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Abstract

The study of spherical signal processing methods enables signal analysis in a variety

of diverse fields of science and engineering including, but not limited to, planetary sci-

ences, geophysics, acoustics, medical imaging, quantum mechanics, etc. The proposed

dissertation is thus directed towards processing and analysis of signals on spherical

objects: the sphere S2 and the ball B3.

The first part of the thesis focuses on the study of the Slepian concentration

problem on the sphere and the ball. We present a generalized formulation of the

Slepian concentration problem on the sphere for finding band-limited functions with

an optimal concentration in the spatial domain. By introducing weighting functions

in the formulation of classical Slepian concentration problem and assigning different

values to these weighting functions, we present two variants of the concentration

problem namely the differential and the weighted Slepian concentration problem. For

the Slepian problem on the ball, we design a new set of optimal basis functions with

an optimality criterion that the bases are simultaneously concentrated in both the

spatial and spectral domains. The optimal basis functions are designed as a linear

combination of space-limited functions with maximal concentration in the spectral

region and band-limited functions with maximal concentration in the spatial region.

In the second part of this thesis, we focus our attention on sampling schemes on

the sphere. It is desirable for a sampling scheme and its associated spherical harmonic

transform (SHT) algorithm to utilize the least number of samples, exhibit stability,

be computationally efficient and have low complexity in order to exactly or accurately

represent a band-limited signal on the sphere. We develop novel methods to improve

one or more of the aforementioned attributes of the existing sampling schemes on the
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sphere. For the optimal-dimensionality sampling scheme, we propose the placement 

of samples on the sphere such that the matrices involved in the computation of the 

SHT are well-conditioned, and develop an iterative algorithm which reduces the error 

by a factor of 10∼100. Using the proposed method, we also investigate the error in 

such case when only a small part of the sphere is inaccessible to support the signal 

analysis in applications (e.g., geophysics, cosmology, acoustics) where samples cannot 

be taken over the whole sphere due to practical limitations. We further propose an 

antipodally symmetric sampling scheme of optimal dimensionality for the sampling 

of band-limited signals. The proposed scheme takes (asymptotically) L2 number of 

samples for the sampling of spherical signal of band-limit L and computing its SHT 

accurately. Since the number of samples are asymptotically equal to the degrees of 

freedom of the signal in harmonic space, the proposed scheme attains optimal spatial 

dimensionality. We also formulate the SHT associated with proposed sampling 

scheme. We employ the antipodal symmetry of the sampling points which is exploited 

to separate the signal into antipodally symmetric and asymmetric components due to 

which the signal splits in harmonic space into the signals of even and odd spherical 

harmonic degrees. The exploitation of this splitting in the formulation of the SHT 

makes our method computationally efficient by a factor of four in comparison with 

the existing methods developed for sampling schemes that attain optimal spatial 

dimensionality. Lastly, to support the applications where the measurements can only 

be taken over spatially limited region on the sphere due to practical limitations, we 

design a spatially-limited sampling scheme on the sphere for the computation of SHT 

of band-limited signals. By enclosing the inaccessible region with an (anisotropic) 

ellipsoidal region followed by the rotation of the region to the pole or the equator, we 

propose an iso-latitude sampling scheme on the sphere. We also present a method 

to place the samples over the spatially-limited region such that the SHT can be 

computed accurately.

We also present a variant of the equiangular sampling scheme which requires fewer

number of samples as compared to the current schemes: an exact method with a slight

increase in complexity of the associated SHT algorithm.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

The observable universe and most of the celestial bodies can be considered spherical

in shape. On the other hand, the smallest existing particles that make up matter are

also modeled as spheres. Measurements taken from these sources comprise of data sets

in which the samples are inherently defined on the sphere. In the past decades, most

of the signal processing techniques and methods were developed for signals defined in

one-dimensional time domain, or more recently in the 2D Euclidean domain. There

were no signal processing techniques suitable for spherical signals. Consequently, these

signals had to be mapped to a two-dimensional plane thus enabling the researcher to

use signal processing methods developed for the Euclidean domain. However, a major

drawback of this approach was that it did not cater for the curvature of the sphere.

As a result, the computations became erroneous and inaccurate. Hence, there was a

dire need for the development of novel signal processing methods which could deal

with data measured on a sphere or a ball – the spherical signal processing.

Spherical signal processing forms the backbone of a wide variety of fields of science

and engineering. It has received tremendous amount of attention over the past two

decades as a mainstream tool to explain various phenomena in the fields of geodesy,

geomagnetics, acoustics, computer graphics and computer vision, geophysics, cosmol-

ogy, medical imaging, wireless communications, 3D beamforming, etc (e.g. [3–25]).
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Recently, several signal processing methods have been developed and extended from

the Euclidean domain to the spherical domain to support signal analysis in these

applications. These include convolution [26–28], filtering [29–32], spectrum estima-

tion [4,33], wavelets on the sphere and ball [13,20] Slepian concentration problem on

the sphere [23,33,34] and on the ball [41] and many more [35,36].

This thesis is predominantly focussed on the formulation and development of signal

processing techniques to analyse signals defined on the sphere and the ball (denoted

by S2 and B3 respectively). In the remainder of this chapter, we first review the

previous work on Slepian problem on the sphere and the ball and various sampling

techniques on the sphere. Then we discuss the research problems considered in this

thesis and finally we provide the summary of our contributions and an outline of this

thesis.

1.1.1 Slepian Concentration Problem

According to the uncertainty principle, it is not possible for a signal to have finite

support in the time domain and frequency domain simultaneously. In other words, a

function that is limited in the spatial (or temporal) domain has an infinite support

in the spectral (or frequency) domain and vice versa. However, it is possible to find

the maximal concentration of a function in a particular region of one domain while

it is strictly limited in the other domain. The problem of finding functions that are

optimally concentrated in spatial and spectral domains simultaneously is known as

the Slepian concentration problem, which was first proposed in a series of classical

papers [37–40] for the one-dimensional time-frequency domain. The orthogonal family

of functions, or data tapers, that arise thereby are known as the Prolate Spheroidal

Wave Functions (PSWFs) or more commonly as the (classical) Slepian functions

on the real line. Although the problem of finding band-limited functions or space-

limited functions with maximal energy concentration in spatial or spectral domain,

respectively, was solved nearly sixty years ago for one-dimensional case (time and

frequency), its generalizations for various geometries, for example sphere [23, 34],

ball [41] and two-dimensional space [14], have also been explored over the last two
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decades.

Owing to their many interesting properties [42], the Slepian functions have found a

wide variety of applications in several diverse fields of science and engineering such as

information and communication theory [43,44], signal detection and estimation [45],

signal interpolation and extrapolation [46,47], compressed sensing [48], signal recovery

and reconstruction [49–51], sampling theory [52–54], neuroscience [55,56], optics [57],

and many more.

The wide applicability of the one-dimensional time-domain Slepian functions moti-

vated researchers to extend this concept to higher dimensions. The authors in [37] laid

the foundation for the extension of the concentration problem to the two-dimensional

case, i.e., the Cartesian plane [39] where the spatial region in the form of circular

disks has been considered. Later, the planar Slepian functions for other geometries

and arbitrary regions in general were also explored in [14]. Slepian functions were

used to estimate power spectra of time-series data [58]. Extension of this work to

two-dimensional space was given by Bronez [59], Liu et. al [61] and Hanssen [60] and,

in more general settings, by Daubechies [62].

Despite all these developments, there were some application for which the planar

Slepian functions could not be exploited. For instance, in planetary sciences, the use

of the two-dimensional planar Slepian functions based on the local flat area approxi-

mation was prohibited due to the inherent curved surface of a planet. To support such

applications and beyond, the spherical analogue for the one-dimensional Slepian con-

centration problem was proposed in [23] (herein referred to as the (classical) Slepian

concentration problem on the sphere). The authors consider a problem where data

is given on a belt on the sphere, not including the polar caps and use the spherical

harmonic basis functions to represent a signal in the harmonic domain. Slepian prob-

lem on the sphere has also been investigated in [34], where the authors develop the

Slepian functions with special attention to applications in geophysics and planetary

sciences. The spherical Slepian functions can be computed either in the spectral do-

main (by solving an algebraic eigenvalue problem) or in the spatial domain (by solving

a Fredholm integral equation). The Slepian functions on the sphere have been utilized

3



for applications in geophysics [33,63], cosmology [64], geodesy [65], acoustics [66,67],

planetary sciences [34], signal estimation [68,69], spectral analysis [4], hydrology [70],

graph theory [71–74], and so on. Furthermore, the Slepian problem has also been

extended to the three-dimensional ball, denoted by B3, [41], wherein the authors have

introduced new basis functions for representation of signal in harmonic domain, the

Fourier-Laguerre basis functions (to be explained in Section 2.2.2).

The development of efficient algorithms for the computation of the Slepian func-

tions has been widely investigated [33, 34, 65, 75]. For estimating the potential fields

of a planet, the spherical Slepian functions provide a more practical solution as com-

pared to the commonly used damped least-squares spherical harmonic approach [65].

