remarkable adaptability to their environments (Spiers et al., 2000). Members of the genus 

Pseudomonas show high metabolic and physiologic versatility, enabling the colonization 

of diverse terrestrial and aquatic habitats and are of great interest because of their 

importance in plant and human disease, and their growth potential in biotechnological 

applications (Silby et al., 2011). Pseudomonas primarily rely on the properties of their 

metabolic networks such as adaptation to extreme and diverse niches, pathogenic and non-

pathogenic lifestyle, and production of essential compounds to achieve this adaptability 

(Oberhardt et al., 2008; Mailloux et al., 2011; Cabot et al., 2016; Botelho et al., 2019).  

Different species of Pseudomonas vary in their ability to survive in different 

environments. Some are psychrophile, for example Pseudomonas antarctica and 

Pseudomonas lurida (Selvakumar et al., 2011; Lee et al., 2017), some are thermophile for 

example Pseudomonas thermotolerans (Manaia and Moore, 2002), some thrive in plant 

and soil environments like Pseudomonas syringae and Pseudomonas fluorescens (Rico and 

Preston, 2008; Couillerot et al., 2009) and some species, for example Pseudomonas 

aeruginosa, can colonize in diverse environments including humans (Remold et al., 2011). 

Adaptation to multiple niches depicts exceptional physiological and metabolic capabilities 

of this organism, and provides dominance against competitors (Frimmersdorf et al., 2010). 
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Pathogenic pseudomonads can cause severe disease in humans, insects, and plants 

(Oberhardt et al., 2010; Aditi et al., 2017) whereas some species have specialized to 

produce antifungal and antimicrobial compounds (Gross and Loper, 2009; Ramette et al., 

2011; Calderón et al., 2015; Montes et al., 2016) or are involved in denitrification (Lalucat 

et al., 2006).  For example, P. aeruginosa is also an opportunistic human pathogen, 

particularly associated with infections that are caused due to weakened immune system 

(Oberhardt et al., 2010; Subedi et al., 2018). Similarly, some pseudomonads live in 

commensal relationship with plants to fulfill their nutrient requirements from plant surfaces 

(Paulsen et al., 2005) while a group of pseudomonads including Pseudomonas protegens, 

Pseudomonas chlororaphis  and Pseudomonas orientalis are classified as plant protecting 

bacteria which have shown to exhibit antagonistic properties against phytopathogens 

including fungi (Loewen et al., 2014; Calderón et al., 2015; Zengerer et al., 2018).  

Over the years, various Pseudomonas strains have also been studied for their 

metabolic engineering potential to produce essential compounds and for different 

biotechnological applications. For example, Pseudomonas putida KT2440 was engineered 

to produce para-Hydroxy benzoic acid, a key component in the manufacturing of liquid 

crystal polymers for several industrial applications, from glucose (Yu et al., 2016). P. 

putida KT2440 is now commonly used for expressing heterologous genes to produce 

beneficial compounds due to its flexible lifestyle (Nelson et al., 2002; Nikel and de 

Lorenzo, 2018). Similarly, vanillin, an important compound of vanilla flavor, is produced 

from ferulic acid by altering the metabolism of a Pseudomonas fluorescence strain (Di 

Gioia et al., 2011) and metabolic network of Pseudomonas denitrificans has been 
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engineered for the production of 1,3-propanediol (1,3-PDO), an important intermediary 

used in the making of polymers, from glycerol (Zhou et al., 2019).  

In recent years, several studies have provided insights into various traits such as 

pathogenicity, protein domain conservation and gene essentiality based on metabolic 

models of few Pseudomonas species  (Koehorst et al., 2016; Subedi et al., 2018) and 

comparison of species classification based on phylogenetic analyses using 16S rRNA and 

different housekeeping genes (Gomila et al., 2015). In addition, catalogs of metabolic and 

genomic information have been developed to facilitate the researchers in understanding the 

conservation, differences, and functional annotations in Pseudomonas providing a 

framework to understand the specialization and diversity among different strains (Koehorst 

et al., 2016). These databases facilitated in the development and annotation of various 

metabolic models, and comparative analyses of Pseudomonas strains using these models 

(Tokic et al., 2020). This has further led to the construction of genome-scale metabolic 

networks of various Pseudomonas species, which are now widely used for the study of 

virulence (Bartell et al., 2017), metabolic changes in the pathogenic strains during disease 

progression (Oberhardt et al., 2010), identifying drug targets (Perumal et al., 2011) and 

metabolic rewiring for the production of secondary metabolites for industrial applications 

(Puchałka et al., 2008). Recently, reduction of growth rate and metabolic specialization 

have been used as a signature to study adaptive evolution of Pseudomonas aeruginosa 

when migrating from the environment to the airways of Cystic Fibrosis patients (La Rosa 

et al., 2018). Besides this, studies have also used the topology of metabolic networks to 

address various biological questions including identification of metabolic hubs (Perumal 

et al., 2009), evolutionary analysis of metabolic networks (Mithani et al., 2011), 
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cooperative and competitive metabolic interactions (Freilich et al., 2011), effect of 

pathogens on plant growth (Duan et al., 2013) and optimization of bacterial growth under 

different conditions and production of valuable compounds (Kampers et al., 2019; Bator et 

al., 2020). However, no study has systematically analyzed metabolic networks, compare 

primary metabolic pathways to assess the functional specialization of different 

Pseudomonas strains, and study the evolutionary relationships of this genus.  

The diversity of pseudomonads and the availability of genome sequence and 

metabolic data for multiple strains provide an excellent opportunity to use comparative 

approaches to develop insight into the evolution of metabolic networks. This chapter 

investigates the metabolic diversity and functional specialization of nutrient assimilation 

pathways in Pseudomonas. MAPPS (see Chapter 2) was used to analyze metabolic 

networks in various species of Pseudomonas with diverse lifestyles. Comparisons of whole 

metabolic networks, as well as key metabolic pathways, were used to explore the metabolic 

diversity among the pseudomonads. The phylogenetic relationship between the strains was 

analyzed using the sequences for 16S rRNA, and four housekeeping genes via multilocus 

sequence analysis and compared with the groupings of different strains obtained based on 

their metabolic similarity. 

3.1 Pseudomonas dataset 

To explore the metabolic diversity and functional specialization in Pseudomonas, a total 

of 111 strains comprising of human pathogens, insect pathogens, plant pathogens, and non-

pathogenic pseudomonads were analyzed in this study. Table 3.1 shows the list of 

pseudomonads used in this analysis along with their KEGG codes, GenBank Ids, genome 

sizes, number of reactions in their metabolic network, and lifestyles and characteristics. 
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Table 3.1: Pseudomonas strains used for metabolic network analysis 

Organism Name KEGG 

Code 

GenBank 

ID 

Genome 

Size 

No. of 

Reactions 

Lifestyle/ 

Characteristic 

Candidatus Pseudomonas 

adelgestsugas (Adelges tsugae) 

pade   CP026512 1,835,598 489 Endosymbiont 

Pseudomonas aeruginosa 

B136-33 

psg   CP004061 6,421,010 1,194 Human Pathogen 

Pseudomonas aeruginosa 

c7447m 

paec   CP006728 6,262,305 1,197 Human Pathogen 

Pseudomonas aeruginosa DK2 pdk   CP003149 6,402,658 1,185 Human Pathogen 

Pseudomonas aeruginosa 

LES431 

pael   CP006937 6,550,070 1,192 Human Pathogen 

Pseudomonas aeruginosa 

LESB58 

pag   FM209186 6,601,757 1,194 Human Pathogen 

Pseudomonas aeruginosa M18 paf   CP002496 6,327,754 1,192 Human Pathogen 

Pseudomonas aeruginosa 

MTB-1 

paem   CP006853 6,580,038 1,194 Human Pathogen 

Pseudomonas aeruginosa 

NCGM 1900 

paeb   AP014622 6,814,936 1,188 Human Pathogen 

Pseudomonas aeruginosa 

NCGM2.S1 

pnc   AP012280 6,764,661 1,195 Human Pathogen 

Pseudomonas aeruginosa PA1 paep  CP004054 6,498,072 1,169 Human Pathogen 

Pseudomonas aeruginosa 

PA1R 

paer   CP004055 6,309,305 1,174 Human Pathogen 

Pseudomonas aeruginosa 

PA38182 

paeu   HG530068 7,586,152 1,200 Human Pathogen 

Pseudomonas aeruginosa PA7 pap CP000744 6,588,339 1,216 Human Pathogen 

Pseudomonas aeruginosa 

PAO1 

pae   AE004091 6,264,404 1,195 Human Pathogen 

Pseudomonas aeruginosa 

PAO1-VE13 

paev   CP006832 6,265,484 1,197 Human Pathogen 

Pseudomonas aeruginosa 

PAO1-VE2 

paei  CP006831 6,265,484 1,197 Human Pathogen 

Pseudomonas aeruginosa 

PAO581 

paeo    CP006705 6,043,974 1,186 Human Pathogen 

Pseudomonas aeruginosa RP73 prp  CP006245 6,342,034 1,180 Human Pathogen 

Pseudomonas aeruginosa 

SCV20265 

paes   CP006931 6,725,183 1,191 Human Pathogen 

Pseudomonas aeruginosa 

UCBPP-PA14 

pau   CP000438 6,537,648 1,193 Human Pathogen 

Pseudomonas aeruginosa YL84 paeg   CP007147 6,433,441 1,195 Human Pathogen 

Pseudomonas alcaligenes palc   CP014784 4,406,305 890 Human Pathogen 

Pseudomonas alkylphenolica palk   CP009048 5,764,622 1,141 Bioremediation 

Pseudomonas amygdali pamg   CP026558 6,109,228 1,105 Plant Pathogen 

Pseudomonas antarctica panr   CP015600 6,441,449 1,169 Psychrophile 

Pseudomonas avellanae pavl   CP026562 6,242,845 1,120 Plant Pathogen 

Pseudomonas azotoformans pazo   CP014546 6,859,618 1,201 Plant Pathogen 

Pseudomonas balearica pbm   CP007511 4,383,480 1,016 Denitrification 

Pseudomonas brassicacearum 

DF41 

pbc   CP007410 6,652,396 1,167 Soil bacterium   
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Pseudomonas brassicacearum 

subsp. brassicacearum NFM421 

pba   CP002585 6,843,248 1,208 Denitrification 

Pseudomonas chlororaphis 

PA23 

pch   CP008696 7,122,173 1,231 Biocontrol 

Activity 

Pseudomonas chlororaphis 

PCL1606 

pcz   CP011110 6,646,309 1,196 Biocontrol 

Activity 

Pseudomonas chlororaphis 

subsp. aurantiaca 

pcp   CP009290 6,702,062 1,197 Biocontrol 

Activity 

Pseudomonas cichorii pci   CP007039 5,986,012 1,064 Plant Pathogen 

Pseudomonas citronellolis pcq   CP014158 6,951,444 1,214 Biocontrol 

Activity 

Pseudomonas corrugata pcg   CP014262 6,124,363 1,160 Plant Pathogen 

Pseudomonas cremoricolorata psw   CP009455 4,780,403 1,021 Plant Pathogen 

Pseudomonas entomophila pen   CT573326 5,888,780 1,150 Insect Pathogen 

Pseudomonas fluorescens A506 pfc   CP003041 5,962,570 1,158 Biocontrol 

Activity 

Pseudomonas fluorescens F113 pfe   CP003150 6,845,832 1,223 Denitrification 

Pseudomonas fluorescens Pf0-1 pfo CP000094 6,438,405 1,182 Plant Protecting 

Pseudomonas fluorescens 

SBW25 

pfs   AM181176 6,722,539 1,191 Plant Protecting 

Pseudomonas fluorescens UK4 pfn   CP008896 6,064,456 1,140 Plant Protecting 

Pseudomonas fragi pfz   CP013861 5,101,809 1,077 Psychrophile 

Pseudomonas 

frederiksbergensis 

pfk   CP018319 6,126,864 1,240 Denitrification 

Pseudomonas fulva pfv   CP002727 4,920,769 1,042 Non-Pathogen 

Pseudomonas knackmussii pkc   HG322950 6,162,905 1,195 Non-Pathogen 

Pseudomonas koreensis pkr   CP014947 6,301,761 1,134 Non-Pathogen 

Pseudomonas lundensis plq   CP017687 4,814,265 1,009 Non-Pathogen 

Pseudomonas lurida pfx    CP015639 6,175,426 1,185 Psychrophile 

Pseudomonas mandelii pman   CP005960 6,778,052 1,199 Psychrophile 

Pseudomonas mendocina NK-

01 

pmk   CP002620 5,434,353 1,053 Denitrification 

Pseudomonas mendocina ymp pmy   CP000680 5,072,807 1,007 Opportunistic 

Pathogen 

Pseudomonas monteilii SB3078 pmon   CP006978 6,000,087 1,161 Opportunistic 

Pathogen 

Pseudomonas monteilii SB3101 pmot   CP006979 5,945,120 1,161 Opportunistic 

Pathogen 

Pseudomonas orientalis poi   CP018049 5,986,236 1,133 Plant Protecting 

Pseudomonas oryzihabitans por   CP013987 4,834,356 1,078 Animal Pathogen 

Pseudomonas parafulva ppv   CP009747 5,087,619 1,062 Plant Protecting 

Pseudomonas plecoglossicida ppj   CP010359 6,233,254 1,141 Animal Pathogen 

Pseudomonas poae ppz   CP004045 5,512,241 1,083 Plant Growth 

Promoting 

Pseudomonas protegens Cab57 ppro   AP014522 6,827,892 1,211 Plant Protecting 

Pseudomonas protegens CHA0 pprc   CP003190 6,867,980 1,221 Plant Protecting 
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Pseudomonas protegens Pf-5 pfl   CP000076 7,074,893 1,222 Commensal 

Pseudomonas 

pseudoalcaligenes 

ppse   HG916826 4,686,340 995 Bioremediation 

Pseudomonas psychrotolerans ppsl   CP018758 5,271,920 1,195 Non-Pathogen 

Pseudomonas putida BIRD-1 ppb  CP002290 5,731,541 1,131 Insect Pathogen 

Pseudomonas putida DLL-E4 ppud   CP007620 6,484,062 1,122 Insect Pathogen 

Pseudomonas putida DOT-T1E ppx  CP003734 6,260,702 1,195 Insect Pathogen 

Pseudomonas putida F1 ppf   CP000712 5,959,964 1,172 Insect Pathogen 

Pseudomonas putida GB-1 ppg   CP000926 6,078,430 1,159 Insect Pathogen 

Pseudomonas putida H8234 pput   CP005976 6,870,827 1,150 Insect Pathogen 

Pseudomonas putida HB3267 ppuh   CP003738 5,875,750 1,132 Insect Pathogen 

Pseudomonas putida KT2440 ppu   AE015451 6,181,873 1,131 Bioremediation 

Pseudomonas putida NBRC 

14164 

ppun   AP013070 6,156,701 1,175 Opportunistic 

Human Pathogen 

Pseudomonas putida ND6 ppi   CP003588 6,085,449 1,144 Insect Pathogen 

Pseudomonas putida S16 ppt   CP002870 5,984,790 1,132 Insect Pathogen 

Pseudomonas putida W619 ppw   CP000949 5,774,330 1,165 Insect Pathogen 

Pseudomonas resinovorans pre   AP013068 6,285,863 1,163 Bioremediation 

Pseudomonas rhizosphaerae prh   CP009533 4,688,635 1,058 Plant Protecting 

Pseudomonas savastanoi pv. 

phaseolicola 1448A 

psp   CP000058 5,928,787 1,096 Plant Pathogen 

Pseudomonas silesiensis psil   CP014870 6,823,539 1,279 Bioremediation 

Pseudomonas simiae PCL1751 pfw   CP010896 6,143,950 1,158 Non-Pathogen 

Pseudomonas simiae PICF7 pff   CP005975 6,136,735 1,154 Plant Pathogen 

Pseudomonas soli pmos   CP009365 6,247,860 1,091 Non-Pathogen 

Pseudomonas sp. ATCC 13867 pdr   CP004143 5,696,307 1,142 Denitrification 

Pseudomonas sp. CCOS 191 psec   LN847264 6,012,947 1,061 Phosphate 

solubilizing 

Pseudomonas sp. MRSN12121 psem   CP010892 6,929,263 1,200 Opportunistic 

Human Pathogen 

Pseudomonas sp. Os17 psos   AP014627 6,885,464 1,190 Biocontrol 

Activity 

Pseudomonas sp. R2A2 psed   CP029772 4,559,447 1,013 Biocontrol 

Activity 

Pseudomonas sp. StFLB209 pses   AP014637 6,332,373 1,127 Plant Pathogen 

Pseudomonas sp. TCU-HL1 pset   CP015992 6,244,007 1,182 Non-Pathogen 

Pseudomonas sp. TKP psk   CP006852 7,012,672 1,216 Non-Pathogen 

Pseudomonas sp. UW4 ppuu   CP003880 6,183,388 1,226 Plant Growth 

Promoting 

Pseudomonas sp. VLB120 psv   CP003961 5,644,569 1,111 Bioremediation 

Pseudomonas stutzeri 19SMN4 pstu   CP007509 4,725,662 1,111 Denitrification 

Pseudomonas stutzeri 28a24 pstt   CP007441 4,731,359 1,040 Denitrification 

Pseudomonas stutzeri A1501 psa   CP000304 4,567,418 1,048 Denitrification 
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Pseudomonas stutzeri ATCC 

17588 

psz   CP002881 4,547,930 1,044 Denitrification 

Pseudomonas stutzeri CCUG 

29243 

psc   CP003677 4,709,064 1,104 Denitrification 

Pseudomonas stutzeri DSM 

10701 

psj   CP003725 4,174,118 985 Denitrification 

Pseudomonas stutzeri DSM 

4166 

psr   CP002622 4,689,946 1,078 Denitrification 

Pseudomonas stutzeri RCH2 psh   CP003071 4,575,057 1,044 Denitrification 

Pseudomonas synxantha 

LBUM223 

pfb   CP011117 6,690,033 1,149 Biocontrol 

Activity 

Pseudomonas syringae CC1557 psyr   CP007014 5,758,024 1,086 Plant Pathogen 

Pseudomonas syringae pv. 

syringae B728a 

psb   CP000075 6,093,698 1,104 Plant pathogen 

Pseudomonas syringae pv. 

tomato DC3000 

pst   AE016853 6,397,126 1,119 Plant pathogen 

Pseudomonas trivialis ptv   CP011507 6,452,803 1,151 Commensalism 

Pseudomonas veronii pvr   CP018420 6,852,809 1,227 Bioremediation 

Pseudomonas versuta ppsy    CP012676 5,149,788 1,114 Psychrophile 

Pseudomonas yamanorum pym   CP012400 6,856,835 1,250 Psychrotolerant 

The information about the lifestyle and characteristics of different Pseudomonas was 

collected from the KEGG PATHOGEN database (Kanehisa et al., 2017) and the available 

literature. 

3.2 Comparison of metabolic networks in Pseudomonas 

Comparison of metabolic networks in different Pseudomonas strains can reveal the extent 

of conservation and variability across different strains and provide insights into their 

pathogenic/non-pathogenic lifestyles and the niche in which they colonize. To 

systematically compare metabolic networks across 111 Pseudomonas strains, MAPPS was 

used to enumerate their metabolic networks for various KEGG pathway sets involved in 

central metabolism, including carbohydrate and amino acid metabolisms, and energy 

metabolism using ‘Network enumeration/comparison’ option (see Section 2.2.4.5). The 

comparisons were performed using custom scripts written in Python. The results are 

discussed in the subsequent sections. 
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3.2.1 Carbohydrate and amino acid metabolisms  

Two major groups of metabolisms, namely carbohydrate and amino acid metabolisms, 

were selected for comparison. Carbohydrates are an essential source of energy that drives 

cellular reactions (McKee and McKee, 2016). Carbohydrate metabolism includes several 

essential pathways, such as glycolysis, gluconeogenesis, and citrate cycle, among others. 

The complete list of KEGG pathway maps included in the carbohydrate metabolism set is 

given in Table 3.2. The pathway maps involved in carbohydrate metabolism are linked to 

other parts of the metabolic network inside the cell via different compounds. For example, 

acetyl-CoA connects the carbohydrate metabolism to the metabolism of amino acids and 

other nutrients (McKee and McKee, 2016). Similarly, bacteria such as Escherichia coli or 

Pseudomonas aeruginosa can obtain the carbon skeletons for every amino acid, coenzyme, 

nucleotide, fatty acid, or other metabolic intermediates it needs for growth using glucose. 

Amino acid metabolism, on the other hand, includes the biosynthesis and biodegradation 

of amino acids and the assimilation of the amino group or carbon skeleton into other 

metabolic pathways. It also makes a significant contribution to the generation of metabolic 

energy through oxidative degradation. The fraction of metabolic energy obtained from 

amino acids, whether they are derived from dietary protein or tissue protein, varies 

significantly with the type of organism and with metabolic conditions (Lehninger, 2004). 

Thus, these two categories of metabolism provide a diverse range of metabolic reactions 

for comparison between different Pseudomonas strains. 

To study the conservation of carbohydrate and amino acid metabolism across 111 

Pseudomonas strains listed in Table 3.1, metabolic networks corresponding to KEGG 

pathways involved in carbohydrate and amino acid metabolisms (Table 3.2) for these 
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strains were enumerated. In addition, the KEGG reference network, which is a network 

containing all KEGG reactions across all domains of life, was also enumerated to be used 

as the reference for comparisons. The resulting reference network consisted of 1,445 

reactions out of which 723 reactions (50%) were involved exclusively in the carbohydrate 

Table 3.2: List of pathway maps from KEGG relating to carbohydrate and amino acid metabolisms used for 

metabolic comparisons in Pseudomonas 

KEGG ID Pathway Map Metabolism 

MAP00010 Glycolysis / Gluconeogenesis  Carbohydrate metabolism 

MAP00020 Citrate cycle (TCA cycle)  Carbohydrate metabolism 

MAP00030 Pentose phosphate pathway  Carbohydrate metabolism 

MAP00040 Pentose and glucuronate interconversions  Carbohydrate metabolism 

MAP00051 Fructose and mannose metabolism  Carbohydrate metabolism 

MAP00052 Galactose metabolism  Carbohydrate metabolism 

MAP00053 Ascorbate and aldarate metabolism  Carbohydrate metabolism 

MAP00220 Arginine biosynthesis  Amino acid metabolism 

MAP00250 Alanine, aspartate and glutamate metabolism  Amino acid metabolism 

MAP00260 Glycine, serine and threonine metabolism  Amino acid metabolism 

MAP00270 Cysteine and methionine metabolism  Amino acid metabolism 

MAP00280 Valine, leucine and isoleucine degradation  Amino acid metabolism 

MAP00290 Valine, leucine and isoleucine biosynthesis  Amino acid metabolism 

MAP00300 Lysine biosynthesis  Amino acid metabolism 

MAP00310 Lysine degradation  Amino acid metabolism 

MAP00330 Arginine and proline metabolism  Amino acid metabolism 

MAP00340 Histidine metabolism  Amino acid metabolism 

MAP00350 Tyrosine metabolism  Amino acid metabolism 

MAP00360 Phenylalanine metabolism  Amino acid metabolism 

MAP00380 Tryptophan metabolism  Amino acid metabolism 

MAP00400 Phenylalanine, tyrosine and tryptophan biosynthesis  Amino acid metabolism 

MAP00500 Starch and sucrose metabolism  Carbohydrate metabolism 

MAP00520 Amino sugar and nucleotide sugar metabolism  Carbohydrate metabolism 

MAP00562 Inositol phosphate metabolism  Carbohydrate metabolism 

MAP00620 Pyruvate metabolism  Carbohydrate metabolism 

MAP00630 Glyoxylate and dicarboxylate metabolism  Carbohydrate metabolism 

MAP00640 Propanoate metabolism  Carbohydrate metabolism 

MAP00650 Butanoate metabolism  Carbohydrate metabolism 

MAP00660 C5-Branched dibasic acid metabolism  Carbohydrate metabolism 
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metabolism, 681 reactions (47.12%) were involved in the amino acid metabolism, and 41 

reactions (2.83%) were present in both metabolisms (Figure 3.1a).  

Comparison between the metabolic networks across the 111 Pseudomonas strains 

revealed that 125 reactions (8.6%) were conserved across all Pseudomonas strains, 620 

reactions (42.9%) were present in one or more strains (variable reactions), and 700 

reactions (48.4%) were completely absent in Pseudomonas but present in the KEGG 

reference network (Figure 3.2). The latter reactions were removed from subsequent 

analysis. The list of conserved and variable reactions is provided in Appendix C and 

Appendix D. Out of the 125 conserved reactions, 40 reactions (32.8%) belonged 

exclusively to carbohydrate metabolism, 74 reactions (58.4%) were involved in amino acid 

Figure 3.1: Number of reactions involved in carbohydrate and amino acid metabolisms predicted to 

be present in Pseudomonas. (a) Number of reactions in KEGG reference network (b) Number of reactions 

found to be conserved across 111 Pseudomonas strains (c) Number of reactions found to be variable across 

111 Pseudomonas strains. 
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metabolism, and 11 reactions (8.8%) were present in both carbohydrate and amino acid 

metabolism (Figure 3.1b). Similarly, out of 620 reactions which were found to be variable 

across pseudomonads, 294 reactions (47.4%) were solely involved in carbohydrate 

metabolism, 303 reactions (48.8%) were involved in amino acid metabolism, and 23 

reactions (3.7%) were present in both carbohydrate and amino acid metabolism (Figure 

3.1c). 

Next, ‘Network comparison’ option available in MAPPS was used to identify the 

reactions present in one strain but absent in all other strains since these reactions are likely 

to provide unique traits to individual strains. A total of 26 reactions were found to be 

present in only one strain but absent from all other strains. These reactions along with their 

catalyzing enzymes and the KEGG pathway map(s) in which they are involved are listed 

Figure 3.2: Distribution of KEGG reactions involved in carbohydrate and amino acid metabolism 

across different Pseudomonas strains. The figure shows the number of reactions which are conserved, 

variable and absent in 111 Pseudomonas strains. 
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in Table 3.3. These uniquely present reactions reflect the distinct metabolic capabilities of 

these strains based on the KEGG annotations for carbohydrate and amino acid metabolism. 

For example, six reactions were predicted to be uniquely present in the insect pathogen 

Pseudomonas entomophila (KEGG organism code: pen).  P. entomophila is a versatile 

pseudomonad found in different environments such as soil, water, and rhizosphere, and is 

capable of catabolizing various aromatic compounds and long-chain carbohydrates making 

it potentially useful for bioremediation and also shown pathogenicity against various 

insects (Dieppois et al., 2015). Similarly, the reaction R00262 catalyzed by glutamate 

mutase (EC 5.4.99.1), an enzyme involved in the degradation of L-Glutamate to Pyruvate 

(Buckel, 2001), is predicted to be uniquely present in Pseudomonas poae (KEGG organism 

code: ppz) suggesting a unique metabolic route for L-Glutamate assimilation in P. poae. 

3.2.2 Energy metabolism  

Energy metabolism is an essential component of cellular metabolism. It consists of KEGG 

maps of oxidative phosphorylation, which provides chemical energy by oxidizing 

nutrients, photosynthesis, carbon fixation pathways, methane, nitrogen, and sulfur 

metabolism (Table 3.4). Pseudomonas species inhabit a wide variety of habitats, ranging 

from the human body to soils, the rhizosphere, and the phyllosphere, and therefore utilize 

a diverse range of reactions in their pathways relating to energy metabolism (Udaondo et 

al., 2018; Xin et al., 2018; Gani et al., 2019). Metabolic networks relating to energy 

metabolism listed in Table 3.4 were enumerated using MAPPS for the 111 Pseudomonas 

strains used in this study (Table 3.1) as well as for the KEGG reference network. The 

resulting reference network consisted of 227 reactions.  
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Table 3.3: Reactions involved in carbohydrate and amino acid metabolisms predicted to be present in only one pseudomonad but absent from all the 

others  

Reaction 

Id 

Reaction Equation EC 

Number 

KEGG Pathway map Organism 

R01063 D-Glyceraldehyde 3-phosphate + Orthophosphate + NADP+ <=> 3-

Phospho-D-glyceroyl phosphate + NADPH + H+ 

1.2.1.13 

1.2.1.59 

Glycolysis / Gluconeogenesis Pseudomonas aeruginosa 

PA38182 

R02833 Chitosan + H2O <=> D-Glucosaminide + Chitosan 3.2.1.132 Amino sugar and nucleotide 

sugar metabolism 

Pseudomonas alkylphenolica 

R10846 D-Galactaro-1,5-lactone <=> D-Galactaro-1,4-lactone 5.4.1.4 Ascorbate and aldarate 

metabolism 

Pseudomonas chlororaphis 

PA23 

R01525 D-Ribitol 5-phosphate + NADP+ <=> D-Ribulose 5-phosphate + 

NADPH + H+ 

1.1.1.137 Pentose and glucuronate 

interconversions 

Pseudomonas citronellolis 

R02921 CTP + D-Ribitol 5-phosphate <=> Diphosphate + CDP-ribitol 2.7.7.40 Pentose and glucuronate 

interconversions 

Pseudomonas citronellolis 

R00673 L-Tryptophan + H2O <=> Indole + Pyruvate + Ammonia 4.1.99.1 Tryptophan metabolism Pseudomonas 

cremoricolorata 

R00308 1,3-beta-D-Glucan + H2O <=> D-Glucose + 1,3-beta-D-Glucan 3.2.1.58 Starch and sucrose 

metabolism 

Pseudomonas entomophila 

R01974 Indolepyruvate <=> Indole-3-acetaldehyde + CO2 4.1.1.43 

4.1.1.74 

Tryptophan metabolism Pseudomonas entomophila 

R03115 1,3-beta-D-Glucan + H2O <=> 1,3-beta-D-Glucan + alpha-D-

Glucose 

3.2.1.58 Starch and sucrose 

metabolism 

Pseudomonas entomophila 

R03168 Acetyl-CoA + N6-Hydroxy-L-lysine <=> CoA + N6-Acetyl-N6-

hydroxy-L-lysine 

2.3.1.102 Lysine degradation Pseudomonas entomophila 

R03629 Melatonin + [Reduced NADPH---hemoprotein reductase] + Oxygen 

<=> 6-Hydroxymelatonin + [Oxidized NADPH---hemoprotein 

reductase] + H2O 

1.14.14.1 Tryptophan metabolism Pseudomonas entomophila 

R03868 Maleylpyruvate <=> 3-Fumarylpyruvate 5.2.1.2 

5.2.1.4 

Tyrosine metabolism Pseudomonas entomophila 

R05133 Arbutin 6-phosphate + H2O <=> Hydroquinone + beta-D-Glucose 

6-phosphate 

3.2.1.86 Glycolysis / Gluconeogenesis Pseudomonas fluorescens 

A506 
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R05134 Salicin 6-phosphate + H2O <=> Salicyl alcohol + beta-D-Glucose 6-

phosphate 

3.2.1.86 Glycolysis / Gluconeogenesis Pseudomonas fluorescens 

A506 

R00650 S-Adenosyl-L-methionine + L-Homocysteine <=> S-Adenosyl-L-

homocysteine + L-Methionine 

2.1.1.10 Cysteine and methionine 

metabolism 

Pseudomonas fluorescens 

Pf0-1 

R02948 (S)-2-Acetolactate <=> (R)-Acetoin + CO2 4.1.1.5 Butanoate metabolism 

C5-Branched dibasic acid 

metabolism 

Pseudomonas lundensis 

R07613 LL-2,6-Diaminoheptanedioate + 2-Oxoglutarate <=> 2,3,4,5-

Tetrahydrodipicolinate + L-Glutamate + H2O 

2.6.1.83 Lysine biosynthesis Pseudomonas orientalis 

R00262 L-threo-3-Methylaspartate <=> L-Glutamate 5.4.99.1 Glyoxylate and dicarboxylate 

metabolism 

Pseudomonas poae 

R01526 ATP + D-Ribulose <=> ADP + D-Ribulose 5-phosphate 2.7.1.47 Pentose and glucuronate 

interconversions 

Pseudomonas 

psychrotolerans 

R02429 D-Xylonate <=> 2-Dehydro-3-deoxy-D-xylonate + H2O 4.2.1.82 Pentose and glucuronate 

interconversions 

Pseudomonas 

psychrotolerans 

R02754 5-Dehydro-4-deoxy-D-glucarate <=> Pyruvate + 2-Hydroxy-3-

oxopropanoate 

4.1.2.20 Ascorbate and aldarate 

metabolism 

Pseudomonas putida H8234 

R03277 2-Hydroxy-3-oxopropanoate + Pyruvate <=> 2-Dehydro-3-deoxy-D-

glucarate 

4.1.2.20 Ascorbate and aldarate 

metabolism 

Pseudomonas putida H8234 

R03028 Glutaconyl-1-CoA <=> Crotonoyl-CoA + CO2 1.3.8.6 Butanoate metabolism Pseudomonas sp. R2A2 

R09293 (2S)-Methylsuccinyl-CoA + Electron-transferring flavoprotein <=> 

2-Methylfumaryl-CoA + Reduced electron-transferring flavoprotein 

1.3.8.12 Glyoxylate and dicarboxylate 

metabolism 

Pseudomonas sp. TCU-HL1 

R02755 meso-2,6-Diaminoheptanedioate + NADP+ + H2O <=> L-2-Amino-

6-oxoheptanedioate + Ammonia + NADPH + H+ 

1.4.1.16 Lysine biosynthesis Pseudomonas stutzeri DSM 

10701 

R02749 2-Deoxy-D-ribose 1-phosphate <=> 2-Deoxy-D-ribose 5-phosphate 5.4.2.7 Pentose phosphate pathway Pseudomonas yamanorum 
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Table 3.4: List of pathway maps from KEGG relating to energy metabolism used for metabolic 

comparisons in Pseudomonas 

KEGG ID Pathway Map 

MAP00190 Oxidative phosphorylation 

MAP00195 Photosynthesis 

MAP00196 Photosynthesis - antenna proteins 

MAP00680 Methane metabolism 

MAP00710 Carbon fixation in photosynthetic organisms 

MAP00720 Carbon fixation pathways in prokaryotes 

MAP00910 Nitrogen metabolism 

MAP00920 Sulfur metabolism 

Comparison between these metabolic networks revealed that 33 reactions (14.5%) 

were conserved in all Pseudomonas strains, 77 reactions (33.9%) were variable, and 117 

reactions (51.5%) were absent in all the Pseudomonas strains but present in the KEGG 

reference network (Figure 3.3). Like before, the reactions absent from all strains were 

removed from subsequent analysis. Lists of conserved and variable reactions are given in 

Appendix E and Appendix F. The all-but-one comparison identified six reactions to be 

present in only one strain but absent from all the other strains (Table 3.5). Three KEGG 

reactions related to carbon fixation and methane metabolism were predicted to be only 

present in the Pseudomonas sp. TCU-HL1. Similarly, R03025 catalyzed by coenzyme F420 

hydrogenase (EC 1.12.98.1) was predicted to be only present in the metabolic network of 

P. balearica, an environmental bacterium that has been mostly isolated from polluted 

environments (Bennasar et al., 1996). Besides this, R09513 catalyzed by the enzyme 

methanesulfonate monooxygenase (NADH) (EC 1.14.13.111) was predicted to be uniquely 

present in P. pseudoalcaligenes, an aerobic soil bacterium first isolated from swimming 

pool water (Monias, 1928). Methanesulfonate is a highly stable compound and is used by 

diverse aerobic bacteria as a source of sulfur for growth (Seitz et al., 1993). 
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Table 3.5: Reactions involved in from energy metabolism predicted to be present in only one pseudomonad but absent from the others  

Reaction 

Id 

Reaction Equation EC Number KEGG Pathway map Organism 

R01063 D-Glyceraldehyde 3-phosphate + Orthophosphate + NADP+ <=> 

3-Phospho-D-glyceroyl phosphate + NADPH + H+ 

1.2.1.13 

1.2.1.59 

Carbon fixation in 

photosynthetic organisms 

Pseudomonas aeruginosa 

PA38182 

R03025 Coenzyme F420 + Hydrogen <=> Reduced coenzyme F420 1.12.98.1 Methane metabolism Pseudomonas balearica 

R09513 Methanesulfonic acid + NADH + H+ + Oxygen <=> 

Formaldehyde + NAD+ + Sulfite + H2O R10150 

1.14.13.111 Sulfur metabolism Pseudomonas pseudoalcaligenes 

R02560 Trimethylamine + 2 Ferricytochrome c + H2O <=> 

Trimethylamine N-oxide + 2 Ferrocytochrome c + 2 H+ 

1.7.2.3 Methane metabolism Pseudomonas sp. TCU-HL1 

R09282 3-Methylfumaryl-CoA + H2O <=> (3S)-Citramalyl-CoA 4.2.1.153 Carbon fixation pathways 

in prokaryotes 

Pseudomonas sp. TCU-HL1 

R09283 2-Methylfumaryl-CoA <=> 3-Methylfumaryl-CoA 5.4.1.3 Carbon fixation pathways 

in prokaryotes 

Pseudomonas sp. TCU-HL1 
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3.3 Deciphering the patterns of amino acid assimilation 

pathways in Pseudomonas 

Analysis of metabolic pathways plays a vital role in deciphering the evolutionary 

relationships and functional specializations of closely related organisms (Yamanishi et al., 

2007; Mithani et al., 2011). With the improvement in sequencing technologies, the number 

of complete genome sequences of Pseudomonas strains in public databases is rapidly 

growing. This has provided an opportunity to enhance our understanding of metabolic 

capabilities and diversity in Pseudomonas, and to study how metabolic pathways have 

evolved across different Pseudomonas lineages. For example, it has been shown that the 

genes encoding the carbohydrate catabolic pathways in Pseudomonas are organized in 

operons that are under the control of different regulators that respond differentially to 

distinct pathway intermediates (Udaondo et al., 2018). Similarly, studies focusing on the 

Figure 3.3: Distribution of KEGG reactions involved in energy metabolism across different 

Pseudomonas strains. The figure shows the number of reactions which are conserved, variable and absent 

in 111 Pseudomonas strains. 
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evolution of metabolic networks have identified genes and pathways which play essential 

roles in antibiotic resistance and adaptation to different niches (Cabot et al., 2016; Botelho 

et al., 2019).  

