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Abstract

We present analytical results of fields radiated by finite-sized sources in unbounded uniaxial dielectric

materials. Uniaxial materials are abundant in nature (rutile, calcite, quartz etc.) and can also be fabricated

as periodic arrangement of thin sheets of different isotropic materials or as periodic arrangements of thin

cylinders with their axis pointing in the same directions. Most modern metamaterials are also uniaxial

due to dominant planar technology in electronics. Examples of uniaxial metamaterials include hyperbolic

and zero-index materials. Analytical results of radiations from sources inside uniaxial materials are

only available for point-sources. However, point-source is only a zeroth order approximation of actual

radiators. In this thesis, the finite-sized sources are considered and approximate analytical results are

derived. Finite-sized electric dipole and current loop are taken to find the next-order approximation of

point-electric and point magnetic dipoles in uniaxial material. These results are obtained in the near zone

and far zone for the two orientations of the finite-length dipole: when it is parallel to the optic axis and

when it is perpendicular to the optic axis. These two orthogonal orientations can be used to construct

solutions for an arbitrarily oriented dipole. When the electric dipole is parallel to the optic axis, only

extraordinary waves are emitted. When the electric dipole is perpendicular this optic axis, both ordinary

and extraordinary waves are emitted; however, the radiations are suppressed along the optic axis and no

extraordinary waves are emitted in a direction perpendicular to both the electric dipole and the optic axis.

A comparison with the point dipole showed that the directivity of the radiation pattern can be controlled

using the length of the dipole. The radiations by a current loop in an unbounded uniaxial dielectric

material with uniform current distribution are also studied. The closed-form expressions for the radiation

in the far zone are found using the dyadic Green functions in the frequency domain. Analytical results are

obtained when the axis of the loop was parallel to the optic axis and when it was perpendicular to the optic

axis. Only ordinary waves are emitted when the axis of the loop is parallel to the optic axis in contrast to

the electric dipole. When the axis of the loop is perpendicular to the optic axis, both the ordinary and the

extraordinary waves are emitted. The results for different radii of the loop show that the radiation pattern

strongly depends upon the size of the loop. A comparison of the finite-length dipole in the hyperbolic

material with that of the uniaxial dielectric material showed that the radiation patterns are very different

for the extraordinary waves but the patterns for the ordinary waves are similar. When the dipole and the

optic axis are parallel, the extraordinary radiations are emitted along a cone in the hyperbolic material

with the optic axis as its axis. When the dipole is perpendicular, no extraordinary radiation is emitted

along the dipole, the optic axis, and perpendicular to the plane formed by the dipole and the optic axis.

Furthermore, analytical results are obtained for the wire material in the zero-index regime. When the

dipole is parallel, only the near field is significantly present and no radiations are emitted in the far field.

When the dipole is perpendicular, the near field is negligible, but far field radiations are present, though

only of the ordinary type.
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Chapter 1

Introduction

Uniaxial materials have single axis of symmetry and can support electromagnetic waves with two

orthogonal states of different phase velocities. These materials exist in nature and they can be prepared

artificially from simple isotropic materials. The artificial fabrication can be achieved by stacking the

layers of different isotropic materials periodically or by dispersing the parallel cylindrical inclusions in an

isotropic host. Moreover, out of seven crystal systems, trigonal, tetragonal and hexagonal crystal systems

are uniaxial. Also, many other crystals can be approximated very well as uniaxial materials.

In this thesis, we investigated radiation by finite-sized sources in uniaxial materials. Analytical

results for near and far field are obtained. Radiation problems are important to understand radiation

properties of radiators and scattering properties of inclusions and impurities. A small linear electric

current element with uniform current distribution is called a dipole. We considered finite-length dipole

because several electrically small sources of electromagnetic waves can be modeled as Hertzian dipoles

of finite-length such as quantum dots or quantum wires. The finite-length dipole is also highly useful for

helping analyze larger antennas which can be subdivided into short sections having uniform currents as

large antennas can be thought of as composed of small sections with uniform current distribution on each

small section. Our main goal is to provide analytical results for the finite-length dipole. We have also

considered the current loop whose limiting case can be treated as point-magnetic dipole.

Uniaxial material are ubiquitous in optical components: birefringent filters, birefringent lenses,

waveplates, birefringent interferometers, and nonlinear optical effect generators [1]. Several uniaxial

crystals like quartz have been used to make specialized lenses, windows, and filters used in lasers,

microscopes, telescopes, electronic sensors, and scientific instruments [2]. Uniaxial materials occupy

an important place in optics because of their varied applications including imaging [3, 4], sensing

[5], cloaking [6], waveguiding [7], and simulating space-time phenomena [8]. Artificially prepared

1



Chapter 1. Introduction 2

uniaxial materials that have unconventional material parameters, have been used to achieve unprecedented

functionality in the control of electromagnetic and acoustic waves, such as superlensing and negative

refraction [9]. The different values of the components of permittivity dyadic causes the dispersion relation

of uniaxial materials to show elliptic or hyperbolic shapes. Hyperbolic materials show super-resolution

in the far-zone through image magnification, negative refraction, and enhanced spontaneous emission

(Purcell effect) [10]. Moreover, whenever the sign of material parameter changes, a topological transition

occurs [9]. Also these are very important from the point of view of their applications in the field of

nano imaging [11] , nano sensing [12], nano resonators [13], efficient absorbers [14], and subdiffraction

imaging [15].

Upto the zeroth order, small sources of radiations can be modeled as point dipoles. Several authors

have studied the radiations from point dipoles. For example, the radiation by a point dipole in unbounded

uniaxial material is dealt in Refs. [16–18]. The radiation over a layered material with its optic axis lying

perpendicular to the plane of stratification has been studied by Tsang et al. [19], Kong [20], Kwon and

Wang [21], and Tang [22], while the same problem with point dipole embedded in the stratified material

has been studied by Ali and Mahmoud [23]. Far field radiation emitted by an arbitrarily oriented point

dipole which is placed in a two-layered uniaxially anisotropic material with its tilted optic axis is treated

analytically with the use of dyadic Green function [24]. Here, two cases are discussed, when the dipole is

placed over the two layered uniaxial material, and when it is embedded in a two layered uniaxial material

[24].

This thesis deals with the next order of approximation of radiation sources in the uniaxial materials

by taking into account their finite size. The generalization of both the electric and magnetic dipoles are

considered. The size of the radiation sources plays critical role in the directivity of radiation. This is even

more important in uniaxial materials because of a special direction (optic axis) is already present in the

material.

This chapter is focused on a brief introduction of uniaxial materials, their types, and their applica-

tions which are discussed in Sec. 1.1 . The dyadic Green function and it’s approximate form are briefly

discussed in Secs. 1.2 and 1.3 as the study of radiations will be carried out with the help of dyadic Green

functions. Moreover, the analytical results for the point-electric dipole in the near and far-zone in the

uniaxial dielectric material are presented in Sec. 1.4. The overview of the thesis is presented in Sec. 1.5

In this thesis, exp(−iωt) time-dependence is implicit, where t is the time, ω is the angular

frequency, and i =
√
−1. Moreover, εo, µo, and ko = ω

√
εoµo, represent the free-space permittivity,

permeability, and wavenumber respectively. Boldface letters represent vectors and symbols underlined
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twice represent dyadics. The dyadic Green functions are represented by upper-case letters, that are

underlined twice, such as G and the scalar Green functions are represented by lower-case letters, for

example g. The identity dyadic is represented as I .

1.1 Uniaxial materials

Materials having a single axis of symmetry that can support electromagnetic waves with two distinct states

of polarization along each direction of propagation with different phase velocities are called uniaxial

materials [16, 25–27]. Two distinct plane waves can propagate in each direction in a uniaxial material

except in a direction parallel to ±ĉ (where ĉ denotes the axis of symmetry). Whenever these waves

propagate parallel to ±ĉ, both of these have the same phase speed and attenuation rate. The axis which is

parallel to ĉ is called optic axis [26, 28]. Moreover, a wave that propagates with the same phase velocity

in all directions in the uniaxial material is called an ordinary wave. Whereas, the wave whose phase

velocity depends upon the direction of propagation and is different from the velocity of ordinary waves

unless the wave is propagating along the optic axis of the material, is called the extraordinary wave [29].

Uniaxial dielectric materials exists in nature [30], e.g., rutile, calcite and quartz [31, 32], and they can

also be fabricated artificially, e.g., a stack of thin films with alternating high and low refractive indices

[33] as shown in Fig. 1.3, and electrically thin wires arranged periodically in a parallel manner as shown

in Fig. 1.4 [34, 35].

1.1.1 Ordinary and extraordinary waves

Let us consider a monochromatic plane wave of an angular frequency ω propagating through uniaxial

material with an electric field [29]

E (r, ω) = Eo (ω) exp[i(ωt− k · r)] , (1.1)

and the magnetic field

H (r, ω) = Ho (ω) exp[i(ωt− k · r)] , (1.2)

where k = ω
c nŝ is the wave vector with ŝ as the unit vector representing the direction of propagation and

n as the refractive index. Maxwell equations for the electric and magnetic field displacement vectors are

∇×E = −∂B
∂t

, (1.3)
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∇×H =
∂D

∂t
, (1.4)

where

D = ε ·E, B = µ ·H , (1.5)

with

ε = εo
[
εbI + (εa − εb)ĉĉ

]
, µ = µoµbI , (1.6)

where εo, µo, I and ĉ represents, the permittivity of free space, the permeability of the free space, identity

dyadic, and unit vector in the direction of the optic axis, respectively.

Now by substituting Eqs. (1.1) and (1.2) along with Eq. (1.5) into Eqs. (1.3) and (1.4), respectively,

we get

k×Eo = ωµ ·Ho , (1.7)

k×Ho = −ωε ·Eo . (1.8)

By eliminating H from Eqs. (1.7) and (1.8), we get

k× (k×Eo) + ω2µoµbε ·Eo = 0 (1.9)

after using Eq. (1.6). In the principal coordinate system, the permittivity tensor is defined as

ε = εo


εb 0 0

0 εb 0

0 0 εa

 . (1.10)

Substituting Eq. (1.10) into Eq. (1.9) and further simplification gives [29]


ω2µoµbεb − k

2
y − k

2
z kxky kxkz

kykx ω2µoµbεb − k
2
x − k

2
z kykz

kzkx kzky ω2µoµbεa − k
2
x − k

2
y



Ex

Ey

Ez

 = 0 . (1.11)

For non-trivial solution to exist, the determinant of the matrix in Eq. (1.11) must vanish. Therefore [29]

∣∣∣∣∣∣∣∣∣
ω2µoµbεb − k

2
y − k

2
z kxky kxkz

kykx ω2µoµbεb − k
2
x − k

2
z kykz

kzkx kzky ω2µµbεa − k
2
x − k

2
y

∣∣∣∣∣∣∣∣∣ = 0 . (1.12)
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Equation (1.12) gives (
k2
x + k2

y

εa
+
k2
z

εb
− ω2

c2

)(
k2

εb
− ω2

c2

)
= 0 . (1.13)

The first part of Eq. (1.13) represents an ellipsoid and the second part of the same equation represents a

FIGURE 1.1: Schematic showing the intersection of xz plane with the normal surfaces of uniaxial
material, when ne(θ) is the refractive index of extraordinary wave.

sphere. The point where both of these shapes touch each other define the optic axis of the uniaxial material

as shown in Fig. 1.1. When the wave propagates in the direction of the optic axis, it will experience the

same refractive index and it’s phase velocity remains the same for any polarization state [36]. Moreover,

the spherical part in Eq. (1.13) tells us that the ordinary wave experience the same refractive index in all

directions, that is
√
εb. The ordinary wave has same refractive index in all direction and obeys all laws of

refraction, while extraordinary wave experiences refractive index ne(θ), and it depends on the direction

of propagation of wave. The phase velocity of both ordinary and extraordinary waves will be the same

only along the optic axis [36]. Using the spherical coordinates system in ellipsoid part of Eq. (1.13), the

most general relation for the refractive index ne(θ) at different angle θ is given by [29].

1

n2
e(θ)

=
cos2 θ

εb
+

sin2 θ

εa
. (1.14)

It is clear that index of refraction varies from ne(θ) =
√
εb for θ = 0o to ne(θ) =

√
εa for θ = 90o as

shown in Fig. 1.1 [29]. Also, on the basis of Eqs. (1.13) and (1.14), uniaxial material can be divided into

two types (i) Positive uniaxial material for which Re(εb) < Re(εa), (ii) Negative uniaxial material for
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Possible materials formed by changing permittivities values
Lossless dielectric ε′′a = 0; ε′′b = 0 ε′a > 0; ε′b > 0

Lossless hyperbolic ε′′a = 0; ε′′b = 0 ε′a < 0; ε′b > 0
Type-I Hyperbolic

ε′a > 0; ε′b < 0
Type-II Hyperbolic

Lossy dielectric ε′′a > 0; ε′′b > 0 ε′a > 0; ε′b > 0

Lossy hyperbolic ε′′a > 0; ε′′b > 0 ε′a < 0; ε′b > 0
Type-I Hyperbolic

ε′a > 0; ε′b < 0
Type-II Hyperbolic

TABLE 1.1: Classification of uniaxial materials based on real (ε′b, ε
′
a) and imaginary (ε′′b , ε

′′
a) values for

the principal values of permittivity tensor.

which Re(εb) > Re(εa) as depicted in Fig. 1.2. Rutile, quartz, and ice are positive uniaxial materials

whereas calcite, beryl, and proustite are negative uniaxial materials [29].

FIGURE 1.2: Normal surfaces of uniaxial material representing (left) positive uniaxial material with
Re(εb) < Re(εa) and (right) negative uniaxial material with Re(εb) > Re(εa).

Let us define the wave vector for the uniaxial material as k = ω
c (n+ ik) ŝ, whose refractive index

consists of both real and imaginary parts. Also, by choosing the principal permittivities of the permittivity

tensor as εb = ε′b + iε′′b , and εa = ε′a + iε′′a, the modified form of Eq. (1.10) is given by [36]

ε = εo


ε′b + iε′′b 0 0

0 ε′b + iε′′b 0

0 0 ε′a + iε′′a

 . (1.15)

Different types of uniaxial material exist based on the real and imaginary part of the principal permittivities

in Eq. (1.15). Some of these types are depicted in Table 1.1 [37]. In this thesis, we have dealt with

ordinary uniaxial dielectric materials, hyperbolic, and zero-index uniaxial materials.
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1.1.2 Stack material

Material which is formed by taking two or more isotropic materials arranged periodically in a parallel

manner such as shown in Fig. 1.3 is known as stack material. In such a system, the two interesting

situations can be considered: when the external electric field is directed either parallel or perpendicular

to the planer interfaces. When the thickness of the layers is very small as compared to the wavelength,

then this artificially prepared system acts as a homogeneous uniaxial material and can be described using

equivalent parameters. The relations for the effective permittivity for the two principal polarizations are

given by [34]

FIGURE 1.3: Electrically thin sheets of different isotropic materials arranged periodically in a parallel
manner.

εa = f1ε1 + f2ε2

εb =
ε1ε2

f2ε1 + f1ε2
, (1.16)

where f1 and f2 are the volume filling fraction of material 1 and material 2, respectively. If we have more

than one materials in each unit cell then

εa =
∑
i

fiεi

ε−1
b =

∑
i

fiε
−1
i , (1.17)
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where
∑
fi = 1 should be fulfilled for entire composite. Therefore, the permittivity of layered composite

is equal to the weighted arithmetic mean of the permittivities of all its constituents when the electric field

is parallel to the interface, and the permittivity takes the value of the weighted harmonic mean of all the

constituent permittivities when a perpendicular field is applied [34]. Many modern metamaterials are

based on layered metal-dielectric composites.

1.1.3 Wire material

Uniaxial material can also be fabricated a parallel assemblies of wires as shown in Fig. 1.4. If we take the

direction of the wires to be along the unit vector ĉ and assume a � λo , the relations for the effective

permittivity along parallel and perpendicular directions are given by [38]

εa = fεi + (1− f)εh ,

εb = εh
(1 + f)εi + (1− f)εh
(1 + f)εh + (1− f)εi

, (1.18)

with εi and εh being the permittivity of wire inclusion and host materials, respectively. The permeability

FIGURE 1.4: Thin thin rods of isotropic material arranged periodically to form uniaxial material.

of the wire material can taken as µ = µoµbI since all materials are taken to be non-magnetic. The

parameter f = πR2/a2 is the surface concentration of the wire, with R the radius of the wire and a is the

length of the unit cell of the material.

Constitutive elements of wire materials operating in the infrared and visible ranges are nanowires

or nanorods [39]. Nanowires or nanorod-based composites have recently become a significant and
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more interesting topic because of their unusual and counterintuitive optical properties that include

subwavelength confinement of optical radiation, negative refraction, and modulation of photonic density

of states [39–41]. Due to relatively low loss and ease of fabrication, nanowire composites found numerous

applications in biosensing, acoustooptics, subwavelength imaging, and ultrafast all-optical processing,

spanning visible to THz frequencies [42–46]. Wire material is a special class of uniaxial metamaterials

that have homogeneous internal structure along one preselected direction.