The spherical Slepian functions also find applications in geophysics, e.g., in the de-

composition of lithospheric magnetic field models [63].

Apart from potential field estimation in geodesy, an important problem arises

in cosmology: the estimation of the spectrum of the cosmic microwave background

(CMB) radiation. To address this problem several works have appeared in the recent

years documenting spectral analysis on the sphere which utilize the Slepian func-

tions [76, 77]. These studies indicate that the spectral analysis and estimation have

gained fundamental importance for explaining the behaviour of random processes on

spherical bodies. However, in some settings one does not have access to, or may

simply not be interested in, the value of the function outside some particular re-

gion of the sphere (e.g., due to noise contamination). In such cases it is convenient

to use the spatially limited data for signal analysis on the sphere [25]. In [64], the

authors use Slepian functions to estimate the spectrum of a noisy, isotropic process

in a bounded region on the sphere. The Slepian functions have also been used as

localization windows for energy spectrum estimation [4, 33,68,78].

In a recent work, the Slepian functions have been utilized for the reconstruction of

the head-related transfer function (HRTF) on the sphere, where it has been demon-

strated that the proposed reconstruction technique allows more accurate results as

compared to the methods based on using the conventional spherical harmonic basis

functions [67]. Since the Slepian functions optimally reduce the estimation bias and
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leakage effects in hydrology as compared to other methods, they have been used for

deriving estimates of water storage variations in different regions of the Earth using

data collected by satellites [70].

1.1.2 Sampling on the Sphere

W. Freeden says in his book ”‘Spherical Sampling”’ [79]:

Sampling of a spherical signal has two aspects: first, stating that a band-limited

function is completely determined by its samples, second, describing how to

reconstruct the signal (or function) using its discrete samples.

A sampling scheme is a set of rules that define the location points where data is to be

sampled on a spherical object. The signal obtained in this manner is said to be in the

spatial domain. The harmonic (frequency) content of a signal is studied in the spectral

domain, which is enabled by the spherical harmonic transform (SHT) which serves as

a counterpart of Fourier transform for analysis of signals on the sphere. To support

harmonic domain analysis, the ability to compute spherical harmonic transform of

the signal from its samples is of significant importance. Since the acquisition of

measurements (samples) is time consuming, it is desirable to have a sample-acquisition

strategy which (i) takes the minimum possible number of samples for the accurate

computation of spherical harmonic transform, (ii) exhibits structure in the placement

of samples to facilitate the acquisition and (iii) has spatially uniform distribution

of samples. A large number of sampling schemes and pixelizations on the sphere

have been devised in the literature for sampling band-limited signals which result

in theoretically exact or accurate computation of the SHT (e.g., see [2, 25, 27, 80–

92] and the references therein). Different sampling schemes have different spatial

dimensionality (defined as the number of sample points required to (approximately

or exactly) compute the SHT and capture the information content of band-limited

signals).

For the exact computation of SHTs of a signal band-limited at L (defined in
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Section 2.1.4), Driscoll and Healy [27] developed a method which uses 2L− 1 latitude

rings where each ring had 2L − 1 samples. This results in ∼ (asymptotically) 4L2

equiangular samples on the sphere. In comparison, the sampling scheme presented

by McEwen and Wiaux [85] requires ∼ 2L2 equiangular samples to exactly compute

the SHT. The Gauss-Legendre (GL) sampling scheme [85, 93] also requires ∼ 2L2

for exact computation of the SHT. The computational complexity of the stable SHT

associated with these sampling methods is O(L3). To the best of our knowledge, there

does not exist any theoretically exact sampling scheme with dimensionality less than

∼ 2L2.

Recently, an optimal-dimensionality sampling scheme has been proposed in [2]

that takes optimal L2 number of samples equal to the degrees of freedom of the band-

limited signal in the harmonic space, for the accurate computation of the SHT of

band-limited signals. Optimal-dimensionality sampling has been customized to serve

the needs of applications in acoustics [6] and diffusion MRI (dMRI) [25]. Although the

SHT associated with this sampling scheme requires the optimal number of samples,

the computational complexity of the associated SHT is of the order O(L4) due to the

series of matrix inversions involved in the computation. The samples are placed in

iso-latitude rings but appear unstructured and asymmetric around the equator.

Sampling schemes that support approximate computation of the SHTs include the

HEALPix and IGLOO schemes. The HEALPix [81] is an acronym for Hierarchical Equal

Area iso-Latitude Pixelization of a sphere. According to this scheme the surface of a

sphere is divided into partitions of equal area known as the pixels. The center of each

partition occurs on a discrete number of rings of constant latitude. The IGLOO [89]

scheme also divides the sphere into pixels of almost equal area. Pixel centers lie on

iso-latitude rings which enables fast transform through separation of variables. Both

these schemes compute the SHTs approximately. Some of the other approximate

schemes include the least-squares based method proposed by Sneeuw [80], which,

although requiring L2 samples, becomes inaccurate and computationally inefficient

for large band-limits.

All of the aforementioned sampling schemes require the samples to be taken over
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the whole sphere. However there are applications where the measurements and sam-

ples are available over the spatially-limited region due to practical limitations. For

example satellites collecting Earth’s data follow an inclined orbit, meaning they can-

not take samples near the North and South Pole. This is known as the problem of

“polar gap” [94]. In problems related to the measurement of the Earth’s gravita-

tional field, we see an unsampled area of about 10◦ co-latitudinal radius [95]. In an

effort to fill in the missing measurements, scientists have recently developed methods

for collecting the gravity data over the poles using specially equipped aircrafts [96].

However, the polar gap problem remains largely unsolved in other fields of science.

For instance, studies related to geomagnetism indicate that it is better to exclude

the data sampled closer than 30◦ to either pole because they tend to exhibit higher

noise contamination as compared to the data sampled near the equator [65]. In cos-

mology, the sky is considered an analog to the sphere where observations are made

from inside out. Hence, we can see only a limited region of the sky from a particular

location on Earth [97]. In addition, large portions of the sky remain unobservable

owing to the position of the Sun in the Milky Way galaxy and the surrounding stars,

gas and dust [98]. Furthermore, the measurements of the head-related transfer func-

tion (HRTF) in acoustics in the South polar region (i.e., closer than 36◦ to the pole)

are not considered reliable due to the ground reflections [6, 7].

There exist methods in the literature for the computation of the SHT when the

measurements are unavailable or unreliable over the single or double polar cap re-

gion. The spherical harmonic basis functions are orthogonal over the sphere. When

spatially-limited samples are used for the computation or estimation of the SHT,

errors are introduced since the spherical harmonic basis functions no longer remain

orthogonal. In other words, the spherical harmonic spectrum suffers from leakage

due to the polar gap [99]. In [65], Slepian functions have been used as basis functions

for the representation of functions exploiting the orthogonality of Slepian functions

over the spatially-limited region. For the accurate computation of the SHT of the

HRTF in acoustics, a novel sampling scheme is proposed in [6] that is able to com-

pute sufficiently accurate SHTs over the band-limits of interest without requiring the
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(unreliable) measurement samples in the South polar cap region.

1.2 Overview and Contribution of Thesis

The focus of this thesis is to revisit existing signal processing theories on the sphere

and the ball and develop new techniques which enable the analysis of signals in

spatio-spectral domain. Moreover, the problem of developing fast algorithms for the

proposed techniques is also addressed.

1.2.1 Questions to be Answered

Following the literature review presented in Section 1.1, we pose the following ques-

tions that are answered in this thesis:

Q1. Can we formulate a generalized version of the Slepian concentration problem

on the unit sphere?

Q2. Is it possible to generate band-limited Slepian functions on the sphere with

maximum energy concentration in one region at the expense of diminishing

energy in some other region? How can we use such functions for spectrum

estimation to support applications in cosmology, geophysics, etc?

Q3. Can we compute band-limited Slepian functions with non-negative weighting

which can be used for robust signal modeling on the sphere?

Q4. Is it possible to combine band-limited and space-limited Slepian functions on

the unit ball so that they form a set of new optimal basis functions for signal

representation?

Q5. How can we improve the accuracy of the SHT associated with the optimal-

dimensionality sampling scheme?

Q6. Can we devise a sampling technique for signal acquisition on the sphere in

applications where measurements cannot be taken on the whole sphere?
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Q7. Can we design an equiangular sampling scheme that requires fewer samples as

compared to the state-of-the-art? In the design and optimization of this scheme

how are precision, efficiency (number of samples), and complexity affected?

1.2.2 Thesis Contribution and Organization

The mathematical background is presented in Chapter 2. To answer the research

questions posed in the previous section, the first original contribution in this thesis

(Chapter 3) is based on finding the differential and weighted Slepian functions on the

unit sphere wherein we also propose a set of optimal basis functions for the unit ball.

The second part of the thesis (Chapters 4-6) brings about innovation in the existing

sampling schemes on the sphere. We present variations of the optimal-dimensionality

sampling scheme and the associated SHT algorithm to improve the accuracy of the

transform (Chapter 4). We also present a spatially-limited sampling scheme for ap-

plications where it is impossible to take samples on the entire sphere (Chapter 5).