To study how different pseudomonads use various amino acids as nitrogen and 

carbon sources and how these pathways are conserved across 111 Pseudomonas strains 

(Table 3.1), metabolic pathways were predicted using the pathway prediction option in 

MAPPS (see Section 2.2.4.1) from 22 amino acids listed in Table 3.6 to ammonia and the 

Table 3.6: Number of distinct pathways of various lengths predicted from amino acids to ammonia 

across all Pseudomonas strains 

KEGG Code Amino Acid Pathway Length Total Pathways 

1 2 3 4 5 6 

C00025 L-Glutamate 4 - 5 - - - 9 

C00037 Glycine - - - - - - 0 

C00041 L-Alanine - - - - - 118 118 

C00047 L-Lysine - - - - - - 0 

C00049 L-Aspartate - - - - - - 0 

C00062 L-Arginine - - - - 60 - 60 

C00064 L-Glutamine - 6 - - - - 6 

C00065 L-Serine - - - - - - 0 

C00073 L-Methionine - - - - - - 0 

C00078 L-Tryptophan - - - - - - 0 

C00079 L-Phenylalanine - - - - - - 0 

C00082 L-Tyrosine - - - - - - 0 

C00097 L-Cysteine - - - - - 30 30 

C00123 L-Leucine - - - 
 

- - 0 

C00135 L-Histidine - - - - - - 0 

C00148 L-Proline - - 38 2 40 4 84 

C00152 L-Asparagine - - - - - - 0 

C00183 L-Valine - - - - - - 0 

C00188 L-Threonine - - - - - - 0 

C00263 L-Homoserine - - - - 
 

- 0 

C00334 4-Aminobutanoate - - - - - - 0 

C00407 L-Isoleucine - - - - - - 0 

Total Pathways 4 6 43 2 100 152 307 
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TCA cycle intermediates (2-Oxoglutarate, Oxaloacetate, Succinyl-CoA, and Fumarate). To 

avoid false positives, the search was restricted to carbohydrate and the amino acid 

metabolism datasets, and the connections between reactions were established using the 

KEGG RCLASS option. Moreover, minimum and maximum pathway lengths were set to 

one and six reactions respectively, and the default list of ignored metabolites provided in 

Appendix B was used to filter out ubiquitous metabolites. The results for the pathway 

prediction are discussed below.  

3.3.1 Pathway prediction from amino acids to ammonia 

To study the assimilation pathways in Pseudomonas, metabolic pathways of length one to 

six reactions were predicted from 22 different amino acids to ammonia in 111 genome-

sequenced pseudomonads listed in Table 3.1 using MAPPS. A total of 307 distinct nitrogen 

assimilation pathways originating from six out of twenty-two amino acids were found 

across 111 Pseudomonas strains (Table 3.6 and Figure 3.4). These include L-Alanine, L-

Arginine, L-Cysteine, L-Glutamate, L-Glutamine and L-Proline. No pathways were 

reported from the remaining sixteen amino acids. The numbers of pathways of various 

lengths originating from different amino acids in each strain are listed in Appendix G. The 

shortest route to ammonia consisted of a single step and originated from L-Glutamate 

(Table 3.6). The second shortest route consisting of two reactions originated from L-

Glutamine with six distinct pathways reported across different pseudomonads. The longest 

pathways consisting of six reactions originated from three amino acids including L-Alanine 

(118 pathways), L-Cysteine (30 pathways) and L-Proline (4 pathways). 

When considering individual strains, Pseudomonas putida H8234 was reported to 

have the highest number of pathways (200 pathways) starting from L-Alanine (118 
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pathways), L-Cysteine (30 pathways), L-Proline (42 pathways), L-Glutamate (7 pathways) 

and L-Glutamine (3 pathways). The lowest number of nitrogen assimilation pathways (7 

pathways) were found in the metabolic network of Candidatus Pseudomonas 

adelgestsugas. Six of these were three-step pathways starting from L-Proline, and one 

single-step pathway from L-Glutamate. This is in agreement with the limited amino acid 

utilization profile of this pseudomonad (Weglarz et al., 2018). Seventy-one strains, most 

of which are pathogens including various strains of Pseudomonas aeruginosa, 

Pseudomonas simiae, Pseudomonas putida, Pseudomonas syringae, Pseudomonas 

monteilii, and Pseudomonas mendocina were found to have 52 distinct pathways to 

ammonia out of which 42 started from L-Proline, seven from L-Glutamate and three from 

L-Glutamine (Appendix G).  

Next, pathway-based comparison was performed using custom scripts to identify 

metabolic pathways from various amino acids to ammonia which were present in only one 

strain but absent from all the others. Comparison results suggested the presence of unique 

metabolic pathways in only two Pseudomonas strains including P. putida H8234 (from L-

Alanine and L-Cysteine) and P. lurida (from L-Proline) (Appendix H). P. putida H8234 

was found to have the highest number of unique nitrogen assimilation pathways that were 

missing from all other Pseudomonas strains. These include 118 six-step pathways from L-

Alanine and 30 pathways of length six from L-Cysteine. In the case of P. lurida, a 

psychrophile, only one pathway from L-Proline consisting of four reactions was found to 

be uniquely present. 
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Figure 3.4: Number of pathways predicted in different pseudomonads from amino acids to ammonia. Pathways of length two to six reactions were predicted 

from 22 amino acids to ammonia restricting the search to carbohydrate and amino acid metabolism dataset.  
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3.3.2 Pathway prediction from amino acids to TCA cycle intermediates 

To study carbon assimilation pathways in Pseudomonas, metabolic pathways were 

predicted from 22 amino acids (Table 3.7) to the four TCA cycle intermediates including 

2-Oxoglutarate (KEGG ID: C00026), Oxaloacetate (KEGG ID: C00036), Succinyl-CoA 

(KEGG ID: C00091) and Fumarate (KEGG ID: C00122). These four metabolites directly 

link the KEGG map of the TCA Cycle with other KEGG pathway maps (Figure 3.5). A 

total of 1,575 distinct pathways of length one to six reactions were found from twelve out 

Table 3.7: Number of distinct pathways of various lengths predicted from amino acids to the TCA 

cycle intermediate 

KEGG Code Amino Acid Pathway Length Total Pathways 

1 2 3 4 5 6 

C00025 L-Glutamate 40 0 0 0 0 0 40 

C00037 Glycine 0 0 4 7 36 29 76 

C00041 L-Alanine 0 7 64 4 69 128 272 

C00047 L-Lysine 0 0 0 0 0 0 0 

C00049 L-Aspartate 2 0 0 0 0 0 2 

C00062 L-Arginine 0 0 0 0 468 0 468 

C00064 L-Glutamine 0 40 0 123 0 0 163 

C00065 L-Serine 0 0 0 0 0 0 0 

C00073 L-Methionine 0 0 0 0 3 21 24 

C00078 L-Tryptophan 0 0 0 3 28 32 63 

C00079 L-Phenylalanine 0 0 0 0 0 0 0 

C00082 L-Tyrosine 0 0 0 0 0 0 0 

C00097 L-Cysteine 0 5 33 1 35 42 116 

C00123 L-Leucine 0 0 0 0 0 0 0 

C00135 L-Histidine 0 0 0 0 0 0 0 

C00148 L-Proline 0 0 306 22 0 0 328 

C00152 L-Asparagine 0 2 0 0 0 0 2 

C00183 L-Valine 0 0 0 0 0 0 0 

C00188 L-Threonine 0 0 0 0 0 0 0 

C00263 L-Homoserine 0 0 0 0 3 18 21 

C00334 4-Aminobutanoate 0 0 0 0 0 0 0 

C00407 L-Isoleucine 0 0 0 0 0 0 0 

Total Pathways 42 54 407 160 642 270 1575 
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of twenty-two amino acids across 111 Pseudomonas strains (Table 3.7 and Figure 3.6). 

No pathways were found for the remaining ten amino acids. The numbers of pathways of 

various lengths originating from different amino acids in each strain are listed in Appendix 

I.  Unlike nitrogen assimilation pathways where the shortest pathway consisting of a single 

reaction originated from only L-Glutamate, the shortest routes consisting to the four TCA 

cycle intermediates originated from L-Aspartate in addition to L-Glutamate. Similarly, 

two-step pathways to the TCA cycle intermediates originated four amino acids compared 

to only one (L-Glutamine) in the case of ammonia. These include L-Alanine, L-

Asparagine, L-Cysteine, and L-Glutamine. Between these six amino acids, a total of 42 

one-step and 54 two-step pathways were found across all Pseudomonas strains (Table 3.7).  

Figure 3.5: KEGG map of Tricarboxylic Acid (TCA) cycle.TCA cycle intermediates used as target 

metabolites for pathway prediction are highlighted as red circles. 
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When all pathways of length between one to six reactions were taken into account, 

P. antarctica PAMC 27494, a non-pathogenic psychrophile capable of producing 

antimicrobial compounds (Lee et al., 2017), was found to have the highest number of 

metabolic routes (540 pathways) from various amino acids to the TCA cycle intermediate. 

These include two hundred and twenty-eight pathways from L-Arginine, twelve pathways 

from L-Proline, six pathways from L-Glutamine, and one pathway from L-Asparagine. P. 

chlororaphis PCL1606, also a non-pathogen and capable of producing antifungal 

compounds (Calderón et al., 2015), and Pseudomonas sp. MRSN12121, a clinical isolate, 

were predicted to have 528 pathways of varying lengths to the TCA Cycle intermediates 

from eleven amino acids including Glycine, L-Alanine, L-Arginine, L-Asparagine, L-

Aspartate, L-Cysteine, L-Glutamate, L-Glutamine, L-Homoserine, L-Methionine, L-

Proline and  L-Tryptophan. As in the case of nitrogen assimilation pathways, Ca. 

Pseudomonas adelgestsugas had the lowest number of metabolic routes to the TCA cycle 

intermediates (forty-two pathways) which originated from L-Glutamate (six pathways) and 

L-Proline (36 pathways) further strengthening the hypothesis about its limited metabolic 

capability (Weglarz et al., 2018). 
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Figure 3.6: Number of pathways predicted in different pseudomonads from amino acids to TCA Cycle intermediates. Pathways were predicted from 22 

amino acids to TCA Cycle intermediates restricting the search to carbohydrate and amino acid metabolism dataset.  
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Pathway comparison using custom scripts suggested the presence of several 

unique pathways from L-Alanine, L-Glutamate, L-Glutamine, L-Tryptophan, L-

Cysteine, L-Proline, L-Arginine, L-Homoserine and Glycine in various pseudomonads. 

The number of pathways for each amino acid is listed in Appendix J. The highest 

number of unique pathways were found to be present in P. antarctica with twenty-four 

five-step pathways originating from L-Arginine. Similarly, twelve unique pathways 

were predicted in Pseudomonas rhizosphaerae including two three-step pathways from 

L-Alanine, two six-step pathways from L-Tryptophan and eight pathways consisting of 

four to five reactions from Glycine. P. putida H8234, which also contained unique 

pathways to ammonia (see Section 3.3.1), was found to have ten unique pathways to 

the TCA Cycle intermediates including eight four- and six-step pathways from L-

Alanine, and a four-step and a six-step pathway from L-Cysteine.  

3.4 16S rRNA and Multilocus Sequence Analysis  

16S rRNA sequences have been widely used for deciphering the relationship between 

different species and strains as well as for the allocation of newly found strains in the 

genus or family (Anzai et al., 2000). While comparisons based on 16S rRNA sequence 

data provide an invaluable framework for phylogenetic studies, they sometimes do not 

allow sufficient resolution to distinguish between closely related species. Alternatively, 

Multilocus Sequence Analysis (MLSA), has been used for generating a high-resolution 

phylogenetic relationship between different species (Glaeser and Kämpfer, 2015). In 

MLSA studies, the sequences of housekeeping genes coding for proteins with 

conserved functions are used to generate phylogenetic trees and subsequently deduce 

phylogenies. Compared to single gene-based phylogenies, MLSA gives the 

phylogenetic resolution needed for species delineation, especially for closely related 
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species, and avoids possible misleading results that attribute to sequences based on 

single genes that may be affected by recombination (Didelot and Falush, 2007). An 

essential advantage of the MLSA method is that it provides information on the 

nucleotide divergence of internal fragments of housekeeping genes.  

When applied to Pseudomonas, both 16S rRNA sequences and MLSA can 

provide useful insights into the phylogenetic relationship between different strains and 

provide clues about their evolution. To this end, phylogenetic trees for 111 

Pseudomonas strains listed in Table 3.1 were generated using both approaches, 

including 16S rRNA sequences and MLSA using four housekeeping genes (gyrB, gltA, 

rpoB, and gapA) (Figure 3.7). Previous studies have shown that these genes have 

greater evolutionary divergence for the bacteria especially closely related-species, 

hence can be used for the identification and classification of strains (Fukushima et al., 

2002; Sarkar and Guttman, 2004; Sakamoto and Ohkuma, 2011; Gomila et al., 2015; 

Flores et al., 2018). Escherichia coli used as an outgroup in both phylogenetic trees.  

 First, gene sequences were downloaded from the KEGG GENES database 

(Kanehisa et al., 2016) and the NCBI GenBank database (Clark et al., 2016) for 111 

Pseudomonas strains and E. coli. Two separate FASTA files were created. The first file 

contained the sequences of the 16S rRNA gene for all the strains, whereas the second 

file contained the concatenated sequence of four housekeeping genes of all the strains. 

Next, CLUSTAL OMEGA (Madeira et al., 2019) was used to generate multiple 

sequence alignments, and the resulting alignments were downloaded in PHYLIP format 

Figure 3.7: A schematic diagram showing concatenation of housekeeping gene sequences for  

MLSA. Gene sequences for four housekeeping genes (gyrB, gltA, rpoB and gapA) for 111 Pseudomonas 

strains and Escherichia coli were downloaded from KEGG GENES database and NCBI GenBank 

database.
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to generate the phylogenetic trees using the PHYLIP package. Distance matrices were 

calculated using the F84 method (Felsenstein, 1996), and the dendrogram was 

generated using the Fitch method (Fitch and Margoliash, 1967). Resulting trees were 

visualized in MEGAX (Kumar et al., 2018) software and are shown in Figure 3.8 and 

Figure 3.9 for the 16S rRNA sequence and MLSA, respectively. 

While both phylogenetic trees captured the overall phylogenetic relationship 

between different Pseudomonas species (Gomila et al., 2015), there were some subtle 

differences in the trees generated using 16S rRNA sequences (henceforth called ‘16S 

tree’) and MLSA approaches (henceforth called ‘MLSA tree’). For example, both 

methods have correctly grouped all the Pseudomonas putida, an insect and human 

pathogen, strains grouped including P. putida HB3267, which has high number of 

unique carbon and nitrogen assimilation pathways (see Section 3.3). P. monteilii, 

which is closely related to P. putida (Aditi et al., 2017), grouped together with various 

strains of P. putida in both the trees, as previously reported (Gomila et al., 2015). 

Interestingly, the MLSA tree suggests a smaller evolutionary distance between P. 

putida HB3267 and other P. putida strains compared to the 16S tree. This is most likely 

due to the fact that while both the 16S rRNA sequence and MLSA methods are devised 

for species classification, the protein-coding genes tend to evolve at a slower but 

constant rate compared to non-protein-coding genes and thus have a better resolution 

power (Glaeser and Kämpfer, 2015). P. entomophila, which is also an insect pathogen 

like P. putida and is found in the soil was grouped closer to P. putida strains by both 

the methods but had a greater evolutionary distance from other P. putida strains 

compared to P. putida HB3267. This was further confirmed by the metabolic similarity 

analysis which grouped P. entomophila with the strains of P. putida by only one of the 

three linkage methods (see Section 3.5). 
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Figure 3.8: Phylogenetic tree of the 111 pseudomonads constructed using 16S rRNA sequences. 

Distance matrices were calculated by the F84 method (Felsenstein, 1996) and dendrogram was generated 

by Fitch method (Fitch and Margoliash, 1967). Escherichia coli was used as the outgroup. 
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Figure 3.9: Phylogenetic tree of the 111 pseudomonads constructed using MLSA. MLSA was 

performed using four housekeeping genes (gyrB, gltA, rpoB and gapA). Distance matrices were 

calculated by the F84 method (Felsenstein, 1996) and dendrogram was generated by Fitch method (Fitch 

and Margoliash, 1967). Escherichia coli was used as the outgroup. 
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P. aeruginosa, an opportunistic human pathogen, is the leading cause of lung 

infections patients with cystic fibrosis (Subedi et al., 2018). All of the twenty-one P. 

aeruginosa strains listed in Table 3.1 were grouped in the 16S tree (Figure 3.8). 

Similar result was obtained when all the Pseudomonas strains were clustered based on 

their metabolic similarity (see Section 3.5). The MLSA tree, on the other hand, grouped 

eighteen out of twenty-one strains together. The tree strains which did not group with 

the other P. aeruginosa strains in the MLSA tree included Pseudomonas aeruginosa 

PA38182, Pseudomonas aeruginosa YL84 and Pseudomonas aeruginosa PA1R. 

In the case of plant-related Pseudomonas, pathogens Pseudomonas syringae pv. 

tomato DC3000, Pseudomonas syringae pv. syringae B728a (KEGG organism code: 

psb), Pseudomonas syringae CC1557, Pseudomonas savastanoi pv. phaseolicola 

1448A, Pseudomonas avellanae and Pseudomonas cichorii were placed closer to each 

other in the 16S tree compared to MLSA tree. Interestingly, 16S tree put the two strains 

of P. syringae, which is P. syringae pv. tomato DC3000 and P. syringae CC1557, 

together compared to MLSA tree, which grouped P. syringae pv. tomato DC3000 with 

another plant pathogen P. avellanae.  

Pseudomonas stutzeri is involved in soil denitrification and also identified as an 

opportunistic pathogen (Lalucat et al., 2006). Five out of eight Pseudomonas stutzeri 

strains including Pseudomonas stutzeri 19SMN4, Pseudomonas stutzeri RCH2, 

Pseudomonas stutzeri DSM 10701, Pseudomonas stutzeri 28a24 and Pseudomonas 

stutzeri CCUG 29243 were placed together while other three strains Pseudomonas 

stutzeri ATCC 17588, Pseudomonas stutzeri DSM 4166 and Pseudomonas stutzeri 

A1501 were placed in the neighboring clade in the 16S tree compared to MLSA tree 

which puts together only three of the five strains grouped together by 16S tree, P. 

stutzeri 19SMN4, P. stutzeri DSM 10701 and P. stutzeri CCUG 29243 with same 
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ancestral node while putting the strain P. stutzeri RCH2 farther apart. P. stutzeri 28a24 

was placed in the clade containing the remaining three strains of P. stutzeri. P. 

mendocina, which is also an opportunistic human pathogen, although the infections are 

extremely rare (Gani et al., 2019) were placed closer to P. aeruginosa in the 16S tree 

but grouped with P. stutzeri RCH2 in the MLSA tree. 

P. fluorescens species complex has great diversity and is divided into taxonomic 

subclades based on genomic differences, which also correlate with their functional 

diversity (Garrido-Sanz et al., 2016). Pseudomonas fluorescens Pf0-1 was grouped with 

Pseudomonas koreensis, which is also a non-pathogen, in both 16S and MLSA trees. 

Similarity between P. fluorescens Pf0-1 with P. koreensis has been reported by 

previous studies (Gomila et al., 2015; Garrido-Sanz et al., 2016). Similarly, 

Pseudomonas fluorescens F113 was found to group with Pseudomonas brassicacearum 

subsp. brassicacearum NFM421 and Pseudomonas corrugata in in the 16S trees, which 

is in agreement with a previous study (Garrido-Sanz et al., 2016). Pseudomonas 

fluorescens A506 (KEGG organism code: pfc), a strain belonging to fluorescens 

subgroup (Garrido-Sanz et al., 2016) was placed close to Pseudomonas azotoformans 

and Pseudomonas synxantha, also members of fluorescens subgroup (Gomila et al., 

2015) in the 16S tree while the MLSA tree puts it in the clade containing Pseudomonas 

fluoresces SBW25, Pseudomonas trivialis and P. lurida, which are also part of 

fluorescens subgroup (Gomila et al., 2015).  

Besides this, various plant protecting pseudomonads showing biocontrol activity 

against plant-associated pathogens including fungi, were found grouped close to each 

other. P. protegens which were previously classified as P. fluorescens (Ramette et al., 

2011) grouped together in both the trees while various strains of Pseudomonas 

chlororaphis including P. chlororaphis PA23, P. chlororaphis subsp. aurantiaca, and 
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P. chlororaphis PCL1606 (Jiao et al., 2013; Loewen et al., 2014; Calderón et al., 2015) 

grouped together in the 16S tree but not in the MLSA tree. Pseudomonas veronii and 

P. orientalis which have antagonistic properties against phytopathogens (Montes et al., 

2016; Zengerer et al., 2018), were also placed closely to each other in both the trees.  

3.5 Metabolic Similarity Analysis 

Metabolic Similarity Analysis (MSA) is a distance-based hierarchical clustering 

approach, which can be used to group different strains of Pseudomonas based on their 

similarity at a metabolic level. To this end, metabolic similarity analysis (henceforth 

called ‘MSA’) function of MAPPS (see Section 2.2.4.6) was used to identify the 

clusters of pseudomonads (Table 3.1) based on their similarity at enzyme and reaction 

levels. KEGG maps relating to carbohydrate and amino acid metabolism (Table 3.2) 

were used to build the metabolic networks MSA was performed on the resulting 

networks using three linkage modes including single linkage, maximum linkage, and 

average linkage in MAPPS. Output generated in Newick format was visualized in 

Interactive Tree of Life (iTOL) (Letunic and Bork, 2019). The results for MSA are 

discussed below. 

In single linkage clustering, which groups the data based on the closest pair of 

elements in the clusters, nineteen out of twenty-one strains of P. aeruginosa were 

grouped together irrespective of whether reaction or enzyme data was used for 

clustering (Figure 3.10 and Figure 3.11). Pseudomonas aeruginosa PA1 and 

Pseudomonas aeruginosa PA1R did not cluster together with other P. aeruginosa 

strains using the enzyme data (Figure 3.10). Reaction-based clustering, on the other 

hand, did not put P. aeruginosa PA1  and Pseudomonas aeruginosa DK2 with other P. 

aeruginosa strains (Figure 3.11). Average linkage clustering, which groups the data 
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based on average distances between the clusters, put all of the twenty-one strains of P. 

aeruginosa together using both enzyme and reaction data (Figure 3.12 and Figure 

3.13). A similar result was obtained when the phylogenetic tree was generated using 

16S rRNA sequences (Figure 3.8). Like single linkage, maximum linkage could not 

group all P. aeruginosa strains together irrespective of whether enzyme or reaction data 

was used (Figure 3.14 and Figure 3.15). It only put fifteen strains of P. aeruginosa 

together while clustering remaining seven strains in a cluster containing strains of P. 

putida and P. monteilii when using enzyme data (Figure 3.14). Similarly, clustering 

Figure 3.10: Enzyme-based metabolic similarity analysis of Pseudomonas using single linkage 

clustering. The analysis was performed using MAPPS and restricted to pathway maps relating to 

carbohydrate and amino acid metabolisms listed in Table 3.2.  
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based on reaction data resulted in a cluster of fifteen pseudomonads, while remaining 

strains were put with strains of P. mendocina (four P. aeruginosa strains) and P. putida 

(two strains) (Figure 3.15).  

In the case of insect pathogen P. putida, this group was clustered together with 

P. monteilii in all of the three linkage methods for enzyme as well as reaction-based 

metabolic similarity analysis, which is in agreement with 16S and MLSA tree and a 

previous study (Aditi et al., 2017). P. entomophila, also an insect pathogen, was 

Figure 3.11: Reaction-based metabolic similarity analysis of Pseudomonas using single linkage 

clustering. The analysis was performed using MAPPS and restricted to pathway maps relating to 

carbohydrate and amino acid metabolisms listed in Table 3.2. 
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however placed farther apart from P. putida group by single linkage (Figure 3.10 and 

Figure 3.11) and maximum linkage methods (Figure 3.14 and Figure 3.15) but 

clustered together with P. putida using average linkage method (Figure 3.12 and 

Figure 3.13) as well as 16S and MLSA tree. As noted in Section 3.4, P. entomophila 

was found to have a greater evolutionary distance from other P. putida strains which 

might explain the inconsistency in the clustering results. 

Figure 3.12: Enzyme-based metabolic similarity analysis of Pseudomonas using average linkage 

clustering. The analysis was performed using MAPPS and restricted to pathway maps relating to 

carbohydrate and amino acid metabolisms listed in Table 3.2. 
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 All three strains of P. protegens were placed together in the enzyme- and 

reaction-based clustering using single linkage (Figure 3.10 and Figure 3.11), average 

linkage (Figure 3.12 and Figure 3.13), and maximum linkage (Figure 3.14 and Figure 

3.15). Similar results were obtained for the 16S tree (Figure 3.8) and the MLSA tree 

(Figure 3.9). Besides this, P. syringae pv. tomato DC3000, P. syringae pv. syringae 

B728a, P. syringae CC1557 and P. savastanoi pv. phaseolicola 1448A were grouped 

together in all MSA results as well as in the 16S tree (Figure 3.8). Moreover, all eight 

Figure 3.13: Reaction-based metabolic similarity analysis of Pseudomonas using average linkage 

clustering. The analysis was performed using MAPPS and restricted to pathway maps relating to 

carbohydrate and amino acid metabolisms listed in Table 3.2. 
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strains of P. stutzeri used in this analysis were placed together by all three linkage 

methods irrespective of the dataset used. Both 16S and MLSA based phylogenetic trees 

were unable to group all the eight strains together (Section 3.4) indicating the power of 

MSA in capturing the relationship between organisms.  

Figure 3.14: Enzyme-based metabolic similarity analysis of Pseudomonas using maximum linkage 

clustering. The analysis was performed using MAPPS and restricted to pathway maps relating to 

carbohydrate and amino acid metabolisms listed in Table 3.2. 
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In the case of P. fluorescens strains, P. fluorescens Pf01, which was placed with 

P. koreensis in the 16S and MLSA trees (see Figure 3.8 and Figure 3.9), was found to 

group with Pseudomonas mandelli, a fluorescens group member (Mulet et al., 2010), 

by both enzyme- and reaction-based clustering using all three linkage methods. P. 

fluorescence F113, was grouped with P. brassicacearum. subsp brassicacearum 

NFM421 by MSA as well as the 16S tree. Pseudomonas corrugata was clustered with 

Pseudomonas brassicacearum DF41 and closer to P. fluorescence Pf01 by reaction-

based single-linkage method (Figure 3.11) but grouped with Pseudomonas 

Figure 3.15: Reaction-based metabolic similarity analysis of Pseudomonas using maximum 

linkage clustering. The analysis was performed using MAPPS and restricted to pathway maps relating 

to carbohydrate and amino acid metabolisms listed in Table 3.2. 
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citronellolis by enzyme-based single linkage method (Figure 3.10). Both enzyme and 

reaction-based maximum-linkage MSA trees placed P. corrugata with P. 

brassicacearum DF41 (Figure 3.14 and Figure 3.15). Enzyme- and reaction-based 

average linkage clustering, on the other hand, P. corrugata closer to Pseudomonas 

frederiksbergensis  (Figure 3.12 and Figure 3.13). All variants of MSA grouped P. 

frederiksbergensis with P. koreensis.  

Finally, various cold-adapted pseudomonads including P. antarctica, P. lurida,  P. 

orientalis and Pseudomonas yamanorum (Selvakumar et al., 2011; Arnau et al., 2015; 

Lee et al., 2017), which were placed closer to each other by both  16S (Figure 3.8) and 

MLSA trees (Figure 3.9),  grouped together in all variants of MSA except reaction-

based maximum linkage clustering. The reaction-based maximum linkage clustering 

divided them into two groups (Figure 3.15) with P. antarctica and P. yamanorum 

placed together in a cluster and P. lurida  and P. orientalis  put together in a separate 

cluster. 

3.6 Discussion 

Pseudomonas is a very diverse group of bacteria, including pathogenic strains that can 

cause diseases in humans, animals, and plants. Internal and external stimuli steer 

metabolic specialization for a specific lifestyle in these bacteria (Preston et al., 1998; 

Spiers et al., 2000; Remold et al., 2011; Silby et al., 2011). In the past five decades, a 

large number of new strains have been isolated and characterized by various 

experimental methods. Advancement of technology has also played a vital role in 

expediting the discoveries and classification of new strains. Hundreds of genome 

sequences of Pseudomonas strains have become available in the public databases 

(Clark et al., 2016). This has paved the way to develop specialized databases containing 
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metabolic, genomic and taxonomic data relating to various pseudomonads (Winsor et 

al., 2016; Kanehisa et al., 2019).   

In this chapter, information about the metabolic networks of Pseudomonas 

available in KEGG was used for studying the metabolic diversity and functional 

specialization in Pseudomonas. Analyses were performed on a subset of metabolism, 

focusing on carbohydrate, amino acid and energy metabolisms. A comparison of 

metabolic reactions has shown that some of the KEGG reactions were predicted to be 

present in only one strain, including insect pathogen P. entomophila, P. putida H8234, 

and an extremophile, P. psychrotolerans, but absent from the others (see Table 3.3 and 

Table 3.5). Overall, higher number of metabolic reactions were predicted to be 

conserved in energy metabolism (14.5%) as compared to carbohydrate and amino acid 

metabolism (8.6%). A higher variability in the reactions involved in carbohydrate 

metabolism (see Section 3.2.1) is in agreement with the finding that consumptions of 

sugar in Pseudomonas is limited and is highly dependent on their habitat and lifestyle 

(Udaondo et al., 2018). Including reactions from pathways involved in the metabolism 

of glycans, lipids and secondary amino acids in the comparison can provide further 

insights into the metabolic diversity and functional specialization of different 

Pseudomonas strains. 

To further gain insight into the metabolic diversity of various pseudomonads, 

metabolic pathways were predicted from amino acids to ammonia and four TCA Cycle 

intermediates, oxaloacetate, fumarate, succinyl-CoA, and 2-oxoglutarate for each 

pseudomonad (see Section 3.3). Connections between metabolites were established 

using KEGG RCLASS when predicting metabolic pathways. This, however, resulted 

in a few pathways being missed due to the unavailability of reactant pairs to generate 

connections between intermediary metabolites. For example, MAPPS predicted 
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metabolic pathways from L-Arginine to ammonia, all of which were five reactions long, 

in only seven strains, including P. antarctica, P. chlororaphis PCL1606, P. 

entomophila, P. fluorescens SBW25, P. poae, Pseudomonas sp. CCOS 191 and 

Pseudomonas sp. MRSN12121. This is, however, in contradiction to the reported 

literature because L-Arginine deiminase (EC 3.5.3.6) can produce ammonia from L-

arginine in one step (Lu et al., 2006). Similarly, for some amino acids including 

Glycine, L-Serine, L-Tryptophan, L-Threonine no pathways of length up to six 

reactions were found. Longer pathways of length between seven to ten reactions could 

be computed for these metabolites. The literature, however, suggests presence of 

shorter pathways for these amino acids (Mithani et al., 2011). These results highlight 

the limitations of using only main reactant pairs of a reaction for establishing 

connections between metabolites. Using metabolite pairing, on the other hand, which 

pairs each source metabolite in a reaction with each target metabolite, tends to produce 

a large number of false positive pathways (Mithani et al., 2009a).  

Furthermore, phylogenetic relationship based on 16S rRNA sequence and four 

housekeeping genes including gyrB, gltA, rpoB, and gapA were generated for the 111 

Pseudomonas strains (Section 3.4), and used as reference to compare the clustering of 

various pseudomonads generated using reaction and enzyme data via metabolic 

similarity analysis. The metabolic similarity analysis was performed on the dataset 

relating to carbohydrate and amino acid metabolisms with three different methods 

including single linkage, average linkage, and maximum linkage used for joining the 

clusters. Out of these three methods, analysis performed using average linkage 

successfully captured the relationship between pseudomonads, including large groups 

such as P. aeruginosa.  Interestingly, strains with similar lifestyle, for example those 

belonging to P. putida and P. stutzeri, were placed together by all three methods 
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suggesting the reactions involved in carbohydrate and amino acid metabolisms were 

able to differentiate the pseudomonads based on their lifestyle. As discussed above, 

variability in carbohydrate and amino acid metabolism of Pseudomonas depicts their 

diverse metabolic characteristics required for adaptation to different niches. Clustering 

result shows that metabolic data can be successfully used to identify the relationship 

between large groups of bacteria. The metabolic similarity analysis results presented in 

this chapter were restricted to reactions and enzymes involved in carbohydrate and 

amino acid metabolism. This can be further expanded to include reactions and enzymes 

involved in energy and secondary metabolism to allow further understanding of 

metabolic variability and conservation in various Pseudomonas strains exhibiting 

specialized metabolic profiles.  
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4 Differential Metabolic Analysis of 

Mango between Immature and 

Mature Stages 

Mangifera indica (Mango) belongs to the genus Mangifera of the family 

Anacardiaceae, and is popularly known as “The king of fruits” (Tharanathan et al., 

2006). The mango fruit is climacteric (Lakshminarayana, 1973), with varying thickness 

and length depending on the cultivar. Mango, by production, is the third largest tropical 

fruit crop in the world behind bananas and pineapple (Bally and Dillon, 2018), with 

over 1,000 varieties around the world (Mukherjee, 1953; Litz, 2009). In Pakistan, 

mango is the second-largest fruit crop after citrus (Nazish et al., 2017). Pakistan is also 

an important exporter of mangoes with production centered in two regions, Punjab and 

Sindh (Akhtar et al., 2009).  

The development of mango fruit involves cell division, and cell expansion is 

responsible for the increase in fruit size (Seymour et al., 2013). Growth of soft and 

edible fruit with desirable quality attributes depends on the biochemical and 

physiological changes which are associated with highly coordinated, genetically 

programmed, and an irreversible process of fruit development and ripening 

(Giovannoni, 2001). The fruit development process involves phytohormone activities 

(Gillaspy et al., 1993), after fertilization, the auxin upregulates the biosynthesis of 

gibberellin, which initiate the gibberellin signaling in the ovules, consequently 

stimulate fruit growth (Seymour et al., 2013). Other phytohormones like ethylene, 

cytokinin, abscisic acid (ABA), jasmonates, and brassinosteroids also play significant 

roles in fruit development and ripening, and polyamines are also found to be growth 
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regulators of fruit quality (Srivastava and Handa, 2005; Handa et al., 2012). Biological 

pathways drive the morphological changes in the fruit, such as exocarp of mango fruit 

develops into protective skin of green color; during maturity, the color changes to pale 

green or yellow. The edible fleshy region of the fruit is mesocarp with a flavor ranging 

from turpentine to sweet, variation in the flavor is also controlled by the underlying 

metabolic pathways. During development, the production of different compounds in 

the mango starts to change, such as chlorophyll starts disappearing, and the number of 

anthocyanins and carotenoids increases during maturity (Tharanathan et al., 2006). 

Several studies have explored the transcriptional dynamics of various genes (Pandit et 

al., 2010), the composition of volatile compounds (Pandit et al., 2009), changes in 

different compounds like sugars and pectin (Tandon and Kalra, 1983, 1984) and 

morphological variation (Bally, 1999) happens during the development of mango. 

At a genomic level, mango is a diploid species containing 20 pairs of 

chromosomes (2x = 40). With a genome size of approximately 400 Mb, it is almost 3.3 

times the size of the model plant Arabidopsis thaliana but has a relatively smaller 

genome compared to other important fruits (banana: 600 Mb, grapes: 500 Mb, apples: 

750 Mb) (Feuillet et al., 2011; Ravishankar et al., 2011). Studies on mango leaf 

transcriptome (Azim et al., 2014) and mango fruit peel transcriptome (Luria et al., 

2014) have generated 30,509 and 57,444 contigs, respectively, through de novo 

assembly. Recently, a high-quality assembly of mango was published, which reported 

a 392 Mb genome of Indian Mango cultivar ‘Alphonso’ containing 41,251 protein-

coding genes (Wang et al., 2020).  

Recent advances in high-throughput DNA sequencing technologies and 

associated computational techniques are increasingly enabling genome sequence 

analysis and comparisons on a genome-wide basis (Heather and Chain, 2016; Stark et 
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al., 2019). When applied to RNA data, this is referred to as RNA-sequencing or RNA-

seq. High-throughput RNA-seq analysis has emerged as an efficient and cost-effective 

approach for transcriptome profiling due to increases in throughput of next-generation 

sequencing and third-generation sequencing technologies (Costa-Silva et al., 2017; 

Stark et al., 2019). In RNA-seq experiments, the primary interest is differential gene 

expression analysis between case and control groups or at different time courses (Spies 

and Ciaudo, 2015; Sahraeian et al., 2017) in addition to identifying splice variants and 

differential alternative splicing (Marco-Puche et al., 2019). RNA-seq based differential 

gene expression analysis provides a platform to compare the expression levels of two 

or more groups such as different environmental conditions, physiological conditions, 

organs/tissues or developmental stages (Boscari et al., 2013; Klepikova et al., 2016; 

Schiano et al., 2017). For this, RNA-seq data is typically aligned to the reference 

genome for model organisms or to the transcriptome sequences reconstructed using de 

novo assembly strategies for organisms without reference sequences to quantify gene 

expressions (Jung et al., 2019) and the number of mapped reads are used to estimate 

and compare the relative expression level of genes. Subsequently, statistical methods 

are applied to test the significance of differences in gene expression between groups 

(Zhang et al., 2014).  