1.1.4 Hyperbolic material

The permittivity dyadic ε of the hyperbolic materials is given in Eq. (1.6) with

εa = ε′a + iε′′a , (1.19)

and

εb = ε′b + iε′′b . (1.20)

FIGURE 1.5: Intersection of xz plane with normal surface of a typical type-I hyperbolic material.

Therefore, there are two types of hyperbolic materials. Type-I materials are those for which ε′a < 0,

ε′b > 0, and for type-II, we materials have ε′a > 0, ε′b < 0 [47]. As an example, we have presented

intersection of xz plane with normal surface of a typical type-I lossless hyperbolic material by choosing

different values of permittivities as shown in Fig. 1.5. In this material the ordinary wave experience the

same refractive index in all the directions and it has less dissipation because only one permittivity has
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negative value. Also, as the extraordinary wave experience the changing refractive index ne(θ) in all

directions except along the optic axis experience loss when the refractive index ne(θ) goes to zero. In this

region, the loss of extraordinary wave is maximum. Moreover, with changing the values of permittivities

ε′b and ε′a the curve for ne(θ) is not effected and it shows the position of the optic axis [36].

Hyperbolic material is a special case of uniaxial material in which the principal values of the

permittivity dyadic ε have opposite signs [27, 32] and the isofrequency surface of an extraordinary

wave is a hyperboloid [47]. Due to the successful realization of hyperbolic materials using artificial

photonic structures and metamaterials [48–52], interest in hyperbolic materials is now revived and rapidly

increasing. Among the varieties of metamaterials proposed and fabricated, hyperbolic metamaterials are

one of the most attractive class of metamaterials [53, 54] due to their unique hyperbolic dispersion [55,

56] enabling unusual electromagnetic responses, such as hyperlensing, cloaking phenomena [57–59],

and broadband negative refraction [49, 60] without artificial magnetism, which is not very sensitive

to structural disorder. Uniaxial hyperbolic metamaterials are multi-functional platforms to realize

waveguiding, sensing, imaging, quantum and thermal engineering beyond conventional devices [61–64].

Hyperbolic material uses the concept of engineering the basic dispersion relation of waves to provide

unique electromagnetic modes that can have a broad range of applications [65]. One can consider the

hyperbolic metamaterial as a polaritonic crystal where the coupled states of light and matter give rise to a

larger bulk density of electromagnetic states [66]. Some of the applications of hyperbolic metamaterials

include negative refraction [67], sub-diffraction imaging [15], sub-wavelength modes [7], and spontaneous

[68] and thermal emission engineering [69, 70].

It is much easier to produce hyperbolic material than double-negative media, as the only necessary

criterion for hyperbolic material structures is that the motion of free electrons is restricted to be in one

or two spatial directions. A few natural materials, including bismuth and graphite, exhibit hyperbolic

dispersion in certain spectral ranges [32].

1.1.5 Zero-index material (ZIM)

Isotropic materials with either permittivity or permeability or both near zero are called zero-index material

(ZIM) [71–73]. Isotropic ZIM can be fabricated as random mixture of electrically small inclusions of

metal in dielectric host or other artificial nanostructure like split-ring resonators. In these materials k ≈ 0

means that wave propagate with little spatial variation and infinite phase velocity [71]. In uniaxial ZIMs

only one material parameter in the permittivity dyadic is taken to be near zero and the other parameter

take uniaxial positive value. A uniaxial ZIM can be fabricated as photonic crystals of dielectric materials



Chapter 1. Introduction 11

[74] or as metal/dielectrics stack or wire material as discussed in earlier sections. In the effective-material

regime (a� λo) and f � 1, we can choose the metallic wire with Re(εi) < 0 and dielectric host εh > 0

such that

εa ≈ 0

to get

ε ≈ εoεb(I − ĉĉ) . (1.21)

from Eq. (1.6).

By choosing the appropriate values for the two constituents permittivities and filling fraction, a

highly anisotropic material with one of the effective permittivity parameter approaches to zero and the

other parameter approaches infinity simultaneously, can be created very easily [34]. Such a composite

metal-dielectric layered media have found many applications in several versions of superlenses and

hyperlenses [4, 75–77]. In such media, as the electromagnetic wave will possess a small wave number,

leading to a very diminutive phase variation (that is, homogeneous field). Due to such an intriguing

property, ZIMs have been investigated extensively for various applications, for instance, manipulating

transmission in a ZIM waveguide with defects [78, 79], obtaining desired directive radiation or multi-

beams [80, 81], enhancing radiation efficiency [82–84], squeezing or bending EM wave in a sub-

wavelength ENZ channel [73], and unidirectional transmission [85].

1.2 Dyadic Green functions

A function which represents the solution of inhomogenous linear differential equation for which the

source is localized both in space and time is known as Green function. A source function which is

localized both in space and time is called a point source and impulse, respectively. It is useful in finding

the solution for a source that involves finite spatial and temporal domain by representing the source as a

dense distribution of impulsive point sources [25].

Green functions can be expressed in scalar, tensors, or dyadic form. Dyadic is mostly used in

electromagnetism. A function that maps a vector source into vector solution of a differential equation

is known as dyadic Green function. There are several physical processes which require dyadic Green

functions, e.g., radiations emitted by a current source in a material and generation of elastodynamics

waves by a mechanical source in a material [25, 26].
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Several research articles, books and chapters have been written on dyadic Green functions in

electromagnetism [16, 25, 26]. The dyadic Green functions for the uniaxial materials have been derived

earlier [16, 17, 25, 26] and are reproduced here for completeness. Let us begin with the time-harmonic

Maxwell equations [16, 26]

∇×H(r) + iωD(r) = Je(r) , (1.22)

∇×E(r)− iωB(r) = Jm(r) , (1.23)

∇ ·D(r) = ρe(r) , (1.24)

∇ ·B(r) = ρm(r) , (1.25)

where Je(r), Jm(r), ρe(r) and ρm(r) is the electric current density, magnetic current density, the electric

charge density and magnetic charge density, respectively, and these are related by the continuity equations

∇ · Je(r)− iωρe(r) = 0 and∇ · Jm(r)− iωρm(r) = 0. The frequency domain constitutive relations of

a uniaxial dielectric material can be written as

D(r) = ε ·E(r) , B(r) = µoµbH(r) , (1.26)

with the permittivity dyadic ε given in Eq. (1.6). Since Eqs. (1.22) and (1.23) are linear in E and H, the

electric and magnetic field phasors can be written in terms of the dyadic Green functions as

E(r) =

∫∫∫
V
′

[
Gee(R) · Je(r

′) +Gem(R) · Jm(r′)
]
d3r′ , (1.27)

H(r) =

∫∫∫
V
′

[
Gme(R) · Je(r

′) +Gmm(R) · Jm(r′)
]
d3r′ , (1.28)

where V ′ is the volume occupied by the electric current density Je(r
′) and

R = r− r′ . (1.29)
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The electric dyadic Green function Gee(R) and magnetoelectric dyadic Green function Gme(R) can be

found as [25, 26]

Gee(R) = iωµoµb

{
ge(R)εaε

−1

r

[
1− 1

ikonoRe
− 1

(konoRe)
2

]
−ge(R)

[
1− 3

ikonoRe
− 3

(konoRe)
2

]ε2
a(ε
−1

r
·R)(ε−1

r
·R)

R2
e

+
1

εb

[
εbgo(R)− εage(R)

]
K(R)

+
Rgo(R)−Rege(R)

ikono(R× ĉ) · (R× ĉ)

[
I − ĉĉ− 2K(R)

]}
, (1.30)

Gme(R) =
εa
εb

(1− ikonoRe)ge(R)
(R× ĉ)[R× (R× ĉ)]

R2
e(R× ĉ) · (R× ĉ)

+
[
ge(R)− go(R)

]
(R · ĉ)

[ĉ× (R× ĉ)](R× ĉ) + (R× ĉ)[ĉ× (R× ĉ)]

[(R× ĉ) · (R× ĉ)]2

−(1− ikonoR)go(R)
[R× (R× ĉ)](R× ĉ)

R2[(R× ĉ) · (R× ĉ)]
, (1.31)

where

K(R) =
(R× ĉ)(R× ĉ)

(R× ĉ) · (R× ĉ)
, (1.32)

ε−1

r
=

1

εb
I −

( 1

εb
− 1

εa

)
ĉĉ , (1.33)

and

no =
√
εb
√
µb, ko = ω

√
µoεo . (1.34)

The scalar Green functions

go(R) =
exp(ikonoR)

4πR
and ge(R) =

exp(ikonoRe)

4πRe
(1.35)

represent ordinary and extraordinary waves, respectively, and

Re =

√
εa
εb

(R× ĉ) · (R× ĉ) + (R · ĉ)2 . (1.36)

Let us note that the ordinary waves propagate with the same phase velocity in all directions in the

uniaxial material and the extraordinary waves have their phase velocity dependent upon the direction of

propagation which is different from that of the phase velocity of the ordinary waves unless the waves are

propagating along the optic axis of the material [26]. Similarly, the dyadic Green Gmm(R) can be found
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directly by solving equation [25]

[(
∇× I

)
· ε−1

r
·
(
∇× I

)
− k2

oµbI
]
·Gmm(R) = iωεoIδ(R) , (1.37)

as

Gmm(R) = iωεoεb

{
go(R)

[
1 +

i

konoR
− 1

(konoR)2

]
I

−go(R)
[
1 +

3i

konoR
− 3

(konoR)2

]
R̂R̂

− 1

εb

[
εbgo(R)− εage(R)

]
K(R)

+
Rgo(R)−Rege(R)

ikono(R× ĉ) · (R× ĉ)

[
I − ĉĉ− 2K(R)

]}
. (1.38)

By using Eq. (1.38), the magnetoelectric dyadic Green function Gem(R) can be found directly from

equation [25]

Gem(R) = − 1

iωεo
ε−1

r
· [ ∇×Gmm(R)] , (1.39)

as

Gem(R) =
εa
εb

(1− ikonoRe)ge(R)
[R× (R× ĉ)](R× ĉ)

R2
e(R× ĉ) · (R× ĉ)

+
[
ge(R)− go(R)

]
(R · ĉ)

[ĉ× (R× ĉ)](R× ĉ) + (R× ĉ)[ĉ× (R× ĉ)]

[(R× ĉ) · (R× ĉ)]2

−(1− ikonoR)go(R)
(R× ĉ)[R× (R× ĉ)]

R2[(R× ĉ) · (R× ĉ)]
. (1.40)

It can be seen that Eq. (1.40) can also be obtained by taking the transpose of Eq. (1.31).

1.3 Approximate dyadic Green function

Usually, we are interested in the far-field and near-field of a source. This can be achieved using

approximate dyadic Green function in the near and far zone. In the near zone, R� λ and R� D where

D is measure of size of source. In the far zone, R� λ and R� D. Radiations in far zone appears as if

the light travels along straight lines. Similarly, light scattered or reflected by an object seem to travel from

the object to an observer along straight lines, known as optical rays. These lines are the flow lines of the

energy in the radiation field. Therefore, fields in far zone are transfer electromagnetic fields. In close

vicinity of the source, however, these flow lines are in general curves, and intricate field line patterns may
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appear. Such structures can be found when the flow of radiation is resolved on a scale smaller than a

wavelength. Therefore, fields in near zone looks like that of electrostatic and magnetostatic fields.

In the near zone, the dyadic Green function can be approximated by retaining terms proportional

to 1/R3 since we have konoRe � 1 and konoR� 1, which means that we are observing radiation at a

distance which is much smaller than the wavelength. Therefore, Eqs. (1.30) and (1.31) can be written as

Gee(R) ≈ iεa
4πωεoεb

3εa

(
ε−1

r
·R
)(

ε−1

r
·R
)

R5
e

−
ε−1

r

R3
e

 (1.41)

and

Gme(R) ≈ 0 (1.42)

in the near zone.

In the far zone, our point of observation is at a distance which is much greater than the wavelength

of the radiation, that is, konoRe � 1 and konoR � 1. Therefore, to compute the electromagnetic field in

the far zone, we retain the terms proportional to 1/R. So, Eq. (1.30) can be approximated as

Gee(R) ≈ iωµoµb

{
ge(R)εaε

−1

r
− ge(R)

ε2
a(ε
−1

r
·R)(ε−1

r
·R)

R2
e

+
1

εb

[
εbgo(R)− εage(R)

]
K(R)

}
. (1.43)

Using the identity [25, 26]

ε−1

r
−
εa(ε

−1

r
·R)(ε−1

r
·R)

R2
e

− 1

εb
K(R) =

[
R×

(
R× ĉ

)][
R×

(
R× ĉ

)]
εbR

2
e

(
R× ĉ

)
· (R× ĉ

) , (1.44)

Eq. (1.43) can be rearranged as

Gee(R) = iωµoµb

{
ge(R)

εa
[
R×

(
R× ĉ

)][
R×

(
R× ĉ

)]
εbR

2
e(R× ĉ

)
· (R× ĉ

) + go(R)K(R)

}
. (1.45)

Similarly, Eq. (1.31) can be written as

Gme(R) ≈ ikono

{
go(R)

[R× (R× ĉ)](R× ĉ)

R(R× ĉ) · (R× ĉ)
− εa
εb
ge(R)

(R× ĉ)[R× (R× ĉ)]

Re[(R× ĉ) · (R× ĉ)]

}
(1.46)

in the far zone.
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1.4 Radiation by point dipoles in uniaxial material

In this section, the radiation from a point electric and a magnetic dipole are discussed. For both the cases

electric and magnetic field were evaluated by dyadic Green function in Refs. [25, 26, 86]. However, we

also compute the radiation pattern in the far zone for later comparison with finite-sized sources.

1.4.1 Radiation by a point-electric dipole

The radiation from the monochromatic sources can be studied with dyadic Green function. Let us consider

a point electric dipole having a dipole moment po and located at the origin. The electric density for the

point electric dipole is given by [25]

Je(r) = −iωpoδ(r), Jm(r) = 0 . (1.47)

As the detailed derivation are given in Ref. [25], we present the final results of the electric and magnetic

fields in the near and far zones. The electric field and the magnetic field of a point electric dipole when

we are very close to the dipole, i.e., konor � 1 and konore � 1 are given by [25]

E(r) =
1

4πεor
3
e

εa
εb

εa
(
ε−1

r
· r
)(

ε−1

r
· r
)

r2
e

− ε−1

r

 · po ,

H(r) = 0 ,

(1.48)

where

re =

√
εa
εb

(r× ĉ) · (r× ĉ) + (r · ĉ)2 . (1.49)

Similarly in the far zone, the electric and magnetic fields are given by [25]

E(r) = ω2µoµb

{
ge(r, 0)

εa
εb

[r× (r× ĉ)] [r× (r× ĉ)]

r2
e(r× ĉ) · (r× ĉ)

+ go(r, 0)K(r)

+
rgo(r, 0)− rege(r, 0)

ikono(r× ĉ) · (r× ĉ)

[
I − ĉĉ− 2K(r)

]}
· po , (1.50)

H(r) = ωkono

{
− ge(r, 0)

εa
εb

(r× ĉ) [r× (r× ĉ)]

re(r× ĉ) · (r× ĉ)
+ go(r, 0)

[r× (r× ĉ)] (r× ĉ)

r(r× ĉ) · (r× ĉ)

}
· po . (1.51)
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The above results are approximate results in the far zone. Now, suppose the point electric dipole is

oriented parallel to the optic axis, i.e., po = poĉ, then the electric and magnetic fields become [25]

E(r) = ω2poµoµb

{[
1 +

i

konore
− 1

(konore)
2

]
ĉ

−

[
1 +

3i

konore
− 3

(konore)
2

]
εa(ĉ · r)(ε−1

r
· r)

r2
e

}
ge(r, 0) , (1.52)

and

H(r) = iωpo
εa
εb

(1− ikonore)
(r× ĉ)

r2
e

ge(r, 0) , (1.53)

respectively. As we see that only ge(r, 0) is present in both Eqs. (1.52) and (1.53), it means that when the

electric dipole is aligned parallel to the direction of the optic axis only extraordinary wave is emitted.