Lastly, we present a variant of the equiangular sampling scheme in which we show

that it is possible to reduce the number of samples if we compromise on some other

attribute of the scheme, like complexity or accuracy (Chapter 6).

The summary of the contributions in each chapter is as follows:

Chapter 3 – Slepian Concentration Problems on the Sphere and Ball

In this chapter, we introduce weighting functions in the formulation of the classi-

cal Slepian concentration problem on the sphere. We assign different values to the

weighting functions in the proposed generalized formulation to present two variants,

differential and weighted, of the concentration problem on the sphere for finding

band-limited functions with optimal energy concentration in the spatial domain. In

the first variant, we consider two spatial regions on the sphere and determine band-

limited functions on the sphere such that the difference in the energy concentration of

the function over the regions is maximised. Such maximisation enables enhancement
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of the energy over one region at the cost of it in the other region. In the second

variant, we use non-negative weighting as a window function in the formulation of

the Slepian problem to optimally concentrate the signal energy in the spatial domain.

We formulate each of the problems in the harmonic domain as an eigenvalue prob-

lem and review the properties of the eigenfunctions, referred to as Slepian functions,

which serve as an alternative basis for the representation of band-limited signals on

the sphere. We also demonstrate the use of Slepian functions for localized energy

spectrum estimation and robust modeling of the signal on the sphere.

In spherical signal processing we seldom encounter band-limited functions that are

only accessible over a specific region in space due to physical restrictions, or space-

limited functions that may be spectrally limited due to practical limitations of the

measuring equipment. To support these applications, we consider the problem of

maximising the product of concentration of energy of signals defined on the ball. The

problem of finding optimal basis with maximum energy concentration in spatial and

harmonic domains, has already been considered for Euclidean [100] and spherical (unit

sphere) [101] domains. In this context, we consider a problem to design optimal basis,

with optimal concentration in spatial and spectral domains, for the representation of

signals defined on the ball.

Furthermore, we design a set of functions, referred to as optimal basis, which are

maximally and simultaneously concentrated in both the spectral and spatial domains.

We consider the design of basis functions for a joint subspace, formed by the vector

sum of subspace spanned by space-limited spectrally concentrated and band-limited

spatially concentrated functions which arise as a solution of Slepian concentration

problem on the ball [41]. Using the band-limited and space limited eigenfunctions

(obtained as a solution of Slepian concentration problem) in a weighted linear com-

bination, we design optimal bases such that the product of concentration of energy

in the spatial and spectral domain is maximised. We further show that the pro-

posed optimal bases serve as complete bases for the representation of a signal in the

subspace−vector sum of subspaces. We also show that the basis functions are the

eigenfunctions of an integral operator that maximises the product of energy concen-
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tration of the signal in the spatial and spectral domains.

The results in Chapter 3 have been presented in the following publications which

are listed again for ease of reference:

J1. W. Nafees, Z. Khalid, and R. A. Kennedy, “Differential and Weighted Slepian

Concentration Problems on the Sphere,” IEEE Trans. Signal Process., ac-

cepted, 2020.

C4. W. Nafees, Z. Khalid, and R. A. Kennedy, “Signal analysis on the ball: Design

of optimal basis functions with maximal multiplicative concentration in spatial

and spectral domains,” in 2017 Int. Conf. Systems, Signals and Image Process.

(IWSSIP), Poznan, Poland, May 2017, pp. 1–5.

Chapter 4 – Improvements in the Optimal Dimensionality Sampling Scheme

One of the tasks in this thesis is to improve the accuracy of the SHT associated with

the optimal-dimensionality sampling scheme. We serve this objective by developing a

new method for the placement of samples and proposing a variation in the computa-

tion of the SHT. We develop a method, referred to as the elimination method, for the

placement of iso-latitude rings of samples such that the condition number (ratio of

the largest to the smallest eigenvalue value) of the matrices used in the computation

of the SHT is minimized. Due to the iterative nature of the resulting SHT algorithm,

the error builds-up in the computation of the SHT. To resolve this issue, we also pro-

pose a multi-pass SHT algorithm which iteratively reduces the residual between the

given signal and the reconstructed signal. We also analyse the changes in the com-

plexity of the SHT with the use of these methods. Through numerical experiments,

we demonstrate the improvement in accuracy with the use of the proposed methods.

We also propose an antipodally symmetric sampling scheme of asymptotic optimal

dimensionality for the acquisition of band-limited signals. For a signal band-limited

at L, the proposed scheme takes ∼(asymptotically) L2 number of samples. We de-

velop the transform associated with the proposed sampling scheme for the accurate

computation of the SHT. The SHT developed in this work (having complexity of the
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order O(L4)) is computationally efficient by a factor of four thanks to the symmetry

of placement of samples which is exploited to reduce the size of the matrices required

to be inverted for the computation of the SHT. We also propose a method for iterative

placement of rings of samples along co-latitude and conduct numerical experiments

to analyse the accuracy of the SHT.

The results in Chapter 4 have been presented in the following publications which

are listed again for ease of reference:

C3. W. Nafees, Z. Khalid, R. A. Kennedy, and J. D. McEwen, “Optimal-dimensionality

sampling on the sphere: Improvements and variations,” in Proc. Int. Conf.

Sampling Theory and Applications (SampTA), Tallin, Estonia, July 2017 pp.

87–91.

C1. W. Nafees, Z. Khalid, and R. A. Kennedy, “An Antipodally Symmetric Opti-

mal Dimensionality Sampling on the Sphere,”in Proc. IEEE Int. Conf. Acoust.,

Speech and Signal Process., ICASSP’2019, Brighton, UK, April 2019, pp. 5097–

5101.

Chapter 5 – Spatially-Limited Sampling of Band-Limited Signals on the

Sphere

In this chapter, we devise a sampling scheme for the computation of the SHT when

an arbitrary region on the sphere is inaccessible. Since the ellipsoidal region is

anisotropic (directional) in nature, we use it to enclose any arbitrary region on the

sphere and develop a sampling scheme for the inaccessible ellipsoidal region on the

sphere. We propose iso-latitude sampling where we place rings of samples along co-

latitude. Based on the parameters of the ellipsoidal region, we rotate the ellipsoidal

region to either polar region or equatorial belt region to maximise the surface area

available for the placement of iso-latitude rings of samples. We develop the formu-

lation of the SHT for the proposed sampling scheme and present a method for the

placement of iso-latitude rings in such a way that ensures accurate computation of

the SHT. We also carry out the accuracy analysis of the SHT associated with the pro-

12



posed sampling scheme and provide an illustration to demonstrate that the proposed

scheme enables more accurate computation of the HRTF than the existing schemes.

The results in Chapter 5 have been presented in the following publication which

is listed again for ease of reference:

C2. W. Nafees, Z. Khalid, and R. A. Kennedy, “Spatially-Limited Sampling of

Band-Limited Signals on the Sphere,”in Proc. IEEE Int. Conf. Acoust., Speech

and Signal Process., ICASSP’2018, Alberta, Canada, April 2018, pp. 4579–

4583.

Chapter 6 – Efficient Equiangular Sampling on the Sphere

Lastly, we propose a variant of the equiangular sampling scheme for the computation

of spherical harmonic coefficients of band-limited signals on the sphere. The proposed

sampling scheme is an exact and efficient method to compute the SHT. We present

the harmonic formulation and method of computation of the SHT algorithm associ-

ated with the proposed scheme in great detail. The proposed sampling scheme uses

fewer number of samples in comparison with the equiangular sampling scheme. Con-

sequently, we obtain favourable outcomes in terms of sampling efficiency, and certain

geometrical properties, namely normalized minimum geodesic distance, mesh norm,

mesh ratio and Riesz s-energy.

The results in Chapter 6 will be presented in the following manuscript which is

listed again for ease of reference:

J2. W. Nafees, and Z. Khalid, “Efficient Equiangular Sampling Scheme on the

Sphere,” IEEE Signal Process. Letters, (to be submitted), 2020.

Finally, Chapter 7 gives a summary of the thesis results and provides an overview

of the future research work and manuscripts under progress which are listed here for

ease of reference:

J3. W. Nafees, Z. Khalid, and J. D. McEwen, “Polar-optimized Equiangular Sam-

pling Scheme on the Sphere,” IEEE Signal Process. Letters, (to be submitted),

2020.
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C5. W. Nafees, and Z. Khalid, “Differential and weighted Slepian functions on the

Ball,” in IEEE Int. Conf. Acoust., Speech and Signal Process., ICASSP’2021,

Toronto, Canada, June 2021, (to be submitted).
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Chapter 2

Preliminaries

2.1 The Sphere S2

2.1.1 Signals on the Sphere

Let us first study what a sphere is and how a signal is defined on a spherical manifold.

A unit sphere or 2-sphere, denoted by S2, is defined as

S2 ,
{
û ∈ R3 : ‖û‖2 = 1

}
, (2.1)

where ‖·‖2 is the Euclidean norm and û denotes a vector in 3D Euclidean domain.

In the spherical coordinates system, a point on the unit sphere is described using

two parameters, namely the co-latitude θ ∈ [0, π] and longitude φ ∈ [0, 2π), and

mathematically written as û ≡ û(θ, φ) , (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2, see Fig. 2-

1.