When mapped onto metabolic networks, the RNA-seq data can provide valuable 

information about the metabolic pathways that are active under different conditions. In 

the last decade, several studies have shown that mapping differentially expressed genes 

on the metabolic network can give insight to the critical metabolic pathways responsible 

for the intermediary regulation of a specific phenotype or trait. For example, studies 

have demonstrated how association of novel genes with secondary metabolic pathways 

can be established through mapping of RNA-seq data (Shi et al., 2011), how important 
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regulatory patterns of metabolic pathways are inferred from differential expression data 

(Haynes et al., 2013), and how genes and metabolic pathways related to known 

phenotypic and physiological effects are evaluated by using RNA-seq data and 

metabolic pathways (Glagoleva et al., 2017). Studies have also observed higher level 

of consistency that exists in the expression of genes associated with similar metabolic 

pathways compared to randomly selected set of genes (Huang et al., 2006; J. L. Deng 

et al., 2019) adding functional context to observed gene expression patterns and laying 

grounds for further exploration at other ‘omics levels. 

This chapter explores the regulation of metabolism during mango fruit 

development by identifying genes differentially expressed between immature and 

mature stages in two cultivars of mango, ‘Sindhri’ and ‘Kala Chaunsa’, using RNA-seq 

data and mapping them on the underlying metabolic network. To examine the variation 

in metabolic pathways during fruit maturity, reference transcripts were mapped to 

KEGG metabolic pathways using KEGG Automatic Annotation Server (Moriya et al., 

2007). Furthermore, differentially expressed genes identified in both cultivars were 

mapped to KEGG pathways to identify the upregulated and downregulated parts of 

metabolic networks during fruit maturation. 

4.1 RNA-seq data for mango 

RNA-seq data available in the lab for two South Asian mango cultivars, ‘Sindhri’ and 

‘Kala Chaunsa’, at two developmental stages, immature and mature, was used to study 

the metabolic changes occurring during mango fruit development. Three replicates per 

stage per cultivar containing between thirty million and thirty-two million reads with a 

length of 100bp (Table 4.1) generated using Illumina paired-end sequencing 

technology (McCombie et al., 2019) were used. RNA-seq data was aligned to the 



135 

 

transcriptomic reference for ‘Kala Chaunsa’ (already available in the lab) using the 

Burrows Wheeler Aligner (BWA) (Li and Durbin, 2009). The reference was generated 

in the lab using Trinity package (Grabherr et al., 2011) and contained 67,643 contigs. 

To avoid the alignment of reads of the same gene at multiple locations on the reference 

transcriptome, the contigs were filtered for transcript isoforms and the ‘longest isoform’ 

was selected reducing the contig count to 34,123 contigs. Aligned reads were 

subsequently filtered to remove reads with low mapping quality (Phred score < 20). 

The alignment results are summarized in Table 4.1. 

4.2 Metabolic annotation of mango genes  

KEGG Automated Annotation Server (KAAS) (Moriya et al., 2007) was used to assign 

the metabolic annotation to the transcripts of reference genome. KAAS uses sequence 

similarity to assign KEGG Orthology (KO) numbers to each transcript. KO numbers 

represents a group of genes, and it is directly linked to an object in the KEGG pathway 

map or other biological process (Moriya et al., 2007). KEGG contains metabolic 

Table 4.1: Alignment mapping summary for ‘Sindhri‘ and ‘Kala Chaunsa’ samples 

Cultivar Stage 
Sample 

Id 

Total 

number of 

reads 

Mapped Data Filtered Data 

Number of 

reads 

% Number of 

reads 

% 

Kala 

Chaunsa 

Immature 

KIR1  32,428,882   31,202,189  96.22  27,476,093  84.73 

KIR3  32,329,452   30,939,513  95.70  26,496,707  81.96 

KIR4  34,121,408   32,908,495  96.45  29,198,535  85.57 

Mature 

KMR1  30,905,024   29,696,887  96.09  26,122,889  84.53 

KMR4  33,241,602   32,166,568  96.77  29,606,117  89.06 

KMR5  33,155,404   32,123,988  96.89  29,695,679  89.57 

Sindhri 

Immature 

SIR2  33,344,688   32,163,165  96.46  29,316,825  87.92 

SIR3  33,894,142   32,219,329  95.06  28,730,455  84.77 

SIR5  34,695,624   33,335,851  96.08  29,530,425  85.11 

Mature 

SMR2  33,127,308   31,783,591  95.94  28,983,437  87.49 

SMR3  33,470,882   32,269,214  96.41  29,322,827  87.61 

SMR4  31,858,380   30,539,331  95.86  26,767,373  84.02 
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annotations for several plant genomes. Thirty-five of these genomes (Appendix K) 

including Citrus sinensis (sweet orange; KEGG organism code: cit), Malus domestica 

(apple; KEGG organism code: mdm) and Musa acuminate (banana; KEGG organism 

code: mus) were used as representative set to assign KEGG annotations to mango 

genes. Metabolic enzymes of various KEGG pathways were assigned to transcripts 

through KO numbers. The annotation results are summarized in Figure 4.1. Over 60% 

of the reference transcripts mapped to carbohydrate, amino acid, lipid and energy 

metabolisms. Number of transcripts mapped to different KEGG pathway maps 

belonging to these pathway sets is listed in Table 4.2.  

Figure 4.1: Distribution of reference transcripts assigned to different KEGG pathway sets. The 

transcripts were assigned to different KEGG pathways sets using KAAS. 
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Table 4.2: Number of transcripts mapped to carbohydrate, amino acid, lipid and energy 

metabolisms 

KEGG Pathway Set KEGG Pathway Map 

Number of 

Transcripts 

Mapped 

Amino Acid Metabolism Alanine, aspartate and glutamate metabolism 46 

Amino Acid Metabolism Arginine and proline metabolism 54 

Amino Acid Metabolism Arginine biosynthesis 34 

Amino Acid Metabolism Cysteine and methionine metabolism 85 

Amino Acid Metabolism Glycine, serine and threonine metabolism 54 

Amino Acid Metabolism Histidine metabolism 22 

Amino Acid Metabolism Lysine biosynthesis 11 

Amino Acid Metabolism Lysine degradation 23 

Amino Acid Metabolism Phenylalanine metabolism 34 

Amino Acid Metabolism Phenylalanine, tyrosine and tryptophan biosynthesis 46 

Amino Acid Metabolism Tryptophan metabolism 37 

Amino Acid Metabolism Tyrosine metabolism 38 

Amino Acid Metabolism Valine, leucine and isoleucine biosynthesis 14 

Amino Acid Metabolism Valine, leucine and isoleucine degradation 46 

Carbohydrate Metabolism 5-Branched dibasic acid metabolism 6 

Carbohydrate Metabolism Amino sugar and nucleotide sugar metabolism 107 

Carbohydrate Metabolism Ascorbate and aldarate metabolism 42 

Carbohydrate Metabolism Butanoate metabolism 19 

Carbohydrate Metabolism Citrate cycle 43 

Carbohydrate Metabolism Fructose and mannose metabolism 61 

Carbohydrate Metabolism Galactose metabolism 47 

Carbohydrate Metabolism Glycolysis / Gluconeogenesis 109 

Carbohydrate Metabolism Glyoxylate and dicarboxylate metabolism 59 

Carbohydrate Metabolism Inositol phosphate metabolism 64 

Carbohydrate Metabolism Pentose and glucuronate interconversions 59 

Carbohydrate Metabolism pentose phosphate pathway 45 

Carbohydrate Metabolism Propanoate metabolism 43 

Carbohydrate Metabolism Pyruvate metabolism 83 

Carbohydrate Metabolism Starch and sucrose metabolism 110 

Energy Metabolism Carbon fixation in photosynthetic organisms 65 

Energy Metabolism Methane metabolism 46 

Energy Metabolism Nitrogen metabolism 25 

Energy Metabolism Oxidative phosphorylation 132 

Energy Metabolism Photosynthesis 71 

Energy Metabolism Photosynthesis - antenna proteins 16 

Energy Metabolism Sulfur metabolism 32 

Lipid Metabolism alpha-Linolenic acid metabolism 32 

Lipid Metabolism Arachidonic acid metabolism 17 

Lipid Metabolism Biosynthesis of unsaturated fatty acids 19 

Lipid Metabolism Cutin, suberine and wax biosynthesis 21 
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Continued from previous page 

Lipid Metabolism Ether lipid metabolism 18 

Lipid Metabolism Fatty acid biosynthesis 47 

Lipid Metabolism Fatty acid degradation 36 

Lipid Metabolism Fatty acid elongation 27 

Lipid Metabolism Glycerolipid metabolism 75 

Lipid Metabolism Glycerophospholipid metabolism 81 

Lipid Metabolism Linoleic acid metabolism 9 

Lipid Metabolism Sphingolipid metabolism 31 

Lipid Metabolism Steroid biosynthesis 28 

Lipid Metabolism Steroid hormone biosynthesis 12 

Lipid Metabolism Synthesis and degradation of ketone bodies 6 

In carbohydrate metabolism, the highest number of transcripts were assigned to 

amino sugar and nucleotide sugar metabolism, glycolysis, and starch and sucrose 

metabolism. Metabolic enzymes included glucose-6-phosphate isomerase (EC 5.3.1.9), 

6-phosphofructokinase 1 (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40) and 

glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) which play important role in 

glycolysis. Several other enzymes of various pathways of carbohydrate metabolism 

were also identified including ATP citrate (pro-S)-lyase (EC 2.3.3.8), isocitrate 

dehydrogenase (EC 1.1.1.42), malate dehydrogenase (EC 1.1.1.37) and citrate synthase 

(EC 2.3.3.1) which are part of citrate cycle. Some of these enzymes, which are 

differentially expressed in ‘Sindhri’ and ‘Kala Chaunsa’ during fruit maturation are 

discussed in Section 4.4. 

In addition to their involvement in different metabolic pathways, reference 

transcripts were also mapped to BRITE protein families involved in metabolic process 

using KAAS. Results show that majority of the transcripts were mapped to protein 

kinases,  peptidases and phosphatases (Figure 4.2). In addition to their role in metabolic 

pathways, protein kinases also play an important role in regulating other cellular 

pathways by phosphorylating other enzymes (Krebs, 1972). Similarly, peptidases have 

been reported to provide defense against pathogen invasion and hydrolysis of the 
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storage proteins (Bonner, 2020), and phosphatases operate in a coordinated manner 

with the protein kinases in determining the cellular response to a physiological stimulus 

(Schweighofer and Meskiene, 2015).  

4.3 Identification of genes differential expressed during fruit 

maturation 

Differential expression analysis was performed for two mango cultivars including 

‘Sindhri’ and ‘Kala Chaunsa’ aligned against the ‘Kala Chaunsa’ transcriptomic 

reference containing 34,123 genes (see Section 4.1) to identify genes that are 

differentially expressed between immature and mature stages. First, the number of 

reads aligned against each genes were counted for each sample using HTSeq (Anders 

et al., 2015). These read counts were subsequently analyzed using two R packages, 

DESeq2 (Love et al., 2014) and EdgeR (Robinson et al., 2009) to identify significant 

Figure 4.2: Mapping of reference transcripts classified according to BRITE hierarchy of protein 

families. The transcripts were assigned to protein families using KAAS. 
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changes in the gene expression levels between immature and mature stages of ‘Sindhri’ 

and ‘Kala Chaunsa’ fruit.  

DEseq2 predicts differential expression by the use of negative binomial 

generalized linear models (Love et al., 2014). To identify differentially expressed genes 

between immature and mature stages, a data matrix containing the read counts was 

developed for the samples along with their replicates. Columns in this data matrix 

corresponded to the sample Ids and the rows corresponded to the transcripts. Sample 

Ids were further grouped as Mature and Immature. After the design of the matrix, 

normalization and variance estimation was performed followed by generation of the list 

of significantly differentially expressed genes between immature and mature samples. 

The log2 fold change (log2FC) values, which are proportional to the extent of 

differential expression of a gene, were used to identify the differentially expressed 

genes. Cut-off values of 1 and -1 for log2FC were used to identify up and down 

regulated genes. EdgeR also takes count matrices as an input and filters out the genes 

that are expressed at a very low level (Robinson et al., 2009). In addition to using 

negative binomial distribution like DESeq2, it also employs empirical Bayes estimation 

by borrowing information from different genes to shrink the dispersions towards a 

consensus value. Significant changes in the expression of 4,493 and 4,173 genes of 

‘Sindhri’ were identified between immature and mature stages using DESeq2 and 

EdgeR, respectively (Figure 4.3). In the case of ‘Kala Chaunsa’, 491 and 438 genes 

were found to be differentially expressed by DESeq2 and EdgeR, respectively (Figure 

4.3). Genes predicted to be differentially expressed by both the methods, 3,722 in 

‘Sindhri’ and 294 in ‘Kala Chaunsa’ (Figure 4.3), were used for subsequent metabolic 

pathway analyses.  
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4.4 Assignment of genes differentially expressed during 

ripening on KEGG pathways 

Metabolic annotations of mango obtained using KAAS (Section 4.2) were further 

processed using custom scripts to assign metabolic enzymes and pathways to the 

common differentially expressed genes identified by DESEQ2 and EdgeR for both 

cultivars i.e., ‘Sindhri’ and ‘Kala Chaunsa’. Differentially expressed genes mapped on 

to KEGG pathways for each of these cultivars are discussed in the subsequent sections. 

4.4.1 Metabolic mapping of differentially expressed genes in ‘Kala 

Chaunsa’ 

To identify metabolic pathways involved in the development of ‘Kala Chaunsa’ fruit, 

differentially expressed genes identified in this cultivar were mapped to KEGG 

pathway maps. The results are summarized in Figure 4.4. Most of the differentially 

expressed genes were found to be involved in carbohydrate, lipid, energy, and 

terpenoids and polyketides metabolisms. A previous study has also shown the 

upregulation of carbohydrate metabolism during development and ripening in mango 

Figure 4.3: Number of differentially expressed genes identified during mango fruit development. 

(a) Number of differentially expressed genes identified in ‘Sindhri’ (b)  Number of differentially 

expressed genes identified in ‘Kala Chaunsa’. 
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fruits and mutant sweet orange (Wu et al., 2014). The number of upregulated and 

downregulated genes assigned to different KEGG pathways are shown in Figure 4.5.  

Out of 22 distinct differentially expressed genes assigned to KEGG pathways, 

9 were upregulated (Table 4.3) and 13 were downregulated (Table 4.4) at the mature 

stage compared to immature stage. One of the upregulated enzymes, pyruvate kinase 

(EC 2.7.1.40), which produces phosphoenolpyruvate was found to be upregulated at 

mature stage in agreement with previous findings that it is activated during mango fruit 

maturation (Litz, 2009) and is part of KEGG maps of glycolysis (Figure 4.6) and 

pyruvate metabolism (Figure 4.7). Similarly, enzyme glutathione-S-transferase (EC 

2.5.1.18), involved in glutathione metabolism, was also predicted to be upregulated at 

the mature stage (Figure 4.8). Studies have shown its positive role in plant growth and 

development (Gong et al., 2005; Moons, 2005). Overexpression of trehalose-6-

Figure 4.4: Distribution of differentially expressed genes of ‘Kala Chaunsa’ assigned to different 

KEGG pathway sets. Common genes predicted as differentially expressed by DEseq2 as well as EdgeR 

were used for annotation. 
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phosphate phosphatase (EC 3.1.3.12), which is an indicator of stress tolerance induced 

by the maturation phase (Lin et al., 2019) was also noted (Figure 4.9). Besides this, the 

enzyme glutamate dehydrogenase (EC 1.4.1.3), which converts L-Glutamate to 

Oxoglutarate and Ammonia was also found to upregulated in ‘Kala Chaunsa’. The 

enzyme is involved in KEGG pathway maps of arginine biosynthesis (Figure 4.10) and 

nitrogen metabolism (Figure 4.11). On the other hand, carbonic anhydrase (EC 

4.2.1.1), which is involved in photosynthesis and the supply of CO2 to other enzymes 

in higher plants (Coleman, 2000; Bhat et al., 2017), was predicted to be downregulated 

in ‘Kala Chaunsa’ during fruit maturation (Figure 4.10). Brassinosteroid-6-oxidase 

(EC 1.14.-.-), an enzyme involved in the synthesis of growth promoting hormone 

brassinolide via catasterone biosynthesis pathway (Figure 4.12) which is involved in 

the ripening of mango fruit (Zaharah et al., 2012) was also found to be upregulated but 

Figure 4.5: Number of genes differentially expressed during fruit maturation in various KEGG 

pathway maps in ‘Kala Chaunsa’. 
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typhasterol/6-deoxotyphasterol 2-alpha-hydroxylase (CYP92A6), another enzyme of 

the same pathway, was predicted to be downregulated in ‘Kala Chaunsa’ during 

maturation. This enzyme was, however, found to be upregulated in the ‘Sindhri’   

cultivar (see Section 4.4.2) Similarly, ferulate-5-hydroxylase (EC 1.14.-.-) involved in 

phenylpropanoid biosynthesis was predicted to be downregulated in ‘Kala Chaunsa’ 

but upregulated in ‘Sindhri’ (Figure 4.13)  at the mature stage compared to immature 

stage. These variations suggest cultivar specific differences in metabolic pathways 

relating to fruit ripening. 

4.4.2 Metabolic mapping of differentially expressed genes in 

‘Sindhri’ 

To identify metabolic pathways involved in the development of ‘Sindhri’ fruit, 

differentially expressed genes identified in this cultivar were mapped to KEGG 

Table 4.3: Metabolic mapping of upregulated genes in ‘Kala Chaunsa’ 

KEGG 

Orthology 

Number 

Gene(s) Enzyme(s) KEGG pathway map 

K00873 pyk 
pyruvate kinase (EC 

2.7.1.40) 

Glycolysis / Gluconeogenesis 

Pyruvate metabolism 

K00261 
GLUD1_2 

gdhA 

glutamate dehydrogenase 

(NAD(P)+) (EC 1.4.1.3) 

Alanine, aspartate and glutamate 

metabolism 

Arginine biosynthesis 

D-Glutamine and D-glutamate 

metabolism 

Nitrogen metabolism 

K06617 RFS 
raffinose synthase (EC 

2.4.1.82) 
Galactose metabolism 

K01087 otsB 
trehalose 6-phosphate 

phosphatase (EC 3.1.3.12) 
Starch and sucrose metabolism 

K00799 GST 
 glutathione S-transferase 

(EC 2.5.1.18) 

Glutathione metabolism 

Metabolism of xenobiotics by 

cytochrome P450 

K09590 
CYP85A1 

BR6OX1 

 brassinosteroid-6-oxidase 1 

(EC 1.14.-.-) 
Brassinosteroid biosynthesis 

K08910 LHCA4 

light-harvesting complex I 

chlorophyll a/b binding 

protein 4 

Photosynthesis - antenna proteins 

K10529 DOX 
alpha-dioxygenase 

(EC1.14.99.-) 
alpha-Linolenic acid metabolism 

K09755 
CYP84A 

F5H 

ferulate-5-hydroxylase (EC 

1.14.-.-) 
Phenylpropanoid biosynthesis 
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pathway maps. The results are summarized in Figure 4.14. As observed in ‘Kala 

Chaunsa’, higher number of differentially expressed genes of ‘Sindhri’ were involved 

in carbohydrate, amino acid and lipid metabolism (Wu et al., 2014). Number of 

upregulated and downregulated genes assigned to various KEGG pathway maps are 

shown in Figure 4.15. 

Out of 193 distinct differentially expressed genes assigned to KEGG pathways, 

111 genes were found to be upregulated (Appendix L) while 84 genes were found to 

be downregulated (Appendix M) at mature stage compared to immature stage. Based 

on their log2FC value, top twenty upregulated and downregulated gene mappings are 

listed in Table 4.5 and Table 4.6 respectively. Four enzymes involved in KEGG 

glycolysis map were found to be upregulated in ‘Sindhri’ during fruit maturation 

(Figure 4.6) including pyruvate dehydrogenase (EC 2.7.1.40) which was found to be 

upregulated in ‘Kala Chaunsa’ also (see Section 4.4.1). Enzyme aldehyde 

Table 4.4: Metabolic mapping of downregulated genes in ‘Kala Chaunsa’ 

KEGG 

Orthology 

Number 

Gene(s) Enzyme(s) KEGG pathway map 

K22849  DGAT3 
diacylglycerol O-acyltransferase 3, plant 

(EC 2.3.1.20) 
Glycerolipid metabolism 

K10703 

HACD 

PHS1 

PAS2 

very-long-chain (3R)-3-hydroxyacyl-

CoA dehydratase (EC 4.2.1.134) 

Biosynthesis of unsaturated fatty acids 

Fatty acid elongation 

K14379 ACP5 
tartrate-resistant acid phosphatase type 5 

(EC 3.1.3.2) 
Riboflavin metabolism 

K00469 MIOX inositol oxygenase (EC 1.13.99.1) 
Ascorbate and aldarate metabolism 

Inositol phosphate metabolism 

K13496 UGT73C 
UDP-glucosyltransferase 73C (EC 2.4.1.-

) 
Zeatin biosynthesis 

K13508 GPAT 
glycerol-3-phosphate acyltransferase (EC 

2.3.1.15 2.3.1.198) 

Glycerolipid metabolism 

Glycerophospholipid metabolism 

K10781 FATB 
fatty acyl-ACP thioesterase B (EC 

3.1.2.14 3.1.2.21) 
Fatty acid biosynthesis 

K01858 
INO1 

ISYNA1 

 myo-inositol-1-phosphate synthase (EC 

5.5.1.4) 
Inositol phosphate metabolism 

K20623 
CYP92A

6 

 typhasterol/6-deoxotyphasterol 2alpha-

hydroxylase 
Brassinosteroid biosynthesis 

K04122 
GA3 

CYP701 
ent-kaurene oxidase (EC 1.14.14.86) Diterpenoid biosynthesis 

K19355 MAN 
mannan endo-1,4-beta-mannosidase (EC 

3.2.1.78) 
Fructose and mannose metabolism 

K01674 cah carbonic anhydrase (EC 4.2.1.1) Nitrogen metabolism 

K03935 NDUFS2 
NADH dehydrogenase (ubiquinone) Fe-S 

protein 2 (EC 7.1.1.2 1.6.99.3) 
Oxidative phosphorylation 
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dehydrogenase (NAD+) (EC 1.2.1.3), involved in several KEGG pathways of 

carbohydrate and amino acid metabolism including glycolysis (Figure 4.6) and 

pyruvate metabolism (Figure 4.7), was also found to be upregulated at the mature stage 

Figure 4.6: Metabolic mapping of genes differentially expressed during fruit maturation on 

KEGG pathway map of Glycolysis. Metabolic annotations of reference transcripts are highlighted in 

colored boxes.  Enzyme upregulated in both ‘Sindhri’ and ‘Kala Chaunsa’ cultivars during fruit 

maturation is shown in orange color, enzyme predicted to be upregulated during maturation in ‘Sindhri’ 

are highlighted in green color and enzyme downregulated in ‘Sindhri’ during maturation is highlighted 

in red color. KEGG pathway modules of central carbohydrate metabolism are shown in solid border of 

pink color. Enzymes not found to be differentially expressed during fruit maturation are shown in grey 

color. 
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compared to immature stage in ‘Sindhri’. Similarly, enzyme pyruvate decarboxylase 

(EC 4.1.1.1) listed in Appendix L, which is involved in the conversion of pyruvate to 

downstream metabolites was also predicted to be upregulated at the mature stage in 

‘Sindhri’ (Figure 4.6). Glutamine synthetase (EC 6.3.1.2) involved in KEGG maps of 

arginine biosynthesis (Figure 4.10) and nitrogen metabolism (Figure 4.11), which 

incorporates ammonia to L-Glutamine (Scarpeci et al., 2007) was found to be 

upregulated in ‘Sindhri’ at the mature stage.  

Figure 4.7: Metabolic mapping of genes differentially expressed during fruit maturation on 

pyruvate metabolism. Metabolic annotations of reference transcripts are highlighted in colored boxes. 

Enzyme upregulated in both ‘Sindhri’ and ‘Kala Chaunsa’ cultivars during fruit maturation is shown in 

orange color, enzyme predicted to be upregulated during maturation in ‘Sindhri’ is highlighted in green 

color and enzymes downregulated in ‘Sindhri’ during maturation are highlighted in red color. Enzymes 

not found to be differentially expressed during fruit maturation are shown in grey color. 
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While no enzyme involved in glycolysis was predicted to be downregulated 

during maturation in ‘Kala Chaunsa’, aldose 1-epimerase (EC 5.1.3.3) was found to be 

downregulated in ‘Sindhri’ (Figure 4.6). Acetyl-CoA carboxylase (EC 6.4.1.2), which 

is part of pyruvate metabolism (Figure 4.7) and is responsible for the conversion of 

acetyl-CoA to malonyl-CoA which is further linked to fatty acid biosynthesis in plants 

(Sasaki and Nagano, 2004) was also found to be downregulated  in ‘Sindhri’ during 

maturation.  

Figure 4.8: Metabolic mapping of genes differentially expressed during fruit ripening on 

glutathione metabolism. Metabolic annotations of reference transcripts are highlighted in colored 

boxes. Enzyme upregulated in both ‘Sindhri’ and ‘Kala Chaunsa’ cultivars during fruit ripening is shown 

in orange color and enzyme predicted to be upregulated during ripening in ‘Sindhri’ is highlighted in 

green color. Enzymes not found to be differentially expressed during fruit maturation are shown in grey 

color. 
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Figure 4.9: Metabolic mapping of genes differentially expressed during fruit maturation on starch and sucrose metabolism.  Metabolic annotations of reference 

transcripts are highlighted in colored boxes. Enzyme upregulated in both ‘Sindhri’ and ‘Kala Chaunsa’ cultivars during fruit maturation is shown in orange color, enzymes 

predicted to be upregulated during maturation in ‘Sindhri’ are highlighted in green color and enzymes downregulated in ‘Sindhri’ during maturation are highlighted in red 

color. Enzymes not found to be differentially expressed during fruit maturation are shown in grey color. 
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Figure 4.10: Metabolic mapping of genes differentially expressed during fruit maturation on arginine biosynthesis.  Metabolic annotations of reference transcripts are 

highlighted in colored boxes. Enzyme upregulated in ‘Sindhri’ during fruit maturation is shown in green color, enzymes downregulated in ‘Sindhri’ during maturation are 

highlighted in red color and enzyme upregulated in ‘Kala Chaunsa’ is highlighted in yellow color. Enzymes not found to be differentially expressed during fruit maturation 

are shown in grey color. 
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Figure 4.11: Metabolic mapping of genes differentially expressed during fruit maturation on nitrogen metabolism.  Metabolic annotations of reference transcripts are 

highlighted in colored boxes.  Enzyme upregulated in ‘Sindhri’ during fruit maturation is shown in green color, enzyme upregulated in ‘Kala Chaunsa’ is highlighted in yellow 

color and enzyme downregulated in ‘Kala Chaunsa’ during maturation is highlighted in pink color.  Enzymes not found to be differentially expressed during fruit maturation 

are shown in grey color. 
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Figure 4.12: Metabolic mapping of genes differentially expressed during fruit maturation on brassinosteroid biosynthesis. Metabolic annotations of reference transcripts 

are highlighted in colored boxes. color. Enzyme upregulated in ‘Sindhri’ are highlighted in green color, enzymes downregulated in ‘Sindhri’ during maturation are highlighted 

in red color and enzyme predicted to be downregulated in ‘Kala Chaunsa’ during maturation are highlighted in yellow color. Solid border of red color represents the enzyme 

predicted to be upregulated in ‘Sindhri’ during maturation but downregulated in ‘Kala Chaunsa’.  KEGG pathway module of plant terpenoid biosynthesis is highligh ted with 

solid border of pink color. Enzymes not found to be differentially expressed during fruit maturation are shown in grey color. 
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Figure 4.13: Metabolic mapping of genes differentially expressed during fruit maturation on phenylpropanoid biosynthesis. Metabolic annotations of reference 

transcripts are highlighted in colored boxes. Enzyme upregulated in ‘Sindhri’ are highlighted in green color and enzymes predicted to be downregulated in ‘Sindhri’ during 

maturation are highlighted in red color. Solid border of green color represents the enzyme predicted to be upregulated in ‘Kala Chaunsa’ during maturation but downregulated 

in ‘Sindhri’. KEGG pathway module of biosynthesis of phytochemicals is highlighted with solid border of pink color. Enzymes not found to be differentially expressed during 

fruit maturation are shown in grey color. 
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 Brassinosteroids actively participate in fruit development and ripening 

(Zaharah et al., 2012; Nolan et al., 2020). Different enzymes involved in barssinolide 

biosynthesis via catasterone pathway were predicted to be differentially expressed 

during maturation in ‘Sindhri’ (Figure 4.12). For example, ferulate-5-hydroxylase (EC 

1.14.-.-) involved in phenylpropanoid biosynthesis was predicted to be downregulated 

in ‘Sindhri’ at the mature stage (Figure 4.13). As noted above, this enzyme was found 

to be upregulated in ‘Kala Chaunsa’ at the mature stage compared to immature stage 

(see Section 4.4.1). Moreover, various enzymes involved in the conversion of 

phenylalanine to 4-coumaryl-CoA through flavonoid biosynthesis pathway (Nabavi et 

al., 2020), which is also part of KEGG map of phenylpropanoid biosynthesis (Figure 

4.13) were found to be differentially expressed during fruit maturation in ‘Sindhri’ with 

phenylalanine ammonia-lyase (EC 4.3.1.24) being upregulated and 4-coumarate-CoA 

ligase (EC 6.2.1.12) being downregulated at the mature stage. 

Figure 4.14: Distribution of differentially expressed genes of ‘Sindhri’ assigned to KEGG pathway 

sets. Common genes predicted by DEseq2 and EdgeR were used for assigning KEGG pathways.  
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Figure 4.15: Number of genes differentially expressed during fruit maturation in various KEGG 

pathway maps in ‘Sindhri’. 
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Table 4.5: Metabolic mapping of top 20 upregulated genes in ‘Sindhri’ 

KEGG 

Orthology 
Gene(s) Enzyme KEGG Pathway Map 

K00128  ALDH 
aldehyde dehydrogenase 

(NAD+) (EC 1.2.1.3) 

Arginine and proline metabolism,  

beta-Alanine metabolism 

Tryptophan metabolism 

Pyruvate metabolism 

Lysine degradation 

Histidine metabolism 

Fatty acid degradation 

Glycerolipid metabolism 

Glycolysis / Gluconeogenesis 

K00318  

PRODH 

fadM 

putB 

proline dehydrogenase (EC 

1.5.5.2) 
Arginine and proline metabolism 

K00789 metK 
S-adenosylmethionine 

synthetase (EC 2.5.1.6) 

Cysteine and methionine 

metabolism 

K00799  GST 
glutathione S-transferase (EC 

2.5.1.18) 

Glutathione metabolism 

Metabolism of xenobiotics by 

cytochrome P450 

K00873 pyk pyruvate kinase (EC 2.7.1.40) 

Glycolysis / Gluconeogenesis 

Pyruvate metabolism 

Purine metabolism 

K00913  ITPK1 
inositol-tetrakisphosphate 1-

kinase (EC 2.7.1.159 2.7.1.134) 
Inositol phosphate metabolism 

K01087 otsB 
trehalose 6-phosphate 

phosphatase (EC 3.1.3.12) 
Starch and sucrose metabolism 

K01535  
PMA1 

PMA2 

H+-transporting ATPase (EC 

7.1.2.1) 
Oxidative phosphorylation 

K01723 AOS 
hydroperoxide dehydratase (EC 

4.2.1.92) 
alpha-Linolenic acid metabolism 

K03921 

FAB2 

SSI2 

desA1 

acyl-(acyl-carrier-protein) 

desaturase (EC 1.14.19.2 

1.14.19.11 1.14.19.26) 

Biosynthesis of unsaturated fatty 

acids 

Fatty acid biosynthesis 

K04125 GA2OX2 
gibberellin 2beta-dioxygenase 

(EC 1.14.11.13) 
Diterpenoid biosynthesis 

K05907 APR 
adenylyl-sulfate reductase 

(glutathione) (EC 1.8.4.9) 
Sulfur metabolism 

K05933 
ACO2 

ACO1 

minocyclopropanecarboxylate 

oxidase (EC 1.14.17.4) 

Cysteine and methionine 

metabolism 

K10775 PAL 
phenylalanine ammonia-lyase 

(EC 4.3.1.24) 

Phenylalanine metabolism 

Phenylpropanoid biosynthesis 

K13248 PHOSPHO2 
pyridoxal phosphate phosphatase 

(EC 3.1.3.74) 
Vitamin B6 metabolism 

K14652 ribBA 

3,4-dihydroxy 2-butanone 4-

phosphate synthase / GTP 

cyclohydrolase II (EC 4.1.99.12 

3.5.4.25) 

Folate biosynthesis, Riboflavin 

metabolism 

K18696  GDE1 
glycerophosphodiester 

phosphodiesterase (EC 3.1.4.46) 
Glycerophospholipid metabolism 

K18819 GOLS 

inositol 3-alpha-

galactosyltransferase (EC 

2.4.1.123) 

Galactose metabolism 

K20772 ACS1_2_6 

1-aminocyclopropane-1-

carboxylate synthase 1/2/6 (EC 

4.4.1.14) 

Cysteine and methionine 

metabolism 

K22395 CAD 
cinnamyl-alcohol dehydrogenase 

(EC 1.1.1.195) 
Phenylpropanoid biosynthesis 
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Table 4.6: Metabolic mapping of top 20 downregulated genes in ‘Sindhri’ 

KEGG 

Orthology  
Gene(s) Enzyme KEGG Pathway Map 

K00600  
glyA 

SHMT 

glycine 

hydroxymethyltransferase (EC 

2.1.2.1) 

Cyanoamino acid metabolism 

Glyoxylate and dicarboxylate 

metabolism 

Glycine, serine and threonine 

metabolism Methane metabolism 

K03858  
PIGH 

GPI15 

phosphatidylinositol N-

acetylglucosaminyltransferase 

subunit H 

Glycosylphosphatidylinositol 

(GPI)-anchor biosynthesis 

K09755  
CYP84AF5

H 

ferulate-5-hydroxylase (EC 

1.14.-.-) 
Phenylpropanoid biosynthesis 

K00549 metE 

 5-

methyltetrahydropteroyltrigluta

mate--homocysteine 

methyltransferase (EC 2.1.1.14) 

Cysteine and methionine 

metabolism  

K00587 
ICMT 

STE14 

protein-S-isoprenylcysteine O-

methyltransferase (EC 

2.1.1.100) 

Terpenoid backbone 

biosynthesis 

K01051 PME4 pectinesterase (EC 3.1.1.11) 
Pentose and glucuronate 

interconversions 

K01191 MAN2C1 
alpha-mannosidase (EC 

3.2.1.24) 
Other glycan degradation 

K01728 Pel pectate lyase (EC 4.2.2.2) 
Pentose and glucuronate 

interconversions 

K01785 
GALM 

 
aldose 1-epimerase (EC 5.1.3.3)  

Galactose metabolism 

Glycolysis / Gluconeogenesis  

K01904 4CL 
4-coumarate--CoA ligase (EC 

6.2.1.12) 

Phenylpropanoid biosynthesis 

Ubiquinone and other terpenoid-

quinone biosynthesis 

K02692  psaD  photosystem I subunit II  Photosynthesis  

K02115 
ATPF1G 

atpG 

F-type H+-transporting ATPase 

subunit gamma 

Oxidative phosphorylation 

Photosynthesis 

K05280 CYP75B1 
flavonoid 3'-monooxygenase 

(EC 1.14.14.82) 

Flavone and flavonol 

biosynthesis 

Flavonoid biosynthesis 

K07151 STT3 

dolichyl-

diphosphooligosaccharide---

protein glycosyltransferase (EC 

2.4.99.18) 

N-Glycan biosynthesis 

K07424 CYP3A 
cytochrome P450 family 3 

subfamily A (EC 1.14.14.1) 

Linoleic acid metabolism, 

Steroid hormone biosynthesis, 

Retinol metabolism 

K07964 HPSE heparanase (EC 3.2.1.166) Glycosaminoglycan degradation 

K08902 psb27 photosystem II Psb27 protein Photosynthesis 

K13648 GAUT 

alpha-1,4-

galacturonosyltransferase (EC 

2.4.1.43) 

Amino sugar and nucleotide 

sugar metabolism 

K16055 TPS 

trehalose 6-phosphate 

synthase/phosphatase (EC 

2.4.1.15 3.1.3.12) 

Starch and sucrose metabolism 

K20782 HPAT 

 hydroxyproline O-

arabinosyltransferase (EC 

2.4.2.58) 

Other types of O-glycan 

biosynthesis 
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Furthermore, chalcone synthase (EC 2.3.1.74), an important enzyme of 

phenylpropanoid-flavonoid (PF) pathways which influence the level of flavonoid 

content in mango fruit peel and flesh (Hoang et al., 2015), was also found to be 

upregulated in ‘Sindhri’ (Figure 4.16). Carotenoids are responsible for the color of the 

fruit, upregulation of 15-cis-phytoene synthase (EC 2.4.1.32) which is part of β-

carotene biosynthesis pathway, confirms the increase in the production of β-carotene 

during fruit maturation (Rocha Ribeiro et al., 2007; Ranganath et al., 2018) (Figure 

4.17). Enzyme 9-cis-epoxycarotenoid dioxygenase (EC 1.13.11.51), which is involved 

in the production of abscisic acid in the carotenoid biosynthesis pathways also plays an 

important role in mango fruit maturation and ripening (Zaharah and Singh, 2012). This 

enzyme was also predicted to be upregulated in ‘Sindhri’ (Figure 4.17). Enzymes GTP 

cyclohydrolase II (EC 3.5.4.25) and 3,4-dihydroxy 2-butanone 4-phosphate synthase 

(EC 4.1.99.12) involved in the riboflavin biosynthesis pathway were also predicted to 

be upregulated at the mature stage in ‘Sindhri’ (Figure 4.18) suggesting the increase in 

the production of vitamin B2, also known as riboflavin, at the mature stage (Barbosa 

Gámez et al., 2017). 
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Figure 4.16: Metabolic mapping of genes differentially expressed during fruit maturation on flavonoid biosynthesis. Metabolic annotations of reference transcripts are 

highlighted in colored boxes. Enzymes predicted to be upregulated in ‘Sindhri’ during maturation are highlighted in green color and enzymes predicted to be downregulated 

in ‘Sindhri’ are highlighted in red color. Enzymes not found to be differentially expressed during fruit maturation are shown in grey color. 
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Figure 4.17: Metabolic mapping of genes differentially expressed during fruit maturation on carotenoid biosynthesis. Metabolic annotations of reference transcripts 

are highlighted in colored boxes. Enzymes predicted to be upregulated in ‘Sindhri’ during maturation are highlighted in green color. KEGG pathway modules of  beta-

carotene and abscisic acid biosynthesis are highlighted with solid border of pink color. Enzymes not found to be differentially expressed during fruit maturation are shown 

in grey color. 
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Figure 4.18: Metabolic mapping of genes differentially expressed during fruit maturation on riboflavin metabolism.  Metabolic annotations of reference transcripts 

are highlighted in colored boxes. Enzymes predicted to be upregulated in ‘Sindhri’ during maturation are highlighted in green color and enzyme downregulated during 

maturation in ‘Kala Chaunsa’ is highlighted in pink color. KEGG pathway module of riboflavin biosynthesis is highlighted with solid border of pink color. Enzymes not 

found to be differentially expressed during fruit maturation are shown in grey color. 
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4.5 Discussion 

Fruits provide useful food reserves and are an essential source of micronutrients, 

vitamins, and other phytochemicals. The quality of fruit is influenced by variety, 

nutritional status, and environmental conditions during the growth of the parent plant 

(Tharanathan et al., 2006). They also play a significant role in enhancing human 

nutrition by providing a source of energy, necessary growth factors, carbohydrates, 

dietary fiber, and antioxidants (Rocha Ribeiro et al., 2007), which are essential for 

maintaining normal health. The mango fruits are utilized for domestic and commercial 

purposes at every stage of growth (Litz, 2009). The maturity of mango fruit has been 

correlated with change in various physical characteristics such as color, shape and size, 

and chemical parameters such as total soluble solids, acidity, starch, phenolic 

compounds, and carotenoids (Tharanathan et al., 2006). Recent advancements in the 

generation and analysis of experimental data have revealed previously uncharacterized 

mechanisms during fruit development indicating the role different biochemical 

pathways play during fruit maturation. 