The time-averaged power radiated per unit solid angle by the point dipole is given by [87, 88]

dP

dΩ
=

1

2
r̂ · Re(E×H∗)r2 . (1.54)

When both the optic axis and the point electric dipole are parallel to the z axis, the time-averaged power

radiated per unit solid angle can be found by substituting Eqs. (1.50) and (1.51) into Eq. (1.54) as

dP

dΩ
=
k4
oµbnop

2
ocε

2
d

32π2εoΘ
5 sin2 θ (1.55)

in the spherical coordinates, where

εd =
εa
εb
, Θ =

√
cos2 θ + εd sin2 θ. (1.56)

We have used the following equation for transforming Cartesian coordinates to spherical coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ . (1.57)

When the point dipole is parallel to the z axis and the optic axis parallel to the x axis, the time-

averaged power per unit solid angle can be found in two parts because we have both ordinary and

extraordinary wave since the electric field and magnetic field satisfy the orthogonality relations [29]

r̂ · (Ee ×H∗o) = 0, r̂ · (Eo ×H∗e) = 0 . (1.58)
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We can find the total radiated power by adding the radiated power of ordinary and extraordinary wave

separately, i.e.,
dP

dΩ
=
dPo
dΩ

+
dPe
dΩ

, (1.59)

where
dPo
dΩ

=
1

2
r̂ · Re(Eo ×H∗o)r2 , (1.60)

and
dPe
dΩ

=
1

2
r̂ · Re(Ee ×H∗e)r2 . (1.61)

Now the time-averaged power radiated by the point dipole for ordinary wave can be found by substituting

the ordinary part of Eqs. (1.50) and (1.51) into Eq. (1.60), and further by using Eq. (1.57) to convert into

spherical coordinates as
dPo
dΩ

=
k4
oµbnop

2
oc

32π2εo

sin2 θ sin2 φ

sin2 θ sin2 φ+ cos2 θ
. (1.62)

Similarly, the time-averaged power radiated by the point-electric dipole for extraordinary wave can be

found by substituting the extraordinary part of Eqs. (1.50) and (1.51) into Eq. (1.61), and further by using

Eq. (1.57) to convert into spherical coordinates as

dPe
dΩ

=
k4
oµbnop

2
ocε

2
d

32π2εoΦ
5

sin2 θ cos2 φ cos2 θ

sin2 θ sin2 φ+ cos2 θ
, (1.63)

where

Φ(θ, φ) =

√
sin2 θ cos2 φ+ εd

(
sin2 θ sin2 φ+ cos2 θ

)
. (1.64)

The total time-averaged power radiated per unit solid angle by the point dipole can be found by substituting

Eqs. (1.62) and (1.63) into Eq. (1.59) as

dP

dΩ
=

k4
oµbnop

2
oc

32π2εo

(
ε2
d cos2 θ cos2 φ

Φ5 + sin2 φ

)
sin2 θ

sin2 θ sin2 φ+ cos2 θ
. (1.65)

The far-field radiation patterns of extraordinary waves emitted by a point electric dipole aligned

with the optic axis (z axis) are shown in Fig. 1.6. The dipole is placed in uniaxial material (rutile) with

p0 = 1/ω, εa = 8.427, εb = 6.843, µb = 1 , λo = 0.584µm [29]. The plot is given only for 0 ≤ θ ≤ π

and π/2 ≤ φ ≤ 3π/2 for easier visualization since the pattern is independent of φ, as can be seen from

Eq. (1.55). The figure shows that the pattern is like that of a dipole in an isotropic material.

When the dipole is perpendicular to the optic axis, the radiation pattern of ordinary and extraordinary

waves are shown in Fig. 1.7 on left and right, respectively. It is clear from the left figure that the radiations
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FIGURE 1.6: Far-field radiation pattern of a point dipole given by Eq. (1.55), when it is oriented parallel
to the optic axis (z axis) and lying in a uniaxial material (rutile) with p0 = 1/ω, εa = 8.427, εb = 6.843,

µb = 1 , λo = 0.584µm. The plot is given for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2.

in the direction of optic axis are suppressed, though not zero. The radiation pattern of the extraordinary

wave from the dipole perpendicular to the optic axis are shown in Fig. 1.7 (right). The figure shows that

the emission is directive along the optic axis, though the radiations are suppressed along the optic axis

in a plane perpendicular to the dipole. Furthermore, there are no radiations emitted along the y axis, a

direction perpendicular to both the dipole and the optic axis.

FIGURE 1.7: Far-field radiation pattern of (left) ordinary waves given by Eq. (1.62) and (right) extraordi-
nary waves given by Eq. (1.63), when the point dipole is oriented along z axis and the optic axis along x
axis for a uniaxial material (rutile) with p0 = 1/ω, εa = 8.427, εb = 6.843, µb = 1 , λo = 0.584µm.

The plot is given for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2.
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1.4.2 Radiation by a point-magnetic dipole

Now, let us consider a point-magnetic dipole located at the origin with dipole moment mo and the current

density given by [25]

Je(r) = 0, Jm(r) = −iωmoδ(r) . (1.66)

The electric and magnetic fields in the near zone given by [25]

H(r) = 0 ,

E(r) =
1

4πµoµbr
3 [3r̂(r̂ ·mo)−mo] .

(1.67)

It is clear from Eq. (1.67) that it represents the magneto static field because the magnetic field is present in

the absence of ω, i.e., for ω → 0. Moreover, when we are very far away from the dipole, the approximate

electric and magnetic fields are given by [25]

E(r) = ωkono

{
go(r, 0)

(r× ĉ) [r× (r× ĉ)]

r(r× ĉ) · (r× ĉ)
− ge(r, 0)

εa
εb

[r× (r× ĉ)] (r× ĉ)

re(r× ĉ) · (r× ĉ)

}
·mo , (1.68)

and

H(r) = ω2εoεb

{
go(r, 0)

(
I − r̂r̂

)
− 1

εb
[εbgo(r, 0)− εago(r, 0)]K(r)

}
·mo . (1.69)

Only the terms proportional to 1/r were retained in Eqs. (1.68) and (1.69) under the far zone approxima-

tion, which is valid when we are far away from the source.

As a special case, when the dipole is aligned along the direction of the optic axis, i.e., m = moĉ,

then the electric and magnetic fields are in most general form can be written as [25]

E(r) = −iωmo(1− ikonor)
(r× ĉ)

r2 go(r, 0) , (1.70)

and

H(r) = ω2moεoεb

{[
1 +

i

konor
− 1

(konor)
2

]
ĉ−

[
1 +

3i

konor
− 3

(konor)
2

]
r̂(r̂ · ĉ)

}
go(r, 0) .

(1.71)

Equations (1.70) and (1.71) show that only ordinary wave is emitted by a point magnetic dipole because

ge(r, 0) is absent in both equations. If we compare these equations with Eqs. (1.52) and (1.53), we can

see that when the electric and magnetic dipole are aligned parallel to the direction of the optic axis, they

only emit extraordinary and ordinary wave, respectively.
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When both the optic axis and the point-magnetic dipole are parallel to the z axis, the time-averaged

power radiated per unit solid angle can be found by substituting Eqs. (1.68) and (1.69) into Eq. (1.54) as

dP

dΩ
=
k4
oεbnom

2
oc

32µoπ
2 sin2 θ (1.72)

in the spherical coordinates.

When the point magnetic dipole is parallel to the z axis and the optic axis is parallel to the x

axis, the time-averaged power radiated by the point-magnetic dipole for ordinary wave can be found by

substituting the ordinary part of Eqs. (1.68) and (1.69) into Eq. (1.60), and further by using Eq. (1.57) to

convert into spherical coordinates as

dPo
dΩ

=
k4
oεbnom

2
oc

32µoπ
2

sin2 θ cos2 θ cos2 φ

sin2 θ sin2 φ+ cos2 θ
. (1.73)

Similarly, the time-averaged power radiated by the point magnetic dipole for extraordinary wave can be

found by substituting the extraordinary part of Eqs. (1.68) and (1.69) into Eq. (1.61), and further by using

Eq. (1.57) to convert into spherical coordinates as

dPe
dΩ

=
k4
oεbnom

2
ocε

2
d

32µoπ
2Φ3

sin2 θ sin2 φ

sin2 θ sin2 φ+ cos2 θ
. (1.74)

The total time-averaged power radiated per unit solid angle by the point magnetic dipole can be found by

substituting Eqs. (1.73) and (1.74) into Eq. (1.59) as

dP

dΩ
=

k4
oεbnom

2
oc

32µoπ
2

(
cos2 θ cos2 φ+

ε2
d sin2 φ

Φ3

)
sin2 θ

sin2 θ sin2 φ+ cos2 θ
. (1.75)

The far-field radiation patterns of ordinary waves emitted by a point magnetic dipole with its

axis aligned with the optic axis (z axis) are shown in Fig. 1.8. The point-magnetic dipole is placed in

rutile with p0 = 1/ω, εa = 8.427, εb = 6.843, µb = 1, and λo = 0.584µm [29]. We have plotted Eq.

(1.72) only for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2 because it is easier to visualize the pattern since it is

independent of φ. The figure shows that the pattern is the same as that of a point dipole in an isotropic

material [26]. Let us note that no radiations exist along the optic axis which also happens to be the axis of

the loop in this case.

When the axis of the point-magnetic dipole is perpendicular to the optic axis, the radiation pattern

of the ordinary and extraordinary waves are shown in Fig. 1.9 on left and right, respectively. Its clear
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FIGURE 1.8: Far-field radiation pattern of a point magnetic dipole given by Eq. (1.72), when it is oriented
parallel to the optic axis (z axis) and lying in a uniaxial material (rutile) with p0 = 1/ω, εa = 8.427,
εb = 6.843, µb = 1 , λo = 0.584µm [29]. The plot is given for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2.

FIGURE 1.9: Far-field radiation pattern of (left) ordinary waves given by Eq. (1.73) and (right) extraordi-
nary waves given by Eq. (1.74), when the point magnetic dipole is oriented along z axis and the optic
axis along x axis for a uniaxial material (rutile) with p0 = 1/ω, εa = 8.427, εb = 6.843, µb = 1 ,

λo = 0.584µm [29]. The plot is given for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2.

from the figure that the radiations are directed toward the optic axis for the ordinary wave and these are

suppressed along the optic axis for the extraordinary waves.

1.4.3 Comparison of point-electric and point-magnetic dipole

When both the optic axis and the dipole (electric or magnetic) are parallel to each other, the radiation

pattern is similar for both the dipoles. However, when the optic axis is along the x axis and the dipole

(electric or magnetic) is along the z axis the radiation pattern for both the ordinary and extraordinary

wave is reversed.
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1.5 Overview of thesis

The main goal of this thesis is to study the radiation problems of finite-sized sources placed in the uniaxial

materials. In Chapter 2, we have analyazed a finite-length electric dipole. Analytical results are presented

in the near and far zone when the dipole is placed in the uniaxial dielectric material. When the dipole

is parallel and perpendicular to the optic axis. In Chapter 3, a finite-sized current loop is taken up to

mimic finite-sized magnetic dipole. The elegant closed form are derived in the far-zone when the loop

axis is parallel and perpendicular to the optic axis. In Chapter 4, the radiations by a finite-length electric

dipole are studies in the hyperbolic material. The strong dependence upon the length of the dipole is

found. In Chapter 5, analytical results are presented for the finite-length electric dipole when it is placed

in uniaxial zero-index material. The wire-medium in the zero-index regime is considered for analysis.

Finally, conlusions and future directions are presented in Chapter 6



Chapter 2

Hertzian electric dipole in uniaxial

dielectric material

In this chapter, the radiation by an extended linear source in the unbounded uniaxial dielectric material

with uniform current distribution is studied. The exact as well as approximate fields in the near and

far zones are found analytically using the dyadic Green functions in the frequency domain. Elegant

closed-form results are obtained when the Hertzian dipole is parallel and perpendicular to the optic axis of

the uniaxial material. When the dipole is parallel to the optic axis, only extraordinary waves are emitted.

When the dipole is perpendicular to the optic axis, both ordinary and extraordinary waves are emitted;

however, the radiations are suppressed along the optic axis and no extraordinary waves are emitted in a

direction perpendicular to both the electric dipole and the optic axis. A comparison with the point dipole

showed that the directivity of the radiation pattern can be controlled using the length of the Hertzian

dipole.

The plan of the chapter is as follow: The introduction and the relevant literature review is presented

in Sec. 2.1. The case of the electric dipole oriented parallel to the optic axis, when both the optic axis and

the dipole are parallel to the x axis, is presented in Sec. 2.2. The case of the dipole oriented parallel to the

optic axis, when both the optic axis and the dipole are parallel to the z axis, is presented in Sec. 2.3. The

case of the dipole perpendicular to the optic axis is presented in Sec. 2.4. The representative numerical

results are discussed in Sec. 2.5 and are compared with a point dipole in Sec. 2.6. Finally, the concluding

remarks are presented in Sec. 2.7.

This chapter is based on “A. Hayat and M. Faryad, On the radiation from a Hertzian dipole of a finite length in the uniaxial
dielectric material, OSA Continuum 2, 1411-1429 (2019)”

24
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2.1 Introduction

A small linear electric current element with uniform current distribution is called a Hertzian dipole.

Several electrically small sources of electromagnetic waves can be modeled as Hertzian dipoles such

as quantum dots or quantum wires. The length of the Hertzian dipole is usually short as compared to

the wavelength of electromagnetic waves emitted by that dipole [24, 89]. The Hertzian dipole is also

highly useful for helping analyze larger antennas which can be subdivided into short sections having

uniform currents as large antennas can be thought of as composed of small sections with uniform current

distribution on each small section [89].

To the zeroth order, small sources of radiations can be modeled as point dipoles. Therefore, several

authors have studied the radiations from point dipoles. For example, the radiation by a point dipole in

unbounded uniaxial material is dealt in Refs. [16–18]. The radiation over a layered material with its optic

axis lying perpendicular to the plane of stratification has been studied by Tsang et al. [19], Kong [20],

Kwon and Wang [21], and Tang [22], while the same problem with point dipole embedded in the stratified

material has been studied by Ali and Mahmoud [23]. Far field radiation emitted by an arbitrarily oriented

point dipole which is placed in a two-layered uniaxially anisotropic material with its tilted optic axis is

treated analytically with the use of dyadic Green function[24]. Here two cases are discussed, when the

dipole is placed over the two layered uniaxial material, and when it is embedded in a two layered uniaxial

material [24].

Most of the analytical work on radiation by sources inside the uniaxial materials has been done for

point dipoles, which are the zeroth order approximation of real sources. For the next approximation, it

is important to consider the radiation from sources with finite length. The simplest case for this type of

source is a Hertzian dipole with constant current density phasor over the length of the source. This is the

problem addressed in this chapter. However, unlike the point dipole, when the integration is trivial, the

results cannot be obtained in closed form for general Hertzian dipole. Therefore, we solved for two cases

of the orientation of the Hertzian dipole: (i) When the dipole is parallel to the optic axis and (ii) when

the dipole is perpendicular to the optic axis. A generally oriented dipole can always be broken into two

vector components, one along and one perpendicular to the optic axis. Therefore, our formulation can be

used to construct the solution of generally oriented Hertzian dipole by simple vector superposition. Let us

note that the extended sources have been dealt with for radiation in the uniaxial material numerically [18]

and using integral equations [90], and using approximation [91]. Moreover, the radiation resistance of an

electrically-small electric and magnetic dipole has been studied in a cold uniaxial plasma [92]. However,

our aim is to find closed-form and rigorous solutions of an extended linear dipole in this chapter.



Chapter 2. Finite length dipole in the uniaxial dielectric material 26

2.2 Dipole and optic axis parallel to x axis

Let us begin with the simpler case when both the electric dipole and the optic axis are parallel to the x

axis as shown in Fig. 2.1 with the electric current density

Je(r
′) =


−iωpoδ(y

′)δ(z′)x̂ , |x′| ≤ L ,

0 , |x′| > L .

(2.1)

FIGURE 2.1: Schematic showing a dipole (thick line) oriented parallel to the optic axis ĉ = x̂. The field
point P is located at position vector r with respect to the origin.

2.2.1 Near field

The near-field of the Hertzian dipole parallel to the optic axis can be computed by substituting the

near-field approximation of the dyadic Green function (1.41) and the electric current density (2.1) into Eq.

(1.27) to get

E(r) =
εdpo
4πεo

L∫
−L

[
3εa(ε

−1

r
·Rx)(ε−1

r
·Rx) · x̂

R5
ex

−
ε−1

r
· x̂

R3
ex

]
dx′ , (2.2)

where

εd = εa/εb , (2.3)

Rex =

√
εd(y

2 + z2) + (x− x′)2 , (2.4)



Chapter 2. Finite length dipole in the uniaxial dielectric material 27

and

Rx = (x− x′)x̂ + yŷ + zẑ . (2.5)

Using Eqs. (1.33) and (2.5), we can get the following identities

ε−1

r
·Rx =

1

εb
(yŷ + zẑ) +

1

εa
(x− x

′
)x̂ , (2.6)

ε−1

r
· x̂ =

1

εa
x̂ . (2.7)

Substituting Eqs. (2.6) and (2.7) into Eq. (2.2), we get

E(r) =
εdpo

4πεoεa

{
3εd(yŷ + zẑ)

L∫
−L

(x− x
′
)[

εd(y
2 + z2) + (x− x′)2

] 5
2

dx
′
+ 3x̂

×
L∫
−L

(x− x
′
)2[

εd(y
2 + z2) + (x− x

′
)2
] 5

2

dx
′
− x̂

L∫
−L

1[
εd(y

2 + z2) + (x− x
′
)2
] 3

2

dx
′
}
, (2.8)

that gives

E(r) =
εdpo

4πεoεb

{
yŷ + zẑ

(
1[

εd(y
2 + z2) + (x− L)2

] 3
2

− 1[
εd(y

2 + z2) + (x+ L)2
] 3

2

)

+
x̂

εd

(
L− x[

εd(y
2 + z2) + (x− L)2

] 3
2

+
L+ x[

εd(y
2 + z2) + (x+ L)2

] 3
2

)}
. (2.9)

Since H(r) = 0 in the near-field, Eq. (2.9) effectively represents the electrostatic field of a line of charge

in the uniaxial material parallel to the optic axis.