We consider complex-valued, square-integrable functions on the unit sphere S2

denoted by f(û) ≡ f(θ, φ). These functions form a Hilbert space, denoted by L2(S2),

equipped with an inner product given by

〈f1, f2〉 ,
∫
S2
f1(θ, φ)f2(θ, φ) ds(θ, φ), (2.2)

for any two functions f1, f2 ∈ L2(S2). In (2.2), (·) denotes the complex conjugate
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Figure 2-1: Spherical coordinates. (Image courtesy [1])

operation, ds(θ, φ) , sin θdθdφ is the differential surface element and

∫
S2
≡
∫ π

θ=0

∫ 2π

φ=0

is an integral over the whole sphere. The inner product in (2.2) induces a norm

‖f‖ , 〈f, f〉1/2. We call the functions with finite induced norm (or finite energy),

i.e., ‖f‖ <∞, as “signals on the sphere”.

2.1.2 Spherical Harmonic Basis Functions

To study the harmonic content of a signal on the sphere, we can transform the signal to

the harmonic domain using the natural bases for the space L2(S2) – spherical harmonic

basis functions (or simply spherical harmonics). Spherical harmonics, denoted by

Y m
` (û) = Y m

` (θ, φ) for integer degree ` ≥ 0 and integer order −` ≤ m ≤ `, are

defined as

Y m
` (θ, φ) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimφ, (2.3)

where Pm
` (·) is the associated Legendre function of degree ` and order m [1]. With

the adopted definition, the spherical harmonics are orthonormal, i.e.,

〈Y m
` , Y

m′

`′ 〉 ,
∫
S2
Y m
` (θ, φ)Y m′

`′ (θ, φ) sin θdθdφ = δ``′δmm′ , (2.4)
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where δ``′ represents the Kronecker delta. The spherical harmonics also have the

conjugation property:

Y m
` (θ, φ) = (−1)mY −m` (θ, φ). (2.5)

We also note one of the important property of spherical harmonics, known as spherical

harmonics addition theorem [1]

∑̀
m=−`

Y m
` (û)Y m

` (v̂) =
2`+ 1

4π
P 0
` (cos ∆), (2.6)

where cos ∆ = û · v̂ is the dot product between two vectors û and v̂, representing

two points on the sphere, and is given as

û · v̂ = cos ∆
(

(θ, φ) , (ϑ, ϕ)
)

= sin θ sinϑ cos(φ− ϕ) + cos θ cosϑ. (2.7)

2.1.3 Spherical Harmonic Transform

Due to the completeness of the spherical harmonics, any function f ∈ L2(S2) on the

sphere can be expanded in terms of these bases as

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (θ, φ). (2.8)

Here (f)m` denotes the spherical harmonic coefficient of degree ` ≥ 0 and order −` ≤

m ≤ ` and is given by the spherical harmonic transform (SHT) as

(f)m` , 〈f, Y m
` 〉 =

∫
S2
f(θ, φ)Y m

` (θ, φ) sin θ dθ dφ. (2.9)

The synthesis equation, (2.8), to reconstruct the signal from its spherical harmonic

coefficients is referred to as inverse SHT, whereas the forward SHT is given by the

analysis equation (2.9).
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2.1.4 Space-limited and Band-limited Functions

A signal f ∈ L2(S2) is said to be space-limited within the spatial region R ⊂ S2 if it

has the form

f(û) =

f(û), û ∈ R,

0, otherwise.

(2.10)

A signal f ∈ L2(S2) is said to be band-limited at L if (f)m` = 0, ∀` ≥ L, and can be

expanded using the spherical harmonic functions as

f(û) =
L−1∑
`m=0

(f)m` Y
m
` (û), (2.11)

where the notation
∞∑̀
m

≡
∞∑̀
=0

∑̀
m=−`

has been adopted for succinct representation. These

band-limited signals form a subspace, denoted by HL, of dimension L2. We use the

vector notation f to represent a column vector of length L2 containing the spherical

harmonic coefficients such that

f , [. . . (f)n . . .] = [(f)0
0, (f)−1

1 , (f)0
1, (f)1

1, . . . , (f)L−1
L−1]T ∈ CL2

(2.12)

where the index n = `2 + `+m+ 1 takes the values n = 1, 2, . . . , L2. The spatial and

spectral representations of the signal are related through isomorphism [1]

〈f1, f2〉 = 〈f1,f2〉C , fH2 f1, (2.13)

where (·)H denotes the Hermitian operation.

2.1.5 Rotation on the Sphere

We define the rotation operator D(α, β, γ) that rotates a function on the sphere,

following the ’zyz ’ Euler convention, in the sequence of γ ∈ [0, 2π) rotation around

z-axis, β ∈ [0, π] rotation around y-axis and α ∈ [0, 2π) rotation around z-axis. The

effect of the rotation operator on the signal f ∈ L2(S2) can be realized as the inverse
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rotation of the coordinates, that is,

(
D(α, β, γ)f

)
(û) = f(R−1û) (2.14)

whereR is the rotation matrix associated with the rotation operatorD(α, β, γ) [1] and

therefore depends on the rotation parameters α, β, γ. We also note that the spherical

harmonic coefficients of the original signal f and the rotated signal D(α, β, γ)f are

related by

(D(α, β, γ)f)m` =
∑̀
m′=−`

D`
m,m′(α, β, γ)(f)m

′

` , (2.15)

where D`
m,m′(α, β, γ) denotes the Wigner-D function [1].

2.1.6 Energy Spectrum

Using Parseval’s theorem, we can find the total energy1 of a function f ∈ L2(S2) on

the sphere in terms of its spherical harmonic coefficients as [4]

‖f‖2 =

∫
S2
|f(û)|2ds(û) =

∞∑
`=0

Sff (`), (2.16)

where Sff is the energy per degree defined as

Sff (`) =
∑̀
m=−`

(f)m` (f)m` . (2.17)

The cross-energy spectrum of two functions f1, f2 ∈ L2(S2) is

∫
S2
f1(û)f2(û)ds(û) =

∞∑
`=0

Sf1f2(`) , (2.18)

where Sf1f2 is the cross-energy per degree defined as

Sf1f2(`) =
∑̀
m=−`

(f1)m` (f2)m` . (2.19)

1The total energy is 4π times the total power for signals on the sphere.
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2.2 The Ball B3

2.2.1 Signals on the Ball

The unit ball, denoted by B3, is defined as

B3 , R+ × S2, (2.20)

where R+ denote the domain [0,∞) on the real line and and S2 represents the 2-sphere

(see Section 2.1.1). We consider complex-valued, square-integrable functions defined

on the ball. These functions form a Hilbert space, denoted by L2(B3), equipped with

the inner product given by

〈f1, f2〉 ,
∫
B3

f1(r̂)f2(r̂) dv(r̂), f1, f2 ∈ L2(B3). (2.21)

Here r̂ ≡ r̂(r, θ, φ) , (r sin θ cosφ, r sin θ sinφ, r cos θ)T ∈ R3 represents a vector

which parametrizes a point on the ball with r ∈ R+, θ ∈ [0, π] and φ ∈ [0, 2π) denoting

radial distance, co-latitude and longitude, respectively. The integration in (2.21) is

carried out over entire B3 i.e.

∫
B3

≡
∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0

, dv(r̂) = r2 sin θ drdθ dφ is the

differential volume element on B3 and (·) denotes the complex conjugate operation.

The inner product given in (2.21) induces a norm ‖f‖ , 〈f, f〉1/2. We refer to the

functions with finite induced norm (finite energy) i.e., ‖f‖ < ∞ as “signals on the

ball”.

Furthermore, for any region R ⊂ B3, we define 〈f1, f2〉R ,
∫
R

f1(r̂)f2(r̂) dv(r̂).

We also define a linear integral operator S with kernel S(r̂, r̂′) using Fredholm integral

equation, that is

(Sf)(r̂) =

∫
B3

S(r̂, r̂′) f(r̂′)dv(r̂′). (2.22)
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2.2.2 Fourier-Laguerre Transform and Spectral Representa-

tion

For the harmonic representation of signals on the ball, we choose the Fourier-Laguerre

basis functions, denoted by Z`mp for angular degree ` ≥ 0, order |m| ≤ ` and radial

integer degree p ≥ 0 [13,41], and defined as

Z`mp(r̂) , Kp(r)Y
m
` (θ, φ) , r̂ ≡ r̂(r, θ, φ), (2.23)

where Y m
` (θ, φ) is the spherical harmonic function of degree ` and order m and Kp(r)

is defined for non-negative integer radial degree p as

Kp(r) ,

√
p!