In this chapter, metabolic annotations for mango were obtained by mapping the 

transcriptomic reference of an elite South Asian mango cultivar ‘Kala Chaunsa’ onto 

KEGG pathways (see Section 4.2). Metabolic annotation of transcriptomes using 

KAAS is commonly performed to understand the expression of key metabolic pathways 

(Rajesh et al., 2016; Naganeeswaran et al., 2020). KAAS performs similarity search 

against KEGG GENES database (Kanehisa et al., 2019) for assigning KEGG Orthology 

(KO) numbers to the query transcripts. For mango transcriptome, multiple transcripts 

were mapped to same KO numbers by KAAS (see Table 4.3, Table 4.4, Appendix L 

and Appendix M) where each KO number is linked to an enzyme involved in one or 
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more KEGG pathway maps. Mapping of multiple transcripts to the same KO number 

could be due to multiple reasons. One, it might be due to the presence of paralogs in 

the mango genome.  Alternatively, multiple genes might be coding for the enzymes 

having similar functions resulting in overlapping annotations. Also, discrepancies in 

the KEGG annotations of representative gene sets can also result in redundant 

assignments. Despite these overlapping, the results presented in this chapter have 

provided a comprehensive metabolic annotation for mango fruit, which will enable 

further insights into the metabolic capabilities of mango fruit. 

Metabolic annotation obtained using KAAS were subsequently mapped to 

various KEGG maps (see Section 4.2). While this identified key metabolic pathways 

active during fruit maturation, it also showed that some of the enzymes in the metabolic 

pathways were not mapped to any of the transcripts by KAAS leaving gaps in the 

metabolic pathways (see Section 4.4). Although a variety of different plants were used 

as representative set in this chapter, the mapping is limited by accuracy of annotations 

of the selected representative set available in the KEGG (Moriya et al., 2007). In 

addition, these gaps might be due to the absence of genes corresponding to these 

enzymes from the transcriptomic reference used for metabolic mapping. This can be 

improved by using transcriptomic references from multiple experiments providing a 

bigger pool of genes for enzyme mapping. 

Next, genes differentially expressed between immature and mature fruit stages 

in two mango cultivars, ‘Sindhri’ and ‘Kala Chaunsa’ were identified. Analysis of 

differential expressed genes in ‘Sindhri’ and ‘Kala Chaunsa’ was performed using two 

R packages DESeq2 (Love et al., 2014) and EdgeR (Robinson et al., 2009) (see Section 

4.3). Interestingly, both R packages predicted lower number of differentially expressed 

genes between immature and mature stages in ‘Kala Chaunsa’ compared to ‘Sindhri’. 
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While it is possible that fewer genes are involved in fruit maturation in ‘Kala Chaunsa’ 

compared to ‘Sindhri’, this might also be due to sampling error as visual and manual 

inspection was used for fruit stage determination in the study from which transcriptomic 

data was obtained (Hijazi et al, in preparation). Changes in the key metabolic pathways 

during fruit maturation have been reported in several studies (Rocha Ribeiro et al., 

2007; Barbosa Gámez et al., 2017; Ranganath et al., 2018), hence several metabolic 

pathways are expected to be differentially expressed during maturation in ‘Kala 

Chaunsa’. Using objective classification of fruit stage (Skolik et al., 2019) and adding 

transcriptomic data for more biological replicates can further improve the differential 

expression analysis presented in this chapter. 

The differentially expressed genes were subsequently mapped to the enzymes 

involved in various KEGG pathways to understand the changes that occur in the 

metabolism during fruit maturation. Associating expression data with metabolic 

pathways provided a functional context to observed gene expression patterns in both 

cultivars during fruit maturation. A higher portion of mapped enzymes was found to 

participate in the metabolism of carbohydrates, lipids and amino acids, and secondary 

metabolite pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, 

and carotenoid biosynthesis. Differential regulation of metabolic pathways between 

‘Sindhri’ and ‘Kala Chaunsa’ was observed in brassinosteroid biosynthesis and 

phenylpropanoid biosynthesis, where enzymes were found to be upregulated in one 

cultivar but downregulated in the other suggesting metabolic variation between these 

South Asian mango cultivars (see Section 4.4). While mapping of transcriptomic data 

on KEGG pathways provided an overview of metabolic changes during fruit maturation 

in both cultivars, the availability of a genome-scale metabolic model would enhance 

the application of this approach by the integration of expression data into the metabolic 
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model for defining constraints on reaction flux and prediction of metabolic phenotypes 

(Colijn et al., 2009; Rezola et al., 2015). 

Inferring metabolic phenotypes based on changes in the expression levels are 

based on the fact that RNA is translated into proteins, including metabolic enzymes and 

that the cell enhances (or reduces) the mRNA transcription rate to enhance (or reduced) 

a function for which the coded protein is required (not required) (Hoppe, 2012). 

Comparison of mRNA expression levels and enzymatic activities have revealed low 

correlations between the transcriptome and metabolome inside a cell indicating that 

transcriptomic analysis is not sufficient to understand protein dynamics or biochemical 

regulation (Glanemann et al., 2003; Gibon et al., 2006; Wienkoop et al., 2008). 

Addition of proteomics and metabolomics data would provide more resolution to 

understand the changes in enzyme activity and metabolite profiles (Gligorijević and 

Pržulj, 2015; Yugi et al., 2016) thus enabling a better understanding of metabolic 

regulation in mango during fruit maturation. 

  



166 

 

5 Discussion 

The understanding of biological networks is a fundamental problem in computational 

biology since cellular processes are regulated by the interaction between different layers 

of biological networks, including phenome, metabolome, proteome, translatome, 

transcriptome, epigenome, and genome (Rajasundaram and Selbig, 2016). Metabolic 

networks are one of the intricate networks comprising chemical interactions and 

transformations between metabolites and enzymes. Series of metabolic reactions 

convert the source metabolites into target metabolites and form metabolic pathways. 

Metabolic pathways provide an intermediate link to connect phenotypic variations to 

underlying regulations at the transcriptomic level, which is further used to enhance the 

quality or quantity of a specific trait or characteristic (Barbosa Gámez et al., 2017). 

Over the years, computational tools have been used to study metabolic networks, from 

the modeling of enzymes to studying the dynamics of metabolic pathways (Jing et al., 

2014). With the advent of efficient and low-cost ‘omics technologies, pathway analyses 

have become more diverse and capable of integrating ‘omics data (Yeang and Vingron, 

2006; Zhu et al., 2012; Fondi and Liò, 2015). Moreover, the availability of metabolic 

data and pathway information of genome-sequenced organisms provides an opportunity 

to compare and analyze functional specialization and diversity among metabolic 

networks of various organisms, including bacteria and plants. Several tools have been 

developed to analyze metabolic data available in public databases, but these tools lack 

the integration of ‘omics data for metabolic network analysis and pathway prediction. 

Comparing metabolic networks and pathways by integrating context-specific ‘omics 

data can provide further insight into the metabolic capabilities of an organism and 

evolutionary studies.  
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In this thesis, a web-based tool called MAPPS: Metabolic network Analysis and 

Pathway Prediction Server was presented that offers a wide range of analyses relating 

to the metabolic pathway prediction and network comparisons, and provides an 

intuitive way to answer different biological questions focusing on metabolic differences 

between multiple organisms as well as relating to metabolic evolution (Chapter 2). 

MAPPS enables users to perform prediction and comparison of metabolic pathways 

between one or more metabolites, comparisons of metabolic networks between 

organisms, and computing reactions and pathways at different levels of the phylogeny 

in addition to allowing specialized analyses including identification of potential drug 

targets, in silico metabolic engineering, analysis of host-pathogen interactions, and 

ancestral network building. MAPPS provides several advantages over existing 

software, including the provision of custom metabolic networks, filtering of networks 

based on ‘omics data, network- and pathway-based comparison between multiple 

organism sets, and evolutionary analysis using metabolic data. MAPPS uses the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2017) as the 

primary source of data. As a result, the accuracy and usefulness of MAPPS are limited 

by the availability of metabolic annotations in KEGG. This was highlighted in Section 

3.6, which discussed the absence of one-stop nitrogen assimilation pathways in various 

pseudomonads due to missing connections in KEGG RCLASS. A large number of 

metabolic annotations currently available in public databases like KEGG are based on 

the similarity of predicted genes to genes of known function. These automatic 

annotations can be referred to as predicted metabolisms in contrast to those 

experimentally validated, the known metabolisms. These predicted metabolisms are 

subject to non-negligible errors or noise, which must be considered while analyzing 

metabolic networks. This can be done by using homologous information from known 
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metabolisms during pathway prediction and network analysis, in an approach similar 

to comparative genome annotation (Behr et al., 1999), to assign quality scores to the 

computed pathways for predicted metabolisms. This approach would provide an 

advantage of comparative prediction whereby metabolic annotations in one species will 

help or support the annotation in the other species. 

Metabolic networks have been used for the optimization of phenotype as well 

as for the production of beneficial compounds using synthetic biology and metabolic 

engineering methods (Boyle and Silver, 2012; García-Granados et al., 2019). Scientists 

have engineered metabolic systems for the commercial production of a wide range of 

high-value biofuels (Majidian et al., 2018; Choi et al., 2020) and natural products 

(Pickens et al., 2011; Nielsen, 2019) into a bacterial host. Metabolic pathway prediction 

tools help in finding enzymes and non-redundant pathways of maximum yield and 

facilitate genome comparisons by aligning pathways to identify required links in the 

pathway (Fisher et al., 2014; Kampers et al., 2019). Potentially, the entire set of 

metabolic pathways can be (re)designed by using in silico approaches and implemented 

in specialized host organisms (Fisher et al., 2014; O’Connor, 2015). Many of the 

metabolic reactions are not active all the time; hence the integration of multiple layers 

of biological networks populated with ‘omics data can enhance the efficiency and 

accuracy of metabolic predictions. Integrating proteomic and metabolomic data for host 

selection and optimization can help to improve the designing of heterologous pathways. 

Besides, spatial and temporal variations inside a eukaryotic cell direct its metabolic 

profile. Enzymes and metabolites are not homogeneously present in the cell nor present 

at all times, as assumed in most of the pathway computation tools (Agapakis et al., 

2012; Zecchin et al., 2015). Compartmentalization and adding context to metabolic data 

can further enhance the capability of metabolic pathway computation tools for in silico 
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pathway designing (Hinzpeter et al., 2017). Incorporation of compartment information 

into metabolic networks can facilitate the identification of drug targets in a specific 

context instead of considering metabolism as a whole. 

Next, a detailed analysis of metabolic diversity and functional specialization in 

111 species of Pseudomonas was presented (Chapter 3). Comparison of metabolic 

network and pathways of carbohydrate, amino acid, and energy metabolism were 

performed using MAPPS and custom scripts to identify conserved and unique reactions 

and pathways in different Pseudomonas strains. Moreover, pseudomonads were 

grouped based on metabolic similarity, and these groupings were compared to the 

phylogenetic relationships inferred using the sequences for 16S rRNA and four 

housekeeping genes. While differences in metabolic networks and pathways were 

identified at the individual strain level, overall results suggest that species with similar 

lifestyle tend to have a high degree of metabolic similarity and that species have adapted 

their metabolic networks to suit their lifestyles. Mapping of transcriptomic and 

metabolomic data collected for different Pseudomonas strains surviving in diverse 

environments can provide further insight into the adaptability of metabolism in 

Pseudomonas (Chernov et al., 2019; Y. Deng et al., 2019). Similarly, the integration of 

proteomics data can provide a quantitative scale to filter predicted metabolic pathways 

for analyzing metabolic diversity and active pathways under different conditions 

(Montero-Blay et al., 2020). 

Over evolutionary time organisms, especially bacteria, adapt metabolically to 

different environments and interact with other organisms. Analysis of metabolic 

networks supplemented by ‘omics data and the environmental information can provide 

useful insights into the influence of external factors on metabolism enabling the study 

of the relationships between metabolic networks, phenotypes, and the environment. 
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This can help in answering questions pertinent to studying the evolution of various 

organisms, such as what are the selective pressures that influence the structure and 

function of biological networks, and what is it that an organism is trying to become 

good at? In some cases, it will be obvious as there might be a new nutrient source and 

a single new acquired reaction that allows this metabolite to be utilized. However, in 

many cases, there can be a complex situation without a simple nutrient source-reaction 

relationship. This is especially true when there is a multiplicity of metabolism-

environment observations requiring a formal model to capture to understand this 

complex relationship. 

Finally, to understand the effect of transcriptional changes during fruit 

development on underlying metabolic networks, differentially expressed genes of two 

different South Asian mango cultivars, ‘Sindhri’ and ‘Kala Chaunsa’, were identified 

and mapped to KEGG pathways in this thesis (Chapter 4). This metabolic mapping 

revealed variation in various metabolic pathways of ‘Sindhri’ and ‘Kala Chaunsa’. 

Most of the changes related to metabolism were predicted in carbohydrate, lipid, and 

amino acid metabolism in both the cultivars with key differences identified at the 

cultivar level. While mapping of expression data onto the metabolic networks provided 

useful insights into metabolic pathways upregulated or downregulated during fruit 

development, its reliability is limited by the accuracy of identification of differentially 

expressed genes. Adding other types of ‘omics data to the metabolic networks can 

increase the resolution of metabolic annotations. For example, it has been shown how 

metabolomics data can be used to understand the physiological changes in mango 

(Ganneru et al., 2019). Analyzing metabolite profiles obtained using metabolomics at 

different stages of fruit development will strengthen the results generated by 
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transcriptomic data and provide a reference to validate metabolic annotations in 

addition to the identification of missing links in the biochemical pathways. 

Advancements in experimental protocols and reduction in the cost of ‘omics 

technologies have enabled researchers to use multi-omics data to analyze molecular 

changes at different levels of the biological systems simultaneously introducing the 

notion of integrative ‘omics (Choi and Pavelka, 2012). Analyzing different networks, 

including gene-regulatory networks and signaling networks along with metabolic 

networks, can help understand the effect of environmental changes and genetic 

perturbations on metabolic networks (M. Kim et al., 2016; Rajasundaram and Selbig, 

2016) enabling a better understanding of the overall working of a cell. Gene regulatory 

networks, for example, have a direct impact on virtually all processes in the cell because 

they control the expression of the genes present in an organism, including the metabolic 

enzymes. A cell needs to regulate its enzyme production and behavior depending on its 

requirements. This is achieved through various regulatory mechanisms (Gonçalves et 

al., 2013), which allow the organism to adapt to environmental changes (Rodriguez-

Martinez et al., 2016). Analyzing these networks together would help in a better 

understanding of the working of a cell as a whole. Using graph theoretical models as a 

framework for coupled regulatory-metabolic networks (Yeang and Vingron, 2006; 

Shlomi et al., 2007) similar to the one shown in Figure 5.1 can be devised. By 

connecting the metabolic enzymes to their underlying genes, this will provide a 

platform to analyze diverse datasets including gene expression data and metabolic 

pathways within the same modeling framework to enable a better understanding of the 

functioning of metabolic networks and to relate the metabolic capabilities to phenotypes 

(Zur et al., 2010). Integrating this framework into MAPPS can allow users to predict 

metabolic pathways between metabolites based on gene expression data and to predict 
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integrated pathways between genes and metabolites. Moreover, the results visualization 

interface of MAPPS can be further extended to offer an intuitive way to map expression 

data on predicted metabolic pathways, which will provide insight into the upregulated 

and downregulated part of the metabolism as discussed in Chapter 4. This integrated 

approach can also enable the identification of metabolic targets of different genes in an 

organism and to study the role of different genes in altering the biomass production of 

a cell. 

‘Omics datasets can also be used for quantification of metabolic pathways. 

Traditionally, 13C tracer experiments have been used to measure the flux that passes 

through active reactions, which is then used to identify metabolic routes preferred by 

an organism (Fuhrer et al., 2005). The movement of flux is, however, dependent on the 

set of active enzymes (transcriptome/proteome), enabling different metabolic pathways 

to be functional, resulting in specific metabolites being produced (metabolome). The 

‘omics datasets can thus provide a detailed picture of what is going on inside a cell. By 

building graph-based models for mapping, the ‘omics datasets on to the existing 

Figure 5.1:  A schematic representation of coupled metabolic-regulatory network (Shlomi et al., 

2007) 
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metabolic networks active as well as preferred metabolic routes inside a cell can be 

predicted. Integrating these models into MAPPS can allow users to identify and 

compare metabolic pathways between metabolites that are preferred by different 

organisms and to study their effect on the evolution of these organisms.  

Moreover, in the last decade, the focus has been shifted from the classical 

reductionist approach toward the holistic approach for understanding the 

interrelatedness of different layers of the cellular environment (Barabasi and Oltvai, 

2004). Systems biology approaches developed for the understanding of cellular 

regulation put metabolic networks in focus, due to their role in shaping the molecular 

phenotype (Sweetlove and Ratcliffe, 2011). This, in turn, has led to the development of 

genome-scale models of metabolic networks. A genome-scale metabolic network of an 

organism provides a theoretical framework for querying the system and understanding 

its functional properties (Terzer et al., 2009). Hundreds of genome-scale metabolic 

models have been reconstructed in which reactions are assigned to sub-cellular 

compartments using sequence and proteomics derived localization information. Studies 

have created metabolic models of multiple tissues by connecting them through transport 

reactions (import and export) derived from the literature (Pfau et al., 2018; diCenzo et 

al., 2019). Similarly, metabolic networks comprising of gene-protein-reaction 

association data are now being built using information available in the public databases 

like BioCyc (Caspi et al., 2016). Besides this, in silico metabolic modeling has become 

increasingly established in modern biology research to explore, understand and analyze 

the changes in the metabolic fluxes in response to genetic and environmental 

perturbations (Harper et al., 2018). Various approaches have been proposed in the last 

decade to integrate transcriptomics data into metabolic flux analysis (Blazier and Papin, 

2012), including methods that use the gene expression data to apply constraints on the 
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flux of a reaction (Colijn et al., 2009). These models and methods can be integrated into 

metabolic network analysis and pathway prediction tools to help them study and 

compare metabolic networks under different experimental conditions, thus allowing a 

better understanding of metabolic networks in today’s post-genomic era. 
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Appendix B: List of ubiquitous metabolites ignored by default during 

pathway prediction in MAPPS 

Metabolite ID Metabolite Name 

C00001 H2O 

C00002 ATP 

C00003 NAD+ 

C00004 NADH 

C00005 NADPH 

C00006 NADP+ 

C00007 Oxygen 

C00008 ADP 

C00009 Orthophosphate 

C00010 CoA 

C00011 CO2 

C00012 Peptide 

C00013 Diphosphate 

C00015 UDP 

C00016 FAD 

C00017 Protein 

C00018 Pyridoxal phosphate 

C00019 S-Adenosyl-L-methionine 

C00020 AMP 

C00027 Hydrogen peroxide 

C00034 Manganese 

C00035 GDP 

C00044 GTP 

C00053 3'-Phosphoadenylyl sulfate 

C00054 Adenosine 3',5'-bisphosphate 

C00055 CMP 

C00059 Sulfate 

C00063 CTP 

C00066 tRNA 

C00075 UTP 

C00080 H+ 

C00081 ITP 

C00104 IDP 

C00130 IMP 

C00131 dATP 

C00206 dADP 

C00237 CO 

C00286 dGTP 

C00320 Thiosulfate 

C00857 Deamino-NAD+ 

C01322 RX 

C01342 NH4(+) 

C01352 FADH2 

C01528 Hydrogen selenide 
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C02987 L-Glutamyl-tRNA(Glu) 

C04432 tRNA containing 6-isopentenyladenosine 

C05336 Selenomethionyl-tRNA(Met) 

C05684 Selenite 

C05697 Selenate 

C06481 L-Seryl-tRNA(Sec) 

C06482 L-Selenocysteinyl-tRNA(Sec) 

C09306 Sulfur dioxide 

C14818 Fe2+ 

C14819 Fe3+ 
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Appendix C: List of conserved reactions related to carbohydrate and 

amino acid metabolism 

Reaction 

Id 
Reaction Definition Type 

R00014 
Pyruvate + Thiamin diphosphate <=> 2-(alpha-Hydroxyethyl)thiamine 

diphosphate + CO2 
conserved 

R00177 
Orthophosphate + Diphosphate + S-Adenosyl-L-methionine <=> ATP + 

L-Methionine + H2O 
conserved 

R00200 ATP + Pyruvate <=> ADP + Phosphoenolpyruvate conserved 

R00226 (S)-2-Acetolactate + CO2 <=> 2 Pyruvate conserved 

R00238 2 Acetyl-CoA <=> CoA + Acetoacetyl-CoA conserved 

R00245 
L-Glutamate 5-semialdehyde + NAD+ + H2O <=> L-Glutamate + NADH 

+ H+ 
conserved 

R00253 
ATP + L-Glutamate + Ammonia <=> ADP + Orthophosphate + L-

Glutamine 
conserved 

R00256 L-Glutamine + H2O <=> L-Glutamate + Ammonia conserved 

R00268 Oxalosuccinate <=> 2-Oxoglutarate + CO2 conserved 

R00344 ATP + Pyruvate + HCO3- <=> ADP + Orthophosphate + Oxaloacetate conserved 

R00351 Citrate + CoA <=> Acetyl-CoA + H2O + Oxaloacetate conserved 

R00405 ATP + Succinate + CoA <=> ADP + Orthophosphate + Succinyl-CoA conserved 

R00416 
UTP + N-Acetyl-alpha-D-glucosamine 1-phosphate <=> Diphosphate + 

UDP-N-acetyl-alpha-D-glucosamine 
conserved 

R00451 meso-2,6-Diaminoheptanedioate <=> L-Lysine + CO2 conserved 

R00480 ATP + L-Aspartate <=> ADP + 4-Phospho-L-aspartate conserved 

R00575 
2 ATP + L-Glutamine + HCO3- + H2O <=> 2 ADP + Orthophosphate + 

L-Glutamate + Carbamoyl phosphate 
conserved 

R00586 L-Serine + Acetyl-CoA <=> O-Acetyl-L-serine + CoA conserved 

R00621 
2-Oxoglutarate + Thiamin diphosphate <=> 3-Carboxy-1-hydroxypropyl-

ThPP + CO2 
conserved 

R00658 2-Phospho-D-glycerate <=> Phosphoenolpyruvate + H2O conserved 

R00660 
Phosphoenolpyruvate + UDP-N-acetyl-alpha-D-glucosamine <=> UDP-

N-acetyl-3-(1-carboxyvinyl)-D-glucosamine + Orthophosphate 
conserved 

R00674 L-Serine + Indole <=> L-Tryptophan + H2O conserved 

R00691 L-Arogenate <=> L-Phenylalanine + H2O + CO2 conserved 

R00694 L-Phenylalanine + 2-Oxoglutarate <=> Phenylpyruvate + L-Glutamate conserved 

R00707 
(S)-1-Pyrroline-5-carboxylate + NAD+ + 2 H2O <=> L-Glutamate + 

NADH + H+ 
conserved 

R00708 
(S)-1-Pyrroline-5-carboxylate + NADP+ + 2 H2O <=> L-Glutamate + 

NADPH + H+ 
conserved 

R00713 Succinate semialdehyde + NAD+ + H2O <=> Succinate + NADH + H+ conserved 

R00714 Succinate semialdehyde + NADP+ + H2O <=> Succinate + NADPH + H+ conserved 

R00734 
L-Tyrosine + 2-Oxoglutarate <=> 3-(4-Hydroxyphenyl)pyruvate + L-

Glutamate 
conserved 

R00742 
ATP + Acetyl-CoA + HCO3- <=> ADP + Orthophosphate + Malonyl-

CoA 
conserved 

R00768 
L-Glutamine + D-Fructose 6-phosphate <=> L-Glutamate + D-

Glucosamine 6-phosphate 
conserved 

R00945 
5,10-Methylenetetrahydrofolate + Glycine + H2O <=> Tetrahydrofolate + 

L-Serine 
conserved 

R00959 D-Glucose 1-phosphate <=> alpha-D-Glucose 6-phosphate conserved 

R01015 D-Glyceraldehyde 3-phosphate <=> Glycerone phosphate conserved 

R01056 D-Ribose 5-phosphate <=> D-Ribulose 5-phosphate conserved 
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R01057 alpha-D-Ribose 1-phosphate <=> D-Ribose 5-phosphate conserved 

R01061 
D-Glyceraldehyde 3-phosphate + Orthophosphate + NAD+ <=> 3-

Phospho-D-glyceroyl phosphate + NADH + H+ 
conserved 

R01071 
1-(5-Phospho-D-ribosyl)-ATP + Diphosphate <=> ATP + 5-Phospho-

alpha-D-ribose 1-diphosphate 
conserved 

R01073 
N-(5-Phospho-D-ribosyl)anthranilate + Diphosphate <=> Anthranilate + 

5-Phospho-alpha-D-ribose 1-diphosphate 
conserved 

R01082 (S)-Malate <=> Fumarate + H2O conserved 

R01135 
GTP + IMP + L-Aspartate <=> GDP + Orthophosphate + N6-(1,2-

Dicarboxyethyl)-AMP 
conserved 

R01163 L-Histidinal + H2O + NAD+ <=> L-Histidine + NADH + H+ conserved 

R01185 Inositol 1-phosphate + H2O <=> myo-Inositol + Orthophosphate conserved 

R01186 myo-Inositol 4-phosphate + H2O <=> myo-Inositol + Orthophosphate conserved 

R01187 1D-myo-Inositol 3-phosphate + H2O <=> myo-Inositol + Orthophosphate conserved 

R01221 
Glycine + Tetrahydrofolate + NAD+ <=> 5,10-Methylenetetrahydrofolate 

+ Ammonia + CO2 + NADH + H+ 
conserved 

R01248 L-Proline + NAD+ <=> (S)-1-Pyrroline-5-carboxylate + NADH + H+ conserved 

R01251 L-Proline + NADP+ <=> (S)-1-Pyrroline-5-carboxylate + NADPH + H+ conserved 

R01253 L-Proline + Quinone <=> (S)-1-Pyrroline-5-carboxylate + Hydroquinone conserved 

R01325 Citrate <=> cis-Aconitate + H2O conserved 

R01373 Prephenate <=> Phenylpyruvate + H2O + CO2 conserved 

R01397 
Carbamoyl phosphate + L-Aspartate <=> Orthophosphate + N-

Carbamoyl-L-aspartate 
conserved 

R01466 O-Phospho-L-homoserine + H2O <=> L-Threonine + Orthophosphate conserved 

R01518 2-Phospho-D-glycerate <=> 3-Phospho-D-glycerate conserved 

R01529 D-Ribulose 5-phosphate <=> D-Xylulose 5-phosphate conserved 

R01715 Chorismate <=> Prephenate conserved 

R01731 Oxaloacetate + L-Arogenate <=> L-Aspartate + Prephenate conserved 

R01736 (R)-S-Lactoylglutathione + H2O <=> Glutathione + (R)-Lactate conserved 

R01771 ATP + L-Homoserine <=> ADP + O-Phospho-L-homoserine conserved 

R01773 L-Homoserine + NAD+ <=> L-Aspartate 4-semialdehyde + NADH + H+ conserved 

R01775 
L-Homoserine + NADP+ <=> L-Aspartate 4-semialdehyde + NADPH + 

H+ 
conserved 

R01776 Acetyl-CoA + L-Homoserine <=> CoA + O-Acetyl-L-homoserine conserved 

R01826 
Phosphoenolpyruvate + D-Erythrose 4-phosphate + H2O <=> 2-Dehydro-

3-deoxy-D-arabino-heptonate 7-phosphate + Orthophosphate 
conserved 

R01899 Isocitrate + NADP+ <=> Oxalosuccinate + NADPH + H+ conserved 

R01900 Isocitrate <=> cis-Aconitate + H2O conserved 

R01933 2-Oxoadipate + CoA + NAD+ <=> Glutaryl-CoA + CO2 + NADH + H+ conserved 

R01975 
(S)-3-Hydroxybutanoyl-CoA + NAD+ <=> Acetoacetyl-CoA + NADH + 

H+ 
conserved 

R02164 Quinone + Succinate <=> Hydroquinone + Fumarate conserved 

R02291 
L-Aspartate 4-semialdehyde + Orthophosphate + NADP+ <=> 4-Phospho-

L-aspartate + NADPH + H+ 
conserved 

R02320 Nucleoside triphosphate + Pyruvate <=> NDP + Phosphoenolpyruvate conserved 

R02340 Indoleglycerol phosphate <=> Indole + D-Glyceraldehyde 3-phosphate conserved 

R02401 5-Oxopentanoate + NAD+ + H2O <=> Glutarate + NADH + H+ conserved 

R02404 ATP + Itaconate + CoA <=> ADP + Orthophosphate + Itaconyl-CoA conserved 

R02412 ATP + Shikimate <=> ADP + Shikimate 3-phosphate conserved 
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R02413 Shikimate + NADP+ <=> 3-Dehydroshikimate + NADPH + H+ conserved 

R02570 

Succinyl-CoA + Enzyme N6-(dihydrolipoyl)lysine <=> CoA + 

[Dihydrolipoyllysine-residue succinyltransferase] S-

succinyldihydrolipoyllysine 

conserved 

R02722 
L-Serine + Indoleglycerol phosphate <=> L-Tryptophan + D-

Glyceraldehyde 3-phosphate + H2O 
conserved 

R02734 
N-Succinyl-LL-2,6-diaminoheptanedioate + H2O <=> Succinate + LL-

2,6-Diaminoheptanedioate 
conserved 

R02735 LL-2,6-Diaminoheptanedioate <=> meso-2,6-Diaminoheptanedioate conserved 

R02739 alpha-D-Glucose 6-phosphate <=> beta-D-Glucose 6-phosphate conserved 

R02740 alpha-D-Glucose 6-phosphate <=> beta-D-Fructose 6-phosphate conserved 

R02788 

ATP + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + meso-2,6-

Diaminoheptanedioate <=> ADP + Orthophosphate + UDP-N-

acetylmuramoyl-L-alanyl-gamma-D-glutamyl-meso-2,6-diaminopimelate 

conserved 

R03012 L-Histidinol + NAD+ <=> L-Histidinal + NADH + H+ conserved 

R03026 (S)-3-Hydroxybutanoyl-CoA <=> Crotonoyl-CoA + H2O conserved 

R03045 3-Hydroxypropionyl-CoA <=> Propenoyl-CoA + H2O conserved 

R03083 
2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate <=> 3-

Dehydroquinate + Orthophosphate 
conserved 

R03084 3-Dehydroquinate <=> 3-Dehydroshikimate + H2O conserved 

R03105 
Mercaptopyruvate + Thioredoxin <=> Hydrogen sulfide + Pyruvate + 

Thioredoxin disulfide 
conserved 

R03132 O-Acetyl-L-serine + Thiosulfate <=> S-Sulfo-L-cysteine + Acetate conserved 

R03191 
UDP-N-acetylmuramate + NAD+ <=> UDP-N-acetyl-3-(1-carboxyvinyl)-

D-glucosamine + NADH + H+ 
conserved 

R03192 
UDP-N-acetylmuramate + NADP+ <=> UDP-N-acetyl-3-(1-

carboxyvinyl)-D-glucosamine + NADPH + H+ 
conserved 

R03243 
L-Histidinol phosphate + 2-Oxoglutarate <=> 3-(Imidazol-4-yl)-2-

oxopropyl phosphate + L-Glutamate 
conserved 

R03270 

2-(alpha-Hydroxyethyl)thiamine diphosphate + Enzyme N6-(lipoyl)lysine 

<=> [Dihydrolipoyllysine-residue acetyltransferase] S-

acetyldihydrolipoyllysine + Thiamin diphosphate 

conserved 

R03276 (S)-3-Hydroxybutanoyl-CoA <=> (R)-3-Hydroxybutanoyl-CoA conserved 

R03291 
Hydroxyproline + NAD+ <=> L-1-Pyrroline-3-hydroxy-5-carboxylate + 

NADH + H+ 
conserved 

R03293 
Hydroxyproline + NADP+ <=> L-1-Pyrroline-3-hydroxy-5-carboxylate + 

NADPH + H+ 
conserved 

R03316 

3-Carboxy-1-hydroxypropyl-ThPP + Enzyme N6-(lipoyl)lysine <=> 

[Dihydrolipoyllysine-residue succinyltransferase] S-

succinyldihydrolipoyllysine + Thiamin diphosphate 

conserved 

R03321 beta-D-Glucose 6-phosphate <=> beta-D-Fructose 6-phosphate conserved 

R03457 
D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate <=> 3-(Imidazol-4-yl)-

2-oxopropyl phosphate + H2O 
conserved 

R03508 
1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate <=> 

Indoleglycerol phosphate + CO2 + H2O 
conserved 

R03509 
N-(5-Phospho-D-ribosyl)anthranilate <=> 1-(2-Carboxyphenylamino)-1-

deoxy-D-ribulose 5-phosphate 
conserved 

R03815 Dihydrolipoylprotein + NAD+ <=> Lipoylprotein + NADH + H+ conserved 

R04035 
1-(5-Phospho-D-ribosyl)-ATP + H2O <=> Phosphoribosyl-AMP + 

Diphosphate 
conserved 

R04037 
Phosphoribosyl-AMP + H2O <=> 5-(5-Phospho-D-

ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide 
conserved 

R04137 3-Hydroxyisovaleryl-CoA <=> 3-Methylcrotonyl-CoA + H2O conserved 
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R04173 
O-Phospho-L-serine + 2-Oxoglutarate <=> 3-Phosphonooxypyruvate + L-

Glutamate 
conserved 

R04203 
(2S,3S)-3-Hydroxy-2-methylbutanoyl-CoA + NAD+ <=> 2-

Methylacetoacetyl-CoA + NADH + H+ 
conserved 

R04204 
(2S,3S)-3-Hydroxy-2-methylbutanoyl-CoA <=> 2-Methylbut-2-enoyl-

CoA + H2O 
conserved 

R04224 2-Methylprop-2-enoyl-CoA + H2O <=> (S)-3-Hydroxyisobutyryl-CoA conserved 

R04365 
Succinyl-CoA + 2,3,4,5-Tetrahydrodipicolinate + H2O <=> CoA + N-

Succinyl-2-L-amino-6-oxoheptanedioate 
conserved 

R04405 
5-Methyltetrahydropteroyltri-L-glutamate + L-Homocysteine <=> 

Tetrahydropteroyltri-L-glutamate + L-Methionine 
conserved 

R04444 
L-1-Pyrroline-3-hydroxy-5-carboxylate + NAD+ + 2 H2O <=> L-erythro-

4-Hydroxyglutamate + NADH + H+ 
conserved 

R04445 
L-1-Pyrroline-3-hydroxy-5-carboxylate + NADP+ + 2 H2O <=> L-

erythro-4-Hydroxyglutamate + NADPH + H+ 
conserved 

R04640 

5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-

imidazole-4-carboxamide <=> N-(5'-Phospho-D-1'-ribulosylformimino)-

5-amino-1-(5''-phospho-D-ribosyl)-4-imidazolecarboxamide 

conserved 

R04780 
beta-D-Fructose 1,6-bisphosphate + H2O <=> beta-D-Fructose 6-

phosphate + Orthophosphate 
conserved 

R05051 
L-erythro-4-Hydroxyglutamate + NADH + H+ <=> L-4-

Hydroxyglutamate semialdehyde + NAD+ + H2O 
conserved 

R05066 
(S)-3-Hydroxyisobutyrate + NAD+ <=> (S)-Methylmalonate 

semialdehyde + NADH + H+ 
conserved 

R05332 
Acetyl-CoA + alpha-D-Glucosamine 1-phosphate <=> CoA + N-Acetyl-

alpha-D-glucosamine 1-phosphate 
conserved 

R06941 
(3S)-3-Hydroxyadipyl-CoA + NAD+ <=> 3-Oxoadipyl-CoA + NADH + 

H+ 
conserved 

R06942 5-Carboxy-2-pentenoyl-CoA + H2O <=> (3S)-3-Hydroxyadipyl-CoA conserved 

R07396 
4-Methylthio-2-oxobutanoic acid + L-Glutamate <=> L-Methionine + 2-

Oxoglutarate 
conserved 

R07618 
Enzyme N6-(dihydrolipoyl)lysine + NAD+ <=> Enzyme N6-

(lipoyl)lysine + NADH + H+ 
conserved 

R08648 Pyruvate + 2-Oxobutanoate <=> (S)-2-Aceto-2-hydroxybutanoate + CO2 conserved 