2.2.2 Far field

The electric and magnetic fields in the far field can be found by the substitution of Eqs. (1.43) and (2.1)

into Eq. (1.27), to get

E(r) = ω2µoµbpo

{ L∫
−L

ge(Rx)

[
εaε
−1

r
· x̂−

ε2
a(ε
−1

r
·Rx)(ε−1

r
·Rx) · x̂

R2
ex

]
dx′
}
, (2.10)
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which can be written as

E(r) =
ω2µoµbpo

4π

[
x̂

L∫
−L

exp(ikonoRex)

Rex
dx′ − εd(yŷ + zẑ)

L∫
−L

(x− x′) exp(ikonoRex)

R3
ex

dx′

−x̂
L∫
−L

(x− x′)2 exp(ikonoRex)

R3
ex

dx′
]
, (2.11)

using Eqs. (1.35), (2.6) and (2.7), where Rex is given by Eq. (2.4).

Since our point of observation is far away from the dipole, i.e., re � x′, which means that our

distance from the dipole is much greater than the size of the dipole. So, in this limit, we neglect the square

and higher order terms in the binomial expansion of Eq. (2.4) and approximate as

Rex ' re −
x

re
x′ (2.12)

in the exponential factor, where

re =

√
x2 + εd(y

2 + z2) . (2.13)

In the denominator of Eq. (2.11), we can approximate Rex ' re. Thereafter, Eq. (2.11) becomes

E(r) ' ω2µoµbpo
4π

exp(ikonore)

[(
I1

re
− I3

r3
e

)
x̂− εd

(yŷ + zẑ

r3
e

)
I2

]
, (2.14)

where the integrals I1 to I3 are derived in the appendix.

Using the transformation from Cartesian to spherical coordinates given in Eq. (1.57), we can

rewrite Eq. (2.13) as

re = r

√
sin2 θ cos2 φ+ εd

(
sin2 θ sin2 φ+ cos2 θ

)
= rΦ(θ, φ) . (2.15)

Now by substituting the solutions of integrals I1, I2 and I3 along with Eqs. (1.57) and (2.15) into Eq.

(2.14), the final expression of the electric field in spherical coordinates is given by

E(r) =
koµbpoεd
2πεonor

exp(ikonorΦ)

Φ2

[
(sin2 θ sin2 φ+ cos2 θ)

sin θ cosφ
x̂

− sin θ sinφŷ − cos θẑ

]
sin
(koLno sin θ cosφ

Φ

)
. (2.16)
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The expression of the magnetic field can be found by using Eqs. (1.46) and (2.1) in Eq. (1.28) as

H(r) = −konoωpoεd

L∫
−L

ge(Rx)
(Rx × x̂)[Rx × (Rx × x̂)] · x̂

Rex(Rx × x̂) · (Rx × x̂)
dx′ . (2.17)

Using Eq. (1.35) we get

H(r) =
konoωpoεd

4π
(−yẑ + zŷ)

L∫
−L

exp(ikonoRex)

R2
ex

dx′ , (2.18)

after making use of the following

Rx × x̂ = −yẑ + zŷ, [Rx × (Rx × x̂)] · x̂ = −(y2 + z2) . (2.19)

Using Eqs. (2.12) in the exponential term and Rex = re in the denominator of Eq. (2.18), we get

H(r) =
konoωpoεd

4π

exp(ikonore)

r2
e

(−yẑ + zŷ)I1 . (2.20)

By substituting the value of I1 into Eq. (2.20), transforming to the spherical coordinates and ignoring

1/r2 terms we get

H(r) =
kopocεd

2πr

exp(ikonorΦ)

Φ sin θ cosφ

(
cos θŷ − sin θ sinφẑ

)
sin
(koLno sin θ cosφ

Φ

)
. (2.21)

From Eqs. (2.16) and (2.21), we can see that only extraordinary waves propagate in this case.

Furthermore, the electric and magnetic fields are perpendicular to each other, as is usually the case of

radiation in the far zone.

Using the expressions for E and H from Eqs. (2.16) and (2.21) in Eq. (1.54), the time-averaged

power radiated per unit solid angle by the Hertzian dipole is given by

dP

dΩ
=
k2
oµbp

2
ocε

2
d

8π2εono

(sin2 θ sin2 φ+ cos2 θ)

Φ3 sin2 θ cos2 φ
sin2

(
koLno sin θ cosφ

Φ

)
. (2.22)

When we substitute εd = 1, Φ = 1, we get the results for the isotropic material.
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FIGURE 2.2: Schematic showing a dipole (thick vertical line) oriented parallel to the optic axis ĉ = ẑ.
The field point P is located at a position vector r with respect to the center of the dipole.

2.3 Dipole and optic axis parallel to z axis

In the previous section, we had the dipole and the optic axis parallel to the x axis. In the following section,

we will present the results for the dipole to be parallel to the z axis, but the optic axis would still be

parallel to the x axis. The reason is that an arbitrarily oriented dipole can be resolved into a dipole parallel

to and perpendicular to the optic axis. Therefore, the results of the previous section and the following

section can be used to construct solutions of an arbitrarily oriented Hertzian dipole. However, in this

section, we present the results of for a Hertzian dipole when the optic axis is parallel to the z axis so

that the results of the next section and this section can be compared for the case of isotropic material for

consistency check.

When the dipole and the optic axis are parallel to the z axis as shown in Fig. 2.2, the expression for

the electric field is given by

E(r) =
koµbpoεd
2πεonor

exp(ikonorΘ)

Θ2

[
sin2 θ

cos θ
x̂− sin θ cosφŷ− sin θ sinφẑ

]
sin

(
koLno cos θ

Θ

)
, (2.23)

and the expression for magnetic field is given by

H(r) =
kopocεd

2πr

exp(ikonorΘ)

Θ cos θ

(
− sin θ cosφẑ + sin θ sinφŷ

)
sin

(
koLno cos θ

Θ

)
. (2.24)
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The power distribution then is given by

dP

dΩ
=
k2
oµbp

2
ocε

2
d

8π2εono

sin2 θ

Θ3 cos2 θ
sin2

(
koLno cos θ

Θ

)
. (2.25)

The result is independent of φ as should be the case since the dipole and the optic axis are both along the

z axis and the problem has azimuthal symmetry. The far field for the isotropic material can be obtained

by setting εd = 1 and Θ = 1.

2.4 Dipole parallel to z axis and optic axis parallel to x axis

Let us now consider the case when the Hertzian dipole is perpendicular to the optics axis, as shown

schematically in Fig. 2.3. For this electric dipole, the current density can be written as

Je(r) =


−iωpoδ(x

′)δ(y′)ẑ′, |z′| ≤ L ,

0 , |z′| > L .

(2.26)

FIGURE 2.3: Schematic showing a dipole (thick vertical line) oriented perpendicular to the optic axis
ĉ = x̂. The field point P is located at a position vector r with respect to the center of the dipole.
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2.4.1 Near field

In the near field, the expression of electric field is found by substitution of Eqs. (1.41) and (2.26) into Eq.

(1.27) as

E(r) =
εdpo
4πεo

L∫
−L

[
3εa(ε

−1

r
·Rz)(ε

−1

r
·Rz) · ẑ

R5
ez

−
ε−1

r
· ẑ

R3
ez

]
dz′ , (2.27)

where

Rz = xx̂ + yŷ + (z − z′)ẑ (2.28)

and

Rez =

√
x2 + εdy

2 + εd(z − z
′)2 . (2.29)

After simplification, we get

E(r) =
3ε2
dpo

4πεoεa

{(
xx̂ + εdyŷ

) L∫
−L

(z − z′)
[x2 + εdy

2 + εd(z − z
′)2]

5
2

dz′

+ẑεd

L∫
−L

(z − z′)2

[x2 + εdy
2 + εd(z − z

′)2]
5
2

dz′ − ẑ

3

L∫
−L

1

[x2 + εdy
2 + εd(z − z

′)2]
3
2

dz′
}
,

which gives

E(r) =
3ε2
dpo

4πεoεa

[(
xx̂ + εdyŷ

){ 1

[x2 + εdy
2 + εd(z − L)2]

3
2

− 1

[x2 + εdy
2 + εd(z + L)2]

3
2

}

+
ẑεd

(x2 + εdy
2)

{
(z − L)2

[x2 + εdy
2 + εd(z − L)2]

3
2

− (z + L)2

[x2 + εdy
2 + εd(z + L)2]

3
2

}

+
ẑ

3(x2 + εdy
2)

{
(z − L)

[x2 + εdy
2 + εd(z − L)2]

1
2

− (z + L)

[x2 + εdy
2 + εd(z + L)2]

1
2

}]
. (2.30)

Let us recall that H(r) ≈ 0 in the near zone.
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2.4.2 Far field except at optic axis

In the far field, the expression of electric field can be found by substituting Eqs. (1.45) and (2.26) into Eq.

(1.27), and its simplified expression is given by

E(r) =
ω2µoµbpo

4π

{
εd

L∫
−L

[(
x2yŷ − xy2x̂

)
(z − z′) + x2ẑ(z − z′)2 − xx̂(z − z′)3

]
y2 + (z − z′)2

×exp(ikonoRez)

R3
ez

dz′ +

L∫
−L

(
y2ẑ− y(z − z′)ŷ
y2 + (z − z′)2

)
exp(ikonoRz)

Rz
dz′
}
. (2.31)

To solve these integrals we use far field approximation. Using Eq. (1.36) with ĉ = x̂ , we get

Rez =
[
r2
e + εdz

′(z′ − 2z)
] 1

2
, (2.32)

where re is given by Eq. (2.13).

In the far-field, our point of observation is far away from the dipole, i.e., re � z′, so in this limit,

we can neglect the higher order terms in z′/re in the binomial expansion of (2.32) and have

Rez ' re − εd
zz′

re
(2.33)

in the exponential term, whereas we can approximate Rez ' re in the denominator. Similarly,

Rz =
[
r2 + z′(z′ − 2z)

] 1
2 (2.34)

can be approximated as

Rz ' r −
zz′

r
(2.35)

in the exponential term and Rz ' r in the denominator. Furthermore,

y2 + (z − z′)2 ∼ y2 + z2 (2.36)

since y2 + z2 >> L in the far field at a point other than the optic axis. Therefore, Eq. (2.31) becomes

E(r) ' ω2µoµbpo
4π

{
εd exp(ikonore)

r3
e(y

2 + z2)

[(
x2yŷ − xy2x̂

)
I4 + x2ẑI5 − xx̂I6

]
+

exp(ikonor)

r(y2 + z2)

(
y2ẑI7 − yŷI8

)}
, (2.37)
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where the integrals I4 to I8 are derived in the appendix.

After substituting the solutions of integrals I4 to I8 in Eq. (2.37) and using Eq. (1.57), the final

expression for the electric field is

E = Eo + Ee , (2.38)

where

Eo(r) =
koµbpo

2πεonor

(
− ŷ + tan θ sinφẑ

)exp(ikonor) sin θ sinφ

(sin2 θ sin2 φ+ cos2 θ)
sin(konoL cos θ) (2.39)

represents the ordinary wave and

Ee(r) =
koµbpo

2πεonor

[
− (sin2 θ sin2 φ+ cos2 θ)x̂ + sin2 θ cosφ sinφŷ

+ sin θ cos θ cosφẑ
] exp(ikonorΦ) sin θ cosφ

Φ2(sin2 θ sin2 φ+ cos2 θ)
sin
(εdkonoL cos θ

Φ

)
(2.40)

represents the extraordinary wave.

Now the expression for the magnetic field in the far field with ĉ = x̂ can be found by substituting

Eqs. (1.46) and (2.26) into Eq. (1.28) as

H(r) = konoωpo

L∫
−L

{
go(Rz)

[Rz × (Rz × x̂)](Rz × x̂) · ẑ
Rz(Rz × x̂) · (Rz × x̂)

−εdge(Rz)
(Rz × x̂)[Rz × (Rz × x̂)] · ẑ
Rez(Rz × x̂) · (Rz × x̂)

}
dz′ . (2.41)

Using Eq. (1.35) in Eq. (2.41), we get

H(r) =
konoωpo

4π

{ L∫
−L

exp(ikonoRz)

R2
z

[−xy2ŷ + y3x̂− xy(z − z′)ẑ + y(z − z′)2x̂]

y2 + (z − z′)2 dz′

−εd

L∫
−L

exp(ikonoRez)

R2
ez

[−xy(z − z′)ẑ + x(z − z′)2ŷ]

y2 + (z − z′)2 dz′
}
. (2.42)

Just like the electric field, the magnetic field in the far field can be approximated as

H(r) ' konoωpo
4π

{
exp(ikonor)

r2(y2 + z2)

[
(y3x̂− xy2ŷ)I7 − xyẑI8 + yx̂I9

]
−εd exp(ikonore)

r2
e(y

2 + z2)

(
− xyẑI4 + xŷI5

)}
, (2.43)
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where the integral I9 in the far zone is derived in the appendix.

Substituting the values of I4, I7, I8, and I9 in Eq. (2.43) along with the use of Eqs. (1.57) and

(2.15), the final expression for the magnetic field is given by

H = Ho + He , (2.44)

where Ho represents the ordinary wave given by

Ho(r) =
kopoc

2πr

[
(sin2 θ sin2 φ+ cos2 θ)x̂− sin2 θ cosφ sinφŷ

− sin θ cos θ cosφẑ
] exp(ikonor) sin θ sinφ

cos θ(sin2 θ sin2 φ+ cos2 θ)
sin(konoL cos θ) , (2.45)

and He represents the extraordinary wave given by

He(r) =
kopoc

2πr

(
− cos θŷ + sin θ sinφẑ

)exp(ikonorΦ) sin θ cosφ

Φ(sin2 θ sin2 φ+ cos2 θ)
sin
(εdkonoL cos θ

Φ

)
.

(2.46)

Substituting the expression for Eo and Ho from Eqs. (2.39) and (2.45) into Eq. (1.60) and

converting into spherical coordinates, we get

dPo
dΩ

=
k2
oµbp

2
oc

8π2εono

sin2 θ sin2 φ

cos2 θ(sin2 θ sin2 φ+ cos2 θ)
sin2(konoL cos θ) . (2.47)

Similarly, by substituting the expression for Ee and He from Eqs. (2.40) and (2.46) into Eq. (1.61) and

converting into spherical coordinates, we get

dPe
dΩ

=
k2
oµbp

2
oc

8π2εono

sin2 θ cos2 φ

Φ3(sin2 θ sin2 φ+ cos2 θ)
sin2

(εdkoLno cos θ

Φ

)
. (2.48)

The total time-averaged power radiated per unit solid angle by the dipole is given by substituting Eqs.

(2.47) and (2.48) into Eq. (1.59) as

dP

dΩ
=

k2
oµbp

2
oc

8π2εono

sin2 θ

(sin2 θ sin2 φ+ cos2 θ)

[
cos2 φ

Φ3 sin2
(εdkoLno cos θ

Φ

)
+

sin2 φ

cos2 θ
sin2(konoL cos θ)

]
. (2.49)

When we substitute εd = 1 (giving Φ = 1), Eqs. (2.25) and (2.49) reduce to the exactly same results.
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2.4.3 Far field at optic axis

At the optic axis (x axis), R = Rx̂ = Rĉ (θ = π/2, φ = 0, π) and the fields and the power has to be

computed carefully using the limiting procedure [25]. The dyadic Green functions at the optic axis in the

far zone are given by [25]

Gee(R) = iωµoµb

[(
εaε
−1

r
− R̂R̂

)
+
εb − εa

2εb

(
I − ĉĉ

)]
go(R) (2.50)

and

Gme(R) =
ikono(εd + 1)

2
go(R)ĉ× I . (2.51)

The expression for electric field can be found by substituting Eqs. (2.26) and (2.50) with R̂ = x̂ in Eq.

(1.27), and is given by

E(r) =
k2
oµbpoL

4πεo
(εd + 1)

exp(ikonor)

r
ẑ . (2.52)

Similarly, the expression for the magnetic field can be found by substituting Eqs. (2.26) and (2.51) in Eq.