(p+ 2)!
e−r/2 L (2)

p (r) (2.24)

with L
(2)
p representing the p-th generalized Laguerre polynomial of second order,

defined as

L (2)
p (r) ,

p∑
j=0

(
p+ 2

p− j

)
(−r)j

j!
. (2.25)

Due to the completeness of the Fourier-Laguerre basis functions [13], we can expand

any signal f ∈ L2(B3) as

f(r̂) =
∞∑
`=0

∑̀
m=−`

∞∑
p=0

f`mpZ`mp(r̂), (2.26)

where f`mp , 〈f, Z`mp〉 denotes the Fourier-Laguerre coefficient and forms the har-

monic domain representation of the signal. A signal f is said to be band-limited in the

spectral region APL , {0 ≤ ` ≤ L− 1, |m| ≤ `, 0 ≤ p ≤ P − 1} if f`mp = 0, ∀` > L

and ∀p > P . These functions form a PL2 dimensional space, HPL. In the sequel, we

adopt the short-hand notation
(L,P )∑̀
mp

=
L−1∑̀
=0

∑̀
m=−`

P−1∑
p=0

for succinct representation.

21



Part I

The Slepian Concentration

Problem
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Chapter 3

Slepian Concentration Problems on

the Sphere and Ball

This chapter covers the Slepian problem for the sphere and the ball. In the first

part, we present a generalized formulation of the Slepian concentration problem on

the sphere for finding band-limited functions with an optimal concentration in the

spatial domain. By introducing weighting functions in the formulation of classical

Slepian concentration problem and assigning different values to these weighting func-

tions, we present two variants of the concentration problem namely the differential

and the weighted Slepian concentration problem. In the differential Slepian concentra-

tion problem, we consider two regions on the sphere and find band-limited functions

such that the energy is maximised in one region at the expense of the energy in the

other region. We note that the differential Slepian problem was first introduced in

[51] for one-dimensional (time-domain) signals. We propose non-negative weighting

using a spatial window function to formulate and solve the weighted Slepian con-

centration problem. Each problem can be solved by formulating it in the harmonic

domain as an eigenvalue problem, the solution of which yields eigenfunctions that

serve as alternative basis functions for the representation of band-limited signals and

are referred to as Slepian functions. We also present and analyse the properties of

the Slepian functions. To support the applications in acoustics and cosmology, we

also provide a demonstration for the use of the proposed Slepian functions for the

23



robust signal modeling and the estimation of the energy spectrum of red and white

stochastic processes on the sphere. In the second part of this chapter, we design a set

of complete orthonormal optimal basis functions for signals defined on the ball. We

design the basis functions by maximising the product of their energy concentration

in some spatial region and that in some spectral region. The optimal basis functions

are designed as a linear combination of space-limited functions with maximal concen-

tration in the spectral region and band-limited functions with maximal concentration

in the spatial region. The proposed optimal basis functions are shown to form a

complete set for signal representation in a subspace formed by the vector sum of the

subspaces spanned by space-limited and band-limited functions. We also formulate

an integral operator which projects the signal to the joint subspace and maximises

the product of energy concentrations in harmonic and spatial domains. With the help

of some properties of proposed optimal basis functions we show that these functions

are the only eigenfunctions of the integral operator.

3.1 Slepian Concentration Problems on the Sphere

The Slepian concentration problem has been formulated and analysed for signals

defined on the one-dimensional time domain, the two-dimensional Cartesian plane

and the higher dimensions (in the Euclidean setting). In [34] and [41], the Slepian

concentration problem has been formulated for signals defined on the unit sphere

and the unit ball respectively. In this section, we revisit the Slepian concentration

problem for signals on the unit sphere and present a generalized framework and the

variations of the concentration problem. We define the generalization of the Slepian

concentration problem of finding band-limited function f ∈ HL as

λ = max
f∈HL


∫
S2
h(û)|f(û)|2ds(û)∫

S2
g(û)|f(û)|2ds(û)

 , (3.1)
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where h(û) and g(û) represent the weighting functions and λ is the ratio of the

weighted energies of the function. We note that the different choices of the weighting

functions h(û) and g(û) in (3.1) lead to different variations of the Slepian problem

on the sphere. Using (2.11), the spectral domain formulation for (3.1) is given by

λ =

L−1∑̀
m

(f)m`
L−1∑
`′m′

Hmm′

``′ (f)m
′

`′

L−1∑̀
m

(f)m`
L−1∑
`′m′

Gmm′
``′ (f)m

′
`′

, (3.2)

where

Hmm′

``′ ,
∫
S2
h(û)Y m

` (û)Y m′
`′ (û)ds(û) (3.3)

Gmm′

``′ ,
∫
S2
g(û)Y m

` (û)Y m′
`′ (û)ds(û). (3.4)

By defining the coupling matrices H and G with elements Hmm′

``′ and Gmm′

``′ respec-

tively and adopting the same indexing of these matrices as adopted for indexing the

spherical harmonic coefficients in a vector f in (2.12), we can rewrite (3.2) in the

matrix form as

λ = max
f

(
fHHf

fHGf

)
. (3.5)

3.1.1 Classical Slepian Concentration Problem

For the classical Slepian problem on the sphere [23,34], we have the following weight-

ing functions in the spatial domain:

h(û) = IR(û), (3.6)

g(û) = 1,
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where IR(û) represents the indicator function of the region R defined as

IR(û) ,

1 û ∈ R,

0 û ∈ S2\R.
(3.7)

Here R ⊂ S2 represents a region that may be a single connected region or a union of

disjoint sub-regions such that R = Ra ∪ Rb ∪ . . .. The area of the region R is given

by |R| =

∫
R

ds(û). The solution of the classical Slepian problem yields a family of

L2 eigenfunctions referred to as the classical Slepian functions. These eigenfunctions

are mutually orthogonal over the regions R and S2\R and orthonormal over the unit

sphere. Due to the optimal localization and the orthogonality of the classical Slepian

functions over the region R, these have been used in applications which include,

but are not limited to, spectral analysis, signal estimation, signal interpolation and

extrapolation and polar gap problem in geodesy and cosmology [34,64,65].

3.1.2 Differential Slepian Concentration Problem

Here we present a variation of the Slepian problem by considering two disjoint regions

on the sphere. We counter-balance the energy concentration between the two regions

such that the energy concentration in one region is enhanced at the expense of di-

minishing energy concentration in the other. Let R1 and R2 be the two regions, such

that R1 ∩ R2 = ∅, where the energy concentration is required to be maximised and

minimised respectively at the same time. For this variant of the Slepian concentration

problem, the weighting functions are defined to be

h(û) = IR1(û)− IR2(û), (3.8)

g(û) = 1,

where IR1(û) and IR2(û) represent the indicator functions for the regions R1 and R2

respectively.
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By defining the inner product over the region Rk as

〈f1, f2〉Rk ,
∫
Rk

f1(û)f2(û) ds(û), (3.9)

that quantifies the cross-energy spectrum of two functions f1, f2 over the region Rk,

the numerator in (3.1), for the choice of weighting functions given in (3.8), takes the

following form ∫
S2
h(û)|f(û)|2ds(û) = 〈f, f〉R1

− 〈f, f〉R2
. (3.10)

Due to the fact that (3.10) represents the difference of energy of the function over the

two regions, we refer to this variant of the concentration problem as the differential

Slepian problem. It is trivial to show that the problem in (3.10) reduces to the classical

Slepian problem if R2 = ∅. Analogous to (3.5), the differential Slepian concentration

problem can be written in spectral domain form as the Rayleigh quotient

λ = max
f

(
fHHf

fHf

)
, (3.11)

where

H = 1D − 2D, G = I, (3.12)

kD =


kD

00
00 . . . kD

L−1L−1
00

. . .
. . . . . .

kD
00
L−1L−1 . . . kD

L−1L−1
L−1L−1

 , k = 1, 2, (3.13)

with

kD
mm′

``′ =

∫
Rk

Y m
` (û)Y m′

`′ (û)ds(û) k = 1, 2. (3.14)

The solution f that maximises λ in (3.11) is also a solution of the eigenvalue problem

Hf = λf . (3.15)

Since H is Hermitian matrix, the solution of the eigenvalue problem, (3.15), yields
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a set of L2 real eigenvalues {λα} and L2 orthogonal eigenvectors {fα} for α =

1, 2, . . . , L2 which we choose to be orthonormal such that

〈fα,fβ〉C = δαβ, α, β = 1, 2, . . . , L2, (3.16)

〈fα,Hfβ〉C = λαδαβ, α, β = 1, 2, . . . , L2.