R10147 
L-Aspartate 4-semialdehyde + Pyruvate <=> (2S,4S)-4-Hydroxy-2,3,4,5-

tetrahydrodipicolinate + H2O 
conserved 

R10993 
ATP + L-Glutamate + (S)-2-Aminobutanoate <=> ADP + Orthophosphate 

+ gamma-L-Glutamyl-L-2-aminobutyrate 
conserved 

R10994 
ATP + gamma-L-Glutamyl-L-2-aminobutyrate + Glycine <=> ADP + 

Orthophosphate + Ophthalmate 
conserved 
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Appendix D: List of variable reactions of carbohydrate and amino 

acid metabolism  

Reaction 

Id 
Reaction Equation Type 

No. of 

Organisms 

R00114 
2 L-Glutamate + NADP+ <=> L-Glutamine + 2-

Oxoglutarate + NADPH + H+ 
variable 110 

R00135 Peptide + H2O <=> L-Proline + Peptide variable 110 

R00192 
S-Adenosyl-L-homocysteine + H2O <=> Adenosine + L-

Homocysteine 
variable 110 

R00220 L-Serine <=> Pyruvate + Ammonia variable 110 

R00235 
ATP + Acetate + CoA <=> AMP + Diphosphate + 

Acetyl-CoA 
variable 110 

R00236 Acetyl adenylate + CoA <=> AMP + Acetyl-CoA variable 110 

R00248 
L-Glutamate + NADP+ + H2O <=> 2-Oxoglutarate + 

Ammonia + NADPH + H+ 
variable 110 

R00258 L-Alanine + 2-Oxoglutarate <=> Pyruvate + L-Glutamate variable 110 

R00259 
Acetyl-CoA + L-Glutamate <=> CoA + N-Acetyl-L-

glutamate 
variable 110 

R00287 UDP-glucose + H2O <=> UMP + D-Glucose 1-phosphate variable 110 

R00289 
UTP + D-Glucose 1-phosphate <=> Diphosphate + UDP-

glucose 
variable 110 

R00316 ATP + Acetate <=> Diphosphate + Acetyl adenylate variable 110 

R00345 
Orthophosphate + Oxaloacetate <=> H2O + 

Phosphoenolpyruvate + CO2 
variable 110 

R00357 
L-Aspartate + H2O + Oxygen <=> Oxaloacetate + 

Ammonia + Hydrogen peroxide 
variable 110 

R00361 (S)-Malate + Quinone <=> Oxaloacetate + Hydroquinone variable 110 

R00472 (S)-Malate + CoA <=> Acetyl-CoA + H2O + Glyoxylate variable 110 

R00479 Isocitrate <=> Succinate + Glyoxylate variable 110 

R00485 L-Asparagine + H2O <=> L-Aspartate + Ammonia variable 110 

R00490 L-Aspartate <=> Fumarate + Ammonia variable 110 

R00566 L-Arginine <=> Agmatine + CO2 variable 110 

R00582 
O-Phospho-L-serine + H2O <=> L-Serine + 

Orthophosphate 
variable 110 

R00590 L-Serine <=> Dehydroalanine + H2O variable 110 

R00669 N-Acetylornithine + H2O <=> Acetate + L-Ornithine variable 110 

R00670 L-Ornithine <=> Putrescine + CO2 variable 110 

R00705 
3-Oxopropanoate + CoA + NAD+ <=> Acetyl-CoA + 

CO2 + NADH + H+ 
variable 110 

R00706 
3-Oxopropanoate + CoA + NADP+ <=> Acetyl-CoA + 

CO2 + NADPH + H+ 
variable 110 

R00711 
Acetaldehyde + NADP+ + H2O <=> Acetate + NADPH + 

H+ 
variable 110 

R00751 L-Threonine <=> Glycine + Acetaldehyde variable 110 

R00754 Ethanol + NAD+ <=> Acetaldehyde + NADH + H+ variable 110 

R00829 
Succinyl-CoA + Acetyl-CoA <=> CoA + 3-Oxoadipyl-

CoA 
variable 110 

R00885 
GTP + D-Mannose 1-phosphate <=> Diphosphate + GDP-

mannose 
variable 110 

R00897 
O-Acetyl-L-serine + Hydrogen sulfide <=> L-Cysteine + 

Acetate 
variable 110 

R00907 
L-Alanine + 3-Oxopropanoate <=> Pyruvate + beta-

Alanine 
variable 110 
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R00926 Propionyladenylate + CoA <=> AMP + Propanoyl-CoA variable 110 

R00931 
2-Methylcitrate + CoA <=> Propanoyl-CoA + 

Oxaloacetate + H2O 
variable 110 

R00935 
(S)-Methylmalonate semialdehyde + CoA + NAD+ <=> 

Propanoyl-CoA + CO2 + NADH + H+ 
variable 110 

R00944 
10-Formyltetrahydrofolate + H2O <=> Formate + 

Tetrahydrofolate 
variable 110 

R00985 
Chorismate + Ammonia <=> Anthranilate + Pyruvate + 

H2O 
variable 110 

R00986 
Chorismate + L-Glutamine <=> Anthranilate + Pyruvate 

+ L-Glutamate 
variable 110 

R00994 
2-Oxobutanoate + CO2 + NADH + H+ <=> D-erythro-3-

Methylmalate + NAD+ 
variable 110 

R00996 L-Threonine <=> 2-Oxobutanoate + Ammonia variable 110 

R01049 
ATP + D-Ribose 5-phosphate <=> AMP + 5-Phospho-

alpha-D-ribose 1-diphosphate 
variable 110 

R01070 
beta-D-Fructose 1,6-bisphosphate <=> Glycerone 

phosphate + D-Glyceraldehyde 3-phosphate 
variable 110 

R01083 N6-(1,2-Dicarboxyethyl)-AMP <=> Fumarate + AMP variable 110 

R01086 N-(L-Arginino)succinate <=> Fumarate + L-Arginine variable 110 

R01090 
L-Leucine + 2-Oxoglutarate <=> 4-Methyl-2-

oxopentanoate + L-Glutamate 
variable 110 

R01213 
alpha-Isopropylmalate + CoA <=> Acetyl-CoA + 3-

Methyl-2-oxobutanoic acid + H2O 
variable 110 

R01214 
L-Valine + 2-Oxoglutarate <=> 3-Methyl-2-oxobutanoic 

acid + L-Glutamate 
variable 110 

R01215 
L-Valine + Pyruvate <=> 3-Methyl-2-oxobutanoic acid + 

L-Alanine 
variable 110 

R01257 (S)-Malate + FAD <=> Oxaloacetate + FADH2 variable 110 

R01334 
2-Phosphoglycolate + H2O <=> Glycolate + 

Orthophosphate 
variable 110 

R01354 
ATP + Propanoate <=> Diphosphate + 

Propionyladenylate 
variable 110 

R01372 
Phenylpyruvate + Oxygen <=> 2-Hydroxyphenylacetate + 

CO2 
variable 110 

R01374 
D-Phenylalanine + H2O + Quinone <=> Phenylpyruvate 

+ Ammonia + Hydroquinone 
variable 110 

R01388 
D-Glycerate + NAD+ <=> Hydroxypyruvate + NADH + 

H+ 
variable 110 

R01398 
Carbamoyl phosphate + L-Ornithine <=> Orthophosphate 

+ L-Citrulline 
variable 110 

R01512 
ATP + 3-Phospho-D-glycerate <=> ADP + 3-Phospho-D-

glyceroyl phosphate 
variable 110 

R01513 
3-Phospho-D-glycerate + NAD+ <=> 3-

Phosphonooxypyruvate + NADH + H+ 
variable 110 

R01641 

Sedoheptulose 7-phosphate + D-Glyceraldehyde 3-

phosphate <=> D-Ribose 5-phosphate + D-Xylulose 5-

phosphate 

variable 110 

R01800 
CDP-diacylglycerol + L-Serine <=> CMP + 

Phosphatidylserine 
variable 110 

R01818 D-Mannose 6-phosphate <=> D-Mannose 1-phosphate variable 110 

R01827 

Sedoheptulose 7-phosphate + D-Glyceraldehyde 3-

phosphate <=> D-Erythrose 4-phosphate + beta-D-

Fructose 6-phosphate 

variable 110 
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R01830 

beta-D-Fructose 6-phosphate + D-Glyceraldehyde 3-

phosphate <=> D-Erythrose 4-phosphate + D-Xylulose 5-

phosphate 

variable 110 

R01954 
ATP + L-Citrulline + L-Aspartate <=> AMP + 

Diphosphate + N-(L-Arginino)succinate 
variable 110 

R02035 
D-Glucono-1,5-lactone 6-phosphate + H2O <=> 6-

Phospho-D-gluconate 
variable 110 

R02060 
alpha-D-Glucosamine 1-phosphate <=> D-Glucosamine 

6-phosphate 
variable 110 

R02199 
L-Isoleucine + 2-Oxoglutarate <=> (S)-3-Methyl-2-

oxopentanoic acid + L-Glutamate 
variable 110 

R02282 
N-Acetylornithine + L-Glutamate <=> L-Ornithine + N-

Acetyl-L-glutamate 
variable 110 

R02521 
3-(4-Hydroxyphenyl)pyruvate + Oxygen <=> 

Homogentisate + CO2 
variable 110 

R02530 
(R)-S-Lactoylglutathione <=> Glutathione + 

Methylglyoxal 
variable 110 

R02549 
4-Aminobutyraldehyde + NAD+ + H2O <=> 4-

Aminobutanoate + NADH + H+ 
variable 110 

R02568 
D-Fructose 1-phosphate <=> Glycerone phosphate + D-

Glyceraldehyde 
variable 110 

R02569 

Acetyl-CoA + Enzyme N6-(dihydrolipoyl)lysine <=> 

CoA + [Dihydrolipoyllysine-residue acetyltransferase] S-

acetyldihydrolipoyllysine 

variable 110 

R02649 
ATP + N-Acetyl-L-glutamate <=> ADP + N-Acetyl-L-

glutamate 5-phosphate 
variable 110 

R02670 
2 3-Hydroxyanthranilate + 4 Oxygen <=> Cinnavalininate 

+ 2 O2.- + 2 Hydrogen peroxide + 2 H+ 
variable 110 

R02736 
beta-D-Glucose 6-phosphate + NADP+ <=> D-Glucono-

1,5-lactone 6-phosphate + NADPH + H+ 
variable 110 

R03177 
4-Guanidinobutanal + NAD+ + H2O <=> 4-

Guanidinobutanoate + NADH + H+ 
variable 110 

R03313 
L-Glutamate 5-semialdehyde + Orthophosphate + 

NADP+ <=> L-Glutamyl 5-phosphate + NADPH + H+ 
variable 110 

R03391 
CDP-4-dehydro-3,6-dideoxy-D-glucose + NAD+ + H2O 

<=> CDP-4-dehydro-6-deoxy-D-glucose + NADH + H+ 
variable 110 

R03392 
CDP-4-dehydro-3,6-dideoxy-D-glucose + NADP+ + H2O 

<=> CDP-4-dehydro-6-deoxy-D-glucose + NADPH + H+ 
variable 110 

R03443 

N-Acetyl-L-glutamate 5-semialdehyde + Orthophosphate 

+ NADP+ <=> N-Acetyl-L-glutamate 5-phosphate + 

NADPH + H+ 

variable 110 

R03896 (R)-2-Methylmalate <=> 2-Methylmaleate + H2O variable 110 

R03898 2-Methylmaleate + H2O <=> D-erythro-3-Methylmalate variable 110 

R03968 alpha-Isopropylmalate <=> 2-Isopropylmaleate + H2O variable 110 

R04001 
(2R,3S)-3-Isopropylmalate <=> 2-Isopropylmaleate + 

H2O 
variable 110 

R04095 
3-Methylbutanoyl-CoA + FAD <=> 3-Methylcrotonyl-

CoA + FADH2 
variable 110 

R04125 

S-Aminomethyldihydrolipoylprotein + Tetrahydrofolate 

<=> Dihydrolipoylprotein + 5,10-

Methylenetetrahydrofolate + Ammonia 

variable 110 

R04187 
L-Alanine + (S)-Methylmalonate semialdehyde <=> 

Pyruvate + L-3-Aminoisobutanoate 
variable 110 

R04198 

2,3,4,5-Tetrahydrodipicolinate + NAD+ + H2O <=> 

(2S,4S)-4-Hydroxy-2,3,4,5-tetrahydrodipicolinate + 

NADH + H+ 

variable 110 
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R04199 

2,3,4,5-Tetrahydrodipicolinate + NADP+ + H2O <=> 

(2S,4S)-4-Hydroxy-2,3,4,5-tetrahydrodipicolinate + 

NADPH + H+ 

variable 110 

R04425 
(2S,3R)-3-Hydroxybutane-1,2,3-tricarboxylate <=> (Z)-

But-2-ene-1,2,3-tricarboxylate + H2O 
variable 110 

R04426 
(2R,3S)-3-Isopropylmalate + NAD+ <=> (2S)-2-

Isopropyl-3-oxosuccinate + NADH + H+ 
variable 110 

R04441 
(R)-2,3-Dihydroxy-3-methylbutanoate <=> 3-Methyl-2-

oxobutanoic acid + H2O 
variable 110 

R04475 

N-Succinyl-LL-2,6-diaminoheptanedioate + 2-

Oxoglutarate <=> N-Succinyl-2-L-amino-6-

oxoheptanedioate + L-Glutamate 

variable 110 

R04617 

ATP + UDP-N-acetylmuramoyl-L-alanyl-gamma-D-

glutamyl-meso-2,6-diaminopimelate + D-Alanyl-D-

alanine <=> ADP + Orthophosphate + UDP-N-

acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-

D-alanyl-D-alanine 

variable 110 

R04880 
3,4-Dihydroxyphenylethyleneglycol + NAD+ <=> 3,4-

Dihydroxymandelaldehyde + NADH + H+ 
variable 110 

R05070 
(R)-2,3-Dihydroxy-3-methylpentanoate <=> (S)-3-

Methyl-2-oxopentanoic acid + H2O 
variable 110 

R06171 L-Allothreonine <=> Glycine + Acetaldehyde variable 110 

R07363 
1,2-Dihydroxy-5-(methylthio)pent-1-en-3-one + Oxygen 

<=> 3-(Methylthio)propanoate + Formate + CO 
variable 110 

R07364 
1,2-Dihydroxy-5-(methylthio)pent-1-en-3-one + Oxygen 

<=> 4-Methylthio-2-oxobutanoic acid + Formate 
variable 110 

R08572 D-Glycerate + ATP <=> 2-Phospho-D-glycerate + ADP variable 110 

R09107 N-Acetyl-L-citrulline + H2O <=> Acetate + L-Citrulline variable 110 

R10907 
beta-D-Glucose 6-phosphate + NAD+ <=> D-Glucono-

1,5-lactone 6-phosphate + NADH + H+ 
variable 110 

R10991 
(S)-2-Aminobutanoate + 2-Oxoglutarate <=> 2-

Oxobutanoate + L-Glutamate 
variable 110 

R00022 Chitobiose + H2O <=> 2 N-Acetyl-D-glucosamine variable 109 

R00199 
ATP + Pyruvate + H2O <=> AMP + 

Phosphoenolpyruvate + Orthophosphate 
variable 109 

R00239 ATP + L-Glutamate <=> ADP + L-Glutamyl 5-phosphate variable 109 

R00243 
L-Glutamate + NAD+ + H2O <=> 2-Oxoglutarate + 

Ammonia + NADH + H+ 
variable 109 

R00341 
ATP + Oxaloacetate <=> ADP + Phosphoenolpyruvate + 

CO2 
variable 109 

R00409 
(2S,3R)-3-Hydroxybutane-1,2,3-tricarboxylate <=> 

Pyruvate + Succinate 
variable 109 

R00946 
5-Methyltetrahydrofolate + L-Homocysteine <=> 

Tetrahydrofolate + L-Methionine 
variable 109 

R01072 

5-Phosphoribosylamine + Diphosphate + L-Glutamate 

<=> L-Glutamine + 5-Phospho-alpha-D-ribose 1-

diphosphate + H2O 

variable 109 

R01288 
O-Succinyl-L-homoserine + Hydrogen sulfide <=> L-

Homocysteine + Succinate 
variable 109 

R01360 
(S)-3-Hydroxy-3-methylglutaryl-CoA <=> Acetyl-CoA + 

Acetoacetate 
variable 109 

R01416 
Agmatine + H2O <=> N-Carbamoylputrescine + 

Ammonia 
variable 109 

R01648 
4-Aminobutanoate + 2-Oxoglutarate <=> Succinate 

semialdehyde + L-Glutamate 
variable 109 
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R01714 
5-O-(1-Carboxyvinyl)-3-phosphoshikimate <=> 

Chorismate + Orthophosphate 
variable 109 

R01819 
D-Mannose 6-phosphate <=> beta-D-Fructose 6-

phosphate 
variable 109 

R02036 
6-Phospho-D-gluconate <=> 2-Dehydro-3-deoxy-6-

phospho-D-gluconate + H2O 
variable 109 

R02085 
(S)-3-Hydroxy-3-methylglutaryl-CoA <=> 3-

Methylglutaconyl-CoA + H2O 
variable 109 

R02274 
5-Aminopentanoate + 2-Oxoglutarate <=> 5-

Oxopentanoate + L-Glutamate 
variable 109 

R03425 
Glycine + Lipoylprotein <=> S-

Aminomethyldihydrolipoylprotein + CO2 
variable 109 

R04138 
ATP + 3-Methylcrotonyl-CoA + HCO3- <=> ADP + 

Orthophosphate + 3-Methylglutaconyl-CoA 
variable 109 

R04420 
S-Methyl-5-thio-D-ribose 1-phosphate <=> S-Methyl-5-

thio-D-ribulose 1-phosphate 
variable 109 

R00009 2 Hydrogen peroxide <=> Oxygen + 2 H2O variable 108 

R00217 Oxaloacetate <=> Pyruvate + CO2 variable 108 

R00291 UDP-glucose <=> UDP-alpha-D-galactose variable 108 

R00470 4-Hydroxy-2-oxoglutarate <=> Pyruvate + Glyoxylate variable 108 

R00578 
ATP + L-Aspartate + L-Glutamine + H2O <=> AMP + 

Diphosphate + L-Asparagine + L-Glutamate 
variable 108 

R01025 
Choline + Acceptor <=> Betaine aldehyde + Reduced 

acceptor 
variable 108 

R01394 Hydroxypyruvate <=> 2-Hydroxy-3-oxopropanoate variable 108 

R01737 
ATP + D-Gluconic acid <=> ADP + 6-Phospho-D-

gluconate 
variable 108 

R02565 
Betaine aldehyde + NAD+ + H2O <=> Betaine + NADH 

+ 2 H+ 
variable 108 

R02566 
Betaine aldehyde + NADP+ + H2O <=> Betaine + 

NADPH + 2 H+ 
variable 108 

R02922 Creatinine + H2O <=> N-Methylhydantoin + Ammonia variable 108 

R04440 
(R)-2,3-Dihydroxy-3-methylbutanoate + NADP+ <=> 3-

Hydroxy-3-methyl-2-oxobutanoic acid + NADPH + H+ 
variable 108 

R05068 

(R)-2,3-Dihydroxy-3-methylpentanoate + NADP+ <=> 

(R)-3-Hydroxy-3-methyl-2-oxopentanoate + NADPH + 

H+ 

variable 108 

R05069 
(S)-2-Aceto-2-hydroxybutanoate <=> (R)-3-Hydroxy-3-

methyl-2-oxopentanoate 
variable 108 

R05071 
(S)-2-Acetolactate <=> 3-Hydroxy-3-methyl-2-

oxobutanoic acid 
variable 108 

R05605 
2-Dehydro-3-deoxy-6-phospho-D-gluconate <=> D-

Glyceraldehyde 3-phosphate + Pyruvate 
variable 108 

R08968 
N-Acetyl-D-glucosamine + ATP <=> N-Acetyl-alpha-D-

glucosamine 1-phosphate + ADP 
variable 108 

R11263 2-Methylcitrate <=> 2-Methyl-trans-aconitate + H2O variable 108 

R00131 Urea + H2O <=> CO2 + 2 Ammonia variable 107 

R00216 
(S)-Malate + NADP+ <=> Pyruvate + CO2 + NADPH + 

H+ 
variable 107 

R00230 
Acetyl-CoA + Orthophosphate <=> CoA + Acetyl 

phosphate 
variable 107 

R00410 
Succinyl-CoA + Acetoacetate <=> Succinate + 

Acetoacetyl-CoA 
variable 107 

R00411 
N-Succinyl-L-glutamate + H2O <=> L-Glutamate + 

Succinate 
variable 107 



205 

 

Continued from previous page 

R00921 
Propanoyl-CoA + Orthophosphate <=> Propanoyl 

phosphate + CoA 
variable 107 

R01175 Butanoyl-CoA + FAD <=> FADH2 + Crotonoyl-CoA variable 107 

R01364 
Acetoacetate + Fumarate <=> 4-Fumarylacetoacetate + 

H2O 
variable 107 

R01600 
ATP + beta-D-Glucose <=> ADP + beta-D-Glucose 6-

phosphate 
variable 107 

R01786 
ATP + alpha-D-Glucose <=> ADP + alpha-D-Glucose 6-

phosphate 
variable 107 

R02071 
ATP + D-Fructose 1-phosphate <=> ADP + beta-D-

Fructose 1,6-bisphosphate 
variable 107 

R02488 

Glutaryl-CoA + Electron-transferring flavoprotein <=> 

Crotonoyl-CoA + Reduced electron-transferring 

flavoprotein + CO2 

variable 107 

R02519 Homogentisate + Oxygen <=> 4-Maleylacetoacetate variable 107 

R03232 
Protein N(pi)-phospho-L-histidine + D-Fructose <=> 

Protein histidine + D-Fructose 1-phosphate 
variable 107 

R02283 
N-Acetylornithine + 2-Oxoglutarate <=> N-Acetyl-L-

glutamate 5-semialdehyde + L-Glutamate 
variable 106 

R01795 
Tetrahydrobiopterin + L-Phenylalanine + Oxygen <=> 

Dihydrobiopterin + L-Tyrosine + H2O 
variable 105 

R10343 Succinyl-CoA + Acetate <=> Acetyl-CoA + Succinate variable 105 

R00717 Glycolate + NAD+ <=> Glyoxylate + NADH + H+ variable 104 

R01168 L-Histidine <=> Urocanate + Ammonia variable 104 

R01557 Maltose <=> alpha,alpha-Trehalose variable 104 

R02110 Amylose <=> Starch variable 104 

R02111 
Starch + Orthophosphate <=> Amylose + D-Glucose 1-

phosphate 
variable 104 

R03527 beta-D-Glucoside + H2O <=> D-Glucose + ROH variable 104 

R00264 
2,5-Dioxopentanoate + NADP+ + H2O <=> 2-

Oxoglutarate + NADPH + H+ 
variable 103 

R00710 
Acetaldehyde + NAD+ + H2O <=> Acetate + NADH + 

H+ 
variable 103 

R01986 
4-Aminobutyraldehyde + NADP+ + H2O <=> 4-

Aminobutanoate + NADPH + H+ 
variable 103 

R02421 ADP-glucose + Amylose <=> ADP + Amylose variable 103 

R02540 
2-Phenylacetamide + H2O <=> Phenylacetic acid + 

Ammonia 
variable 103 

R02678 
Indole-3-acetaldehyde + NAD+ + H2O <=> Indole-3-

acetate + NADH + H+ 
variable 103 

R02957 
D-Glucuronolactone + NAD+ + 2 H2O <=> D-Glucarate 

+ NADH + H+ 
variable 103 

R03096 
(Indol-3-yl)acetamide + H2O <=> Indole-3-acetate + 

Ammonia 
variable 103 

R03180 
4-Guanidinobutanamide + H2O <=> 4-

Guanidinobutanoate + Ammonia 
variable 103 

R03283 
4-Trimethylammoniobutanal + NAD+ + H2O <=> 4-

Trimethylammoniobutanoate + NADH + H+ 
variable 103 

R03869 
(S)-Methylmalonate semialdehyde + NAD+ + H2O <=> 

Methylmalonate + NADH + H+ 
variable 103 

R04065 
Imidazole-4-acetaldehyde + NAD+ + H2O <=> 

Imidazole-4-acetate + NADH + H+ 
variable 103 

R04903 
5-Hydroxyindoleacetaldehyde + NAD+ + H2O <=> 5-

Hydroxyindoleacetate + H+ + NADH 
variable 103 
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R05050 
N4-Acetylaminobutanal + NAD+ + H2O <=> 4-

Acetamidobutanoate + NADH + H+ 
variable 103 

R00286 
UDP-glucose + H2O + 2 NAD+ <=> UDP-glucuronate + 

2 NADH + 2 H+ 
variable 101 

R00704 (R)-Lactate + NAD+ <=> Pyruvate + NADH + H+ variable 101 

R00927 
Propanoyl-CoA + Acetyl-CoA <=> CoA + 2-

Methylacetoacetyl-CoA 
variable 101 

R06620 
D-Glucose + Ubiquinone <=> D-Glucono-1,5-lactone + 

Ubiquinol 
variable 101 

R06977 
L-Glutamate + L-Aspartate 4-semialdehyde <=> 2-

Oxoglutarate + L-2,4-Diaminobutanoate 
variable 101 

R00610 
Sarcosine + H2O + Oxygen <=> Glycine + Formaldehyde 

+ Hydrogen peroxide 
variable 100 

R00832 
Succinyl-CoA + L-Arginine <=> CoA + N2-Succinyl-L-

arginine 
variable 100 

R04000 
Acetyl-CoA + 2-Hydroxyglutarate <=> Acetate + 2-

Hydroxyglutaryl-CoA 
variable 100 

R04189 
N2-Succinyl-L-arginine + 2 H2O <=> N2-Succinyl-L-

ornithine + CO2 + 2 Ammonia 
variable 100 

R05049 
N-Succinyl-L-glutamate 5-semialdehyde + NAD+ + H2O 

<=> N-Succinyl-L-glutamate + NADH + H+ 
variable 100 

R01361 
(R)-3-Hydroxybutanoate + NAD+ <=> Acetoacetate + 

NADH + H+ 
variable 99 

R06836 
D-Ribose 1,5-bisphosphate + ATP <=> 5-Phospho-alpha-

D-ribose 1-diphosphate + ADP 
variable 99 

R01088 
L-Leucine + H2O + NAD+ <=> 4-Methyl-2-

oxopentanoate + Ammonia + NADH + H+ 
variable 98 

R01434 
L-Valine + H2O + NAD+ <=> 3-Methyl-2-oxobutanoic 

acid + Ammonia + NADH + H+ 
variable 98 

R02196 
L-Isoleucine + NAD+ + H2O <=> (S)-3-Methyl-2-

oxopentanoic acid + Ammonia + NADH + H+ 
variable 98 

R02288 
4-Imidazolone-5-propanoate + H2O <=> N-Formimino-

L-glutamate 
variable 98 

R02914 4-Imidazolone-5-propanoate <=> Urocanate + H2O variable 98 

R00997 
1-Aminocyclopropane-1-carboxylate + H2O <=> 2-

Oxobutanoate + Ammonia 
variable 96 

R03181 4-Maleylacetoacetate <=> 4-Fumarylacetoacetate variable 96 

R00150 
ATP + Ammonia + HCO3- <=> ADP + Carbamoyl 

phosphate + H2O 
variable 95 

R00552 L-Arginine + H2O <=> L-Citrulline + Ammonia variable 95 

R00880 
GDP-mannose + H2O + 2 NAD+ <=> GDP-D-

mannuronate + 2 NADH + 2 H+ 
variable 95 

R03706 
(Alginate)n <=> Oligouronide with 4-deoxy-alpha-L-

erythro-hex-4-enopyranuronosyl group 
variable 95 

R08692 
GDP-D-mannuronate + (beta-D-Mannuronate)n <=> 

(beta-D-Mannuronate)n + GDP 
variable 95 

R08693 (beta-D-Mannuronate)n <=> (Alginate)n variable 95 

R00013 2 Glyoxylate <=> 2-Hydroxy-3-oxopropanoate + CO2 variable 94 

R00093 
2 L-Glutamate + NAD+ <=> L-Glutamine + 2-

Oxoglutarate + NADH + H+ 
variable 93 

R00782 
L-Cysteine + H2O <=> Hydrogen sulfide + Pyruvate + 

Ammonia 
variable 93 

R01739 
D-Gluconic acid + NADP+ <=> 2-Keto-D-gluconic acid 

+ NADPH + H+ 
variable 93 
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R01940 

2-Oxoadipate + Enzyme N6-(lipoyl)lysine <=> 

[Dihydrolipoyllysine-residue succinyltransferase] S-

glutaryldihydrolipoyllysine + CO2 

variable 93 

R02408 
L-Cystine + H2O <=> Pyruvate + Ammonia + 

Thiocysteine 
variable 93 

R02571 

Glutaryl-CoA + Enzyme N6-(dihydrolipoyl)lysine <=> 

CoA + [Dihydrolipoyllysine-residue succinyltransferase] 

S-glutaryldihydrolipoyllysine 

variable 93 

R02382 

Tyramine + H2O + Oxygen <=> 4-

Hydroxyphenylacetaldehyde + Ammonia + Hydrogen 

peroxide 

variable 92 

R02529 
Aminoacetone + H2O + Oxygen <=> Methylglyoxal + 

Ammonia + Hydrogen peroxide 
variable 92 

R02613 
Phenethylamine + Oxygen + H2O <=> 

Phenylacetaldehyde + Ammonia + Hydrogen peroxide 
variable 92 

R04300 

Dopamine + H2O + Oxygen <=> 3,4-

Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen 

peroxide 

variable 92 

R02173 
Tryptamine + H2O + Oxygen <=> Indole-3-acetaldehyde 

+ Ammonia + Hydrogen peroxide 
variable 91 

R02286 
N-Formimino-L-glutamate + H2O <=> N-Formyl-L-

glutamate + Ammonia 
variable 91 

R02532 

L-Noradrenaline + H2O + Oxygen <=> 3,4-

Dihydroxymandelaldehyde + Ammonia + Hydrogen 

peroxide 

variable 91 

R02908 

Serotonin + H2O + Oxygen <=> 5-

Hydroxyindoleacetaldehyde + Ammonia + Hydrogen 

peroxide 

variable 91 

R02919 

L-Adrenaline + H2O + Oxygen <=> 3,4-

Dihydroxymandelaldehyde + Methylamine + Hydrogen 

peroxide 

variable 91 

R04025 
N-Acetylputrescine + H2O + Oxygen <=> N4-

Acetylaminobutanal + Ammonia + Hydrogen peroxide 
variable 91 

R04674 

N-Methylhistamine + H2O + Oxygen <=> 

Methylimidazole acetaldehyde + Ammonia + Hydrogen 

peroxide 

variable 91 

R04890 

3-Methoxytyramine + H2O + Oxygen <=> 3-Methoxy-4-

hydroxyphenylacetaldehyde + Hydrogen peroxide + 

Ammonia 

variable 91 

R04893 

L-Normetanephrine + H2O + Oxygen <=> 3-Methoxy-4-

hydroxyphenylglycolaldehyde + Ammonia + Hydrogen 

peroxide 

variable 91 

R04894 

L-Metanephrine + H2O + Oxygen <=> 3-Methoxy-4-

hydroxyphenylglycolaldehyde + Hydrogen peroxide + 

Methylamine 

variable 91 

R04907 
3-Hydroxykynurenamine + Oxygen <=> 4,8-

Dihydroxyquinoline + Ammonia + Hydrogen peroxide 
variable 91 

R04908 

5-Hydroxykynurenamine + H2O + Oxygen <=> 4,6-

Dihydroxyquinoline + Ammonia + Hydrogen peroxide + 

H2O 

variable 91 

R01051 ATP + D-Ribose <=> ADP + D-Ribose 5-phosphate variable 90 

R01058 
D-Glyceraldehyde 3-phosphate + NADP+ + H2O <=> 3-

Phospho-D-glycerate + NADPH + H+ 
variable 90 

R02750 
2-Deoxy-D-ribose 5-phosphate + ADP <=> Deoxyribose 

+ ATP 
variable 90 

R01990 
4-Guanidinobutanoate + H2O <=> 4-Aminobutanoate + 

Urea 
variable 89 
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R00026 Cellobiose + H2O <=> 2 beta-D-Glucose variable 88 

R02108 Starch + H2O <=> Dextrin + Starch variable 88 

R00475 
Glycolate + Oxygen <=> Glyoxylate + Hydrogen 

peroxide 
variable 87 

R02661 
2-Methylpropanoyl-CoA + Acceptor <=> 2-Methylprop-

2-enoyl-CoA + Reduced acceptor 
variable 85 

R03172 
(S)-2-Methylbutanoyl-CoA + Acceptor <=> 2-Methylbut-

2-enoyl-CoA + Reduced acceptor 
variable 85 

R04432 

Electron-transferring flavoprotein + Propanoyl-CoA <=> 

Reduced electron-transferring flavoprotein + Propenoyl-

CoA 

variable 85 

R07599 
3-Methyl-2-oxobutanoic acid + Thiamin diphosphate <=> 

2-Methyl-1-hydroxypropyl-ThPP + CO2 
variable 85 

R07600 

2-Methyl-1-hydroxypropyl-ThPP + Enzyme N6-

(lipoyl)lysine <=> [Dihydrolipoyllysine-residue (2-

methylpropanoyl)transferase] S-(2-

methylpropanoyl)dihydrolipoyllysine + Thiamin 

diphosphate 

variable 85 

R07601 
4-Methyl-2-oxopentanoate + Thiamin diphosphate <=> 3-

Methyl-1-hydroxybutyl-ThPP + CO2 
variable 85 

R07602 

3-Methyl-1-hydroxybutyl-ThPP + Enzyme N6-

(lipoyl)lysine <=> [Dihydrolipoyllysine-residue (2-

methylpropanoyl)transferase] S-(3-

methylbutanoyl)dihydrolipoyllysine + Thiamin 

diphosphate 

variable 85 

R07603 
(S)-3-Methyl-2-oxopentanoic acid + Thiamin diphosphate 

<=> 2-Methyl-1-hydroxybutyl-ThPP + CO2 
variable 85 

R07604 

2-Methyl-1-hydroxybutyl-ThPP + Enzyme N6-

(lipoyl)lysine <=> [Dihydrolipoyllysine-residue (2-

methylpropanoyl)transferase] S-(2-

methylbutanoyl)dihydrolipoyllysine + Thiamin 

diphosphate 

variable 85 

R10996 
2-Oxobutanoate + Thiamin diphosphate <=> 2-(alpha-

Hydroxypropyl)thiamine diphosphate + CO2 
variable 85 

R10997 

2-(alpha-Hydroxypropyl)thiamine diphosphate + Enzyme 

N6-(lipoyl)lysine <=> Enzyme N6-(S-

propyldihydrolipoyl)lysine + Thiamin diphosphate 

variable 85 

R02662 

2-Methylpropanoyl-CoA + Enzyme N6-

(dihydrolipoyl)lysine <=> CoA + [Dihydrolipoyllysine-

residue (2-methylpropanoyl)transferase] S-(2-

methylpropanoyl)dihydrolipoyllysine 

variable 84 

R03145 
Pyruvate + Ubiquinone + H2O <=> Acetate + Ubiquinol 

+ CO2 
variable 84 

R03174 

(S)-2-Methylbutanoyl-CoA + Enzyme N6-

(dihydrolipoyl)lysine <=> CoA + [Dihydrolipoyllysine-

residue (2-methylpropanoyl)transferase] S-(2-

methylbutanoyl)dihydrolipoyllysine 

variable 84 

R03296 Hydroxyproline <=> cis-4-Hydroxy-D-proline variable 84 

R04097 

3-Methylbutanoyl-CoA + Enzyme N6-

(dihydrolipoyl)lysine <=> CoA + [Dihydrolipoyllysine-

residue (2-methylpropanoyl)transferase] S-(3-

methylbutanoyl)dihydrolipoyllysine 

variable 84 

R10998 
Propanoyl-CoA + Enzyme N6-(dihydrolipoyl)lysine <=> 

CoA + Enzyme N6-(S-propyldihydrolipoyl)lysine 
variable 84 

R01357 
ATP + Acetoacetate + CoA <=> AMP + Diphosphate + 

Acetoacetyl-CoA 
variable 82 

R01976 
(S)-3-Hydroxybutanoyl-CoA + NADP+ <=> Acetoacetyl-

CoA + NADPH + H+ 
variable 82 
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R02285 
N-Formimino-L-glutamate + H2O <=> L-Glutamate + 