(1.28), and is given by

H(r) = −k
2
onopocL

4π
(εd + 1)

exp(ikonor)

r
ŷ . (2.53)

Now by substituting Eqs. (2.52) and (2.53) into Eq. (1.54), the expression of the time-averaged power

radiated per unit solid angle by the dipole is given by

dP

dΩ
=
k4
oµbnop

2
ocL

2

32π2εo
(εd + 1)2 . (2.54)

When we substitute εd = 1, Eqs. (2.25) with φ = 0 and θ = π/2 give the same result as of Eq. (2.54) for

the isotropic material.

2.5 Numerical results and discussion

The analytical results obtained for the far-field radiation patterns given by Eqs. (2.22), (2.25), (2.47)-

(2.49), and (2.54) constitute the main results and their elegant closed forms make them usable as it is. To

illustrate their use, we present representative numerical results for radiations in rutile with εa = 8.427,

εb = 6.843, µb = 1 at λo = 0.584µm [29] for a dipole with p0 = 1/ω and length L = 0.1λo and 0.2λo.

The far-field radiation patterns of extraordinary waves emitted by a Hertzian dipole aligned with

the optic axis (z axis) are shown in Fig. 2.4. The dipole is placed in uniaxial material (rutile) when
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FIGURE 2.4: Far-field radiation pattern of a Hertzian dipole given by Eq. (2.25), which is oriented
parallel to the optic axis (z axis) and lying in a uniaxial material (rutile) with p0 = 1/ω, εa = 8.427,
εb = 6.843, µb = 1 , λo = 0.584µm [29], and (left) L = 0.1λo, (right) L = 0.2λo. The plot is given for

0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2.

FIGURE 2.5: Far-field radiation pattern of ordinary waves given by Eq. (2.47) when the dipole is oriented
along z axis and the optic axis along x axis for a uniaxial material (rutile) with εa = 8.427, εb = 6.843,
µb = 1 , λo = 0.584µm [29], and (left) L = 0.1λo, (right) L = 0.2λo. The plot is given for 0 ≤ θ ≤ π

and π/2 ≤ φ ≤ 3π/2. The pattern is symmetric about xz plane.

L = 0.1λo and L = 0.2λo. The plot is given only for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2 for easier

visulaization since the pattern is independent of φ, as can be seen from Eq. (2.25). The figure shows that

the pattern is like that of a dipole in an isotropic material and its directivity increases as the length of the

dipole increases.

When the dipole is perpendicular to the optic axis, the radiation pattern of ordinary waves are

shown in Fig. 2.5 for the same material with L = 0.1λo and L = 0.2λo. Again the plot is provided only

for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2 since the pattern as given by Eq. (2.47) is symmetric around xz

plane as it should be since the dipole and the optic axis define this plane. Its clear from the figure that the
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FIGURE 2.6: Same as Fig. 2.5 except that the pattern is that of extraordinary waves given by Eq. (2.48).

radiations in the direction of optic axis are suppressed, though not zero. When we increase the length of

dipole, the radiation profile becomes more directive in a direction perpendicular to the dipole.

The radiation pattern of the extraordinary wave from the dipole perpendicular to the optic axis are

shown in Fig. 2.6. The figure shows that the emission is highly directive along the optic axis, though the

radiations are suppressed along the optic axis in a plane perpendicular to the dipole. Furthermore, there

are no radiations emitted along the y axis, a direction perpendicular to both the dipole and the optic axis.

When the length of the dipole is increased, the directivity of the radiations increases much more than the

previous two cases. The figure shows strong dependence of radiation pattern on length of the dipole even

when it is a fraction of the wavelength.

2.6 Comparison with the point dipole

To compare the results of the Hertzian dipole with those of a point dipole, let us consider a point-electric

dipole with the electric current density as given in Eq. (1.47) and the plots are given in Fig. 1.6 and 1.7.

The following results are very helpful in comparing the finite-sized and the point dipole:

• Let us note that L→ 0 in Eq. (2.25) results in the same form as that of Eq. (1.55). Similarly, the

Hertzian-dipole results of Eq. (2.49) reduce to the same form as the point dipole of Eq. (1.65)

when L→ 0 in Eq. (2.49).

• For comparison of the radiation patterns of the point dipole and the Hertzian dipole, the far-field

radiation pattern of the point dipole are presented in Fig. 1.6 and 1.7 when the dipole is, respectively,

parallel and perpendicular to the optics axis, for the same parameters as those for the Hertzian

dipole. A comparison of Fig. 1.6 with Fig. 2.4 shows that the both pattern looks similar, but the
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directivity is enhanced by the increase in length 2L of the Hertzian dipole. The comparison of Fig.

1.7 with Figs. 2.5 and 2.6 draws the same conclusion that the Hertzian dipole allows the control of

directivity of the radiation by choosing the length of the dipole.

2.7 Concluding remarks

The near-field electric field and the far-field radiation pattern of a Hertzian dipole in uniaxial dielectric

material were analytically derived and the far-field numerical results were presented for a chosen uniaxial

material. The dipole was taken to be along and perpendicular to the optic axis. When the dipole was

parallel to the optic axis, only extraordinary waves were emitted in the far field. When the dipole was

perpendicular to the optic axis, both ordinary and extraordinary waves were emitted but the radiations

along the optic axis were suppressed for both the ordinary and extraordinary waves. For the latter case,

there was no emission of extraordinary waves perpendicular to the dipole and the optic axis in the far

field. For all the cases, the directivity of the radiation pattern increased significantly with the increase in

the length of the dipole. A comparison with the results of the point dipole showed that the the length of

the Hertzian dipole plays a significant role in the directivity of the radiation pattern.

2.8 Appendix

In this appendix, we present the derivations of the integrals used in the formulation of the far-field

radiations. In general, we solved the integrals in the Cartesian coordinates, converted them into the

spherical coordinates, and then retained only the leading term.

Let us begin with

I1 =

L∫
−L

exp
(
−isxx′

)
dx′ =

2 sin(sLx)

sx
, (2.55)

where

s =
kono
re

. (2.56)

By substituting the expressions for x and re from Eqs. (1.57) and (2.15) into Eq. (2.55), we get

I1 =
2Φ

kono sin θ cosφ
sin

(
konoL sin θ cosφ

Φ

)
. (2.57)
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The second integral is

I2 =

L∫
−L

(x− x′) exp
(
− isxx′

)
dx′

=
−2isLx cos(Lsx) + 2(i+ sx2) sin(Lsx)

s2x2 . (2.58)

By substituting the expressions for x and re from Eqs. (1.57) and (2.15) into Eq. (2.58) and keeping only

the dominant term as r →∞, we get

I2 =
2rΦ

kono
sin

(
konoL sin θ cosφ

Φ

)
. (2.59)

The third integral is

I3 =

L∫
−L

(x− x′)2 exp
(
− isxx′

)
dx′

=
i

s3x3

{
exp(−isLx)[−2− 2is(L− x)x+ s2(L− x)2x2)]

− exp(isLx)[−2 + 2is(L+ x)x+ s2(L+ x)2x2]
}
. (2.60)

By converting to spherical coordinates and retaining only the dominant term as r →∞, we get

I3 =
2r2Φ sin θ cosφ

kono
sin

(
konoL sin θ cosφ

Φ

)
. (2.61)

The fourth integral is

I4 =

L∫
−L

(z − z′) exp
(
− isεdzz

′)dz′
=
−2iεdsLz cos(εdLsz) + 2(i+ εdsz

2) sin(εdLsz)

ε2
ds

2z2 . (2.62)

By substituting the expressions for z and re from Eqs. (1.57) and (2.15) into Eq. (2.62) and keeping only

the dominant term as r →∞, we get

I4 =
2rΦ

εdkono
sin

(
εdkonoL cos θ

Φ

)
. (2.63)
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The fifth integral is

I5 =

L∫
−L

(z − z′)2 exp
(
− isεdzz

′)dz′
=

i

s3z3ε3
d

{
exp(−isLzεd)[−2− 2is(L− z)zεd + s2(L− z)2z2ε2

d]

− exp(isLzεd)[−2 + 2is(L+ z)zεd + s2(L+ z)2z2ε2
d]
}
. (2.64)

By converting to spherical coordinates and retaining only the dominant term as r →∞, we get

I5 =
2r2Φ cos θ

εdkono
sin

(
εdkonoL cos θ

Φ

)
. (2.65)

The sixth integral is

I6 =

L∫
−L

(z − z′)3 exp
(
− isεdzz

′)dz′
=

1

s4z4ε4
d

{
exp(−isLzεd)

[
6 + i6s(L− z)zεd − 3s2(L− z)2z2ε2

d − is
3(L− z)3z3ε3

d

]
− exp(isLzεd)

[
6− i6s(L+ z)zεd − 3s2(L+ z)2z2ε2

d + is3(L+ z)3z3ε3
d

]}
. (2.66)

By converting to spherical coordinates and retaining only the dominant term as r →∞, we get

I6 =
2r3Φ cos2 θ

εdkono
sin

(
εdkonoL cos θ

Φ

)
. (2.67)

The seventh integral

I7 =

L∫
−L

exp
(
−iτzz′

)
dz′ (2.68)

is similar to I1 with

τ =
kono
r

. (2.69)

Performing integration and keeping only the dominant term as r → ∞, the final expression for I7 in

spherical coordinates is

I7 =
2 sin(konoL cos θ)

kono cos θ
. (2.70)
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The eighth integral is similar to I4, so

I8 =

L∫
−L

(z − z′) exp
(
−iτzz′

)
dz′ =

2r sin(konoL cos θ)

kono
. (2.71)

The integral I9 is similar to I5 so

I9 =

L∫
−L

(z − z′)2 exp
(
−iτzz′

)
dz′ =

2r2 cos θ sin(konoL cos θ)

kono
. (2.72)



Chapter 3

Current loop in uniaxial dielectric

material

In this chapter, the radiations by a current loop in an unbounded uniaxial dielectric material with uniform

current distribution are studied. The closed-form expressions for the radiation in the far zone are found

using the dyadic Green functions in the frequency domain. Analytical results are obtained when the axis

of the loop was parallel to the optic axis and when it was perpendicular to the optic axis. Only ordinary

waves are emitted when the axis of the loop is parallel to the optic axis. When the axis of the loop is

perpendicular to the optic axis, both the ordinary and the extraordinary waves are emitted. The results for

different radii of the loop show that the radiation pattern strongly depends upon the size of the loop.

The plan of the chapter is as follow: The introduction and relevant literature review is presented in

Sec. 3.1. The closed-form results are presented in Sec. 3.2 when the axis of the loop is parallel with the

optic axis of the uniaxial material. In Sec. 3.3, the axis of the loop is perpendicular to the optic axis. A

comparison with a point-magnetic dipole is presented in Sec. 3.4. The results and concluding remarks are

presented in Sec. 3.5 and Sec. 3.7, respectively.

This chapter is based on “A. Hayat and M. Faryad, Closed-form expressions for electromagnetic waves generated by a
current loop in a uniaxial dielectric material in the far zone, J. Opt. Soc. Am. B 36, F9-F17 (2019)”

43
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3.1 Introduction

The radiation by point-magnetic dipoles in the uniaxial materials have been studied by several authors

[17, 25]. Radiation due to a point-magnetic dipole in a hyperbolic uniaxial media is studied by Alkina and

Sautbekov [93]. These studies have been carried out for electrically small current loop or a point-magnetic

dipole. However, the point-magnetic dipole cannot exist because magnetic monopoles do not exist. Since

the magnetic dipoles might be needed to model real radiation sources in uniaxial materials like quantum

dots, wires, and sheets, the radiation characteristics of a current loop with arbitrary radius is needed.

Therefore, we set out to find the radiation characteristics of an electric current loop which effectively

models the magnetic dipole. Because the radius of loop is taken to be arbitrary in this chapter, the

problem taken up can be used to model real extended radiation sources. Furthermore, the modeling of

the magnetic dipole with a current loop enable direct realization of the magnetic dipole in addition to

providing a generalization of the fields in an isotropic material to the simplest anisotropic material, i.e.,

uniaxial dielectric material. In this chapter, we develop closed-form results of electromagnetic fields for

the finite-sized loop when the loop’s symmetry axis is either parallel or perpendicular to the optic axis of

the material.

Let us note that electromagnetic waves generated by extended sources in the uniaxial material has

been tackled numerically [18] and integral equations for generalized electric and magnetic currents have

also been obtained [90]. However, our aim in this chapter is to obtain closed-form results. Also, the

current distribution of a thin conducting loop inside a uniaxial material when the optic axis of the material

and symmetry axis of the loop are the same have also been studied [94]. Electrodynamics characteristics

of loop antennas which are placed over the surface of uniaxial anisotropic cylinder is studied by Kudrin et

al. [95]. Radiation as well as scattering from a microstrip patch antenna on a uniaxial material is studied

by Pozar [96]. Furthermore, the problem of determining the current distribution on a loop of a thin strip

coiled into a ring was studied by Zaboronkova [97].
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3.2 Loop axis and optic axis parallel to z-axis

Consider a constant current-loop of radius a as shown in Fig. 3.1. The loop lies wholly in the xy plane

and carries constant current I0. Since the optic axis is along the z axis, ĉ = ẑ. The electric current density

phasor in spherical coordinates is given by

Je(r) =
I0

a
δ(r − a)δ(θ − π

2
)φ̂ , (3.1)

Jm(r) = 0 . (3.2)

The electric field in the far zone can be computed by substituting Eqs. (1.45) and (3.1) into Eq. (1.27) to

FIGURE 3.1: Schematic showing a current loop with radius a and lies parallel to optic axis with ĉ = ẑ

.

get

E(r) = iωµoµbI0a

2π∫
0

{
go(R̃)

(R̃× ẑ)(R̃× ẑ) · φ̂′

(R̃× ẑ) · (R̃× ẑ)
+ge(R̃)

εd

[
R̃×

(
R̃× ẑ

)] [
R̃×

(
R̃× ẑ

)]
· φ̂′

R2
ez

(
R̃× ẑ

)
·
(
R̃× ẑ

) }
dφ′ ,

(3.3)
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where

R̃ = (x− x′)x̂ + (y − y′)ŷ + zẑ , (3.4)

and

εd = εa/εb , (3.5)

φ̂′ = − sinφ′x̂ + cosφ′ŷ . (3.6)

Using the transformation given in Eq. (1.57), we can write Eq. (3.4) as

R̃ = (x− a cosφ′)x̂ + (y − a sinφ′)ŷ + zẑ , (3.7)

here we replaced only the prime coordinates with their spherical expression and leave the un-prime

coordinates unchanged.