The choice of the weighting function h(û) in (3.8) implies that |λα| ≤ 1. We index

the eigenvalues and the associated eigenvectors in the non-increasing order such that

1 ≥ λ1 ≥ λ2 . . . λL2 ≥ −1. Using (3.3), we express (3.15) as

L−1∑
`′m′

∫
S2
h(û)Y m

` (û)Y m′
`′ (û)ds(û)(f)m

′

`′ = λ(f)m` , (3.17)

By multiplying (3.17) with Y m
` (v̂) followed by the summation over 0 ≤ `′ < L and

|m′| ≤ `′, we obtain the formulation of an equivalent eigenvalue problem in the spatial

domain represented by the Fredholm equation given by

∫
S2
D(û, v̂)f(v̂)ds(v̂) = λf(û), (3.18)

where

D(û, v̂) =

(
L−1∑
`m

Y m
` (û)Y m

` (v̂)

)
(IR1(û)− IR2(û)) . (3.19)

Each eigenvector fα presents the spectral domain representation of the eigenfunction

fα ∈ HL. The spatial domain eigenfunction fα(û), related to the eigenvector fα

through 〈fα, Y m
` 〉 = (fα)m` , for α = 1, 2, . . . , L2 is referred to as the differential Slepian

function. The eigenvalue λα quantifies the difference in the energy concentration of

the eigenfunction fα over the regions R1 and R2. The differential Slepian function

f1(û), associated with the largest eigenvalue, is the eigenfunction with maximum

energy concentration in the region R1. Similarly, the differential Slepian function

fL2(û), associated with the lowest eigenvalue, is the eigenfunction with maximum

energy concentration in the region R2.
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3.1.3 Properties of Differential Slepian Functions

Property 1: Orthogonality of the Differential Slepian Functions : The differential

Slepian functions are orthonormal over S2, i.e.,

〈fα, fβ〉S2 = δαβ, (3.20)

which simply follows from the orthonormality of the spherical harmonics and (3.16).

The differential Slepian functions are orthogonal over the regions R1 and R2 such

that,

〈fα, fβ〉R1
− 〈fα, fβ〉R2

= λα δαβ, (3.21)

which can be shown using (3.16). Furthermore, the differential Slepian functions are

nearly orthogonal over R1, that is,

α = β : 〈fα, fα〉R1
≥ λα

α 6= β : | 〈fα, fβ〉R1
| ≤

√
(1− λα)(1− λβ)

2
. (3.22)

Similar results hold true for the region R2:

α = β : 〈fα, fα〉R2
≥ −λα

α 6= β : | 〈fα, fβ〉R2
| ≤

√
(1 + λα)(1 + λβ)

2
. (3.23)

For α 6= β the cosine of the angle between any two differential Slepian functions is

defined as

| cos γfα,fβ | ,
〈fα, fβ〉
|fα| |fβ|

, (3.24)
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and can be computed as

| cos γfα,fβ | ≤
1

2

√
(1− λα)(1− λβ)

λα λβ
, λα, λβ > 0, (3.25)

| cos γfα,fβ | ≤
1

2

√
(1 + λα)(1 + λβ)

λα λβ
λα, λβ < 0. (3.26)

We provide the derivation of these relationships in Appendix A.

Property 2: Completeness of the Differential Slepian Functions : The differential

Slepian functions form a complete basis for the space HL. This follows from the

orthonormality of the differential Slepian functions and the dimensionality of HL.

Property 3: Spectrum of Eigenvalues : Despite the matrix H being indefinite, the

eigenvalues are real and lie in [−1,+1] due to the normalization adopted in (3.11). The

eigenvalues closer to +1 (or −1) represent optimal (maximal) energy concentration

in the region R1 (or R2). The sum of eigenvalues of the differential Slepian problem

is given by

NH =
L2∑
α=1

λα = trace(1D)− trace(2D) (3.27)

=
L∑
`m

(1D
mm
`` − 2D

mm
`` ) =

∫
S2
D(û, û)ds(û)

=

∫
S2

L−1∑
`=0

2`+ 1

4π
P 0
` (û · û) (IR1(û)− IR2(û)) ds(û)

=
L−1∑
`=0

2`+ 1

4π

(∫
R1

ds(û)−
∫
R2

ds(û)

)
=
L2

4π
(|R1| − |R2|),

where |Rk|, k = 1, 2 represents the area of the k-th region and we have employed

the spherical harmonic addition theorem [1]. To find the number of optimally con-

centrated eigenfunctions in the region Rk, the Shannon number (the sum of the

eigenvalues of the classical Slepian problem solved for the k-th region, denoted by

Nk) seems to be a good estimate. It is easy to show that NH = N1 − N2. For the
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differential Slepian problem, it can be shown that the difference between the Shannon

number, say N1, obtained when the classical Slepian problem is applied to region R1

and the sum of positive eigenvalues of the differential problem is equal to the sum of

the Shannon number, say N2, obtained when the classical Slepian problem is applied

to region R2 and the sum of negative eigenvalues of the differential problem. This

can be expressed mathematically as

N1 −
∑
α

λ+
α = N2 +

∑
α

λ−α , (3.28)

where λ+
α and λ−α represent the positive and negative eigenvalues of the differential

Slepian problem respectively.

Property 4: Symmetrical Solutions : Since 1D − 2D = −(2D − 1D), the solution

to the original problem in (3.10) holds, with just an inversion in the signs of the

eigenvalues λα, that is, if we switch the role of R1 and R2 as the regions where we

require enhanced and diminished energy concentration respectively.

31



(a
)
f 1
,
λ
=

1.
00
00

(b
)
f 2
,
λ
=

0.
99
9
7

(c
)
f 3
,
λ
=

0.
9
9
9
7

(d
)
f 4
,
λ
=

0.
9
9
6
3

(e
)
f 5
,
λ
=

0.
9
9
6
3

(f
)
f 6
,
λ
=

0.
9
9
3
4

(g
)
f 2

5
1
,
λ
=
−
0.
87
62

(h
)
f 2

5
2
,
λ
=
−
0.
92
3
3

(i
)
f 2

5
3
,
λ
=
−
0.
9
2
3
3

(j
)
f 2

5
4
,
λ
=
−
0.
9
9
0
6

(k
)
f 2

5
5
,
λ
=
−
0
.9
9
0
6

(l
)
f 2

5
6
,
λ
=
−
0
.9
9
9
5

F
ig

u
re

3-
1:

S
le

p
ia

n
fu

n
ct

io
n
s

in
th

e
sp

at
ia

l
d
om

ai
n

ob
ta

in
ed

as
a

so
lu

ti
on

of
d
iff

er
en

ti
al

co
n
ce

n
tr

at
io

n
p
ro

b
le

m
fo

r
re

gi
on

s
R

1
=
{û
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Figure 3-2: Spectrum of eigenvalues obtained when the differential Slepian concen-
tration problem is solved using (3.11) for L = 16. (a) The consolidated spectrum of
eigenvalues, showing the two transitions associated with the two regions. (b) The pos-
itive and negative eigenvalue spectra. The dashed lines show the Shannon numbers
N1 = 16 and N2 = 9 respectively for the two regions.

3.1.4 An Illustrative Example

For the differential Slepian concentration problem, we provide an illustration and

analyse the eigenfunctions, spectrum of eigenvalues, orthogonality properties and

energy enhancement enabled by the eigenfunctions over the regions of interest. We

solve the differential concentration problem for R1 taken as North polar cap of co-

latitudinal radius θ1 = π/6, that is, R1 = {û(θ, φ) ∈ S2| θ ≤ π/6}, R2 as South

polar cap of co-latitudinal radius θ2 = π/8, that is, R2 = {û(θ, φ) ∈ S2| θ ≥ 7π/8}

and band-limit L = 16. Fig. 3-1 shows the real and imaginary parts of the first 6

eigenfunctions, f1, f2, . . . , f6 and the last 6 eigenfunctions, f251, f252, . . . , f256, where

it is evident that the last 6 eigenfunctions are mostly concentrated in the region

R2 (Property 3).

We also analyse the spectrum of eigenvalues in Fig. 3-2, where the two phase

transitions visible in Fig. 3-2 (a) are associated with the two regions. We also plot

the positive and negative eigenvalues spectra in Fig. 3-2 (b). The dashed lines show

the Shannon number N1 and N2 associated with the eigenfunctions obtained from

the solution of the classical Slepian problem on regions R1 and R2 respectively.

To analyse the mutual orthogonality of the eigenfunctions over the spatial regions
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of interest, we compute the inner product of the eigenfunctions as well as the bounds

on the inner product given in (3.22) and (3.23). The actual inner products are plotted

in Fig. 3-3 (a) and (b) that are consistent with the bounds plotted in Fig. 3-3 (c) and

(d).

The differential Slepian problem gives eigenfunctions which have increased energy

in the region R1 while the energy in the region R2 decreases. We compare the energies

of the classical Slepian functions constructed for region R1 and differential Slepian

functions and illustrate the reduction of energy in the region R2 in Fig. 3-4, where

Eclass is the energy of the classical Slepian functions in the region R2 and the energy

Ediff refers to the energy of the differential Slepian functions in the region R2. It can

be seen in the figure that Ediff is less than Eclass thus validating the claim made in

the prequel.

3.1.5 Rotationally Symmetric Antipodal Regions

The regions R1 and R2 associated with the differential Slepian problem can have

any arbitrary orientation on the sphere. If the two regions are oriented as shown in

Fig. 3-5(a), they are categorized as rotationally symmetric around v̂1(ϑ, ϕ) ∈ S2 (or

v̂2(π − ϑ, π + ϕ) ∈ S2) and antipodal regions (since v̂1 is antipodal to v̂2, i.e., v̂1 =

−v̂2).

For the sake of simplification in the computation of the differential Slepian func-

tions, the rotationally symmetric antipodal regions are rotated by π−ϕ around z-axis

and then by ϑ around y-axis such that the rotated regions R̃1 and R̃2 are centered

at (rotationally symmetric around) the North (η̂) and South poles of the unit sphere

respectively as shown in Fig. 3-5(b). The regions are now azimuthally symmetric an-

tipodal regions and form a special case of rotationally symmetric antipodal regions.