Formamide 
variable 82 

R00196 
(S)-Lactate + 2 Ferricytochrome c <=> Pyruvate + 2 

Ferrocytochrome c + 2 H+ 
variable 81 

R00519 Formate + NAD+ <=> H+ + CO2 + NADH variable 81 

R00867 
ATP + D-Fructose <=> ADP + beta-D-Fructose 6-

phosphate 
variable 81 

R03920 
ATP + beta-D-Fructose <=> ADP + beta-D-Fructose 6-

phosphate 
variable 81 

R01639 ATP + D-Xylulose <=> ADP + D-Xylulose 5-phosphate variable 80 

R02032 
6-Phospho-D-gluconate + NAD+ <=> 6-Phospho-2-

dehydro-D-gluconate + NADH + H+ 
variable 78 

R02034 
6-Phospho-D-gluconate + NADP+ <=> 6-Phospho-2-

dehydro-D-gluconate + NADPH + H+ 
variable 78 

R02658 
ATP + 2-Keto-D-gluconic acid <=> ADP + 6-Phospho-2-

dehydro-D-gluconate 
variable 78 

R04379 
5-Carboxymethyl-2-hydroxymuconate <=> 5-Carboxy-2-

oxohept-3-enedioate 
variable 78 

R00671 L-Ornithine <=> L-Proline + Ammonia variable 77 

R00868 Mannitol + NAD+ <=> D-Fructose + NADH + H+ variable 77 

R01741 
D-Gluconic acid + FAD <=> 2-Keto-D-gluconic acid + 

FADH2 
variable 76 

R04424 
2-Methylcitrate <=> (Z)-But-2-ene-1,2,3-tricarboxylate + 

H2O 
variable 76 

R02262 
L-Fuculose 1-phosphate <=> Glycerone phosphate + (S)-

Lactaldehyde 
variable 74 

R01424 Hippurate + H2O <=> Benzoate + Glycine variable 73 

R01745 
D-Glycerate + NAD+ <=> 2-Hydroxy-3-oxopropanoate + 

NADH + H+ 
variable 73 

R01747 
D-Glycerate + NADP+ <=> 2-Hydroxy-3-oxopropanoate 

+ NADPH + H+ 
variable 73 

R02279 
5-Dehydro-4-deoxy-D-glucarate <=> 2,5-

Dioxopentanoate + H2O + CO2 
variable 71 

R03460 

Phosphoenolpyruvate + Shikimate 3-phosphate <=> 

Orthophosphate + 5-O-(1-Carboxyvinyl)-3-

phosphoshikimate 

variable 71 

R05608 
D-Galactarate <=> 5-Dehydro-4-deoxy-D-glucarate + 

H2O 
variable 71 

R01001 
L-Cystathionine + H2O <=> L-Cysteine + Ammonia + 2-

Oxobutanoate 
variable 70 

R01152 
N-Carbamoylputrescine + H2O <=> Putrescine + CO2 + 

Ammonia 
variable 70 

R01171 
Butanoyl-CoA + NAD+ <=> Crotonoyl-CoA + NADH + 

H+ 
variable 70 

R01528 
6-Phospho-D-gluconate + NADP+ <=> D-Ribulose 5-

phosphate + CO2 + NADPH + H+ 
variable 70 

R02752 D-Glucarate <=> 5-Dehydro-4-deoxy-D-glucarate + H2O variable 70 

R08056 D-Glucarate <=> 2-Dehydro-3-deoxy-D-glucarate + H2O variable 70 

R10221 
6-Phospho-D-gluconate + NAD+ <=> D-Ribulose 5-

phosphate + CO2 + NADH + H+ 
variable 70 

R00888 
GDP-mannose <=> GDP-4-dehydro-6-deoxy-D-mannose 

+ H2O 
variable 69 

R02203 
L-Pipecolate + NADP+ <=> Delta1-Piperideine-2-

carboxylate + NADPH + H+ 
variable 69 

R05198 
Ethanol + 2 Ferricytochrome c <=> 2 Ferrocytochrome c 

+ Acetaldehyde + 2 H+ 
variable 69 
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R08197 
L-Arginine + Pyruvate <=> 5-Guanidino-2-oxopentanoate 

+ L-Alanine 
variable 68 

R09837 
2-(1,2-Epoxy-1,2-dihydrophenyl)acetyl-CoA <=> 2-

Oxepin-2(3H)-ylideneacetyl-CoA 
variable 68 

R09839 
3-Oxo-5,6-dehydrosuberyl-CoA + CoA <=> 5-Carboxy-

2-pentenoyl-CoA + Acetyl-CoA 
variable 68 

R09081 Carboxyspermidine <=> Spermidine + CO2 variable 67 

R09082 Carboxynorspermidine <=> Norspermidine + CO2 variable 67 

R00698 
L-Phenylalanine + Oxygen <=> 2-Phenylacetamide + 

CO2 
variable 66 

R01647 
Succinate semialdehyde + Pyruvate <=> 2,4-

Dihydroxyhept-2-enedioate 
variable 66 

R00237 (3S)-Citramalyl-CoA <=> Acetyl-CoA + Pyruvate variable 64 

R00420 
UDP-N-acetyl-alpha-D-glucosamine <=> UDP-N-acetyl-

D-mannosamine 
variable 64 

R01287 
O-Acetyl-L-homoserine + Hydrogen sulfide <=> L-

Homocysteine + Acetate 
variable 64 

R02491 (3S)-Citramalyl-CoA <=> Itaconyl-CoA + H2O variable 64 

R02855 (R)-Acetoin + NAD+ <=> Diacetyl + NADH + H+ variable 64 

R02946 
(R,R)-Butane-2,3-diol + NAD+ <=> (R)-Acetoin + 

NADH + H+ 
variable 64 

R03154 
Succinyl-CoA + (S)-2-Methylmalate <=> Succinate + 

(3S)-Citramalyl-CoA 
variable 62 

R01602 alpha-D-Glucose <=> beta-D-Glucose variable 61 

R10619 D-Galactose <=> alpha-D-Galactose variable 61 

R01873 Quinate + PQQ <=> PQQH2 + 3-Dehydroquinate variable 60 

R02415 Shikimate + PQQ <=> 3-Dehydroshikimate + PQQH2 variable 60 

R02536 
Phenylacetaldehyde + NAD+ + H2O <=> Phenylacetic 

acid + NADH + H+ 
variable 60 

R00679 
L-Tryptophan + Oxygen <=> (Indol-3-yl)acetamide + 

CO2 + H2O 
variable 59 

R07658 
UDP-glucuronate + NAD+ <=> UDP-L-Ara4O + CO2 + 

NADH + H+ 
variable 59 

R07660 
10-Formyltetrahydrofolate + UDP-L-Ara4N <=> 

Tetrahydrofolate + UDP-L-Ara4FN 
variable 59 

R07661 

UDP-L-Ara4FN + di-trans,poly-cis-Undecaprenyl 

phosphate <=> Undecaprenyl phosphate alpha-L-Ara4FN 

+ UDP 

variable 59 

R10841 
D-Galacturonate + NAD+ <=> D-Galactaro-1,5-lactone + 

NADH + H+ 
variable 59 

R04858 
S-Adenosyl-L-methionine + DNA cytosine <=> S-

Adenosyl-L-homocysteine + DNA 5-methylcytosine 
variable 58 

R01874 
D-Cysteine + H2O <=> Hydrogen sulfide + Ammonia + 

Pyruvate 
variable 57 

R02059 
N-Acetyl-D-glucosamine 6-phosphate + H2O <=> D-

Glucosamine 6-phosphate + Acetate 
variable 57 

R05199 

Protein N(pi)-phospho-L-histidine + N-Acetyl-D-

glucosamine <=> Protein histidine + N-Acetyl-D-

glucosamine 6-phosphate 

variable 57 

R09668 
5'-S-Methyl-5'-thioinosine + Orthophosphate <=> 

Hypoxanthine + S-Methyl-5-thio-D-ribose 1-phosphate 
variable 57 

R03178 
5-Guanidino-2-oxopentanoate <=> 4-Guanidinobutanal + 

CO2 
variable 55 

R03303 
3,4-Dihydroxyphenylacetate + Oxygen <=> 2-Hydroxy-5-

carboxymethylmuconate semialdehyde 
variable 55 
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R04380 
5-Carboxy-2-oxohept-3-enedioate <=> 2-Hydroxyhepta-

2,4-dienedioate + CO2 
variable 55 

R04418 

2-Hydroxy-5-carboxymethylmuconate semialdehyde + 

NAD+ + H2O <=> 5-Carboxymethyl-2-hydroxymuconate 

+ NADH + H+ 

variable 55 

R01920 
S-Adenosylmethioninamine + Putrescine <=> 5'-

Methylthioadenosine + Spermidine 
variable 54 

R02869 
S-Adenosylmethioninamine + Spermidine <=> 5'-

Methylthioadenosine + Spermine 
variable 54 

R00178 
S-Adenosyl-L-methionine + H+ <=> S-

Adenosylmethioninamine + CO2 
variable 52 

R01520 
beta-D-Glucose + NAD+ <=> D-Glucono-1,5-lactone + 

NADH + H+ 
variable 52 

R01521 
beta-D-Glucose + NADP+ <=> D-Glucono-1,5-lactone + 

NADPH + H+ 
variable 52 

R00891 L-Serine + Hydrogen sulfide <=> L-Cysteine + H2O variable 49 

R01290 L-Serine + L-Homocysteine <=> L-Cystathionine + H2O variable 49 

R00465 Glycolate + NADP+ <=> Glyoxylate + NADPH + H+ variable 48 

R01286 
L-Cystathionine + H2O <=> L-Homocysteine + 

Ammonia + Pyruvate 
variable 48 

R01392 
D-Glycerate + NADP+ <=> Hydroxypyruvate + NADPH 

+ H+ 
variable 48 

R07392 
S-Methyl-5-thio-D-ribulose 1-phosphate <=> 2,3-Diketo-

5-methylthiopentyl-1-phosphate + H2O 
variable 48 

R00315 ATP + Acetate <=> ADP + Acetyl phosphate variable 47 

R01353 ATP + Propanoate <=> ADP + Propanoyl phosphate variable 47 

R02539 
ATP + Phenylacetic acid + CoA <=> AMP + Diphosphate 

+ Phenylacetyl-CoA 
variable 47 

R00221 D-Serine <=> Pyruvate + Ammonia variable 46 

R00654 
L-Methionine + H2O <=> Methanethiol + Ammonia + 2-

Oxobutanoate 
variable 46 

R00988 Formylanthranilate + H2O <=> Formate + Anthranilate variable 46 

R01959 
L-Formylkynurenine + H2O <=> Formate + L-

Kynurenine 
variable 46 

R04911 
5-Hydroxy-N-formylkynurenine + H2O <=> 5-

Hydroxykynurenine + Formate 
variable 46 

R07395 

2,3-Diketo-5-methylthiopentyl-1-phosphate + H2O <=> 

1,2-Dihydroxy-5-(methylthio)pent-1-en-3-one + 

Orthophosphate 

variable 46 

R00750 
Acetaldehyde + Pyruvate <=> 4-Hydroxy-2-

oxopentanoate 
variable 45 

R00987 L-Kynurenine + H2O <=> Anthranilate + L-Alanine variable 45 

R02668 
3-Hydroxy-L-kynurenine + H2O <=> 3-

Hydroxyanthranilate + L-Alanine 
variable 45 

R03936 
L-Formylkynurenine + H2O <=> Formylanthranilate + L-

Alanine 
variable 45 

R00678 L-Tryptophan + Oxygen <=> L-Formylkynurenine variable 44 

R01064 
2-Dehydro-3-deoxy-6-phospho-D-galactonate <=> 

Pyruvate + D-Glyceraldehyde 3-phosphate 
variable 43 

R03387 
ATP + 2-Dehydro-3-deoxy-D-galactonate <=> ADP + 2-

Dehydro-3-deoxy-6-phospho-D-galactonate 
variable 43 

R01085 3-Fumarylpyruvate + H2O <=> Fumarate + Pyruvate variable 42 

R01183 
myo-Inositol + NAD+ <=> 2,4,6/3,5-

Pentahydroxycyclohexanone + NADH + H+ 
variable 42 
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R03033 
D-Galactonate <=> 2-Dehydro-3-deoxy-D-galactonate + 

H2O 
variable 42 

R07659 
UDP-L-Ara4O + L-Glutamate <=> UDP-L-Ara4N + 2-

Oxoglutarate 
variable 42 

R09951 
1D-chiro-Inositol + NAD+ <=> 1-Keto-D-chiro-inositol + 

NADH + H+ 
variable 42 

R01541 
ATP + 2-Dehydro-3-deoxy-D-gluconate <=> ADP + 2-

Dehydro-3-deoxy-6-phospho-D-gluconate 
variable 41 

R08503 
5-Deoxy-D-glucuronate <=> 2-Deoxy-5-keto-D-gluconic 

acid 
variable 41 

R00491 L-Aspartate <=> D-Aspartate variable 40 

R02782 
2,4,6/3,5-Pentahydroxycyclohexanone <=> 3D-3,5/4-

Trihydroxycyclohexane-1,2-dione + H2O 
variable 40 

R03397 
GDP-6-deoxy-D-mannose + NAD+ <=> GDP-4-dehydro-

6-deoxy-D-mannose + NADH + H+ 
variable 40 

R03399 
GDP-6-deoxy-D-mannose + NADP+ <=> GDP-4-

dehydro-6-deoxy-D-mannose + NADPH + H+ 
variable 40 

R05661 
2-Deoxy-5-keto-D-gluconic acid + ATP <=> 2-Deoxy-5-

keto-D-gluconic acid 6-phosphate + ADP 
variable 40 

R08603 
3D-3,5/4-Trihydroxycyclohexane-1,2-dione + H2O <=> 

5-Deoxy-D-glucuronate 
variable 40 

R00774 
ATP + Urea + HCO3- <=> ADP + Orthophosphate + 

Urea-1-carboxylate 
variable 39 

R03371 
Phytic acid + H2O <=> D-myo-Inositol 1,2,4,5,6-

pentakisphosphate + Orthophosphate 
variable 39 

R08940 

Acyl-[acyl-carrier protein] + S-Adenosyl-L-methionine 

<=> Acyl-carrier protein + 5'-Methylthioadenosine + N-

Acyl-L-homoserine lactone 

variable 39 

R02527 
(R)-Lactaldehyde + NAD+ <=> Methylglyoxal + NADH 

+ H+ 
variable 38 

R02698 
4-Hydroxyphenylacetate + Oxygen + NADH + H+ <=> 

3,4-Dihydroxyphenylacetate + NAD+ + H2O 
variable 38 

R00215 (R)-Malate + NAD+ <=> Pyruvate + CO2 + NADH + H+ variable 36 

R02545 
meso-Tartaric acid + NAD+ <=> 2-Hydroxy-3-

oxosuccinate + NADH + H+ 
variable 36 

R06180 
(R,R)-Tartaric acid + NAD+ <=> 2-Hydroxy-3-

oxosuccinate + NADH + H+ 
variable 36 

R00010 alpha,alpha-Trehalose + H2O <=> 2 D-Glucose variable 35 

R09838 
Phenylacetyl-CoA + Oxygen + NADPH + H+ <=> 2-(1,2-

Epoxy-1,2-dihydrophenyl)acetyl-CoA + H2O + NADP+ 
variable 35 

R09952 
1-Keto-D-chiro-inositol <=> 2,4,6/3,5-

Pentahydroxycyclohexanone 
variable 35 

R01385 UDP-glucuronate <=> UDP-D-galacturonate variable 34 

R01519 D-Glucono-1,5-lactone + H2O <=> D-Gluconic acid variable 34 

R02601 
2-Hydroxy-2,4-pentadienoate + H2O <=> 4-Hydroxy-2-

oxopentanoate 
variable 34 

R02933 L-Gulono-1,4-lactone + H2O <=> L-Gulonate variable 34 

R03299 
3-Hydroxyphenylacetate + Oxygen + NADH + H+ <=> 

3,4-Dihydroxyphenylacetate + NAD+ + H2O 
variable 34 

R08926 
6-Deoxy-L-galactose + NAD+ <=> L-Fucono-1,5-lactone 

+ NADH + H+ 
variable 34 

R09820 

3-Oxo-5,6-dehydrosuberyl-CoA semialdehyde + NADP+ 

+ H2O <=> 3-Oxo-5,6-dehydrosuberyl-CoA + NADPH + 

H+ 

variable 34 
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R09836 
2-Oxepin-2(3H)-ylideneacetyl-CoA + H2O <=> 3-Oxo-

5,6-dehydrosuberyl-CoA semialdehyde 
variable 34 

R01157 Agmatine + H2O <=> Putrescine + Urea variable 32 

R00214 (S)-Malate + NAD+ <=> Pyruvate + CO2 + NADH + H+ variable 31 

R01914 
Spermidine + Oxygen + H2O <=> 1,3-Diaminopropane + 

4-Aminobutyraldehyde + Hydrogen peroxide 
variable 31 

R01915 
Spermidine + Acceptor + H2O <=> 1,3-Diaminopropane 

+ 4-Aminobutyraldehyde + Reduced acceptor 
variable 31 

R03332 
1-Phosphatidyl-D-myo-inositol + H2O <=> Inositol 1-

phosphate + 1,2-Diacyl-sn-glycerol 
variable 31 

R00317 Acetyl phosphate + H2O <=> Acetate + Orthophosphate variable 30 

R01566 Creatine + H2O <=> Sarcosine + Urea variable 30 

R02397 
4-Trimethylammoniobutanoate + 2-Oxoglutarate + 

Oxygen <=> Carnitine + Succinate + CO2 
variable 30 

R02889 UDP-glucose + Cellulose <=> UDP + Cellulose variable 30 

R07675 
L-Galactose + NAD+ <=> L-Galactono-1,4-lactone + 

NADH + H+ 
variable 30 

R09796 (R)-Lactate <=> Methylglyoxal + H2O variable 30 

R00228 
Acetaldehyde + CoA + NAD+ <=> Acetyl-CoA + NADH 

+ H+ 
variable 29 

R00837 
H2O + alpha,alpha'-Trehalose 6-phosphate <=> D-

Glucose + D-Glucose 6-phosphate 
variable 29 

R00878 alpha-D-Glucose <=> D-Fructose variable 29 

R00919 
Propanoyl-CoA + NADP+ <=> Propenoyl-CoA + 

NADPH + H+ 
variable 29 

R00956 
CTP + D-Glucose 1-phosphate <=> Diphosphate + CDP-

glucose 
variable 29 

R01172 
Butanal + CoA + NAD+ <=> Butanoyl-CoA + NADH + 

H+ 
variable 29 

R01432 D-Xylose <=> D-Xylulose variable 29 

R02426 
CDP-glucose <=> CDP-4-dehydro-6-deoxy-D-glucose + 

H2O 
variable 29 

R02780 

alpha,alpha-Trehalose + Protein N(pi)-phospho-L-

histidine <=> alpha,alpha'-Trehalose 6-phosphate + 

Protein histidine 

variable 29 

R00355 
L-Aspartate + 2-Oxoglutarate <=> Oxaloacetate + L-

Glutamate 
variable 28 

R00896 
L-Cysteine + 2-Oxoglutarate <=> Mercaptopyruvate + 

Glutamate 
variable 28 

R01087 Maleic acid <=> Fumarate variable 28 

R01154 Acetyl-CoA + Putrescine <=> CoA + N-Acetylputrescine variable 28 

R02433 
L-Cysteate + 2-Oxoglutarate <=> 3-Sulfopyruvate + L-

Glutamate 
variable 28 

R02619 
3-Sulfino-L-alanine + 2-Oxoglutarate <=> 3-

Sulfinylpyruvate + L-Glutamate 
variable 28 

R05052 
L-erythro-4-Hydroxyglutamate + 2-Oxoglutarate <=> 

(4R)-4-Hydroxy-2-oxoglutarate + L-Glutamate 
variable 28 

R00999 
O-Succinyl-L-homoserine + H2O <=> 2-Oxobutanoate + 

Succinate + Ammonia 
variable 26 

R02656 2,5-Dihydroxybenzoate + Oxygen <=> Maleylpyruvate variable 26 

R03217 
O-Acetyl-L-homoserine + L-Cysteine <=> L-

Cystathionine + Acetate 
variable 26 

R03260 
O-Succinyl-L-homoserine + L-Cysteine <=> L-

Cystathionine + Succinate 
variable 26 
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R05772 
Feruloyl-CoA + H2O <=> 4-Hydroxy-3-methoxyphenyl-

beta-hydroxypropanoyl-CoA 
variable 26 

R05773 

4-Hydroxy-3-methoxyphenyl-beta-hydroxypropanoyl-

CoA <=> 4-Hydroxy-3-methoxy-benzaldehyde + Acetyl-

CoA 

variable 26 

R00802 Sucrose + H2O <=> beta-D-Fructose + alpha-D-Glucose variable 25 

R00908 
beta-Alanine + 2-Oxoglutarate <=> 3-Oxopropanoate + 

L-Glutamate 
variable 25 

R00005 Urea-1-carboxylate + H2O <=> 2 CO2 + 2 Ammonia variable 24 

R01540 D-Altronate <=> 2-Dehydro-3-deoxy-D-gluconate + H2O variable 24 

R03093 
3-Indoleacetonitrile + 2 H2O <=> Indole-3-acetate + 

Ammonia 
variable 24 

R06786 

3-(3-Hydroxyphenyl)propanoic acid + Oxygen + NADH 

+ H+ <=> 3-(2,3-Dihydroxyphenyl)propanoate + H2O + 

NAD+ 

variable 23 

R06787 
trans-3-Hydroxycinnamate + Oxygen + NADH + H+ <=> 

trans-2,3-Dihydroxycinnamate + H2O + NAD+ 
variable 23 

R00203 
Methylglyoxal + NAD+ + H2O <=> Pyruvate + NADH + 

H+ 
variable 22 

R00524 Formamide + H2O <=> Formate + Ammonia variable 22 

R01066 
2-Deoxy-D-ribose 5-phosphate <=> D-Glyceraldehyde 3-

phosphate + Acetaldehyde 
variable 22 

R01333 
Glycolaldehyde + NAD+ + H2O <=> Glycolate + NADH 

+ H+ 
variable 22 

R01446 
(S)-Lactaldehyde + NAD+ + H2O <=> (S)-Lactate + 

NADH + H+ 
variable 22 

R01884 Creatinine + H2O <=> Creatine variable 22 

R01621 
D-Xylulose 5-phosphate + Orthophosphate <=> Acetyl 

phosphate + D-Glyceraldehyde 3-phosphate + H2O 
variable 21 

R03187 
ATP + N-Methylhydantoin + 2 H2O <=> ADP + 

Orthophosphate + N-Carbamoylsarcosine 
variable 21 

R00731 
L-Tyrosine + Oxygen <=> 3,4-Dihydroxy-L-

phenylalanine + H2O 
variable 20 

R00801 Sucrose + H2O <=> D-Fructose + D-Glucose variable 20 

R02078 

3,4-Dihydroxy-L-phenylalanine + L-Tyrosine + Oxygen 

<=> Dopaquinone + 3,4-Dihydroxy-L-phenylalanine + 

H2O 

variable 20 

R02410 Raffinose + H2O <=> Melibiose + D-Fructose variable 20 

R03635 
Stachyose + H2O <=> D-Gal alpha 1-6D-Gal alpha 1-6D-

Glucose + D-Fructose 
variable 20 

R03688 L-Fuconate <=> 2-Dehydro-3-deoxy-L-fuconate + H2O variable 20 

R03921 
Sucrose 6-phosphate + H2O <=> D-Fructose + D-Glucose 

6-phosphate 
variable 20 

R04188 
L-3-Aminoisobutanoate + 2-Oxoglutarate <=> (S)-

Methylmalonate semialdehyde + L-Glutamate 
variable 20 

R04884 
2 5,6-Dihydroxyindole + Oxygen <=> 2 Indole-5,6-

quinone + 2 H2O 
variable 20 

R05140 D-Glucose + Levan <=> Sucrose + Levan variable 20 

R00342 (S)-Malate + NAD+ <=> Oxaloacetate + NADH + H+ variable 19 

R00421 

UDP-N-acetyl-alpha-D-glucosamine + 2 NAD+ + H2O 

<=> UDP-N-acetyl-2-amino-2-deoxy-D-glucuronate + 2 

NADH + 2 H+ 

variable 19 

R01016 
Glycerone phosphate <=> Methylglyoxal + 

Orthophosphate 
variable 19 
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R07136 
(2R)-3-Sulfolactate + NAD+ <=> 3-Sulfopyruvate + 

NADH + H+ 
variable 19 

R00269 
2-Oxoglutaramate + H2O <=> 2-Oxoglutarate + 

Ammonia 
variable 18 

R00348 2-Oxosuccinamate + H2O <=> Oxaloacetate + Ammonia variable 18 

R00505 
UDP-alpha-D-galactose <=> UDP-alpha-D-

galactofuranose 
variable 18 

R00525 
N-Formyl-L-glutamate + H2O <=> Formate + L-

Glutamate 
variable 18 

R01777 
Succinyl-CoA + L-Homoserine <=> CoA + O-Succinyl-

L-homoserine 
variable 18 

R09009 UDP-L-arabinose <=> UDP-L-arabinofuranose variable 18 

R00194 
S-Adenosyl-L-homocysteine + H2O <=> S-Ribosyl-L-

homocysteine + Adenine 
variable 17 

R00922 
2-Methyl-3-oxopropanoate + CoA + NAD+ <=> 

Propanoyl-CoA + CO2 + NADH + H+ 
variable 17 

R01401 
5'-Methylthioadenosine + H2O <=> Adenine + 5-

Methylthio-D-ribose 
variable 17 

R01542 
2-Dehydro-3-deoxy-D-gluconate + NAD+ <=> (4S)-4,6-

Dihydroxy-2,5-dioxohexanoate + NADH + H+ 
variable 17 

R01544 
2-Amino-2-deoxy-D-gluconate <=> 2-Dehydro-3-deoxy-

D-gluconate + Ammonia 
variable 17 

R02765 (R)-Methylmalonyl-CoA <=> (S)-Methylmalonyl-CoA variable 17 

R04217 
N2-Succinyl-L-ornithine + 2-Oxoglutarate <=> N-

Succinyl-L-glutamate 5-semialdehyde + L-Glutamate 
variable 17 

R07274 
O-Phospho-L-serine + Hydrogen sulfide <=> L-Cysteine 

+ Orthophosphate 
variable 17 

R09660 
5'-Methylthioadenosine + H2O <=> 5'-S-Methyl-5'-

thioinosine + Ammonia 
variable 17 

R09979 (2S)-Ethylmalonyl-CoA <=> (2R)-Ethylmalonyl-CoA variable 17 

R00306 Cellobiose + H2O <=> 2 D-Glucose variable 16 

R01859 
ATP + Propanoyl-CoA + HCO3- <=> ADP + 

Orthophosphate + (S)-Methylmalonyl-CoA 
variable 16 

R02025 
L-Methionine + Thioredoxin disulfide + H2O <=> L-

Methionine S-oxide + Thioredoxin 
variable 16 

R02112 Starch <=> Dextrin + Maltose variable 16 

R09030 D-Allose 6-phosphate <=> D-Allulose 6-phosphate variable 16 

R09097 
Propanal + NAD+ + CoA <=> Propanoyl-CoA + NADH 

+ H+ 
variable 16 

R00008 Parapyruvate <=> 2 Pyruvate variable 15 

R00449 
L-Lysine + Oxygen <=> 5-Aminopentanamide + CO2 + 

H2O 
variable 15 

R02273 
5-Aminopentanamide + H2O <=> 5-Aminopentanoate + 

Ammonia 
variable 15 

R02522 
L-Arabinonate <=> 2-Dehydro-3-deoxy-L-arabinonate + 

H2O 
variable 15 

R04020 (Indol-3-yl)acetamide <=> 3-Indoleacetonitrile + H2O variable 15 

R06979 N(gamma)-Acetyldiaminobutyrate <=> H2O + Ectoine variable 15 

R10851 
L-Allothreonine + NADP+ <=> L-2-Amino-3-

oxobutanoic acid + NADPH + H+ 
variable 15 

R00028 Maltose + H2O <=> 2 D-Glucose variable 14 

R00448 
L-Lysine + Oxygen + NADPH + H+ <=> N6-Hydroxy-L-

lysine + NADP+ + H2O 
variable 14 

R02737 
UDP-glucose + alpha-D-Glucose 6-phosphate <=> UDP + 

alpha,alpha'-Trehalose 6-phosphate 
variable 14 
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R02778 
alpha,alpha'-Trehalose 6-phosphate + H2O <=> 

alpha,alpha-Trehalose + Orthophosphate 
variable 14 

R03317 

UDP-N-acetyl-D-mannosamine + 2 NAD+ + H2O <=> 

UDP-N-acetyl-D-mannosaminouronate + 2 NADH + 2 

H+ 

variable 14 

R03774 
L-Rhamnonate <=> 2-Dehydro-3-deoxy-L-rhamnonate + 

H2O 
variable 14 

R05692 
GDP-L-fucose + NADP+ <=> GDP-4-dehydro-6-deoxy-

D-mannose + NADPH + H+ 
variable 14 

R10140 

UDP-N-acetyl-2-amino-2-deoxy-D-glucuronate + NAD+ 

<=> UDP-2-acetamido-2-deoxy-alpha-D-ribo-hex-3-

uluronate + NADH + H+ 

variable 14 

R10141 

UDP-2-acetamido-2-deoxy-alpha-D-ribo-hex-3-uluronate 

+ L-Glutamate <=> UDP-2-acetamido-3-amino-2,3-

dideoxy-alpha-D-glucuronate + 2-Oxoglutarate 

variable 14 

R01804 
N-Acetylneuraminate + Orthophosphate <=> N-Acetyl-D-

mannosamine + Phosphoenolpyruvate + H2O 
variable 13 

R02427 D-Xylonolactone + H2O <=> D-Xylonate variable 13 

R03889 
2-Aminomuconate semialdehyde + NAD+ + H2O <=> 2-

Aminomuconate + H+ + NADH 
variable 13 

R04435 

N-Acetylneuraminate 9-phosphate + Orthophosphate <=> 

N-Acetyl-D-mannosamine 6-phosphate + 

Phosphoenolpyruvate + H2O 

variable 13 

R10100 

Acetyl-CoA + UDP-2-acetamido-3-amino-2,3-dideoxy-

alpha-D-glucuronate <=> CoA + UDP-2,3-diacetamido-

2,3-dideoxy-alpha-D-glucuronate 

variable 13 

R01728 
Prephenate + NAD+ <=> 3-(4-Hydroxyphenyl)pyruvate + 

CO2 + NADH + H+ 
variable 12 

R02280 
1-Pyrroline-4-hydroxy-2-carboxylate + H2O <=> 2,5-

Dioxopentanoate + Ammonia 
variable 12 

R02886 Cellulose + H2O <=> Cellulose + Cellobiose variable 12 

R09697 

UDP-N-acetyl-alpha-D-glucosamine <=> UDP-2-

acetamido-2,6-dideoxy-beta-L-arabino-hexos-4-ulose + 

H2O 

variable 12 

R10178 
4-Aminobutanoate + Pyruvate <=> Succinate 

semialdehyde + L-Alanine 
variable 12 

R06782 
Phenylpropanoate + Oxygen + NADH + H+ <=> cis-3-

(Carboxy-ethyl)-3,5-cyclo-hexadiene-1,2-diol + NAD+ 
variable 11 

R06783 
trans-Cinnamate + Oxygen + NADH + H+ <=> cis-3-(3-

Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol + NAD+ 
variable 11 

R00339 (R,R)-Tartaric acid <=> Oxaloacetate + H2O variable 10 

R00418 
UDP-N-acetyl-alpha-D-glucosamine <=> UDP-N-acetyl-

D-galactosamine 
variable 10 

R01206 Chitin + H2O <=> N-Acetyl-D-glucosamine + Chitin variable 10 

R02334 Chitin + H2O <=> Chitobiose + Chitin variable 10 

R02928 Galactitol + NAD+ <=> D-Tagatose + NADH + H+ variable 10 

R10715 
(S)-Lactaldehyde + NAD+ <=> Methylglyoxal + NADH 

+ H+ 
variable 10 

R10717 
Propane-1,2-diol + NAD+ <=> Hydroxyacetone + NADH 

+ H+ 
variable 10 

R00197 
(R)-Lactate + 2 Ferricytochrome c <=> Pyruvate + 2 

Ferrocytochrome c + 2 H+ 
variable 9 

R06978 
L-2,4-Diaminobutanoate + Acetyl-CoA <=> N(gamma)-

Acetyldiaminobutyrate + CoA 
variable 9 
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R00396 
L-Alanine + NAD+ + H2O <=> Pyruvate + Ammonia + 

NADH + H+ 
variable 8 

R00875 D-Sorbitol + NAD+ <=> D-Fructose + NADH + H+ variable 8 

R01094 
D-Galactose + NAD+ <=> D-Galactono-1,4-lactone + 

NADH + H+ 
variable 8 

R01097 
D-Galactose + NADP+ <=> D-Galactono-1,4-lactone + 

NADPH + H+ 
variable 8 

R01896 Xylitol + NAD+ <=> D-Xylulose + NADH + H+ variable 8 

R00551 L-Arginine + H2O <=> L-Ornithine + Urea variable 7 

R00565 
L-Arginine + Glycine <=> L-Ornithine + 

Guanidinoacetate 
variable 7 

R00830 
Succinyl-CoA + Glycine <=> 5-Aminolevulinate + CoA 

+ CO2 
variable 7 

R01167 L-Histidine <=> Histamine + CO2 variable 7 

R01977 
(R)-3-Hydroxybutanoyl-CoA + NADP+ <=> Acetoacetyl-

CoA + NADPH + H+ 
variable 7 

R01978 
(S)-3-Hydroxy-3-methylglutaryl-CoA + CoA <=> Acetyl-

CoA + H2O + Acetoacetyl-CoA 
variable 7 

R01989 
L-Arginine + 4-Aminobutanoate <=> L-Ornithine + 4-

Guanidinobutanoate 
variable 7 

R02611 
Phenylethyl alcohol + NAD+ <=> Phenylacetaldehyde + 

NADH + H+ 
variable 7 

R03236 
D-Tagatose 6-phosphate + ATP <=> D-Tagatose 1,6-

bisphosphate + ADP 
variable 7 

R03237 
CTP + D-Tagatose 6-phosphate <=> CDP + D-Tagatose 

1,6-bisphosphate 
variable 7 

R03238 
UTP + D-Tagatose 6-phosphate <=> UDP + D-Tagatose 

1,6-bisphosphate 
variable 7 

R03239 
ITP + D-Tagatose 6-phosphate <=> IDP + D-Tagatose 

1,6-bisphosphate 
variable 7 

R04304 
4-Hydroxyphenylethanol + NAD+ <=> 4-

Hydroxyphenylacetaldehyde + NADH + H+ 
variable 7 

R04323 
2-Amino-3-carboxymuconate semialdehyde <=> 2-

Aminomuconate semialdehyde + CO2 
variable 7 

R04779 
ATP + beta-D-Fructose 6-phosphate <=> ADP + beta-D-

Fructose 1,6-bisphosphate 
variable 7 

R07650 L-2,4-Diaminobutanoate <=> 1,3-Diaminopropane + CO2 variable 7 

R09600 

UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronate 

<=> UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-

mannuronate 

variable 7 

R00685 L-Tryptophan <=> Tryptamine + CO2 variable 6 

R00699 L-Phenylalanine <=> Phenethylamine + CO2 variable 6 

R00736 L-Tyrosine <=> Tyramine + CO2 variable 6 

R01429 D-Xylose + NAD+ <=> D-Xylonolactone + NADH + H+ variable 6 

R01627 3-Dehydroshikimate <=> 3,4-Dihydroxybenzoate + H2O variable 6 

R02080 3,4-Dihydroxy-L-phenylalanine <=> Dopamine + CO2 variable 6 

R02603 
2-Hydroxy-2,4-pentadienoate + Succinate <=> 2-

Hydroxy-6-oxonona-2,4-diene-1,9-dioate + H2O 
variable 6 

R02701 5-Hydroxy-L-tryptophan <=> Serotonin + CO2 variable 6 

R04909 
5-Hydroxykynurenamine + CO2 <=> 5-

Hydroxykynurenine 
variable 6 

R06789 
2-Hydroxy-6-ketononatrienedioate + H2O <=> 2-

Hydroxy-2,4-pentadienoate + Fumarate 
variable 6 
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R07409 
Choline + Oxygen + 2 Reduced ferredoxin + 2 H+ <=> 