Since the fields in Eq. (3.3) are a superposition of the ordinary and the extraordinary waves. We

evaluate the fields for both of them separately. The expression for extraordinary field from Eq. (3.3) can

be written as

Ee(r) =
iaI0ωµoµbεd

4π

2π∫
0

exp(ikonoRez)

r3
ez

[
z(x sinφ′ − y cosφ′)ẑ

+
z2(xy cosφ′ − x2 sinφ′ − ay cos2 φ′ + ax cosφ′ sinφ′)x̂

(r× ẑ)2

+
z2(y2 cosφ′ − xy sinφ′ − ay cosφ′ sinφ′ + ax sin2 φ′)ŷ

(r× ẑ)2

]
dφ′ , (3.8)

where in the denominator we replaced R̃ with r, and Rez with rez . However, in the exponential term, we

must approximate

Rez ≈ rez −
εdra sin θ cos

(
φ− φ′

)
rez

, (3.9)
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where

rez = rΘ (3.10)

and

Θ =

√
cos2 θ + εd sin2 θ . (3.11)

Since the electric field phasor must be independent of φ due to the symmetry of current distribution

about the z axis, let us determine it by setting φ = 0. By substituting Eq. (3.9) and φ = 0 in Eq. (3.8), we

get

Ee(r) =
iωaI0µoµbεd

4πr3
ez

exp(ikonorez)

{
xz

2π∫
0

sinφ′ exp
(
−is cosφ′

)
dφ′ẑ

+
z2

x2

[
ax

2π∫
0

sinφ′ cosφ′ exp
(
−is cosφ′

)
dφ′ − x2

2π∫
0

sinφ′ exp
(
−is cosφ′

)
dφ′
]
x̂

+
az2

x

2π∫
0

sin2 φ′ exp
(
−is cosφ′

)
dφ′ŷ

}
, (3.12)

where

s =
konoaεd sin θ

Θ
. (3.13)

After solving the integrals, the final expression of Ee in spherical coordinates is given by

Ee(r) =
iI0aµoµbc

2n0Θ2r2 exp(ikonorez)
cos2 θ

sin2 θ
J1

(∣∣∣∣konoaεd sin θ

Θ

∣∣∣∣) ŷ . (3.14)

Since the final expression contain 1/r2 terms only,

Ee(r) ≈ 0 (3.15)

in the far zone.
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The part of Eq. (3.3) representing the ordinary wave is given by

Eo(r) =
iωµoµbI0a

4π

2π∫
0

exp
(
ikonoR̃

)
r

(R̃× ẑ)(R̃× ẑ) · φ̂′

(r× ẑ)2 dφ′ , (3.16)

for r � a by approximating R̃ as r in the denominator. But, Eq. (3.7) is approximated as

R̃ = r − a sin θ cosφ′ , (3.17)

to be used in the exponential term in the far zone. With the substitutions of Eqs. (3.6), (3.7) and (3.17),

Eq. (3.16) can be written as

Eo(r) =
iωµoµbI0a

4πr

exp(ikonor)

x2

{[
x2

2π∫
0

cosφ′ exp
(
−iτ cosφ′

)
dφ′

+a2

2π∫
0

cos3 φ′ exp
(
−iτ cosφ′

)
dφ′ − 2xa

2π∫
0

cos2 φ′ exp
(
−iτ cosφ′

)
dφ′
]
ŷ

+

[
ax

2π∫
0

sinφ′ cosφ′ exp
(
−iτ cosφ′

)
dφ′ − a2

2π∫
0

sinφ′ cos2 φ′ exp
(
−iτ cosφ′

)
dφ′
]
x̂

−

[
ax

2π∫
0

sin2 φ′ exp
(
−iτ cosφ′

)
dφ′ − a2

2π∫
0

sin2 φ′ cosφ′ exp
(
−iτ cosφ′

)
dφ′
]
ŷ

−a2

2π∫
0

sin3 φ′ exp
(
−iτ cosφ′

)
dφ′x̂

}
, (3.18)

where τ is given by

τ = konoa sin θ . (3.19)

After solving integrals and retaining the terms proportional to 1/r, the final expression for ordinary wave

is given by

Eo(r) =
ωµoµbI0a

2

exp(ikonor)

r
J1 (konoa sin θ) ŷ . (3.20)
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The expression for the magnetic field can be computed by substituting Eqs. (1.46) and (3.1) in Eq. (1.28)

as

H(r) =
ikonoIoa

4π

2π∫
0

{
exp
(
ikonoR̃

)
R̃

[R̃× (R̃× ẑ)](R̃× ẑ) · φ̂′

R̃(R̃× ẑ) · (R̃× ẑ)

−εd exp(ikonoRez)

Rez

(R̃× ẑ)[R̃× (R̃× ẑ)] · φ̂′

Rez[(R̃× ẑ) · (R̃× ẑ)]

}
dφ′ . (3.21)

With the substitutions of Eqs. (3.6), (3.7) and (3.9) in the numerator with φ = 0 and Rez ≈ rez and

(R̃× ẑ) · (R̃× ẑ) = x2 , (3.22)

in the denominator of Eq. (3.21), the extraordinary part of magnetic field is given by

He(r) =
ikonoIoaεd

4πr2
ez

exp(ikonorez)

x2

[
axz

2π∫
0

sin2 φ′ exp
(
−is cosφ′

)
dφ′
]
x̂ . (3.23)

After performing the integration and converting into spherical coordinates, we get

He(r) =
iIoa cos θ

2r2Θ2 sin2 θ
exp(ikonorez)J1

(∣∣∣∣konoaεd sin θ

Θ

∣∣∣∣) x̂ . (3.24)

Since the final expression contain terms with 1/r2, we have

He(r) ≈ 0 (3.25)

in the far zone.
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With the use of Eqs. (3.6) and (3.7) in the numerator, Eq. (3.17) in the exponential term, and R̃ ≈ r

and Eq. (3.22) in the denominator of Eq. (3.21) with φ = 0, we get

Ho(r) =
ikonoIoa

4πr2

exp(ikonor)

x2

{[(
x3 + a2x+ 2a3x

)
×

2π∫
0

cosφ′ exp
(
−iτ cosφ′

)
dφ′

−
(
a4 + a2x2

) 2π∫
0

exp
(
−iτ cosφ′

)
dφ′ − 2ax2

2π∫
0

cos2 φ′ exp
(
−iτ cosφ′

)
dφ′
]
ẑ

−

[(
x2z + a3z

) 2π∫
0

cosφ′ exp
(
−iτ cosφ′

)
dφ′ − a2xz

2π∫
0

exp
(
−iτ cosφ′

)
dφ′

−axz
2π∫
0

cos2 φ′ exp
(
−iτ cosφ′

)
dφ′
]
x̂

}
. (3.26)

By finding the solution of the integrals, transforming the Cartesian coordinates to the spherical coordinates

and retaining the terms proportional to 1/r only, we get

Ho(r) =
konoIoa

2r
exp(ikonor) (sin θẑ− cos θx̂) J1 (konoa sin θ) . (3.27)

From Eqs. (3.20) and (3.27), it is clear that only ordinary wave is radiated when the axis of the loop and

the optic axis are parallel to each other. Furthermore, both the fields are perpendicular to each other, as is

usually the case of radiation in the far zone.

The time-averaged power radiated per unit solid angle by the current loop can be found by

substituting Eqs. (3.20) and (3.27) in Eq. (1.60), we get

dPo
dΩ

=
k2
onoI

2
oa

2µoµbc

8
J2

1 (konoa sin θ) . (3.28)

The above result is independent of εa since the ordinary waves are polarized perpendicular to the optic

axis, as is also evident from Eq. (3.20).
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3.3 Loop axis parallel to z-axis and optic axis parallel to x-axis

Let us now consider the case when the axis of the current loop and the optic axis are perpendicular to

each other, as shown schematically in Fig. 3.2. For this current loop, the current densities are the same as

given in Eqs. (3.1) and (3.2) but ĉ = x̂ for the uniaxial dielectric material.

FIGURE 3.2: Schematic showing a current loop with its axis oriented perpendicular to the optic axis with
ĉ = x̂

.

We are interested in finding the fields at point P which is far away from the loop. The electric field

can be computed by substituting Eqs. (1.35), (1.45), and (3.1) in Eq. (1.27) as

E(r) =
iωµoµbI0a

4π

2π∫
0

{
εd exp(ikonoRex)

Rex

[
R̃×

(
R̃× x̂

)] [
R̃×

(
R̃× x̂

)]
· φ̂′

R2
ex

(
R̃× x̂

)
·
(
R̃× x̂

)
+

exp
(
ikonoR̃

)
R̃

(
R̃× x̂

)(
R̃× x̂

)
· φ̂′(

R̃× x̂
)
·
(
R̃× x̂

) }
dφ′ , (3.29)

where Rex is given by

Rex =

√
εd(R̃× x̂) · (R̃× x̂) + (R̃ · x̂)2 . (3.30)
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For R� a, the expression of Rex in the spherical coordinates can be approximated from Eq. (3.30) and

is given by

Rex = rex −
ax cosφ′ + aεdy sinφ′

rex
, (3.31)

where rex is

rex = rΦ (θ, φ) (3.32)

with

Φ (θ, φ) =

√
sin2 θ cos2 φ+ εd

(
sin2 θ sin2 φ+ cos2 θ

)
. (3.33)

In order to get Eq. (3.31) in a simplified form, we introduce the following change of variables

x = η cosα sinβ, yεd = η sinα sinβ . (3.34)

Hence, Eq. (3.31) is given by

Rex = rex − s1 cos
(
α− φ′

)
, (3.35)

where

s1 =
konoaη sinβ

rΦ
. (3.36)

By substituting Eqs. (3.6) and (3.7) in the numerator and Eq. (3.35) in the exponential term with

Rex ≈ rex and

(R̃× x̂) · (R̃× x̂) = y2 + z2 (3.37)
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in the denominator of Eq. (3.29) as

Ee(r) =
−iωµoµbI0aεd

4π(y2 + z2)

exp(ikonorex)

r3
ex

{[(
xy3 + xyz2

) 2π∫
0

cosφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′

+(y4 + 2y2z2 + z4)

2π∫
0

sinφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′
]
x̂

−

[
x2y2

2π∫
0

cosφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′ + (xy3 + xyz2)

×
2π∫
0

sinφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′
]
ŷ −

[
x2yz

2π∫
0

cosφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′

+(xy2z + xz3)

2π∫
0

sinφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′
]
ẑ

}
,

(3.38)

where we have retained only those terms which are proportional to 1/r and ignored higher order terms in

the far zone limit. After finding the solution of integrals and further simplification gives us

Ee(r) =
ωµoµbI0aεd

2(y2 + z2)

exp(ikonorΦ)

r3Φ3

{
−(y2 + z2)x̂ + xyŷ + xzẑ

}
J1

(
konoaη sinβ

rΦ

)
×
[
xy cosα+ (y2 + z2) sinα

]
. (3.39)

With the use of Eq. (3.34), the simplified form of Eq. (3.39) is given by

Ee(r) =
ωµoµbI0aεd

2(y2 + z2)

y exp(ikonorΦ)

r2Φ sin θρd

[
− (y2 + z2)x̂ + xyŷ + xzẑ

]
J1

(
konoaρd sin θ

Φ

)
, (3.40)

with

ρd =

√
cos2 φ+ ε2

d sin2 φ . (3.41)
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To evaluate the ordinary part of the electric field from Eq. (3.29), we can approximate R̃ from Eq. (3.7)

for the exponential term as

R̃ = r − a sin θ cos
(
φ− φ′

)
, (3.42)

and for denominator it is approximated as R̃ ≈ r.

Substituting Eqs. (3.6) and (3.7) in the numerator, Eq. (3.42) in the exponential term, and Eq.

(3.37) with R̃ ≈ r in the denominator of Eq. (3.29) and retaining only the terms proportional to 1/r, we

get

Eo(r) =
iωµoµbI0a

4π(y2 + z2)

exp(ikonor)

r

{[
− yz

2π∫
0

cosφ′ exp
[
−iτ cos

(
φ− φ′

)]
dφ′

+az

2π∫
0

sinφ′ cosφ′ exp
[
−iτ cos

(
φ− φ′

)]
dφ′
]
ẑ

+z2

2π∫
0

cosφ′ exp
[
−iτ cos

(
φ− φ′

)]
dφ′ŷ

}
. (3.43)

Solving integrals and further simplification gives us

Eo(r) =
ωµoµbI0a

2(y2 + z2)

exp(ikonor)

r

(
−yzẑ + z2ŷ

)
cosφJ1 (konoa sin θ) . (3.44)

Now the expression for the magnetic field can be obtained by substituting Eqs. (1.35), (1.46) and

(3.1) in Eq. (1.28) as

H(r) =
ikonoIoa

4π

2π∫
0

{
exp
(
ikonoR̃

)
R̃

[R̃× (R̃× x̂)](R̃× x̂) · φ̂′

R̃(R̃× x̂) · (R̃× x̂)
− εd exp(ikonoRex)

Rex

×(R̃× x̂)[R̃× (R̃× x̂)] · φ̂′

Rex(R̃× x̂) · (R̃× x̂)

}
dφ′ . (3.45)

The extraordinary part of the magnetic field can be extracted from Eq. (3.45) by substituting Eqs. (3.6)
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and (3.7) in the numerator, Eq. (3.42) in the exponential term, and Eq. (3.37) with Rex ≈ rex in the

denominator, and retaining only the terms proportional to 1/r, we get

He(r) = − ikonoI0aεd

4π(y2 + z2)

exp(ikonorex)

r2
ex

{[
− xy2

2π∫
0

cosφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′

−(y3 + yz2)

2π∫
0

sinφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′
]
ẑ +

[
xyz

2π∫
0

cosφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′

+(y2z + z3)

2π∫
0

sinφ′ exp
[
−is1 cos

(
α− φ′

)]
dφ′
]
ŷ

}
. (3.46)

After finding the solution of integrals and further simplification gives us

He(r) =
konoI0aεd

2(y2 + z2)

exp(ikonorΦ)

r2Φ2 (yẑ− zŷ)
[
xy cosα+ (y2 + z2) sinα

]
J1

(
konoaη sinβ

rΦ

)
,

(3.47)

which can be further simplified with the use of Eq. (3.34) as

He(r) =
konoI0aεd

2(y2 + z2)

y exp(ikonorΦ)

rΦρd sin θ
(yẑ− zŷ) J1

(
konoaρd sin θ

Φ

)
. (3.48)

Similarly the ordinary part of the magnetic field can be extracted from Eq. (3.45) by substituting

Eqs. (3.6) and (3.7) in the numerator, Eq. (3.42) in the exponential term, and Eq. (3.37) with R̃ ≈ r in

the denominator, and retaining only the terms proportional to 1/r as

Ho(r) =
ikonoI0a

4π(y2 + z2)

z exp(ikonor)

r2

[
−(y2 +z2)x̂+xyŷ+xzẑ

] 2π∫
0

cosφ′ exp
[
−iτ cos

(
φ− φ′

)]
dφ′ .

(3.49)

Further simplification gives

Ho(r) =
konoI0a

2(y2 + z2)

z exp(ikonor)

r2

[
− (y2 + z2)x̂ + xyŷ + xzẑ

]
cosφJ1 (konoa sin θ) . (3.50)
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Hence, we see that both the ordinary and the extraordinary waves are radiated when the axis of the loop is

perpendicular to the optic axis.

Since the electric field and magnetic field satisfy the orthogonality relations given in Eq. (1.58),

we can find the total radiated power by adding the radiated power of ordinary and extraordinary wave

separately as given in Eq. (1.59).

Substituting the expressions for Eo and Ho from Eqs. (3.44) and (3.50) into Eq. (1.60) and

converting into spherical coordinates, we get

dPo
dΩ

=
k2
oµoµbnoI

2
0a

2c

8

cos2 θ cos2 φ

(sin2 θ sin2 φ+ cos2 θ)
J2

1 (konoa sin θ) . (3.51)

Similarly, by substituting the expressions for Ee and He from Eqs. (3.40) and (3.48) in Eq. (1.61) and

converting into spherical coordinates, we get

dPe
dΩ

=
k2
oµoµbnoI

2
0a

2cε2
d

8Φρ2
d

sin2 φ

(sin2 θ sin2 φ+ cos2 θ)
J2

1

(
konoaρd sin θ

Φ

)
. (3.52)

The total time-averaged power radiated per unit solid angle by the current loop is given by substituting

Eqs. (3.51) and (3.52) into Eq. (1.59) as

dP

dΩ
=

k2
oµoµbnoI

2
0a

2c

8(sin2 θ sin2 φ+ cos2 θ)

[
cos2 θ cos2 φJ2

1 (konoa sin θ) +
ε2
d sin2 φ

Φρ2
d

J2
1

(
konoaρd sin θ

Φ

)]
.

(3.53)

When we substitute εd = 1 (giving Φ = 1 and ρd = 1), Eqs. (3.28) and (3.53) reduce to the exactly same

results of circular current loop in isotropic material [25, 98].
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3.4 Electrically small current loop (point-magnetic dipole)

An electrical small current loop is effectively a point-magnetic dipole. For an electrically small loop, the ra-

dius a is small enough that |konoa| � 1. Then J1 (konoa sin θ) can be approximated by (konoa/2) sin θ

so that Eq. (3.20) simplifies to

E(r) = k2
onoµoµbπI0a

2cgo(r) sin θŷ , (3.54)

and Eq. (3.27) can be simplified as

H(r) = k2
on

2
oIoπa

2go(r) (sin θẑ− cos θx̂) sin θ . (3.55)

From Eqs. (3.54) and (3.55), we see that electric field and magnetic field is independent of φ and these

have the same spatial dependence as given for point-magnetic dipole parallel to the optic axis in [25].

Similarly the expression from Eq. (3.28) can be simplified as

dP

dΩ
=
k4
on

3
oI

2
oa

4µoµbc

32
sin2 θ . (3.56)

Also for small radius of the loop |konoa| � 1, J1 (konoaρd sin θ/Φ) can be approximated by (konoaρd sin θ/2Φ)

so that Eq. (3.40) simplifies to

Ee(r) =
k2
onoµoµbπI0a

2εdc

rΦ
ge(r)

y
[
−(y2 + z2)x̂ + xyŷ + xzẑ

]
y2 + z2 , (3.57)

and Eq. (3.44) can be simplified as

Eo(r) =
k2
onoµoµbπI0a

2c

y2 + z2 go(r)
(
−yzẑ + z2ŷ

)
sin θ cosφ , (3.58)
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whereas Eq. (3.48) simplifies to

He(r) =
k2
on

2
oI0πa

2εd

y2 + z2 ge(r)y (yẑ− zŷ) , (3.59)

and the simplified form of Eq. (3.50) is given by

Ho(r) =
k2
on

2
oI0πa

2

r(y2 + z2)
go(r)

[
− (y2 + z2)x̂ + xyŷ + xzẑ

]
z sin θ cosφ . (3.60)

A comparison of the fields given in Eqs. (3.57)–(3.60) with the fields of point-magnetic dipole given in

[25] shows that both the results agree when the dipole is taken perpendicular to the optic axis in Ref. [25].