Owing to the orientation of the azimuthally symmetric regions, the formulation of

the differential Slepian concentration problem is significantly simplified. For the az-

imuthally symmetric region Rk, the formulation of kD
mm′

``′ is simplified by exploiting
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Figure 3-3: Actual inner product of eigenfunctions on region R1 and R2 in the top
row and their bounds in the bottom row respectively.

the orthogonality of complex exponentials along longitude such that

kD
mm′

``′ = 2πδmm′

∫ θ2k

θ1k

Y m
` (θ, 0)Y m

`′ (θ, 0) sin θdθ︸ ︷︷ ︸
,kDm``′

, k = [1, 2].

Here θ11 = 0 and θ22 = π, whereas θ21 and θ12 represent the co-latitudinal radii for

the rotated regions R̃1 and R̃2 respectively. The integral represented by kD
m
``′ can be
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Figure 3-4: Eclass and Ediff represent the energy of the region R2 calculated using the
classical and differential Slepian approach respectively.

evaluated analytically for all `, `′ ≥ m as [34,41]

kD
m
``′ = (−1)m

√
(2`+ 1)(2`′ + 1)

2

|`+`′|∑
q=|`−`′|

(
` q `′

0 0 0

)
(3.29)

×
(

` q `′

m 0 −m

)(
P 0
q−1(cos θ2k) + P 0

q+1(cos θ1k)

− P 0
q+1(cos θ2k)− P 0

q−1(cos θ1k)

)
.

Here the arrays of indices are the Wigner-3j symbols [1]. Consequently, the cou-

pling matrix H in (3.15) reduces to a block diagonal matrix of the form: H =

diag(H0,H1,H1, . . . ,HL,HL). Here we can see that every submatrix Hm,m 6= 0

appears twice because of the doubly degenerate angular order ±m. Therefore, in-

stead of solving the eigenvalue equation (3.15) of size L2, we only solve a series of

(L−m)× (L−m) harmonic domain eigenvalue problems of the form

Hmfm = λfm (3.30)
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for each m = 0, 1, . . . , L− 1. The submatrix Hm is of the form

Hm =


Hmm . . . Hm,L−1

. . .
. . . . . .

HL−1,m . . . HL−1,L−1

 , (3.31)

where every H``′ = 1D
m
``′ − 2D

m
``′ and the vector of spherical harmonic coefficients is

given as

fm = [fm, . . . , fL−1]T . (3.32)

Once we obtain the differential Slepian functions for the azimuthally symmetric an-

tipodal regions, they are rotated back to the original location by applying rotation

operator X (ϑ, ϕ) on each Slepian function that rotates the signal in a sequence of ϑ

around y-axis and ϕ around z-axis. The spherical harmonic coefficients of the Slepian

function f for azimuthally symmetric antipodal regions and the rotated Slepian func-

tions X (ϑ, ϕ)f for rotationally symmetric antipodal regions are related by [1]

(X (ϑ, ϕ)f)m` =
∑̀
m′=−`

X`
m,m′(ϑ, ϕ) (f)m

′

` , (3.33)

where

X`
m,m′(ϑ, ϕ) = e−imϑd`m,m′(ϑ). (3.34)

Here d`m,m′ denotes the Wigner-d function of degree ` and orders m,m′ [1].

3.1.6 Weighted Slepian Concentration Problem on the Sphere

We present the weighted Slepian concentration problem by choosing the weighting

function h(û) to be real, non-negative and bounded by unity, that is,

0 ≤ h(û) ≤ 1, ∀ û ∈ S2, (3.35)
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Figure 3-5: The blue part of the sphere shows the regions of interest. (a) Rotationally
symmetric antipodal regions R1 and R2, (b) Azimuthally symmetric antipodal regions
R̃1 and R̃2 obtained by rotating the sphere in (a) by π − ϕ around z-axis and then
by ϑ around y-axis.

and

g(û) = 1, ∀ û ∈ S2. (3.36)

We note that the classical Slepian concentration problem is also a special case of the

weighted concentration problem. However the latter is more flexible as the localization

of the spatial domain distribution of the energy over some portion of the sphere can be

controlled by judiciously choosing the weighting function h(û). For the choice of the

weighting function, the Rayleigh quotient (3.5) is solved by finding eigenvectors of the

matrix H with entries given in (3.3). Since H is positive-semi definite and Hermitian

by definition, all the eigenvalues ofH are real and non-negative and the corresponding

eigenvectors can be chosen as orthonormal. The eigenvalue decomposition ofH yields

L2 real eigenvectors fα with corresponding eigenvalue λα for α = 1, 2, . . . , L2, where

we index the eigenvalues (or eigenvectors) such that λ1 ≥ λ2 ≥ . . . ≥ λL2 ≥ 0. For

each eigenvector fα, we obtain the spatial domain eigenfunction fα(û) which we refer

to as weighted Slepian function. Eigenvalue λα serves as a measure of the energy of

the weighted signal
√
h(û)fα(û).
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3.1.7 Properties of Weighted Slepian Functions

The weighted Slepian functions exhibit three-fold orthogonality. Firstly, since the

eigenvectors are orthonormal, the eigenfunctions are orthonormal in HL by isomor-

phism, that is,

〈fα,fβ〉C = 〈fα, fβ〉 = δαβ. (3.37)

Secondly, since the eigenvectors satisfy

〈Hfα,fβ〉C = fHβ Hfα = λα〈fα,fβ〉C = λαδαβ, (3.38)

we have, by isomorphism, the following spatial domain orthogonality of the eigen-

functions with respect to a weighted spatial domain inner product

〈fα, fβ〉h ,
∫
S2
h(û)fα(û)fβ(û)ds(û) = λαδαβ. (3.39)

Finally, there is a third sense in which the eigenfunctions are orthogonal

〈fα, fβ〉1−h = (1− λα)δαβ, (3.40)

that is, with respect to the complementary weighted inner product. We further note

that {fα/
√
λα} and {fα/

√
1− λα}, for λα > 0 are orthonormal with respect to the

weighted inner product and complementary weighted inner product respectively.

3.1.8 Application 1: Estimation of Localized Energy Spec-

trum

The band-limited differential Slepian functions serve as a good choice for localization

functions due to their optimal spatial concentration and orthogonality properties.

For a global function p ∈ L2(S2), we obtain its localized version using the differential
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Slepian function f(û) as

Ψ(û) = f(û)p(û) . (3.41)

Using the background presented in Section 2.1.6, we find the energy spectrum of the

localized function Ψ(û). We assume that the spherical harmonic coefficients of the

function p are zero-mean random variables, and the energy spectrum only depends

on ` (i.e., the function has isotropic energy spectrum). The global energy spectrum

is given by

E
[
(p)m` (p)m

′
`′

]
=
Spp(`)

2`+ 1
δ``′δmm′ , (3.42)

where E[ · ] is the expectation operator. Let the localized energy spectrum be rep-

resented as SΨΨ. Using the theoretical framework presented in [4, 64], the relation

between Spp and the expected value of SΨΨ is given by

E [SΨΨ(`)] ,
∑̀
m=−`

E
[
(Ψ)m` (Ψ)m`

]
= (2`+ 1)

L−1∑
q=0

Sff (q)

`+q∑
r=|`−q|

Spp(r)

(
q r `

0 0 0

)2

, (3.43)

where the quantity
(
q r `
0 0 0

)
represents the Wigner 3-j symbols [1].

To illustrate the effectiveness of the differential Slepian functions as the localiza-

tion window functions, we estimate the white and red stochastic processes on the

sphere. The energy spectrum of various stochastic processes follows the power law

given by

Spp(`) ∼ ` ε. (3.44)

When the energy per angular degree is constant, i.e., for ε = 0, the process is called a

white process. If ε = −2, we may refer to the process as a red process. The definition

of these processes may vary from one application to another [64]. For the band-limit

L = 16, and the regions R1 and R2 being taken as North and South polar caps of

radii π/6 and π/8, the estimate of the energy spectrum for white and red process

is plotted in Fig. 3-6 and Fig. 3-7 respectively. The estimates are obtained using the
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Figure 3-6: Expected localized energy spectral density of a global white process using
differential Slepian functions for L = 16. The dashed line represents the global white
process (ε = 0). The expectations of the localized spectra were obtained using the
6 Slepian functions previously shown in Fig. 3-1.

first 6 most concentrated window functions previously plotted in Fig. 3-1. It can be

observed that the localized estimates approach the global spectra for both white and

red processes. The spectral bias for low degrees ` < L is simply a consequence of

the fact that the localized estimate of the spectrum is a smoothed version of the

global spectrum (3.43). Each differential Slepian function f(û), used in (3.41) for

spatial localization, leads to a different estimate. Such single-taper estimates can be

combined as a weighted sum to obtain a multi-taper spectral estimate analogous to

the one proposed in [4, 33,58,64].