Betaine aldehyde + 2 H2O + 2 Oxidized ferredoxin 
variable 6 

R10060 
2 S-Adenosyl-L-methionine + Glycine <=> 2 S-

Adenosyl-L-homocysteine + N,N-Dimethylglycine 
variable 6 

R00261 L-Glutamate <=> 4-Aminobutanoate + CO2 variable 5 

R00928 Acetyl-CoA + Propanoate <=> Acetate + Propanoyl-CoA variable 5 

R01449 
Lactoyl-CoA + Propanoate <=> (S)-Lactate + Propanoyl-

CoA 
variable 5 

R02454 
D-Mannonate + NAD+ <=> D-Fructuronate + NADH + 

H+ 
variable 5 

R02526 L-Arabinono-1,4-lactone + H2O <=> L-Arabinonate variable 5 

R03372 
Phytic acid + H2O <=> Inositol 1,2,3,5,6-

pentakisphosphate + Orthophosphate 
variable 5 

R03887 
2-Aminomuconate + H2O <=> gamma-Oxalocrotonate + 

Ammonia 
variable 5 

R03942 
L-Rhamnofuranose + NAD+ <=> L-Rhamnono-1,4-

lactone + NADH + H+ 
variable 5 

R04376 
3-(2,3-Dihydroxyphenyl)propanoate + Oxygen <=> 2-

Hydroxy-6-oxonona-2,4-diene-1,9-dioate 
variable 5 

R06788 
trans-2,3-Dihydroxycinnamate + Oxygen <=> 2-Hydroxy-

6-ketononatrienedioate 
variable 5 

R10788 
L-Rhamnose + NADP+ <=> L-Rhamnono-1,4-lactone + 

NADPH + H+ 
variable 5 

R10995 
L-Rhamnose + NAD+ <=> L-Rhamnono-1,4-lactone + 

NADH + H+ 
variable 5 

R01155 
Putrescine + 2-Oxoglutarate <=> 4-Aminobutyraldehyde 

+ L-Glutamate 
variable 4 

R01246 
L-Proline + NAD+ <=> 1-Pyrroline-2-carboxylate + 

NADH + H+ 
variable 4 

R01249 
L-Proline + NADP+ <=> 1-Pyrroline-2-carboxylate + 

NADPH + H+ 
variable 4 

R01402 
5'-Methylthioadenosine + Orthophosphate <=> Adenine + 

S-Methyl-5-thio-D-ribose 1-phosphate 
variable 4 

R01934 
Homoisocitrate + NAD+ <=> 2-Oxoadipate + CO2 + 

NADH + H+ 
variable 4 

R01982 Pectate + H2O <=> D-Galacturonate + Pectate variable 4 

R02201 
L-Pipecolate + NAD+ <=> Delta1-Piperideine-2-

carboxylate + NADH + H+ 
variable 4 

R02360 Pectate + H2O <=> Digalacturonate + Pectate variable 4 

R03013 
L-Histidinol phosphate + H2O <=> L-Histidinol + 

Orthophosphate 
variable 4 

R05606 
D-Mannonate <=> 2-Dehydro-3-deoxy-D-gluconate + 

H2O 
variable 4 

R10848 L-Gulonate + NAD+ <=> D-Fructuronate + NADH + H+ variable 4 

R00305 
D-Glucose + Quinone <=> D-Glucono-1,5-lactone + 

Hydroquinone 
variable 3 

R00371 
Acetyl-CoA + Glycine <=> CoA + L-2-Amino-3-

oxobutanoic acid 
variable 3 

R00461 L-Lysine <=> (3S)-3,6-Diaminohexanoate variable 3 

R00709 
Isocitrate + NAD+ <=> 2-Oxoglutarate + CO2 + NADH 

+ H+ 
variable 3 

R01117 
CTP + N-Acetylneuraminate <=> Diphosphate + CMP-N-

acetylneuraminate 
variable 3 

R01644 
4-Hydroxybutanoic acid + NAD+ <=> Succinate 

semialdehyde + NADH + H+ 
variable 3 
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R02665 
3-Hydroxyanthranilate + Oxygen <=> 2-Amino-3-

carboxymuconate semialdehyde 
variable 3 

R03396 
GDP-6-deoxy-D-talose + NAD+ <=> GDP-4-dehydro-6-

deoxy-D-mannose + NADH + H+ 
variable 3 

R03398 
GDP-6-deoxy-D-talose + NADP+ <=> GDP-4-dehydro-

6-deoxy-D-mannose + NADPH + H+ 
variable 3 

R03707 
(S,S)-Butane-2,3-diol + NAD+ <=> (S)-Acetoin + NADH 

+ H+ 
variable 3 

R04215 
CTP + N-Glycoloyl-neuraminate <=> Diphosphate + 

CMP-N-glycoloylneuraminate 
variable 3 

R04374 
trans-3-Hydroxy-L-proline <=> 1-Pyrroline-2-carboxylate 

+ H2O 
variable 3 

R09078 Diacetyl + NADH + H+ <=> (S)-Acetoin + NAD+ variable 3 

R09291 
(2S)-Ethylmalonyl-CoA + NADP+ <=> Crotonoyl-CoA + 

CO2 + NADPH + H+ 
variable 3 

R09843 
Pseudaminic acid + CTP <=> CMP-pseudaminic acid + 

Diphosphate 
variable 3 

R00233 Malonyl-CoA <=> Acetyl-CoA + CO2 variable 2 

R00271 
Acetyl-CoA + H2O + 2-Oxoglutarate <=> (R)-2-

Hydroxybutane-1,2,4-tricarboxylate + CoA 
variable 2 

R00369 L-Alanine + Glyoxylate <=> Pyruvate + Glycine variable 2 

R00372 Glycine + 2-Oxoglutarate <=> Glyoxylate + L-Glutamate variable 2 

R00397 L-Aspartate <=> L-Alanine + CO2 variable 2 

R00585 L-Serine + Pyruvate <=> Hydroxypyruvate + L-Alanine variable 2 

R00588 L-Serine + Glyoxylate <=> Hydroxypyruvate + Glycine variable 2 

R00667 
L-Ornithine + 2-Oxoglutarate <=> L-Glutamate 5-

semialdehyde + L-Glutamate 
variable 2 

R00863 3-Sulfino-L-alanine <=> L-Alanine + Sulfur dioxide variable 2 

R00923 (S)-Methylmalonyl-CoA <=> Propanoyl-CoA + CO2 variable 2 

R01059 
ATP + D-Glyceraldehyde <=> ADP + D-Glyceraldehyde 

3-phosphate 
variable 2 

R01255 L-Proline <=> D-Proline variable 2 

R01366 Acetoacetate <=> Acetone + CO2 variable 2 

R01384 UDP-glucuronate <=> UDP-D-xylose + CO2 variable 2 

R01790 Starch + H2O <=> D-Glucose + Starch variable 2 

R01791 Dextrin + H2O <=> D-Glucose + Dextrin variable 2 

R01895 Ribitol + NAD+ <=> D-Ribulose + NADH + H+ variable 2 

R02361 
Pectate <=> 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-

galacturonate + Pectate 
variable 2 

R02555 D-Altronate + NAD+ <=> D-Tagaturonate + NADH + H+ variable 2 

R02925 D-Sorbitol + FAD <=> FADH2 + L-Sorbose variable 2 

R03027 (R)-3-Hydroxybutanoyl-CoA <=> Crotonoyl-CoA + H2O variable 2 

R03130 
S-Adenosyl-L-methionine + N-Acetylserotonin <=> S-

Adenosyl-L-homocysteine + Melatonin 
variable 2 

R03140 
D-Ribulose 1,5-bisphosphate + Oxygen <=> 3-Phospho-

D-glycerate + 2-Phosphoglycolate 
variable 2 

R04905 
S-Adenosyl-L-methionine + 5-Hydroxyindoleacetate <=> 

S-Adenosyl-L-homocysteine + 5-Methoxyindoleacetate 
variable 2 

R10460 

GDP-4-amino-4,6-dideoxy-alpha-D-mannose + 2-

Oxoglutarate <=> GDP-4-dehydro-6-deoxy-D-mannose + 

L-Glutamate 

variable 2 

R00262 L-threo-3-Methylaspartate <=> L-Glutamate variable 1 
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R00308 
1,3-beta-D-Glucan + H2O <=> D-Glucose + 1,3-beta-D-

Glucan 
variable 1 

R00650 
S-Adenosyl-L-methionine + L-Homocysteine <=> S-

Adenosyl-L-homocysteine + L-Methionine 
variable 1 

R00673 L-Tryptophan + H2O <=> Indole + Pyruvate + Ammonia variable 1 

R01063 

D-Glyceraldehyde 3-phosphate + Orthophosphate + 

NADP+ <=> 3-Phospho-D-glyceroyl phosphate + 

NADPH + H+ 

variable 1 

R01525 
D-Ribitol 5-phosphate + NADP+ <=> D-Ribulose 5-

phosphate + NADPH + H+ 
variable 1 

R01526 ATP + D-Ribulose <=> ADP + D-Ribulose 5-phosphate variable 1 

R01974 Indolepyruvate <=> Indole-3-acetaldehyde + CO2 variable 1 

R02429 D-Xylonate <=> 2-Dehydro-3-deoxy-D-xylonate + H2O variable 1 

R02749 
2-Deoxy-D-ribose 1-phosphate <=> 2-Deoxy-D-ribose 5-

phosphate 
variable 1 

R02754 
5-Dehydro-4-deoxy-D-glucarate <=> Pyruvate + 2-

Hydroxy-3-oxopropanoate 
variable 1 

R02755 

meso-2,6-Diaminoheptanedioate + NADP+ + H2O <=> 

L-2-Amino-6-oxoheptanedioate + Ammonia + NADPH + 

H+ 

variable 1 

R02833 Chitosan + H2O <=> D-Glucosaminide + Chitosan variable 1 

R02921 
CTP + D-Ribitol 5-phosphate <=> Diphosphate + CDP-

ribitol 
variable 1 

R02948 (S)-2-Acetolactate <=> (R)-Acetoin + CO2 variable 1 

R03028 Glutaconyl-1-CoA <=> Crotonoyl-CoA + CO2 variable 1 

R03115 
1,3-beta-D-Glucan + H2O <=> 1,3-beta-D-Glucan + 

alpha-D-Glucose 
variable 1 

R03168 
Acetyl-CoA + N6-Hydroxy-L-lysine <=> CoA + N6-

Acetyl-N6-hydroxy-L-lysine 
variable 1 

R03277 
2-Hydroxy-3-oxopropanoate + Pyruvate <=> 2-Dehydro-

3-deoxy-D-glucarate 
variable 1 

R03629 

Melatonin + [Reduced NADPH---hemoprotein reductase] 

+ Oxygen <=> 6-Hydroxymelatonin + [Oxidized 

NADPH---hemoprotein reductase] + H2O 

variable 1 

R03868 Maleylpyruvate <=> 3-Fumarylpyruvate variable 1 

R05133 
Arbutin 6-phosphate + H2O <=> Hydroquinone + beta-D-

Glucose 6-phosphate 
variable 1 

R05134 
Salicin 6-phosphate + H2O <=> Salicyl alcohol + beta-D-

Glucose 6-phosphate 
variable 1 

R07613 
LL-2,6-Diaminoheptanedioate + 2-Oxoglutarate <=> 

2,3,4,5-Tetrahydrodipicolinate + L-Glutamate + H2O 
variable 1 

R09293 

(2S)-Methylsuccinyl-CoA + Electron-transferring 

flavoprotein <=> 2-Methylfumaryl-CoA + Reduced 

electron-transferring flavoprotein 

variable 1 

R10846 D-Galactaro-1,5-lactone <=> D-Galactaro-1,4-lactone variable 1 
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Appendix E: List of conserved reactions related to energy 

metabolism 

Reaction 

Id 
Reaction Equation Type 

R00238 2 Acetyl-CoA <=> CoA + Acetoacetyl-CoA conserved 

R00253 
ATP + L-Glutamate + Ammonia <=> ADP + Orthophosphate + 

L-Glutamine 
conserved 

R00267 Isocitrate + NADP+ <=> 2-Oxoglutarate + CO2 + NADPH + H+ conserved 

R00344 
ATP + Pyruvate + HCO3- <=> ADP + Orthophosphate + 

Oxaloacetate 
conserved 

R00405 
ATP + Succinate + CoA <=> ADP + Orthophosphate + Succinyl-

CoA 
conserved 

R00508 
3'-Phosphoadenylyl sulfate + H2O <=> Adenylyl sulfate + 

Orthophosphate 
conserved 

R00509 ATP + Adenylyl sulfate <=> ADP + 3'-Phosphoadenylyl sulfate conserved 

R00529 ATP + Sulfate <=> Diphosphate + Adenylyl sulfate conserved 

R00586 L-Serine + Acetyl-CoA <=> O-Acetyl-L-serine + CoA conserved 

R00658 2-Phospho-D-glycerate <=> Phosphoenolpyruvate + H2O conserved 

R00742 
ATP + Acetyl-CoA + HCO3- <=> ADP + Orthophosphate + 

Malonyl-CoA 
conserved 

R00762 
D-Fructose 1,6-bisphosphate + H2O <=> D-Fructose 6-

phosphate + Orthophosphate 
conserved 

R00858 
Hydrogen sulfide + 3 NADP+ + 3 H2O <=> Sulfite + 3 NADPH 

+ 3 H+ 
conserved 

R00945 
5,10-Methylenetetrahydrofolate + Glycine + H2O <=> 

Tetrahydrofolate + L-Serine 
conserved 

R01015 D-Glyceraldehyde 3-phosphate <=> Glycerone phosphate conserved 

R01056 D-Ribose 5-phosphate <=> D-Ribulose 5-phosphate conserved 

R01061 
D-Glyceraldehyde 3-phosphate + Orthophosphate + NAD+ <=> 

3-Phospho-D-glyceroyl phosphate + NADH + H+ 
conserved 

R01082 (S)-Malate <=> Fumarate + H2O conserved 

R01325 Citrate <=> cis-Aconitate + H2O conserved 

R01395 ATP + Carbamate <=> ADP + Carbamoyl phosphate conserved 

R01518 2-Phospho-D-glycerate <=> 3-Phospho-D-glycerate conserved 

R01529 D-Ribulose 5-phosphate <=> D-Xylulose 5-phosphate conserved 

R01900 Isocitrate <=> cis-Aconitate + H2O conserved 

R01931 Thiosulfate + Cyanide ion <=> Sulfite + Thiocyanate conserved 

R01975 
(S)-3-Hydroxybutanoyl-CoA + NAD+ <=> Acetoacetyl-CoA + 

NADH + H+ 
conserved 

R02021 
Thioredoxin + 3'-Phosphoadenylyl sulfate <=> Thioredoxin 

disulfide + Sulfite + Adenosine 3',5'-bisphosphate 
conserved 

R02164 Quinone + Succinate <=> Hydroquinone + Fumarate conserved 

R03026 (S)-3-Hydroxybutanoyl-CoA <=> Crotonoyl-CoA + H2O conserved 

R03045 3-Hydroxypropionyl-CoA <=> Propenoyl-CoA + H2O conserved 

R04173 
O-Phospho-L-serine + 2-Oxoglutarate <=> 3-

Phosphonooxypyruvate + L-Glutamate 
conserved 

R07168 
5-Methyltetrahydrofolate + NAD+ <=> 5,10-

Methylenetetrahydrofolate + NADH + H+ 
conserved 

R09099 
L-Serine + 5,6,7,8-Tetrahydromethanopterin <=> 5,10-

Methylenetetrahydromethanopterin + Glycine + H2O 
conserved 

R10092 HCO3- + H+ <=> CO2 + H2O conserved 
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Appendix F: List of variable reactions related to energy metabolism 

Reaction 

Id 
Reaction Equation Type 

No. of 

organisms 

R00114 
2 L-Glutamate + NADP+ <=> L-Glutamine + 2-

Oxoglutarate + NADPH + H+ 
variable 110 

R00235 
ATP + Acetate + CoA <=> AMP + Diphosphate + Acetyl-

CoA 
variable 110 

R00248 
L-Glutamate + NADP+ + H2O <=> 2-Oxoglutarate + 

Ammonia + NADPH + H+ 
variable 110 

R00258 L-Alanine + 2-Oxoglutarate <=> Pyruvate + L-Glutamate variable 110 

R00345 
Orthophosphate + Oxaloacetate <=> H2O + 

Phosphoenolpyruvate + CO2 
variable 110 

R00527 S-Formylglutathione + H2O <=> Formate + Glutathione variable 110 

R00582 
O-Phospho-L-serine + H2O <=> L-Serine + 

Orthophosphate 
variable 110 

R00897 
O-Acetyl-L-serine + Hydrogen sulfide <=> L-Cysteine + 

Acetate 
variable 110 

R01067 
D-Fructose 6-phosphate + D-Glyceraldehyde 3-phosphate 

<=> D-Erythrose 4-phosphate + D-Xylulose 5-phosphate 
variable 110 

R01068 
D-Fructose 1,6-bisphosphate <=> Glycerone phosphate + 

D-Glyceraldehyde 3-phosphate 
variable 110 

R01220 
5,10-Methylenetetrahydrofolate + NADP+ <=> 5,10-

Methenyltetrahydrofolate + NADPH 
variable 110 

R01388 
D-Glycerate + NAD+ <=> Hydroxypyruvate + NADH + 

H+ 
variable 110 

R01512 
ATP + 3-Phospho-D-glycerate <=> ADP + 3-Phospho-D-

glyceroyl phosphate 
variable 110 

R01513 
3-Phospho-D-glycerate + NAD+ <=> 3-

Phosphonooxypyruvate + NADH + H+ 
variable 110 

R01641 

Sedoheptulose 7-phosphate + D-Glyceraldehyde 3-

phosphate <=> D-Ribose 5-phosphate + D-Xylulose 5-

phosphate 

variable 110 

R01655 
5,10-Methenyltetrahydrofolate + H2O <=> 10-

Formyltetrahydrofolate + H+ 
variable 110 

R01829 
Sedoheptulose 1,7-bisphosphate <=> Glycerone phosphate 

+ D-Erythrose 4-phosphate 
variable 110 

R06983 
S-(Hydroxymethyl)glutathione + NAD+ <=> S-

Formylglutathione + NADH + H+ 
variable 110 

R08572 D-Glycerate + ATP <=> 2-Phospho-D-glycerate + ADP variable 110 

R00199 
ATP + Pyruvate + H2O <=> AMP + Phosphoenolpyruvate 

+ Orthophosphate 
variable 109 

R00243 
L-Glutamate + NAD+ + H2O <=> 2-Oxoglutarate + 

Ammonia + NADH + H+ 
variable 109 

R00341 
ATP + Oxaloacetate <=> ADP + Phosphoenolpyruvate + 

CO2 
variable 109 

R01288 
O-Succinyl-L-homoserine + Hydrogen sulfide <=> L-

Homocysteine + Succinate 
variable 109 

R00025 
Ethylnitronate + Oxygen + Reduced FMN <=> 

Acetaldehyde + Nitrite + FMN + H2O 
variable 108 

R00216 
(S)-Malate + NADP+ <=> Pyruvate + CO2 + NADPH + 

H+ 
variable 107 

R00230 
Acetyl-CoA + Orthophosphate <=> CoA + Acetyl 

phosphate 
variable 107 

R00787 
Ammonia + 3 NAD+ + 2 H2O <=> Nitrite + 3 NADH + 3 

H+ 
variable 104 

R07210 
Alkanesulfonate + Reduced FMN + Oxygen <=> Aldehyde 

+ FMN + Sulfite + H2O 
variable 102 
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R10206 
Methanesulfonic acid + Reduced FMN + Oxygen <=> 

FMN + Sulfite + H2O + Formaldehyde 
variable 102 

R00604 
Formaldehyde + NAD+ + H2O <=> Formate + NADH + 

H+ 
variable 100 

R05320 
Taurine + 2-Oxoglutarate + Oxygen <=> Sulfite + 

Aminoacetaldehyde + Succinate + CO2 
variable 95 

R00093 
2 L-Glutamate + NAD+ <=> L-Glutamine + 2-

Oxoglutarate + NADH + H+ 
variable 93 

R00519 Formate + NAD+ <=> H+ + CO2 + NADH variable 81 

R00798 Nitrite + Acceptor + H2O <=> Nitrate + Reduced acceptor variable 76 

R03546 Cyanate + H+ + HCO3- <=> CO2 + Carbamate variable 76 

R00237 (3S)-Citramalyl-CoA <=> Acetyl-CoA + Pyruvate variable 64 

R00783 
Nitric oxide + H2O + Ferricytochrome c <=> Nitrite + 

Ferrocytochrome c + H+ 
variable 54 

R00785 
Nitric oxide + H2O + Oxidized azurin <=> Nitrite + 

Reduced azurin + H+ 
variable 54 

R09497 Nitrate + Hydroquinone <=> Nitrite + Quinone + H2O variable 50 

R00315 ATP + Acetate <=> ADP + Acetyl phosphate variable 47 

R00294 
2 Nitric oxide + 2 Ferrocytochrome c + 2 H+ <=> Nitrous 

oxide + 2 Ferricytochrome c + H2O 
variable 46 

R02804 
Nitrogen + 2 Ferricytochrome c + H2O <=> Nitrous oxide 

+ 2 Ferrocytochrome c + 2 H+ 
variable 42 

R00143 
Ammonia + NAD+ + H2O <=> Hydroxylamine + NADH + 

H+ 
variable 40 

R00214 (S)-Malate + NAD+ <=> Pyruvate + CO2 + NADH + H+ variable 31 

R00919 
Propanoyl-CoA + NADP+ <=> Propenoyl-CoA + NADPH 

+ H+ 
variable 29 

R00355 
L-Aspartate + 2-Oxoglutarate <=> Oxaloacetate + L-

Glutamate 
variable 28 

R09289 
3-Hydroxypropanoate + NADP+ <=> 3-Oxopropanoate + 

NADPH + H+ 
variable 25 

R00540 Nitrile + 2 H2O <=> Carboxylate + Ammonia variable 24 

R00524 Formamide + H2O <=> Formate + Ammonia variable 22 

R00761 
D-Fructose 6-phosphate + Orthophosphate <=> Acetyl 

phosphate + D-Erythrose 4-phosphate + H2O 
variable 21 

R01621 
D-Xylulose 5-phosphate + Orthophosphate <=> Acetyl 

phosphate + D-Glyceraldehyde 3-phosphate + H2O 
variable 21 

R00342 (S)-Malate + NAD+ <=> Oxaloacetate + NADH + H+ variable 19 

R07136 
(2R)-3-Sulfolactate + NAD+ <=> 3-Sulfopyruvate + 

NADH + H+ 
variable 19 

R01777 
Succinyl-CoA + L-Homoserine <=> CoA + O-Succinyl-L-

homoserine 
variable 18 

R05623 
Trimethylamine + NADPH + H+ + Oxygen <=> 

Trimethylamine N-oxide + NADP+ + H2O 
variable 18 

R10820 
ATP + 3-(Methylthio)propanoate + CoA <=> AMP + 

Diphosphate + 3-(Methylthio)propanoyl-CoA 
variable 18 

R02765 (R)-Methylmalonyl-CoA <=> (S)-Methylmalonyl-CoA variable 17 

R01859 
ATP + Propanoyl-CoA + HCO3- <=> ADP + 

Orthophosphate + (S)-Methylmalonyl-CoA 
variable 16 

R00606 
Methylamine + H2O + 2 Amicyanin <=> Formaldehyde + 

Ammonia + 2 Reduced amicyanin + 2 H+ 
variable 14 

R01011 ATP + Glycerone <=> ADP + Glycerone phosphate variable 14 

R08058 
5,6,7,8-Tetrahydromethanopterin + Formaldehyde <=> 

5,10-Methylenetetrahydromethanopterin + H2O 
variable 10 
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R06982 
Glutathione + Formaldehyde <=> S-

(Hydroxymethyl)glutathione 
variable 8 

R00736 L-Tyrosine <=> Tyramine + CO2 variable 6 

R01586 
Methylamine + L-Glutamate <=> Ammonia + N-Methyl-L-

glutamate 
variable 6 

R10936 
3-(Methylthio)acryloyl-CoA + 2 H2O <=> Acetaldehyde + 

Methanethiol + CoA + CO2 
variable 6 

R01283 
L-Homocysteine + H2O <=> Hydrogen sulfide + Ammonia 

+ 2-Oxobutanoate 
variable 3 

R01588 

Dimethylamine + H2O + Electron-transferring flavoprotein 

<=> Methylamine + Formaldehyde + Reduced electron-

transferring flavoprotein 

variable 3 

R02511 

Trimethylamine + H2O + Electron-transferring flavoprotein 

<=> Dimethylamine + Formaldehyde + Reduced electron-

transferring flavoprotein 

variable 3 

R00024 
D-Ribulose 1,5-bisphosphate + CO2 + H2O <=> 2 3-

Phospho-D-glycerate 
variable 2 

R00588 L-Serine + Glyoxylate <=> Hydroxypyruvate + Glycine variable 2 

R05185 

16 ATP + Nitrogen + 8 Reduced ferredoxin + 8 H+ + 16 

H2O <=> 16 Orthophosphate + 16 ADP + 8 Oxidized 

ferredoxin + 2 Ammonia + Hydrogen 

variable 2 

R01063 
D-Glyceraldehyde 3-phosphate + Orthophosphate + NADP+ 

<=> 3-Phospho-D-glyceroyl phosphate + NADPH + H+ 
variable 1 

R02560 
Trimethylamine + 2 Ferricytochrome c + H2O <=> 

Trimethylamine N-oxide + 2 Ferrocytochrome c + 2 H+ 
variable 1 

R03025 Coenzyme F420 + Hydrogen <=> Reduced coenzyme F420 variable 1 

R09282 3-Methylfumaryl-CoA + H2O <=> (3S)-Citramalyl-CoA variable 1 

R09283 2-Methylfumaryl-CoA <=> 3-Methylfumaryl-CoA variable 1 

R09513 
Methanesulfonic acid + NADH + H+ + Oxygen <=> 

Formaldehyde + NAD+ + Sulfite + H2O 
variable 1 
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Appendix G: Number of pathways predicted from Amino Acids to 

Ammonia in Pseudomonas 

Organism Name Amino Acid 
Pathway Length 

Total 
1 2 3 4 5 6 

Candidatus Pseudomonas 

adelgestsugas (Adelges tsugae) 

L-Proline - - 6 - - - 
7 

L-Glutamate 1 - - - - - 

Pseudomonas aeruginosa B136-33 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

-Pseudomonas aeruginosa c7447m 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa DK2 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa LES431 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa LESB58 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa M18 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine  3  - - - 

Pseudomonas aeruginosa MTB-1 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa NCGM 

1900 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa 

NCGM2.S1 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa PA1 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa PA1R 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa 

PA38182 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa PA7 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa PAO1 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 
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Pseudomonas aeruginosa PAO1-

VE13 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa PAO1-

VE2 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa PAO581 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa RP73 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa 

SCV20265 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa UCBPP-

PA14 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas aeruginosa YL84 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas alcaligenes 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas alkylphenolica 

L-Proline - - 12  24 - 

43 L-Glutamate 2 - 4 - - - 

L-Glutamine - 1 - - - - 

Pseudomonas amygdali 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas antarctica 

L-Proline - - 12 - 24 - 

69 
L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

L-Arginine - - - - 24 - 

Pseudomonas avellanae 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas azotoformans 

L-Proline - - 6 1 24 4 

42 L-Glutamate 1 - 4 - - - 

L-Glutamine - 2 - - - - 

Pseudomonas balearica 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas brassicacearum 

DF41 

L-Proline - - 16 - 40 - 

66 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 
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Pseudomonas brassicacearum 

subsp. brassicacearum NFM421 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas chlororaphis PA23 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas chlororaphis 

PCL1606 

L-Proline - - 12 - 30 - 

76 
L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

L-Arginine - - - - 24 - 

Pseudomonas chlororaphis subsp. 

aurantiaca 

L-Proline - - 12 - 24 - 

43 L-Glutamate 2 - 4 - - - 

L-Glutamine - 1 - - - - 

Pseudomonas cichorii 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas citronellolis 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas corrugata L-Proline - - 16 - 32 - 57 

 
L-Glutamate 2 - 4 - - - 

 
L-Glutamine - 3 - - - - 

Pseudomonas cremoricolorata 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas entomophila 

L-Proline - - 12 - 30 - 

64 
L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

L-Arginine - - - - 12 - 

Pseudomonas fluorescens A506 

L-Proline - - 16 - 40 - 

66 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas fluorescens F113 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas fluorescens Pf0-1 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas fluorescens SBW25 

L-Proline - - 12 - 30 - 

64 
L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

L-Arginine - - - - 12 - 

Pseudomonas fluorescens UK4 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 
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Pseudomonas fragi 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas frederiksbergensis 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas fulva 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas knackmussii 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas koreensis 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas lundensis 

L-Proline - - 6 - 24 - 

37 L-Glutamate 1 - 4 - - - 

L-Glutamine - 2 - - - - 

Pseudomonas lurida 

L-Proline - - 12 2 24 4 

51 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas mandelii 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas mendocina NK-01 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas mendocina ymp 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas monteilii SB3078 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas monteilii SB3101 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas orientalis 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas oryzihabitans 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas parafulva 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 
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Pseudomonas plecoglossicida 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas poae 

L-Proline - - 12 - - - 

28 
L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

L-Arginine - - - - 12 - 

Pseudomonas protegens Cab57 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas protegens CHA0 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas protegens Pf-5 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas pseudoalcaligenes 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas psychrotolerans 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine  2 - - - - 

Pseudomonas putida BIRD-1 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida DLL-E4 

L-Proline - - 12  30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida DOT-T1E 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida F1 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida GB-1 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida H8234 

L-Proline - - 12  30 - 

200 

L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

L-Alanine - - - - - 118 

L-Cysteine - - - - - 30 

Pseudomonas putida HB3267 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 -- - - - 
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Pseudomonas putida KT2440 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida NBRC 14164 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida ND6 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida S16 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas putida W619 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas resinovorans 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas rhizosphaerae 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas savastanoi pv. 

phaseolicola 1448A 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas silesiensis 

L-Proline - - 12  24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas simiae PCL1751 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas simiae PICF7 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas soli 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. ATCC 13867 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. CCOS 191 

L-Proline - - 12 - 30 - 

64 
L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

L-Arginine - - - - 12 - 

Pseudomonas sp. MRSN12121 

L-Proline - - 12 - 30 - 

76 
L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

L-Arginine - - - - 24 - 
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Pseudomonas sp. Os17 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. R2A2 

L-Proline - - 12 - 18 - 

38 L-Glutamate 2 - 3 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. StFLB209 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas sp. TCU-HL1 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. TKP 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. UW4 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas sp. VLB120 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas stutzeri 19SMN4 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas stutzeri 28a24 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas stutzeri A1501 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas stutzeri ATCC 

17588 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas stutzeri CCUG 

29243 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas stutzeri DSM 10701 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas stutzeri DSM 4166 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas stutzeri RCH2 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas synxantha 

LBUM223 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 
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Continued from previous page 

Pseudomonas syringae CC1557 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas syringae pv. 

syringae B728a 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas syringae pv. tomato 

DC3000 

L-Proline - - 12 - - - 

16 L-Glutamate 2 - - - - - 

L-Glutamine - 2 - - - - 

Pseudomonas trivialis 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas veronii 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas versuta 

L-Proline - - 12 - 30 - 

52 L-Glutamate 2 - 5 - - - 

L-Glutamine - 3 - - - - 

Pseudomonas yamanorum 

L-Proline - - 12 - 24 - 

45 L-Glutamate 2 - 4 - - - 

L-Glutamine - 3 - - - - 
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Appendix H: Number of unique pathways predicted from amino 

acids to Ammonia 

Organism Name Amino Acid 
Pathway Length 

Total 
1 2 3 4 5 6 

Pseudomonas putida H8234 
L-Alanine - - - - - 118 

148 
L-Cysteine - - - - - 30 

Pseudomonas lurida L-Proline - - - 1 - - 1 
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Appendix I: Number of pathways predicted from amino acids to 

TCA Cycle intermediates in Pseudomonas 

Organism Name Amino Acid 
Pathway Length 

Total 
1 2 3 4 5 6 

Candidatus Pseudomonas 

adelgestsugas (Adelges tsugae) 

L-Glutamate 6 - - - - - 
42 

L-Proline - - 36 - - - 

Pseudomonas aeruginosa 

B136-33 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 - 28 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

c7447m 

Glycine - - - 1 8 7 

340 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 7 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa DK2 

Glycine - - - 1 5 4 

299 

L-Alanine - 4 16 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 4 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 4 

L-Proline - - 114 - -  

L-Tryptophan - - - 1 5 4 

Pseudomonas aeruginosa 

LES431 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 
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L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

LESB58 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Homoserine - - - - - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa M18 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 -   

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

MTB-1 

Glycine - - - 1 8 7 

340 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 7 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

NCGM 1900 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

NCGM2.S1 

Glycine - - - 1 8 7 

330 
L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 
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L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa PA1 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

PA1R 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

PA38182 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa PA7 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 
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Pseudomonas aeruginosa 

PAO1 

Glycine - - - 1 8 7 

320 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 7 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

PAO1-VE13 

Glycine - - - 1 8 7 

320 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate - 1 7 - 6 6 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 7 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

PAO1-VE2 

Glycine - - - 1 8 7 

320 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate - 1 7 - 6 6 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 7 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

PAO581 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 19 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 7 

Pseudomonas aeruginosa 

RP73 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

SCV20265 

Glycine - - - 1 8 7 
330 

L-Alanine - 4 28 - 24 24 
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L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

UCBPP-PA14 

Glycine - - - 1 8 7 

312 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas aeruginosa 

YL84 

Glycine - - - 1 8 7 

330 

L-Alanine - 4 28 - 24 24 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 7 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas alcaligenes 

Glycine - - - - -  

202 

L-Alanine - 4 20 - - 8 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 17 - 32 - - 

L-Proline - - 102 - - - 

L-Tryptophan - - - - - - 

Pseudomonas alkylphenolica 

Glycine - - - 1 7 6 

246 

L-Alanine - 4 24 - - 12 

L-Aspartate 1   - - - 

L-Cysteine - 1 6 - - 3 

L-Glutamate 17 - - - - - 

L-Glutamine - - - 34 - - 

L-Methionine - - - - 1 6 

L-Proline - - 108 - - - 

L-Tryptophan - - - 1 7 7 

Pseudomonas amygdalli 
L-Alanine - 4 28 - 24 16 

261 
L-Asparagine - 2 - - - - 
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L-Aspartate 2 - - - - - 

L-Cysteine - 1 7 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - - - - 

L-Proline - - 126 - - - 

Pseudomonas antarctica 

Glycine - - - 1 6 5 

540 

L-Alanine - 4 20  24 24 

L-Arginine - - - - 228 - 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas avellanae 

L-Alanine - 4 28  24 16 

261 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 7 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - - - - 

L-Proline - - 126 -   

Pseudomonas azotoformans 

Glycine - - - 1 6 5 

302 

L-Alanine - 4 20 - 16 16 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 4 4 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 19 - - 

L-Methionine - - - - 1 5 

L-Proline - - 120 19 - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas balearica 

L-Alanine - 4 20 - - 8 

192 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 15 - - - - - 

L-Glutamine - 16 - 30 - - 

L-Proline - - 96 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas brassicacearum 

DF41 

L-Alanine - 5 25 - 30 20 

354 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 
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L-Homoserine - - - - 1 5 

L-Proline - - 168 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas brassicacearum 

subsp. brassicacearum 

NFM421 

L-Alanine - 5 25 - 30 20 

306 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 126 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas chlororaphis 

PA23 

Glycine - - - 1 6 5 

280 

L-Alanine - 4 20 - - 8 

L-Arginine - - - - - - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Methionine - - - - 1 5 

L-Proline - - 126 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas chlororaphis 

PCL1606 

Glycine - - - 1 6 5 

528 

L-Alanine - 4 20 - 24 16 

L-Arginine - - - - 228 - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas chlororaphis 

subsp. aurantiaca 

Glycine - - - 1 6 5 

240 

L-Alanine - 4 20 - - 8 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 18 - - - - - 

L-Glutamine - - - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas cichorii 

Glycine - - - - -  

230 
L-Alanine - 4 28 - - 8 

L-Arginine - - - - - - 

L-Asparagine - 2 - - - - 
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L-Aspartate 2 - - - - - 

L-Cysteine - 1 7 - - 2 

L-Glutamate 21 - - - - - 

L-Glutamine - 22 - - - - 

L-Proline - - 132 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas citronellolis 

Glycine - - - 1 8 7 

269 

L-Alanine - 4 28 - - 8 

L-Arginine - - - - - - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - - 2 

L-Glutamate 16 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Methionine - - - - 1 7 

L-Proline - - 108 - - - 

L-Tryptophan - - - 1 8 8 

Pseudomonas corrugata 

L-Alanine - 4 20 - 24 16 

332 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine  1 5 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 168 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas cremoricolorata 

L-Alanine - 4 20 - 24 16 

234 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 18  - - - - 

L-Glutamine - 19 - - - - 

L-Proline - - 114 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas entomophila 

L-Alanine - 4 24 - - 12 

362 

L-Arginine -  - - 120 - 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas fluorescens 

A506 

Glycine - - - 1 6 5 

364 

L-Alanine - 4 20 - 24 16 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 
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L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Methionine - - - - 1 5 

L-Proline - - 168 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas fluorescens 

F113 

L-Alanine - 4 20 - 24 24 

296 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 6 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Homoserine - - - - 1 5 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas fluorescens Pf0-

1 

Glycine - - - 1 4 3 

281 

L-Alanine - 4 12 - 24 16 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 3 - 6 4 

L-Glutamate 19 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 3 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 4 4 

Pseudomonas fluorescens 

SBW25 

Glycine - - - 1 5 - 

446 

L-Alanine - 4 20 - 24 16 

L-Arginine - - - - 132 - 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 21 - - - - - 

L-Glutamine - 22 - 42 - - 

L-Proline - - 132 - - - 

L-Tryptophan - - - 1 5 1 

Pseudomonas fluorescens UK4 

L-Alanine - 5 25 - - 10 

238 

L-Arginine - - - - - - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Proline - - 114 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas fragi 

L-Alanine - 4 20 - 24 32 

292 L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 
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L-Cysteine - 1 5 - 6 8 

L-Glutamate 19 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Proline - - 114 - - - 

Pseudomonas 

frederiksbergensis 

Glycine - - - 1 6 5 

240 

L-Alanine - 4 20 - - 8 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 16 - - - - - 

L-Glutamine - 17 - 32 - - 

L-Methionine - - - - 1 5 

L-Proline - - 102 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas fulva 

L-Alanine - 4 20 - 16 24 

225 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - - - - 

L-Proline - - 120 - - - 

Pseudomonas knackmussii 

Glycine - - - 1 6 5 

257 

L-Alanine - 4 20 - - 8 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 18 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 5 

L-Methionine - - - - 1 5 

L-Proline - - 108 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas koreensis 

Glycine - - - 1 6 5 

296 

L-Alanine - 5 25 - 30 20 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 16 - - - - - 

L-Glutamine - 17 - 32 - - 

L-Methionine - - - - 1 5 

L-Proline - - 102 - - - 

L-Tryptophan - -  1 6 6 

Pseudomonas lundensis 

L-Alanine - 4 20  24 24 

234 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 6 

L-Glutamate 15  - - - - 



244 

 

L-Glutamine - 16 - 15 - - 

L-Proline - - 96 - - - 

Pseudomonas lurida 

Glycine - - - 1 6 5 

307 

L-Alanine - 4 20 - 24 16 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Methionine - - - - 1 5 