Under the same approximation, the expression for the time-averaged Poynting vector of ordinary

wave given in Eq. (3.51) can be simplified as

dPo
dΩ

=
k4
oµoµbn

3
oI

2
0a

4c

32

cos2 θ cos2 φ

(sin2 θ sin2 φ+ cos2 θ)
sin2 θ , (3.61)

and the expression for extraordinary wave can be written as

dPe
dΩ

=
k4
oµoµbn

3
oI

2
0a

4cε2
d

32Φ3

sin2 φ sin2 θ

(sin2 θ sin2 φ+ cos2 θ)
, (3.62)

while the total power radiated by the point-magnetic dipole can be approximated from Eq. (3.53) as

dP

dΩ
=

k4
oµoµbn

3
oI

2
0a

4c

32

(
cos2 θ cos2 φ+

ε2
d sin2 φ

Φ3

)

× sin2 θ

(sin2 θ sin2 φ+ cos2 θ)
. (3.63)

When we substitute εd = 1 (giving Φ = 1), Eqs. (3.56) and (3.63) reduce to exactly the same results,

which is also the result for the point-magnetic dipole in the isotropic material.
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3.5 Numerical results and discussion

The closed-form results obtained for the far-field radiation pattern are chief results of this chapter and are

given in Eqs. (3.28) and (3.51)-(3.53). To illustrate their use, we present representative numerical results

for radiations by current loops of different sizes in a common uniaxial material, rutile, with I0 = 0.1 A,

εa = 8.427, εb = 6.843, µb = 1 , and λo = 0.584 µm [29] for a current loop with radius a = 0.1λo,

a = 0.2λo, and a = 1.2λo.

FIGURE 3.3: Far-field radiation pattern, Eq. (3.28), of ordinary waves emitted by a current loop with its
axis parallel to the optic axis (z axis) in rutile. The plot is given for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2
with I0 = 0.1A, εa = 8.427, εb = 6.843, µb = 1, λo = 0.584µm [29], (left) a = 0.1λo and (right)

a = 0.2λo.

The far-field radiation patterns of ordinary waves emitted by a current loop with its axis aligned

with the optic axis (z axis) are shown in Fig. 3.3. The loop is placed in uniaxial material (rutile) when

a = 0.1λo and a = 0.2λo. We have plotted Eq. (3.28) only for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2 because

it is easier to visualize the pattern since it is independent of φ. The figure shows that the pattern is like

that of a dipole in an isotropic material when a = 0.1λo. With the increase in the radius of the loop

(a = 0.2λo) the radiation pattern compresses around the loop and becomes more directive along the axis

of the loop. Let us note that no radiations exist along the optic axis which also happens to be the axis of

the loop in this case.
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FIGURE 3.4: Far-field radiation pattern of ordinary waves given by Eq. (3.51) when the axis of the loop
is oriented along z axis and the optic axis along x axis for a uniaxial material (rutile) with εa = 8.427,
εb = 6.843, µb = 1 , λo = 0.584µm [29], (left) a = 0.1λo, (right) a = 0.2λo and Io = 0.1A. The plot

is given for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2. The plot is symmetric about yz plane.

When the axis of the current loop is perpendicular to the optic axis, the radiation pattern of the

ordinary waves are shown in Fig. 3.4 when a = 0.1λo and a = 0.2λo. Again we have plotted Eq. (3.51)

for 0 ≤ θ ≤ π and π/2 ≤ φ ≤ 3π/2 because the pattern is symmetric about yz plane. Its clear from the

figure that the radiations in the direction of optic axis are suppressed, though not zero.

The radiation pattern of the extraordinary wave, given by Eq. (3.52), for a current loop that have its

axis perpendicular to the optic axis are shown in Fig. 3.5 when a = 0.1λo and a = 0.2λo. When the loop

size is small, the radiations are directed perpendicular to both the optic axis and the axis of the loop. But,

when the dipole size is larger, the radiations are suppressed completely along the axis of the loop and the

plane perpendicular to the this axis with the suppression strongest along a direction perpendicular to both

the optic axis and the axis of the loop.

The radiation patterns for a large loop are given in Fig. 3.6 when a = 1.2λo. The major

characteristic of these patterns are that they are all highly directive along the axis of the loop, though
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FIGURE 3.5: Same as Fig. 3.4 except that the pattern is that of extraordinary wave given by Eq. (3.52)
with (left) a = 0.1λo and (right) a = 0.2λo.

there are many side lobes now. Therefore, these radiation patterns show that the higher order multipoles

[87] are also present in the radiation pattern when the radius of the loop is large.

3.6 Comparison with the point-magnetic dipole

To compare the results of the current loop with those of a point-magnetic dipole, let us consider a point-

magnetic dipole with the electric current densities as given in Eq. (1.66) and the plots are given in Fig.

1.8 and 1.9. The following results are very helpful in comparing the finite-sized and the point-magnetic

dipole:

• Let us note that a→ 0 in Eq. (3.28) results in the same form as that of Eq. (1.72). Similarly, the

current loop results of Eq. (3.53) reduce to the same form as the point dipole of Eq. (1.75) when

a→ 0 in Eq. (3.53).
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FIGURE 3.6: Far-field radiation pattern when a = 1.2λo for (a) ordinary waves when the loop axis
is parallel to the optic axis, and for (b) ordinary and (c) extraordinary waves when the loop axis is

perpendicular to the optic axis.

• For comparison of the radiation patterns of the point-magnetic dipole and the current loop results,

the far-field radiation pattern of the point-magnetic dipole are presented in Fig. 1.8 and 1.9 when

the magnetic-dipole is, respectively, parallel and perpendicular to the optics axis, for the same

parameters as those for the current loop. A comparison of Fig. 1.8 with Fig. 3.3 shows that the

both pattern looks similar, but the directivity is enhanced by the increase in radius 2a of the current

loop. The comparison of Fig. 1.9 with Figs. 3.4 and 3.5 draws the same conclusion that the current

loop allows the control of directivity of the radiation by choosing the radius of the current loop.
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3.7 Concluding remarks

The closed-form expressions for the far-field radiation pattern of a constant current loop in a uniaxial

dielectric material were analytically derived and the representative numerical results were presented for a

chosen uniaxial material. The approximate results for a point-magnetic dipole were also derived. The

axis of the loop was taken to be along and perpendicular to the optic axis. When the axis of the loop was

parallel to the optic axis, only ordinary wave was emitted. When the axis of the loop was perpendicular to

the optic axis, both the ordinary and the extraordinary waves were emitted but the radiations along the

optic axis were suppressed for both the ordinary and extraordinary waves. For all the cases, the directivity

of the radiation pattern increased significantly with the increase in the size of the loop. When the radius

of loop was very large (larger than the wavelength), the radiations were highly directive along the axis of

the loop. A comparison of the radiation patterns of small loop (a = 0.1λo) with patterns of larger loops

show that the current loop approximates the point-magnetic dipole only when the radius is small.



Chapter 4

Electric dipole in hyperbolic material

In this chapter, far-field radiation by a finite-length electric dipole is studied in the hyperbolic material.

To account for the arbitrary orientation of the dipole, the results are presented when the dipole and the

optic are parallel to each other and when they are perpendicular to each other. Analytical as well as

numerical results for both the ordinary and extraordinary wave are presented. The results indicate a strong

dependence upon the length of the dipole, in contrast to the case of the uniaxial dielectric material. When

the dipole was parallel to the optic axis, radiations are emitted in a cone around the symmetry axis. When

the dipole was perpendicular to the optic axis, extraordinary waves are emitted along only four directions,

whereas ordinary waves are emitted in every direction perpendicular to the dipole.

The plan of the chapter is as follows: An introduction and the relevant literature review is presented

in Sec. 4.1. The far-field radiation pattern by a finite-length dipole, when the dipole and the optic axis are

parallel to each other, is discussed in Sec. 4.2. When the dipole is along the z axis and the optic axis is

along x, the radiations are discussed in Sec. 4.3. The concluding remarks are presented in Sec. 4.4.

This chapter is based on “A. Hayat and M. Faryad, Radiation by a finite-length electric dipole in the hyperbolic media,
Phys. Rev. A 101, 013832 (2020)”

64
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4.1 Introduction

Since the hyperbolic metamaterials [99, 100] are materials with strong dielectric anisotropy, these are also

very promising for quantum nanophotonics [48, 101], because the density of states which is determined

by the hyperboloid area is divergent. It means an infinite spontaneous decay rate of quantum emitters

embedded in hyperbolic materials, i.e., infinite Purcell effect [10]. In the realistic case, the radiation rate

is limited by certain cutoffs in the wave-vector space [102–106]; however, experimental observation of

radiative enhancement is still possible [48, 107]. Several authors have studied the radiations emitted by a

point dipole. For example, the radiations emitted by a point dipole in an unbounded uniaxial material was

studied in Refs. [16–18]. The far-field radiation of a point dipole in hyperbolic material was studied in

Ref. [47]. For the next order approximation, it is important to study the radiation from sources with finite

length.

4.2 Dipole and optic axis parallel to z axis

Let us consider the situation in which the finite-length dipole and the optic axis are parallel to the z axis,

and is placed in the hyperbolic material of type I as shown in Fig. 4.1. In this situation, it is observed that

only an extraordinary wave is emitted as discussed in Ref. [86].

Since the dipole is parallel to the optic axis, the electric current density for that dipole is given by

Je(r
′) =


−iωpoδ(x

′)δ(y′)ẑ , |z′| ≤ L ,

0 , |z′| > L .

(4.1)

The expressions for the electric and magnetic fields are given by [86]

E(r) =
koµbpoεd
2πεonor

exp(ikonorΘ)

Θ2

[
sin2 θ

cos θ
ẑ− sin θ cosφx̂− sin θ sinφŷ

]
sin

(
koLno cos θ

Θ

)
, (4.2)
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FIGURE 4.1: Schematic showing a finite-length dipole placed in the hyperbolic materials of type I with
its optic axis aligned parallel to the direction of the dipole (z axis).

and

H(r) =
kopocεd

2πr

exp(ikonorΘ)

Θ cos θ

(
− sin θ cosφŷ + sin θ sinφx̂

)
sin

(
koLno cos θ

Θ

)
, (4.3)

where

εd =
εa
εb

= ε′d + iε′′d . (4.4)

Since we only have an extraordinary wave emitted by a finite-length dipole, the time-averaged power can

be found by substituting Eqs. (4.2) and (4.3) into Eq. (1.54), and is given by

dP

dΩ
=
dPe
dΩ

=
k2
oµbp

2
oc
(
ε′2d + ε′′2d

)
8π2εo

sin2 θ

cos2 θ
Re

sin
(
koLno cos θ

Θ

)
sin
(
koLn

∗
o cos θ

Θ
∗

)
noΘ

2Θ∗

 . (4.5)

We now present numerical results in the hyperbolic material with εa = −3 + 0.2i, εb = 1 + 0.2i

[47], as well as for a natural hyperbolic material hexagonal boron nitride (hBN) with εa = −4.3 + 0.2i,

εb = 2.8 [108], po = 1/ω, and µb = 1 to understand the radiation in the hyperbolic material. The value
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FIGURE 4.2: Far-field radiation pattern of a finite-length dipole, which is oriented parallel to the optic
axis (z axis) and lying in the hyperbolic material with εa = −3 + 0.2i, εb = 1 + 0.2i, po = 1/ω, µb = 1,

(left) L = 0.1, and (right) L = 0.2.

FIGURE 4.3: Same as Fig. 4.2 (left) except that the hyperbolic material is hBN with εa = −4.3 + 0.2i,
εb = 2.8, po = 1/ω, L = 0.1, and µb = 1.

of permittivities for the hBN are taken at a wave number 1500 cm−1 from the data provided in Ref. [108].

The radiation pattern of the extraordinary wave given by Eq. (4.5) is shown in Fig. 4.2 (left) for

L = 0.1 and Fig. 4.2 (right) for L = 0.2. It is observed that the radiation pattern is spread uniformly

around the dipole and there is no radiation along the axis of the dipole. Furthermore, it is also noted that

the rate of emission of radiation increases strongly when the length of the dipole increases. Moreover,
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the radiation pattern is spread in a conical shape. If we compare these results with that of the uniaxial

dielectric material [86], we see that the power radiated by a finite-length dipole strongly depends upon the

length, i.e., a small change in the length produces a large change in the time-averaged radiated power in

the hyperbolic material. Another difference observed between the uniaxial dielectric [86] and hyperbolic

material is that the radiations are emitted in the plane perpendicular to the dipole in the uniaxial dielectric

material, while in case of the hyperbolic material no radiations are emitted in the plane perpendicular

to the dipole. The radiation pattern for the natural hyperbolic material hBN in Fig. 4.3 shows the same

properties.

4.3 Dipole is along z axis and the optic axis is along x axis

Now, let us consider the case in which the dipole is placed perpendicular to the optic axis, i.e., the dipole

is along the z axis and the optic axis is along the x axis as shown in Fig. 4.4. The current density for that

dipole is given in Eq. (4.1). Now in this situation, both ordinary and extraordinary waves are emitted [86].

The expression of electric fields is given by [86]

Eo(r) =
koµbpo

2πεonor

(
− ŷ + tan θ sinφẑ

)exp(ikonor) sin θ sinφ

(sin2 θ sin2 φ+ cos2 θ)
sin(konoL cos θ) , (4.6)

representing the ordinary wave and

Ee(r) =
koµbpo

2πεonor

[
− (sin2 θ sin2 φ+ cos2 θ)x̂ + sin2 θ cosφ sinφŷ + sin θ cos θ cosφẑ

]
× exp(ikonorΦ) sin θ cosφ

Φ2(sin2 θ sin2 φ+ cos2 θ)
sin
(εdkonoL cos θ

Φ

)
, (4.7)

representing the extraordinary wave.
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FIGURE 4.4: Schematic showing a finite-length dipole along the z axis placed in the hyperbolic material
of type I with its optic axis along the x axis.

Similarly, the corresponding expressions for the magnetic fields are given by

Ho(r) =
kopoc

2πr

[
(sin2 θ sin2 φ+ cos2 θ)x̂− sin2 θ cosφ sinφŷ − sin θ cos θ cosφẑ

]
× exp(ikonor) sin θ sinφ

cos θ(sin2 θ sin2 φ+ cos2 θ)
sin(konoL cos θ) , (4.8)

and

He(r) =
kopoc

2πr

(
− cos θŷ + sin θ sinφẑ

)exp(ikonorΦ) sin θ cosφ

Φ(sin2 θ sin2 φ+ cos2 θ)
sin
(εdkonoL cos θ

Φ

)
. (4.9)

Now the expression for the time-averaged power radiated per unit solid angle by the finite-length dipole

can be found by substituting Eqs. (4.6) and (4.8) into Eq. (1.60), as

dPo
dΩ

=
k2
oµbp

2
oc

8π2εo

sin2 θ sin2 φ

cos2 θ(sin2 θ sin2 φ+ cos2 θ)
Re

[
sin (konoL cos θ) sin

(
kon
∗
oL cos θ

)
no

]
, (4.10)
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for the ordinary wave. Similarly by substituting Eqs. (4.7) and (4.9) into Eq. (1.61), we get

dPe
dΩ

=
k2
oµbp

2
oc

8π2εo

sin2 θ cos2 φ

(sin2 θ sin2 φ+ cos2 θ)
Re

sin
(
εdkoLno cos θ

Φ

)
sin
(
ε
∗
dkoLn

∗
o cos θ

Φ
∗

)
noΦ

2Φ∗

 , (4.11)

for the extraordinary wave.

The far-field radiation pattern of the ordinary wave given by Eq. (4.10) is shown in Fig. 4.5

(top) for L = 0.1 and in Fig. 4.5 (bottom) for L = 0.2. Similarly the far-field radiation pattern of the

extraordinary wave given by Eq. (4.11) is shown in Fig. 4.6 (top) for L = 0.1 and in Fig. 4.6 (bottom)

for L = 0.2.

FIGURE 4.5: Far-field radiation pattern of ordinary waves given by Eq. (4.10), when the dipole is
oriented along the z axis and the optic axis is along the x axis, and lying in the hyperbolic material with

εa = −3 + 0.2i, εb = 1 + 0.2i, po = 1/ω, µb = 1, (top) L = 0.1, and (bottom) L = 0.2.

Figure 4.5 shows that the radiations are suppressed along the optic axis, though it is not zero. Also,

it is observed that when we increase the length of the dipole, the directivity increases. If we compare with
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that of the uniaxial dielectric material, we see that suppression of the radiation along the direction of the

optic axis is a bit strong. However, the radiation pattern is the same for both the uniaxial dielectric and

the hyperbolic material.

FIGURE 4.6: Same as Fig. 4.5 except that the pattern is that of the extraordinary wave.

Figure 4.6 shows that no radiations are emitted along the dipole, the optic axis, and perpendicular

to the plane formed by the dipole and the optic axis. This is in contrast to the dipole in the uniaxial

dielectric material [86] where the radiations were predominantly along a direction perpendicular to the

optic axis and the dipole. When the length of the dipole is increased, Fig. 4.6 shows that the strength of

the radiation increases very significantly. Let us note that the radiation patterns for the natural hyperbolic

material have the same properties and show the same trends as in Figs. 4.5 and 4.6 and are not reproduced

here.
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4.4 Concluding remarks

Far-field radiations by an electric dipole of finite length are presented and analyzed when the dipole was

parallel or perpendicular to the optic axis. When the dipole was parallel, only extraordinary waves are

emitted, but both the ordinary and the extraordinary waves are emitted when the dipole was perpendicular

to the optic axis. Furthermore:

• A comparison of the finite-length dipole in the hyperbolic material with that of the uniaxial dielectric

material showed that the radiation patterns are very different for the extraordinary waves but the

patterns for the ordinary waves are similar.

• The directivity of the radiation pattern is strongly dependent upon the length of the dipole.

• When the dipole and the optic axis were parallel, the extraordinary radiations are emitted along a

cone with the optic axis as its axis.

• When the dipole was perpendicular, no extraordinary radiation is emitted along the dipole, the optic

axis, and perpendicular to the plane formed by the dipole and the optic axis.

Let us note that the formulation presented in this chapter is valid for both the artificial as well as the

natural hyperbolic material. Once the permittivity dyadic of the hyperbolic material is known, the results

of this chapter can be used to find the electromagnetic fields and the radiation pattern of the radiations by

the finite-length dipole.



Chapter 5

Electric dipole in wire material in

zero-index regime

In this chapter, radiations by a finite-length dipole in a uniaxial zero-index materials (ZIMs) are studied.

The wire material in the zero index regime is taken as the uniaxial ZIM. Analytical results are obtained for

the wire material when the finite length dipole is parallel to the optic axis and when it was perpendicular

to the same axis. When the dipole was parallel, only the near field was significantly present and no

radiations were emitted in the far field. When the dipole was perpendicular, the near field negligible, but

far field radiations were present, though only of the ordinary type.

The plan of the chapter is as follow: The introduction and the relevant literature review is presented

in Sec. 5.1. The approximated dyadic Green functions for the wire material are discussed in Sec. 5.2.

The radiation pattern by a finite-length dipole when the dipole and the optic axis are parallel to each other

is discussed in Sec. 5.3. The fields due to a dipole that is perpendicular to the optic axis are presented in

Sec. 5.4. The concluding remarks of this chapter are presented in Sec. 5.5.
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5.1 Introduction

Electromagnetic metamaterials offer a wide range of electromagnetic properties that are otherwise not

available in natural materials or not available in the desired spectral range [26, 34, 109, 110]. These

metamaterials engender a wide range of extraordinary optical phenomena [111–114] and applications

[115–117]. Zero-index metamaterials (ZIMs) or materials with refractive index near zero have various

applications [83, 84, 118–128], for instance, to control transmission in a ZIM waveguide with defects

[118–121], getting desired directive radiation or multi-beams [122–124], increasing radiation efficiency

[83, 84, 125], compressing or bending electromagnetic wave in a sub-wavelength ENZ channel [126,

127], and unifacial transmission [128].

The ZIM materials are usually fabricated as a mixture of metallic and dielectric materials. A

parallel assembly of metallic wires in a dielectric host an easier way of fabricating a ZIM if the size of

the unit cell is much smaller than the operating wavelength [39]. In such a ZIM, the material is uniaxial,

with one principle permittivity zero and the other non zero. A similar uniaxial ZIM can also be fabricated

using an all-dielectric 2D photonic crystal operating at the Dirac-like point in its photonic band-structure

[129]. This dielectric photonic crystal also has permittivity zero along one direction and non-zero along

the other. These anisotropic ZIM materials have numereous applications: the subwavelength transmission

of images [130], superlensing [131], biosensing[132], the strong enhancement of the Vavilov-Cherenkov

radiation and peculiar dipole emission patterns has been also predicted for these material [133–135].

The growing list of applications of uniaxial ZIM materials require a theoretical framework to

understand scattering and radiation properties of the foreign inclusions and obstacles inside these ZIM to

either characterize scattering losses and to design efficient radiators. Therefore, we set out to delineate

the radiation characteristics of a finite-size electric dipole inside these uniaxial ZIMs.
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5.2 Dyadic Green functions of wire material in ZIM regime

Consider the wire material as shown schematically in Fig. 5.1 and also discussed in Sec. 1.1.3. If we

take the direction of the metallic wire to be along the unit vector ĉ, the permittivity dyadic for these wire

material is given by Eq. (1.21), and the dyadic Green functions for the wire material in the ZIM regime,

i.e., for εa ≈ 0, can be obtained from Ref. [25, 26, 86, 136] as

Gee(R) =
ωµoµb
4πkono

{
exp(ikonoRd)

(
1 +

i

konoRd

)
2ĉĉ

R2
d

+
ikono exp(ikonoR)

R

(R× ĉ) (R× ĉ)

| R× ĉ |2

+
exp(ikonoR)− exp(ikonoRd)

| R× ĉ |2

[
I − ĉĉ− 2 (R× ĉ) (R× ĉ)

| R× ĉ |2

]}
, (5.1)

where

Rd =| R · ĉ | , (5.2)

and

Gme(R) =
1

4π

(
exp(ikonoRd)

Rd
− exp(ikonoR)

R

)
(R · ĉ)

× [ĉ× (R× ĉ)] (R× ĉ) + (R× ĉ) [ĉ× (R× ĉ)]

[(R× ĉ) · (R× ĉ)]2

−exp(ikonoR)

4π
(1− ikonoR)

[R× (R× ĉ)] (R× ĉ)

R3 [(R× ĉ) · (R× ĉ)]
. (5.3)

Let us now consider the radiation from a finite-length electric dipole of length 2L along z axis and

placed in a wire material. The electric current density of the finite-length dipole is given by

Je(r
′) =


−iωpoδ(x

′)δ(y′)ẑ , |z′| ≤ L ,

0 , |z′| > L .

(5.4)
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In order to be able to find the radiation for the wire material with its optic axis oriented at an arbitrary

angle with respect to the dipole, we consider the two cases: (a) When the optic axis is parallel to the

dipole, and (ii) when it is perpendicular.

5.3 Optic axis parallel to the dipole

FIGURE 5.1: Schematic figure showing a finite length dipole placed in the zero-index wire material with
εa ≈ 0 with it’s optic axis aligned with the dipole (z axis).

Consider a finite-length dipole of length 2L placed in a wire material as shown in Fig. 5.1. The

dipole is aligned parallel to the direction of the optic axis (z axis). The radiated fields everywhere can be

obtained by substituting the dyadic Green functions and the current density in Eqs. (1.27) and (1.28);

however, the integrals cannot be evaluated analytically and numerical methods will be needed to solve the

integral at any given position. But, in the near-field and the far-field, approximate analytical results can

be obtained, as we see below.

5.3.1 Near field

In the near-field, konoRd � 1 and konoR� 1, the electric field of the finite length dipole placed parallel

to the optic axis in the wire material can be computed by substituting Eqs. (5.1) and (5.4) into Eq. (1.27)
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by retaining the leading term:

E(r) =
po

2πεoεb

∫ L

−L

ĉĉ · ẑ
| Rz · ĉ |

3dz
′ , (5.5)

where

Rz = xx̂ + yŷ + (z − z′)ẑ . (5.6)

Using Eq. (5.6) along with ĉ = ẑ into Eq. (5.5) and evaluating integrals gives us

E(r) =
poL

πεoεb

zẑ(
L2 − z2

)2 . (5.7)

However, the magnetic field computed to the same order by substituting Eqs. (5.3) and (5.4) into Eq.

(1.28) becomes

H(r) ≈ 0 . (5.8)

From Eqs. (5.7) and (5.8) it is clear that the fields near the dipole will be present even if the dipole is

static as the fields are dominantly electric and are independent of ω.

5.3.2 Far field

When we are very far away from the finite-length dipole, i.e., when konoRd � 1 and konoR� 1, the

electric and magnetic fields in the far zone can be computed by the substitution of Eqs. (5.1) and (5.4)

into Eq. (1.27) by retaining the terms proportional to 1/r as

E (r) ≈ k2
oµbpo
4πεo

∫ L

−L

exp(ikonoRz)

Rz

(Rz × ĉ) (Rz × ĉ) · ẑ
| Rz × ĉ |2

dz′ . (5.9)
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With the use of Eq. (5.6) along with ĉ = ẑ in Eq. (5.9), we get

E(r) = 0 . (5.10)

Similarly the expression for the magnetic field can be computed by the substitution of Eqs. (5.3) and (5.4)

along with ĉ = ẑ into Eq. (1.28), and is given as

H(r) = 0 . (5.11)

This means that no radiations are present in the far zone when both the optic axis and the dipole are

parallel to each other.

5.4 Optic axis perpendicular to the dipole

FIGURE 5.2: Schematic figure showing a finite length dipole placed in the zero-index wire material with
εa ≈ 0. The optic axis is along x axis and the dipole is along z axis.

Let us now consider the situation in which the optic axis is along x axis, and the finite-length dipole

is along z axis and is placed in the zero-index wire material with εa ≈ 0 as shown in Fig. 5.2.
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5.4.1 Near field

The electric field in the near zone (konoR << 1) can be computed by substituting Eqs. (5.1) and (5.4)

into Eq. (1.27) along with ĉ = x̂, and retaining the terms proportional to 1/r3 give

E(r) = 0 . (5.12)

Similarly, the magnetic field obtained by substituting Eqs. (5.3) and (5.4) into Eq. (1.28) along with

ĉ = x̂ and retaining the terms proportional to 1/r3 gives

H(r) = 0 . (5.13)

Therefore, the near-field of the dipole negligible in this case also.

5.4.2 Far field

The electric field in the far zone can be computed from Eq. (5.9) by replacing ĉ = x̂, to get

E(r) =
k2
oµbpo

4πεor

exp(ikonor)

y2 + z2

[
y2ẑ

∫ L

−L
exp
(
−iszz′

)
dz′ − yŷ

∫ L

−L
(z − z′) exp

(
−iszz′

)
dz′
]
, (5.14)

where s = kono/r. In Eq. (5.14), we have used the following approximation for the exponential terms

Rz =
[
r2 + z′(z′ − 2z)

] 1
2 ≈ r − zz′

r
(5.15)

since our observation point is far away from the dipole. In the denominator, however, just Rz ' r was

used. Furthermore, we approximated

y2 + (z − z′)2 ∼ y2 + z2 (5.16)
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since y2 + z2 � L in the far field. Now by evaluating integrals and converting into spherical coordinates,

we get

E(r) =
koµbpo

2πεonor

(
− ŷ + tan θ sinφẑ

)exp(ikonor) sin θ sinφ

(sin2 θ sin2 φ+ cos2 θ)
sin(konoL cos θ) . (5.17)

Similarly, the magnetic field was obtained by substituting Eqs. (5.3) and (5.4) into Eq. (1.28) along with

ĉ = x̂ and retaining the terms proportional to 1/r, to get

H(r) =
k2
onopoc

4π

L∫
−L

exp(ikonoRz)

R2
z

[−xy2ŷ + y3x̂− xy(z − z′)ẑ + y(z − z′)2x̂]

y2 + (z − z′)2 dz′ . (5.18)

Using the approximations given in Eq. (5.15) for the exponential term, Eq. (5.16) and Rz ' r in the

denominator of Eq. (5.18), the expression for the magnetic field in spherical coordinate is found as

H(r) =
kopoc

2πr

[
(sin2 θ sin2 φ+ cos2 θ)x̂− sin2 θ cosφ sinφŷ

− sin θ cos θ cosφẑ
] exp(ikonor) sin θ sinφ

cos θ(sin2 θ sin2 φ+ cos2 θ)
sin(konoL cos θ) . (5.19)

From the expression of the electric and magnetic field in the far zone, its clear that only ordinary wave is

emitted by the dipole.

The time-averaged power radiated per unit solid angle by the finite length dipole can be found by

the substitution of Eqs. (5.17) and (5.19) into Eq. (1.54), as

dP

dΩ
=
k2
oµbp

2
oc

8π2εono

sin2 θ sin2 φ

cos2 θ(sin2 θ sin2 φ+ cos2 θ)
sin2 (konoL cos θ) . (5.20)

The far-field radiation patterns of an ordinary wave emitted by a finite length dipole, given by Eq.

(5.20), when the dipole is perpendicular to the optic axis and placed in zero index wire material with

µb = 1, εb = 3.17 [38], (left) L = 0.01, and (right) L = 0.1 are shown in Fig. 5.3. Such a zero index
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FIGURE 5.3: The far-field radiation pattern given by Eq. (5.20), when the dipole is along z axis and the
optic axis is along x axis, and is placed in the wire material with µb = 1, εa = 0, εb = 3.17 [38], (left)

L = 0.01 and (right) L = 0.1.

materials can be obtained practically, for example by having a silver wires (εi ≈ −15) of radius R = 20

nm in a glass host (εh ≈ 2.25) arranged in a unit cell of period a = 100 nm in the middle of visible part

of the spectrum. The radiation pattern shows that the radiation are strongly suppressed along the direction

of the optic axis. Also, as the length of the dipole increases, the pattern becomes more directive in the

plane perpendicular the the dipole.

5.5 Concluding remarks

The closed-form expressions for the near-field and the far-field electromagnetic fields of a finite-length

electric dipole in the uniaxial zero-index material (ZIM) were analytically derived and the representative

numerical results were presented for the wire material in the zero index regime. The optic axis of the

material was taken to be parallel and perpendicular to the dipole. When the dipole was parallel, the far

field radiations were also negligible but the electric field in the near-zone was significant. However, when

the dipole was perpendicular to the optic axis, radiation were emitted in the far field, that also only of the

ordinary type. Though, the near field were negligible in this case. The increase in the length of the dipole

resulted in the increase in the directivity of the field pattern. This means that scatterer present in uniaxial

ZIM does not scatter light if the excitations in it only has dipole mode parallel to the optic axis.



Chapter 6

Conclusions and future directions

The near-field and the far-field radiation pattern of a finite-sized electric dipole in uniaxial dielectric

material were analytically derived and the far-field numerical results were presented for representative

materials. The dipole was taken to be along and perpendicular to the optic axis so that fields for arbitrary

orientations can be constructed. When the dipole was placed parallel to the to the optic axis, only

extraordinary waves were emitted in the far field. When the dipole was taken perpendicular to the optic

axis, both ordinary and extraordinary waves were emitted but the radiations along the optic axis were

suppressed for both the ordinary and extraordinary waves. For the latter case, there was no emission of

extraordinary waves perpendicular to the dipole and the optic axis in the far field. For all the cases, the

directivity of the radiation pattern increased significantly with the increase in the length of the dipole. A

comparison with the results of the point dipole showed that the length of the finite-sized dipole plays a

significant role in the directivity of the radiation pattern. The magnetic dipole was modeled as a current

loop and similar results were found except that the role of ordinary and extraordinary waves was reversed.

The approximate results for a point-magnetic dipole were also derived from current loop that agreed with

the direct results.

82
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The radiation pattern of the finite-sized electric dipole were also derived when the dipole was

placed in the hyperbolic material. When we compared the finite-length dipole in the hyperbolic material

with that of the uniaxial dielectric material, it showed that the radiation patterns are very different for the

extraordinary waves but the patterns for the ordinary waves were similar. The directivity of the radiation

pattern was strongly dependent upon the length of the dipole.

The results for the finite-length electric dipole were also derived when it was placed in the uniaxial

zero-index material (ZIM). When the dipole was taken parallel to the optic axis, the far field radiations

were negligible but the electric field in the near-zone was significant. However, when the dipole was

perpendicular to the optic axis, radiations were emitted in the far field, that also only of the ordinary type.

Though, the near field were negligible in this case. The increase in the length of the dipole resulted in the

increase in the directivity of the field pattern. This means that impurities/scatterers present in uniaxial

ZIM does not scatter light if the excitations in it only has dipole mode parallel to the optic axis.

The work presented in this thesis provides the analytical results for finite-sized electric and

magnetic dipoles in uniaxial material. This can provide foundations for an understanding of scattering

and radiation in these media. Furthermore, radiations and scattering from more complicated geometries

can be constructed using size-dependent results because bigger sources and scatterers can be assumed as

assemblies of smaller parts. The results presented here can be used as a springboard to formulate radiation

and scattering by finite-sized objects like spheres, cylinders, and other canonical geometries to model

more realistic sources such as quantum dots, wires, and sheets. Furthermore, scattering from impurities

present in uniaxial metamaterials can also be studied using the results in this thesis.
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