L-Proline - - 108 17 - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas mandelii 

Glycine - - - 1 6 5 

328 

L-Alanine - 5 25 - 30 30 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas mendocina NK-

01 

L-Alanine - 5 25 - 30 30 

269 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

Pseudomonas mendocina ymp 

L-Alanine - 5 25 - 20 30 

269 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Proline - - 114 - - - 

Pseudomonas monteilii 

SB3078 

L-Alanine - 4 24 - 36 48 

327 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 9 12 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas monteilii 

SB3101 

L-Alanine - 4 24 - 36 48 

327 L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 
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L-Cysteine - 1 6 - 9 12 

L-Glutamate 17  - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas orientalis 

Glycine - - - 1 6 5 

300 

L-Alanine - 4 20 - 24 16 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 -   

L-Tryptophan - - - 1 6 6 

Pseudomonas oryzihabitans 

L-Alanine - 4 20 - 24 16 

235 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - - - - 

L-Proline - - 126 - - - 

Pseudomonas parafulva 

L-Alanine - 4 20 -- 24 16 

270 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Proline - - 114 - - - 

L-Tryptophan - -  -  1 

Pseudomonas plecoglossicida 

L-Alanine - 5 30 - 45 60 

355 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 9 12 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 108 - -  

L-Tryptophan - - - - - 1 

Pseudomonas poae 

Glycine - - - 1 6 5 

392 

L-Alanine - 4 20 - 24 16 

L-Arginine - - - - 120 - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 19 - - - - - 
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L-Glutamine - 20 - - - - 

L-Methionine - - - - 1 5 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas protegens Cab57 

L-Alanine - 4 20 - 24 16 

292 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 126 - - - 

L-Tryptophan - -  - - 1 

Pseudomonas protegens 

CHA0 

L-Alanine - 4 20 - 24 16 

292 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 126 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas protegens Pf-5 

L-Alanine - 4 12 - 24 16 

282 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 3 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 126 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas 

pseudoalcaligenes 

L-Alanine - 5 25 - - 10 

220 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 18 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

Pseudomonas psychrotolerans 

L-Alanine - 5 25 - 40 20 

279 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine  1 5 - 8 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - - - - 

L-Proline - - 126 - - - 

Pseudomonas putida BIRD-1 

L-Alanine - 4 24 - - 12 

237 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - - 3 

L-Glutamate 17 - - - - - 
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L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas putida DLL-E4 

L-Alanine - 4 24 - 36 24 

307 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 9 6 

L-Glutamate 18  - - - - 

L-Glutamine - 19 - 36 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 114 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas putida DOT-

T1E 

L-Alanine - 4 24 - 24 48 

334 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine  1 6 - 6 12 

L-Glutamate 19  - - - - 

L-Glutamine - 20 - 38 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas putida F1 

L-Alanine - 4 24 - 24 48 

312 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 6 12 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 108 - - - 

L-Tryptophan - -  - - 1 

Pseudomonas putida GB-1 

L-Alanine - 4 24 - 24 24 

275 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 6 6 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas putida H8234 

L-Alanine - 4 24 4 36 52 

352 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 6 1 9 13 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Proline - - 120 - - - 
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L-Tryptophan - - - - - 1 

Pseudomonas putida HB3267 

L-Alanine - 5 30 - - 15 

257 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - - 3 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 114 - -  

L-Tryptophan - - - - - 1 

Pseudomonas putida KT2440 

L-Alanine - 5 15 - - 15 

225 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine  1 3 - - 3 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 3 

L-Proline - - 108 - - - 

Pseudomonas putida NBRC 

14164 

L-Alanine - 4 24 - 36 48 

342 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 6 - 9 12 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas putida ND6 

L-Alanine - 4 24 - 24 24 

282 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 6 6 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 108 - -  

L-Tryptophan - - - - - 1 

Pseudomonas putida S16 

L-Alanine - 4 24 - 36 24 

307 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - 9 6 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Homoserine - - - - 1 6 

L-Proline - - 114 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas putida W619 
L-Alanine - 4 20 - 16 32 

270 
L-Asparagine - 1 - - - - 



249 

 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 4 8 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas resinovorans 

Glycine - - - 1 7 6 

285 

L-Alanine - 6 36 - - 18 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - - 3 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Methionine - - - - 1 6 

L-Proline - - 108 - - - 

L-Tryptophan - - - 1 7 7 

Pseudomonas rhizosphaerae 

Glycine - - 4 4 12 4 

306 

L-Alanine - 5 35 - 30 20 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 20 - - - - 

L-Proline - - 120 - - - 

L-Tryptophan - - - - 4 8 

Pseudomonas savastanoi pv. 

phaseolicola 1448A 

L-Alanine - 4 28  24 16 

277 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 7  6 4 

L-Glutamate 22 - - - - - 

L-Glutamine - 23 - - - - 

L-Proline - - 138 - - - 

Pseudomonas silesiensis 

Glycine - - - 1 6 5 

282 

L-Alanine - 5 25 - - 10 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Homoserine - - - - 2 10 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas simiae PCL1751 

L-Alanine - 4 20 - 24 16 

282 L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 
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L-Cysteine - 1 5 - 6 4 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas simiae PICF7 

L-Alanine - 4 20 - 24 16 

282 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas soli 

L-Alanine - 5 25 - 30 40 

322 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 8 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Proline - - 120 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas sp. ATCC 

13867 

Glycine - - - 1 6 5 

270 

L-Alanine - 4 20 - - 8 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 5 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas sp. CCOS 191 

L-Alanine - 5 25 - - 10 

336 

L-Arginine - - - - 108 - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas sp. MRSN12121 

Glycine - - - 1 6 5 

528 

L-Alanine - 4 20 - 24 16 

L-Arginine - - - - 228 - 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 
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L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas sp. Os17 

L-Alanine - 4 20 - - 8 

262 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 21 - - - - - 

L-Glutamine - 22 - 42 - - 

L-Proline - - 132 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas sp. R2A2 

L-Alanine - 4 20 - 24 24 

241 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 15 - - - - - 

L-Glutamine - 17 - 32 - - 

L-Proline - - 102 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas sp. StFLB209 

L-Alanine - 4 28 - 24 32 

282 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 7 - 6 8 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - - - - 

L-Proline - - 126 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas sp. TCU-HL1 

Glycine - - - 1 7 6 

279 

L-Alanine - 5 30 - - 15 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - - 3 

L-Glutamate 16 - - - - - 

L-Glutamine - 17 - 32 - - 

L-Homoserine - - - - 2 12 

L-Methionine - - - - 1 6 

L-Proline - - 102 - - - 

L-Tryptophan - - - 1 7 7 

Pseudomonas sp. TKP 

Glycine - - - 1 6 5 

364 

L-Alanine - 6 30 - 36 24 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 21 - - - - - 

L-Glutamine - 22 - 42 - - 
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L-Methionine - - - - 1 5 

L-Proline - - 132 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas sp. UW4 

Glycine - - - 1 6 5 

279 

L-Alanine - 4 20 - - 8 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - - 2 

L-Glutamate 20  - - - - 

L-Glutamine - 20 - 38 - - 

L-Homoserine - - - - 1 5 

L-Methionine - - - - 1 5 

L-Proline - - 120 -   

L-Tryptophan - - - 1 6 6 

Pseudomonas sp. VLB120 

L-Alanine - 4 24 - - 12 

230 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 6 - - 3 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas stutzeri 

19SMN4 

L-Alanine - 4 20 - - 8 

212 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas stutzeri 28a24 

Glycine - - 4 2 6 8 

273 

L-Alanine - 5 25 - 30 30 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - - - - 

L-Proline - - 114 - - - 

L-Tryptophan - - - - 4 6 

Pseudomonas stutzeri A1501 

L-Alanine - 4 20 - 24 24 

252 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas stutzeri ATCC 

17588 

L-Alanine - 4 20 - 24 24 
218 

L-Asparagine - 1 - - - - 
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L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - - - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas stutzeri CCUG 

29243 

L-Alanine - 4 20 - - 8 

178 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - - - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas stutzeri DSM 

10701 

L-Alanine - 4 20 - 24 24 

251 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

Pseudomonas stutzeri DSM 

4166 

L-Alanine - 4 20 - 24 24 

252 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas stutzeri RCH2 

L-Alanine - 4 20 - - 8 

212 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Proline - - 108 - - - 

L-Tryptophan - - - - - 1 

Pseudomonas synxantha 

LBUM223 

Glycine - - - 1 6 5 

290 

L-Alanine - 4 20 - 24 16 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 17 - - - - - 

L-Glutamine - 18 - 34 - - 

L-Methionine - - - - 1 5 

L-Proline - - 108 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas syringae 

CC1557 

L-Alanine - 4 28 - 24 16 

299 
L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 4 
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L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 126 - - - 

Pseudomonas syringae pv. 

syringae B728a 

L-Alanine - 4 28 - 24 16 

299 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 7 - 6 4 

L-Glutamate 20 - - - - - 

L-Glutamine - 21 - 40 - - 

L-Proline - - 126 - - - 

Pseudomonas syringae pv. 

tomato DC3000 

L-Alanine - 4 20 - 24 24 

269 

L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 6 

L-Glutamate 21 - - - - - 

L-Glutamine - 22 - - - - 

L-Proline - - 132 - - - 

Pseudomonas trivialis 

Glycine - -  1 6 5 

310 

L-Alanine - 4 20 - 24 16 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 5 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas veronii 

Glycine - - - 1 6 5 

340 

L-Alanine - 4 20 - 24 40 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 5 - 6 10 

L-Glutamate 19 - - - - - 

L-Glutamine - 20 - 38 - - 

L-Methionine - - - - 1 5 

L-Proline - - 120 - - - 

L-Tryptophan - - - 1 6 6 

Pseudomonas versuta 

L-Alanine - 4 16 - 24 32 

265 

L-Asparagine - 1 - - - - 

L-Aspartate 1 - - - - - 

L-Cysteine - 1 4 - 6 8 

L-Glutamate 17 - - - - - 

L-Glutamine - 17 - 32 - - 

L-Proline - - 102 - - - 

Pseudomonas yamanorum 
Glycine - - - 1 6 5 

302 
L-Alanine - 4 20 - 24 16 
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L-Asparagine - 2 - - - - 

L-Aspartate 2 - - - - - 

L-Cysteine - 1 5 - 6 4 

L-Glutamate 18 - - - - - 

L-Glutamine - 19 - 36 - - 

L-Methionine - - - - 1 5 

L-Proline - - 114 - - - 

L-Tryptophan - - - 1 6 6 
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Appendix J: Number of unique pathways predicted from different 

amino acids to four metabolites of TCA Cycle in Pseudomonas 

Organism Name Amino Acid 
Pathway Length 

Total 
1 2 3 4 5 6 

Pseudomonas antarctica L-Arginine - - - - 24 - 24 

Pseudomonas rhizosphaerae 

Glycine - - - 2 6 - 

12 L-Alanine - - 2 - - - 

L-Tryptophan - - - - - 2 

Pseudomonas putida H8234 
L-Alanine - - - 4 - 4 

10 
L-Cysteine - - - 1 - 1 

Pseudomonas orientalis 

L-Glutamate 1 - - - - - 

9 L-Glutamine - - - 2 - - 

L-Proline - - 6 - - - 

Pseudomonas stutzeri 28a24 
Glycine - - - - - 4 

6 
L-Alanine - - - - - 2 

Pseudomonas plecoglossicida L-Alanine - - - - 3 3 6 

Pseudomonas psychrotolerans 
L-Alanine - - - - 2 - 

4 
L-Cysteine - - - - 2 - 

Pseudomonas fluorescens A506 L-Proline - - 4 - - - 4 

Pseudomonas lundensis L-Cysteine - - - - - 4 4 

Pseudomonas azotoformans L-Proline - - - 3 - - 3 

Pseudomonas lurida 
L-Glutamine - - - 1 - - 

2 
L-Proline - - - 1 - - 

Pseudomonas mandelii L-Alanine - - - - - 2 2 

Pseudomonas corrugata L-Proline - - 2 - -  - 2 

Pseudomonas veronii L-Cysteine - - - - - 2 2 

Pseudomonas sp. TCU-HL1 L-Homoserine - - - - - 1 1 
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Appendix K: List of organisms used as representative set in KAAS 

for assigning metabolic annotations to mango genes 

KEGG 

Organism 

Code 

Organism Name 

cic Citrus clementina (mandarin orange) 

cit Citrus sinensis (Valencia orange) 

crb Capsella rubella 

dzi Durio zibethinus (durian) 

egr Eucalyptus grandis (rose gum) 

fve Fragaria vesca (woodland strawberry) 

gab Gossypium arboreum 

ghi Gossypium hirsutum (upland cotton) 

gmx Glycine max (soybean) 

gra Gossypium raimondii 

gsj Glycine soja (wild soybean) 

han Helianthus annuus (common sunflower) 

hbr Hevea brasiliensis (rubber tree) 

jre Juglans regia (English walnut) 

lja Lotus japonicus 

lsv Lactuca sativa (garden lettuce) 

mdm Malus domestica (apple) 

mtr Medicago truncatula (barrel medic) 

mus Musa acuminata (wild Malaysian banana) 

oeu Olea europaea var. sylvestris (wild olive) 

peu Populus euphratica (Euphrates poplar) 

pop Populus trichocarpa (black cottonwood) 

qsu Quercus suber (cork oak) 

rcn Rosa chinensis (China rose) 

sly Solanum lycopersicum (tomato) 

tcc Theobroma cacao (cacao) 

thj Tarenaya hassleriana (spider flower) 

vun Vigna unguiculata (cowpea) 

vvi Vitis vinifera (wine grape) 
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Appendix L: List of enzymes predicted to be upregulated in ‘Sindhri’ 

KEGG 

Orthology 

Number 

Gene Enzyme KEGG Pathway Map 

 K00021  HMGCR 

hydroxymethylglutaryl-CoA 

reductase (NADPH) (EC 

1.1.1.34) 

Terpenoid backbone biosynthesis 

 K00059  
fabG 

OAR1 

3-oxoacyl-(acyl-carrier protein) 

reductase (EC 1.1.1.100) 

Biotin metabolism, Prodigiosin 

biosynthesis 

Fatty acid biosynthesis 

 K00264 GLT1 
glutamate synthase (NADH) (EC 

1.4.1.14) 

Alanine, aspartate and glutamate 

metabolism 

Nitrogen metabolism 

 K00278 nadB L-aspartate oxidase (EC 1.4.3.16) 

Alanine, aspartate and glutamate 

metabolism 

Nicotinate and nicotinamide 

metabolism 

 K00366  nirA 
ferredoxin-nitrite reductase (EC 

1.7.7.1) 
Nitrogen metabolism 

 K00434  E1.11.1.11 
 L-ascorbate peroxidase (EC 

1.11.1.11) 

Ascorbate and aldarate 

metabolism 

Glutathione metabolism 

 K00454  LOX2S lipoxygenase (EC 1.13.11.12) 
Linoleic acid metabolism 

alpha-Linolenic acid metabolism 

 K00512  CYP17A 

steroid 17alpha-monooxygenase / 

17alpha-hydroxyprogesterone 

deacetylase (EC 1.14.14.19 

1.14.14.32) 

Steroid hormone biosynthesis 

 K00640 cysE 
serine O-acetyltransferase (EC 

2.3.1.30) 

Cysteine and methionine 

metabolism 

Sulfur metabolism 

 K00660  CHS chalcone synthase (EC 2.3.1.74) Flavonoid biosynthesis 

 K00737 MGAT3 

beta-1,4-mannosyl-glycoprotein 

beta-1,4-N-

acetylglucosaminyltransferase 

(EC 2.4.1.144) 

N-Glycan biosynthesis 

 K00799  
GST 

gst 

 glutathione S-transferase (EC 

2.5.1.18) 

Glutathione metabolism 

Metabolism of xenobiotics by 

cytochrome P450 

 K00826  
E2.6.1.42 

ilvE 

branched-chain amino acid 

aminotransferase (EC 2.6.1.42) 

Cysteine and methionine 

metabolism 

Glucosinolate biosynthesis 

Pantothenate and CoA 

biosynthesis 

Valine, leucine and isoleucine 

biosynthesis 

 K00873 
PK 

pyk 
pyruvate kinase (EC 2.7.1.40) 

Glycolysis / Gluconeogenesis 

Pyruvate metabolism 

Purine metabolism 

 K00891  

E2.7.1.71 

aroK 

aroL 

shikimate kinase (EC 2.7.1.71) 
Phenylalanine, tyrosine and 

tryptophan biosynthesis 

 K00901  
dgkA 

DGK 

diacylglycerol kinase (ATP) (EC 

2.7.1.107) 

Glycerolipid metabolism, 

Glycerophospholipid metabolism 

 K00913 ITPK1 

inositol-1,3,4-trisphosphate 5/6-

kinase / inositol-tetrakisphosphate 

1-kinase (EC 2.7.1.159 2.7.1.134) 

Inositol phosphate metabolism 
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 K00942  
E2.7.4.8 

gmk 
guanylate kinase (EC 2.7.4.8) Purine metabolism 

 K01052 LIPA 
lysosomal acid lipase/cholesteryl 

ester hydrolase (EC 3.1.1.13) 
Steroid biosynthesis 

 K01054  MGLL acylglycerol lipase (EC 3.1.1.23) Glycerolipid metabolism 

 K01082 

cysQ 

MET22 

BPNT1 

3'(2'), 5'-bisphosphate 

nucleotidase (EC 3.1.3.7) 
Sulfur metabolism 

 K01087  otsB 
trehalose 6-phosphate 

phosphatase (EC 3.1.3.12) 
Starch and sucrose metabolism 

 K01115 PLD1_2 phospholipase D1/2 (EC 3.1.4.4) 
Ether lipid metabolism 

Glycerophospholipid metabolism 

 K01126  

E3.1.4.46 

glpQ 

ugpQ 

glycerophosphoryl diester 

phosphodiesterase (EC 3.1.4.46) 
Glycerophospholipid metabolism 

 K01176 

AMY 

amyA 

malS 

alpha-amylase (EC 3.2.1.1) Starch and sucrose metabolism 

 K01177 E3.2.1.2 beta-amylase (EC 3.2.1.2) Starch and sucrose metabolism 

 K01568 
PDC 

pdc 

pyruvate decarboxylase (EC 

4.1.1.1) 
Glycolysis / Gluconeogenesis 

 K01601 rbcL 

ribulose-bisphosphate 

carboxylase large chain (EC 

4.1.1.39) 

Carbon fixation in photosynthetic 

organisms 

Glyoxylate and dicarboxylate 

metabolism 

 K01620 ltaE threonine aldolase (EC 4.1.2.48) 
Glycine, serine and threonine 

metabolism 

 K01772 
hemH 

FECH 

protoporphyrin/coproporphyrin 

ferrochelatase (EC 4.99.1.1) 

Porphyrin and chlorophyll 

metabolism 

 K01807  rpiA 
ribose 5-phosphate isomerase A 

(EC 5.3.1.6) 

Carbon fixation in photosynthetic 

organisms 

Pentose phosphate pathway 

 K01897  
ACSL 

fadD 

long-chain acyl-CoA synthetase 

(EC 6.2.1.3) 

Fatty acid biosynthesis and 

degradation 

 K01915 
glnA 

GLUL 
glutamine synthetase (EC 6.3.1.2) 

Alanine, aspartate and glutamate 

metabolism 

Nitrogen metabolism 

Arginine biosynthesis 

Glyoxylate and dicarboxylate 

metabolism 

 K02108  
ATPF0A 

atpB 

F-type H+-transporting ATPase 

subunit a 

Oxidative phosphorylation 

Photosynthesis 

 K02109  
ATPF0B 

atpF 

F-type H+-transporting ATPase 

subunit b 

Oxidative phosphorylation 

Photosynthesis 

 K02126 

ATPeF0A 

MTATP6 

ATP6 

F-type H+-transporting ATPase 

subunit a 
Oxidative phosphorylation 

 K02132 

ATPeF1A 

ATP5A1 

ATP1 

F-type H+-transporting ATPase 

subunit alpha 
Oxidative phosphorylation 

 K02256 COX1 
cytochrome c oxidase subunit 1 

(EC 7.1.1.9) 
Oxidative phosphorylation 

 K02262 COX3 cytochrome c oxidase subunit 3 Oxidative phosphorylation 

 K02291  crtB 
15-cis-phytoene synthase (EC 

2.5.1.32) 
Carotenoid biosynthesis 
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 K02575 

NRT 

narK 

nrtP 

nasA 

MFS transporter, NNP family, 

nitrate/nitrite transporter 
Nitrogen metabolism 

 K02634  petA apocytochrome f Photosynthesis 

 K02635 petB cytochrome b6 Photosynthesis 

 K02704  psbB 
photosystem II CP47 chlorophyll 

apoprotein 
Photosynthesis 

 K02707 psbE 
photosystem II cytochrome b559 

subunit alpha 
Photosynthesis 

 K02709  psbH photosystem II PsbH protein Photosynthesis 

 K03517  nadA 
quinolinate synthase (EC 

2.5.1.72) 

Nicotinate and nicotinamide 

metabolism 

 K03715 MGD 

1,2-diacylglycerol 3-beta-

galactosyltransferase (EC 

2.4.1.46) 

Glycerolipid metabolism 

 K03881 ND4 

NADH-ubiquinone 

oxidoreductase chain 4 (EC 

7.1.1.2) 

Oxidative phosphorylation 

 K03884  ND6 

NADH-ubiquinone 

oxidoreductase chain 6 (EC 

7.1.1.2) 

Oxidative phosphorylation 

 K03935  NDUFS2 

NADH dehydrogenase 

(ubiquinone) Fe-S protein 2 (EC 

7.1.1.2 1.6.99.3) 

Oxidative phosphorylation 

 K04125 
E1.14.11.1

3 

gibberellin 2beta-dioxygenase 

(EC 1.14.11.13) 
Diterpenoid biosynthesis 

 K05578 ndhG 

NAD(P)H-quinone 

oxidoreductase subunit 6 (EC 

7.1.1.2) 

Oxidative phosphorylation 

 K05894 OPR 
12-oxophytodienoic acid 

reductase (EC 1.3.1.42) 
alpha-Linolenic acid metabolism 

 K05907 APR 
adenylyl-sulfate reductase 

(glutathione) (EC 1.8.4.9) 
Sulfur metabolism 

 K05929  
E2.1.1.103 

NMT 

phosphoethanolamine N-

methyltransferase (EC 2.1.1.103) 
Glycerophospholipid metabolism 

 K07513  ACAA1 
acetyl-CoA acyltransferase 1 (EC 

2.3.1.16) 

Biosynthesis of unsaturated fatty 

acids 

Fatty acid degradation 

Valine, leucine and isoleucine 

degradation 

alpha-Linolenic acid metabolism 

 K08081  TR1 
tropinone reductase I (EC 

1.1.1.206) 

Tropane, piperidine and pyridine 

alkaloid biosynthesis 

 K08099 3.1.1.14 chlorophyllase (EC 3.1.1.14) 
Porphyrin and chlorophyll 

metabolism 

 K08247  E2.1.1.12 
methionine S-methyltransferase 

(EC 2.1.1.12) 
Selenocompound metabolism 

 K09753 CCR 
cinnamoyl-CoA reductase (EC 

1.2.1.44) 
Phenylpropanoid biosynthesis 

 K09840  NCED 
9-cis-epoxycarotenoid 

dioxygenase (EC 1.13.11.51) 
Carotenoid biosynthesis 

 K10534 NR 
nitrate reductase (NAD(P)H) (EC 

1.7.1.1 1.7.1.2 1.7.1.3) 
Nitrogen metabolism 

 K12448  
UXE 

uxe 

UDP-arabinose 4-epimerase (EC 

5.1.3.5) 

Amino sugar and nucleotide sugar 

metabolism 

 K12450 RHM 
UDP-glucose 4,6-dehydratase 

(EC 4.2.1.76) 

Amino sugar and nucleotide sugar 

metabolism 
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 K12930  BZ1 

anthocyanidin 3-O-

glucosyltransferase (EC 

2.4.1.115) 

Anthocyanin biosynthesis 

 K13051  
ASRGL1 

iaaA 

L-asparaginase / beta-aspartyl-

peptidase (EC 3.5.1.1 3.4.19.5) 

Alanine, aspartate and glutamate 

metabolism 

Cyanoamino acid metabolism 

 K13260  
CYP81E1_

7 

isoflavone/4'-methoxyisoflavone 

2'-hydroxylase (EC 1.14.14.90 

1.14.14.89) 

Isoflavonoid biosynthesis 

 K13379  
RGP 

UTM 

reversibly glycosylated 

polypeptide / UDP-

arabinopyranose mutase (EC 

2.4.1.- 5.4.99.30) 

Amino sugar and nucleotide sugar 

metabolism 

 K13600 CAO 
chlorophyllide a oxygenase (EC 

1.14.13.122) 

Porphyrin and chlorophyll 

metabolism 

 K13679 WAXY 
granule-bound starch synthase 

(EC 2.4.1.242) 
Starch and sucrose metabolism 

 K14156  CHK 
choline/ethanolamine kinase (EC 

2.7.1.32 2.7.1.82) 
Glycerophospholipid metabolism 

 K14190 VTC2_5 
GDP-L-galactose phosphorylase 

(EC 2.7.7.69) 

Ascorbate and aldarate 

metabolism 

 K14595  AOG 
abscisate beta-glucosyltransferase 

(EC 2.4.1.263) 
Carotenoid biosynthesis 

 K15398  CYP86A4S 
fatty acid omega-hydroxylase 

(EC 1.14.-.-) 

Cutin, suberine and wax 

biosynthesis 

 K15718  LOX1_5 
linoleate 9S-lipoxygenase (EC 

1.13.11.58) 
Linoleic acid metabolism 

 K15889  PCME 
prenylcysteine alpha-carboxyl 

methylesterase (EC 3.1.1.-) 
Terpenoid backbone biosynthesis 

 K19562  BIO3-BIO1 

bifunctional dethiobiotin 

synthetase / adenosylmethionine--

-8-amino-7-oxononanoate 

aminotransferase (EC 6.3.3.3 

2.6.1.62) 

Biotin metabolism 

 K20623 CYP92A6 
typhasterol/6-deoxotyphasterol 

2alpha-hydroxylase 
Brassinosteroid biosynthesis 

 K22133  AAE3 oxalate---CoA ligase (EC 6.2.1.8) 
Glyoxylate and dicarboxylate 

metabolism 

 K22911 TH2 

thiamine phosphate phosphatase / 

amino-HMP aminohydrolase (EC 

3.1.3.100 3.5.99.-) 

Thiamine metabolism 
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Appendix M: List of enzymes predicted to be downregulated in 

‘Sindhri’ 

KEGG 

Orthology 

Number 

Gene(s) Enzyme Pathway 

 K00133  asd 
aspartate-semialdehyde 

dehydrogenase (EC 1.2.1.11) 

Cysteine and methionine 

metabolism 

Lysine biosynthesis 

Monobactam biosynthesis 

Glycine, serine and threonine 

metabolism 

 K00145  argC 
N-acetyl-gamma-glutamyl-

phosphate reductase (EC 1.2.1.38) 
Arginine biosynthesis 

 K00166  
BCKDHA 

bkdA1 

2-oxoisovalerate dehydrogenase 

E1 component alpha subunit (EC 

1.2.4.4) 

Propanoate metabolism 

Valine, leucine and isoleucine 

degradation 

 K00222  
TM7SF2 

ERG24 

Delta14-sterol reductase (EC 

1.3.1.70) 
Steroid biosynthesis 

 K00227  
SC5DL 

ERG3 

Delta7-sterol 5-desaturase (EC 

1.14.19.20) 
Steroid biosynthesis 

 K00326  E1.6.2.2 
cytochrome-b5 reductase (EC 

1.6.2.2) 

Amino sugar and nucleotide 

sugar metabolism 

 K00411  

UQCRFS1 

RIP1 

petA 

ubiquinol-cytochrome c reductase 

iron-sulfur subunit (EC 7.1.1.8) 
Oxidative phosphorylation 

 K00511  
SQLE 

ERG1 

squalene monooxygenase (EC 

1.14.14.17) 

Sesquiterpenoid and triterpenoid 

biosynthesis 

Steroid biosynthesis 

 K00547  
mmuM 

BHMT2 

homocysteine S-methyltransferase 

(EC 2.1.1.10) 

Cysteine and methionine 

metabolism 

 K00736  MGAT2 

alpha-1,6-mannosyl-glycoprotein 

beta-1,2-N-

acetylglucosaminyltransferase (EC 

2.4.1.143) 

N-Glycan biosynthesis 

Various types of N-glycan 

biosynthesis 

 K00827  AGXT2 

alanine-glyoxylate transaminase / 

(R)-3-amino-2-methylpropionate-

pyruvate transaminase (EC 

2.6.1.44 2.6.1.40) 

Alanine, aspartate and glutamate 

metabolism 

Cysteine and methionine 

metabolism 

Glycine, serine and threonine 

metabolism 

Valine, leucine and isoleucine 

degradation 

 K00915 
 IPMK 

IPK2 

inositol-polyphosphate multikinase 

(EC 2.7.1.140 2.7.1.151) 
Inositol phosphate metabolism 

 K00981  

E2.7.7.41 

CDS1 

CDS2 

cdsA 

phosphatidate cytidylyltransferase 

(EC 2.7.7.41) 

Glycerophospholipid 

metabolism 

 K01074  PPT 
palmitoyl-protein thioesterase (EC 

3.1.2.22) 
Fatty acid elongation 

 K01210  E3.2.1.58 
glucan 1,3-beta-glucosidase (EC 

3.2.1.58) 
Starch and sucrose metabolism 

 K01213  E3.2.1.67 
galacturan 1,4-alpha-

galacturonidase (EC 3.2.1.67) 

Pentose and glucuronate 

interconversions 

 K01214  
ISA 

treX 
isoamylase (EC 3.2.1.68) Starch and sucrose metabolism 

 K01512  acyP acylphosphatase (EC 3.6.1.7) 
Aminobenzoate degradation 

Pyruvate metabolism 
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 K01641  E2.3.3.10 
hydroxymethylglutaryl-CoA 

synthase (EC 2.3.3.10) 

Butanoate metabolism 

Valine, leucine and isoleucine 

degradation 

Synthesis and degradation of 

ketone bodies 

Terpenoid backbone 

biosynthesis 

 K01714  dapA 
4-hydroxy-tetrahydrodipicolinate 

synthase (EC 4.3.3.7) 

Lysine biosynthesis 

Monobactam biosynthesis 

 K01739  metB 
cystathionine gamma-synthase (EC 

2.5.1.48) 

Cysteine and methionine 

metabolism 

Sulfur metabolism 

Selenocompound metabolism 

 K01749  
hemC 

HMBS 

hydroxymethylbilane synthase (EC 

2.5.1.61) 

Porphyrin and chlorophyll 

metabolism 

 K01783  
rpe 

RPE 

ribulose-phosphate 3-epimerase 

(EC 5.1.3.1) 

Carbon fixation in 

photosynthetic organisms 

Pentose and glucuronate 

interconversions 

Pentose phosphate pathway 

 K01805  xylA xylose isomerase (EC 5.3.1.5) 

Fructose and mannose 

metabolism 

Pentose and glucuronate 

interconversions 

 K01937  
pyrG 

CTPS 
CTP synthase (EC 6.3.4.2) Pyrimidine metabolism 

 K01962  accA 

acetyl-CoA carboxylase carboxyl 

transferase subunit alpha (EC 

6.4.1.2 2.1.3.15) 

Pyruvate metabolism 

Fatty acid biosynthesis 

Propanoate metabolism 

 K02155  
ATPeV0C 

ATP6L 

V-type H+-transporting ATPase 

16kDa proteolipid subunit 
Oxidative phosphorylation 

 K02699  psaL photosystem I subunit XI Photosynthesis 

 K03428  
bchM 

chlM 

magnesium-protoporphyrin O-

methyltransferase (EC 2.1.1.11) 

Porphyrin and chlorophyll 

metabolism 

 K03859  
PIGC 

GPI2 

phosphatidylinositol N-

acetylglucosaminyltransferase 

subunit C 

Glycosylphosphatidylinositol 

(GPI)-anchor biosynthesis 

 K04122  
GA3 

CYP701 

ent-kaurene oxidase (EC 

1.14.14.86) 
Diterpenoid biosynthesis 

 K04718 SPHK sphingosine kinase (EC 2.7.1.91) Sphingolipid metabolism 

 K05283  PIGW 
glucosaminylphosphatidylinositol 

acyltransferase (EC 2.3.-.-) 

Glycosylphosphatidylinositol 

(GPI)-anchor biosynthesis 

 K05291  PIGS GPI-anchor transamidase subunit S 
Glycosylphosphatidylinositol 

(GPI)-anchor biosynthesis 

 K05349  bglX beta-glucosidase (EC 3.2.1.21) 

Cyanoamino acid metabolism 

Starch and sucrose metabolism 

Phenylpropanoid biosynthesis 

 K05350  bglB beta-glucosidase (EC 3.2.1.21) 

Cyanoamino acid metabolism 

Phenylpropanoid biosynthesis 

Starch and sucrose metabolism 

 K05857  PLCD 
phosphatidylinositol phospholipase 

C, delta (EC 3.1.4.11) 
Inositol phosphate metabolism 

 K08679  E5.1.3.6 
UDP-glucuronate 4-epimerase (EC 

5.1.3.6) 

Amino sugar and nucleotide 

sugar metabolism 
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 K08908  LHCA2 
light-harvesting complex I 

chlorophyll a/b binding protein 2 

Photosynthesis - antenna 

proteins 

 K09588  
CYP90A1 

CPD 

cytochrome P450 family 90 

subfamily A polypeptide 1 (EC 

1.14.-.-) 

Brassinosteroid biosynthesis 

 K09754  
CYP98A 

C3'H 

5-O-(4-coumaroyl)-D-quinate 3'-

monooxygenase (EC 1.14.14.96) 

Flavonoid biosynthesis 

Stilbenoid, diarylheptanoid and 

gingerol biosynthesis 

Phenylpropanoid biosynthesis 

 K09903  pyrH uridylate kinase (EC 2.7.4.22) Pyrimidine metabolism 

 K10251  

HSD17B12 

KAR 

IFA38 

17beta-estradiol 17-dehydrogenase 

/ very-long-chain 3-oxoacyl-CoA 

reductase (EC 1.1.1.62 1.1.1.330) 

Biosynthesis of unsaturated fatty 

acids 

Steroid hormone biosynthesis 

Fatty acid elongation 

 K11420  EHMT 

(histone H3)-lysine9 N-

trimethyltransferase EHMT (EC 

2.1.1.355) 

Lysine degradation 

 K12345  SRD5A3 

3-oxo-5-alpha-steroid 4-

dehydrogenase 3 / polyprenol 

reductase (EC 1.3.1.22 1.3.1.94) 

N-Glycan biosynthesis 

Steroid hormone biosynthesis 

 K12638 CYP90D1 
3-epi-6-deoxocathasterone 23-

monooxygenase (EC 1.14.14.147) 
Brassinosteroid biosynthesis 

 K13034  ATCYSC1 

L-3-cyanoalanine synthase/ 

cysteine synthase (EC 2.5.1.47 

4.4.1.9) 

Cyanoamino acid metabolism 

Sulfur metabolism 

Cysteine and methionine 

metabolism 

 K13082  DFR 

bifunctional dihydroflavonol 4-

reductase/flavanone 4-reductase 

(EC 1.1.1.219 1.1.1.234) 

Flavonoid biosynthesis 

 K13427  NOA1 
nitric-oxide synthase, plant (EC 

1.14.13.39) 

Arginine and proline metabolism 

Arginine biosynthesis 

 K13511  TAZ 
monolysocardiolipin 

acyltransferase (EC 2.3.1.-) 

Glycerophospholipid 

metabolism 

 K13832  
aroDE 

DHQ-SDH 

3-dehydroquinate dehydratase / 

shikimate dehydrogenase (EC 

4.2.1.10 1.1.1.25) 

Phenylalanine, tyrosine and 

tryptophan biosynthesis 

 K14157  AASS 
alpha-aminoadipic semialdehyde 

synthase (EC 1.5.1.8 1.5.1.9) 
Lysine degradation 

 K14423  SMO1 

plant 4,4-dimethylsterol C-4alpha-

methyl-monooxygenase (EC 

1.14.18.10) 

Steroid biosynthesis 

 K15227  TYRAAT 
arogenate dehydrogenase 

(NADP+), plant (EC 1.3.1.78) 

Phenylalanine, tyrosine and 

tryptophan biosynthesis 

 K15404  
K15404 

CER1 

aldehyde decarbonylase (EC 

4.1.99.5) 

Cutin, suberine and wax 

biosynthesis 

 K16903  TAA1 
L-tryptophan---pyruvate 

aminotransferase (EC 2.6.1.99) 
Tryptophan metabolism 

 K18826  CAMKMT 
calmodulin-lysine N-

methyltransferase (EC 2.1.1.60) 
Lysine degradation 

 K19355  MAN 
mannan endo-1,4-beta-

mannosidase (EC 3.2.1.78) 

Fructose and mannose 

metabolism 

 K19891  GN1_2_3 
glucan endo-1,3-beta-glucosidase 

1/2/3 (EC 3.2.1.39) 
Starch and sucrose metabolism 

 K19893  GN5_6 
glucan endo-1,3-beta-glucosidase 

5/6 (EC 3.2.1.39) 
Starch and sucrose metabolism 
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 K20896  TENA_E 

formylaminopyrimidine 

deformylase / aminopyrimidine 

aminohydrolase (EC 3.5.1.- 

3.5.99.-) 

Thiamine metabolism 

 K22845  PGT1 phlorizin synthase (EC 2.4.1.357) Flavonoid biosynthesis 

 K22849  DGAT3 
diacylglycerol O-acyltransferase 3, 

plant (EC 2.3.1.20) 
Glycerolipid metabolism 

 