3.1.9 Application 2: Robust Signal Modeling

Like the classical Slepian functions, the proposed weighted Slepian functions serve as

alternative basis functions for the representation of the band-limited signal. Using the

orthonormal weighted Slepian functions {fα(û)}, any bandlimited function g ∈ HL
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Figure 3-7: Expected localized energy spectral density of a global red process using
differential Slepian functions for L = 16. The dashed line represents the global red
process (ε = − 2). The expectations of the localized spectra were obtained using
the 6 Slepian functions previously shown in Fig. 3-1.

can be expanded as

g(û) =
L2∑
α=1

(g)αfα(û) =
L2∑
α=1

√
λα (g)h:αfα(û), (3.45)

where

(g)α , 〈g, fα〉, (g)h:α , 〈g, fα/
√
λα〉h. (3.46)

Therefore, if the band-limited function g is determined from the local information

implicit in the weighting function h, we can determine the coefficients of the band-

limited function as

(g)α =
1√
λα
〈g, fα〉h. (3.47)

For example with h(û) = IR(û) (classical problem), the information about the func-

tion is available over the region R only. The energy associated with the α-th eigen-

function with respect to the weighted localized inner product is |(g)h:α|2. However,
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this implies the energy on the sphere is |(g)h:α|2/λα. Therefore, we may see a signifi-

cant growth in the energy on the sphere or significant enhancement of noise for small

values of λ in the computation of (g)α using (3.47).

3.2 Slepian Concentration Problem on the Ball

3.2.1 Overview

Here we review the Slepian concentration problem on the ball for finding the band-

limited functions with maximum energy concentration in the spatial region or the

space-limited functions with maximum energy concentration in the spectral region [23,

33,34].

In [34], the problem of maximising the concentration of unit energy band-limited

function f ∈ HPL within the spatial region R ⊂ B3 has been presented using a

Fredholm integral equation as

(SRSPLSRf) (r̂) = λf(r̂), r̂ ∈ B3. (3.48)

Here SR is a spatial selection operator with kernel given by

SR(r̂, r̂′) , IR(r̂)δ(r̂, r̂′), (3.49)

where IR(r̂) = 1 for r̂ ∈ R ⊂ B3 and IR(r̂) = 0 for r̂ ∈ B3\R represents the indicator

function for the region R and δ(r̂, r̂′) is the Dirac delta function on the ball [41]. SPL
in (3.48) is a spectral selection operator SPL with kernel given by

SPL(r̂, r̂′) ,
(L,P )∑
`mp

Z`mp(r̂)Z`mp(r̂′). (3.50)

We note that the operators SR and SPL limit the signal within the spatial region R

and spectral region APL respectively.

Using signal expansion in Fourier-Laguerre basis functions, given in (2.26), and
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the kernel representations in (3.49) and (3.50), the concentration problem in (3.48)

can be equivalently formulated as an algebraic eigenvalue problem of size PL2, given

by
(L,P )∑
`′m′p′

f`′m′p′

∫
R

Z`′m′p′(r̂)Z`mp(r̂)dv(r̂) = λf`mp,

where `,m, p ∈ APL. Solving this eigenvalue problem we get PL2 band-limited eigen-

functions. Let fu denote the eigenfunctions for u ∈ [1, PL2]. The eigenfunctions are

indexed such that 1 > λ1 ≥ λ2 ≥ . . . ≥ λPL2 > 0 where λu denotes the eigenvalues.

Likewise for unit energy space-limited function h ∈ HR, the maximisation of

the spectral concentration within the spectral region APL, is an eigenvalue problem

similar to (3.48) and is given by [34]

(SPLSRSPLh) (r̂) = λh(r̂), r̂ ∈ R. (3.51)

Here HR represents the space of finite-energy space-limited functions. Since integral

equations in (3.48) and (3.51) are same for r̂ ∈ R [34], the band-limited eigenfunctions

of (3.48) are similar to the space-limited eigenfunctions of (3.51) in the region R.

For each band-limited eigenfunction fu ∈ HPL, we have an associated space-limited

eigenfunction hu = SRfu ∈ HR, for u ∈ [1, PL2]. The eigenvalue 0 < λu < 1

associated with each function quantifies the energy concentration of the space-limited

eigenfunction hu in the spectral region APL and the band-limited eigenfunction fu in

the region R, that is,

‖fu‖2
R ≡ 〈fu, fu〉R , 〈SRfu,SRfu〉 = λu, (3.52)

‖hu‖2
PL , 〈SPLhu,SPLhu〉 = λu. (3.53)

3.2.2 Problem Definition

The set of band-limited eigenfunctions fu ∈ HPL, u ∈ [1, PL2] forms orthonormal

bases, whereas that of space-limited eigenfunctions hu ∈ HR, u ∈ [1, PL2] forms

orthogonal bases. Let the subspace spanned by these eigenfunctions be HPL and
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H̃R ⊂ HR ⊂ L2(B3), respectively (both are finite dimensional.) Therefore, using

eigenfunctions we can represent signals more economically, i.e. using less number of

basis functions, than using Fourier-Laguerre basis functions, especially if the signal

is band-limited and spatially concentrated in some region R, or if it is space-limited

and concentrated in some spectral region APL. Practically, signals may not be en-

tirely limited in spectral domain nor in spatial domain, and representing such signals

demands bases (or eigenfunctions) that maximise the concentration of energy in both

spectral and spatial domains. In the following, our objective is to develop basis func-

tions which maximise the product of concentration of energy in both spectral and

spatial domains. We aim to develop basis functions for the joint subspace HPL + H̃R,

that is, the vector sum of HPL and H̃R. The basis functions are designed such that

the product of concentration of energy in the spectral region APL and that in the

spatial region R is maximised [101].

3.2.3 Design of Optimal Basis Functions

Since the band-limited eigenfunctions fu, u ∈ [1, PL2] and the space-limited eigen-

functions hu = SRfu, u ∈ [1, PL2] are designed to have maximal concentration in the

spatial region R and the spectral region APL respectively, we hereby form a new class

of functions as a weighted linear combination of these eigenfunctions, as follows:

gu(r̂) , αu fu(r̂) + βu hu(r̂), hu(r̂) = (SRfu)(r̂), (3.54)

for u ∈ [1, PL2], where the weights αu and βu are optimally chosen to maximise the

product of the measures of the energy concentration of the unit energy function gu in

the spectral region APL and in the spatial region R. Since fu ∈ HPL and hu ∈ H̃R, we

note that every gu ∈ HPL + H̃R. The space-limited and band-limited eigenfunctions
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satisfy the following orthogonality relations [101]

‖hu‖2
R = 〈hu, hv〉R = 〈fu, hv〉R = ‖fu‖2

R = δu,vλu,

‖hu‖2
PL = λ2

u, ‖fu‖2
PL = 〈fu, fu〉 = δu,v (3.55)

for u, v ∈ [1, PL2], where δu,v is the Kronecker delta. We determine the weights

αu and βu in the following theorem.

Theorem 1. For any unit energy function gu ∈ HPL + H̃R, the product of the energy

concentration in the the spectral region APL and that in the spatial region R ⊂ B3 is

maximised, when αu and βu have the values:

αu,1 = X, βu,1 =
X√
λu
, αu,2 = Y, βu,2 = − Y√

λu
, (3.56)

where X = (2 + 2
√
λu)
−1/2 and Y = (2− 2

√
λu)
−1/2.

Proof. This problem can be formulated as a constrained maximisation problem given

by

maximise ‖gu‖2
R ‖gu‖

2
PL subject to ‖gu‖2 = 1,

with the Lagrangian L given as

L = ‖gu‖2
R ‖gu‖

2
PL + γ(‖gu‖2 − 1).

Noting ‖gu‖2
R = λu(αu + βu)

2 and ‖gu‖2
PL = (αu + βuλu)

2 yields the two solutions for

αu and βu given in (3.56).

For the two pairs of weights αu and βu obtained in Theorem 1, we define a set of

functions as

gu,k(r̂) = αu,k fu(r̂) + βu,k (SRfu)(r̂), (3.57)
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for u ∈ [1, PL2], k = [1, 2] with the energy concentration given by,

‖gu,k‖2
R = ‖gu,k‖2

PL =
1− (−1)k

√
λu

2
, k = 1, 2, (3.58)

which we obtain by substituting the values for αu,k and βu,k in their respective norm

functions.

We yet need to check the completeness of the basis functions in (3.57) for the

joint subspace HPL + H̃R. From (3.55) it can be seen that the functions gu,1 and gv,2

for u, v ∈ [1, PL2], u 6= v are orthonormal (unit energy constraint on gu,k) for any

values of αu,1, αv,2, βu,1 and βv,2. Also from (3.56), it can be easily shown that gu,1

and gu,2 become orthonormal for each u ∈ [1, PL2]. The joint subspace has dimension

2PL2 (each of the subspaces H̃R and HPL is of dimension PL2), therefore, the 2PL2

number of orthonormal functions gu,k ∈ HPL + H̃R for u ∈ [1, PL2], and k = 1, 2

completely span the joint subspace HPL + H̃R.

3.2.4 Integral Operator Formulation

We now have a set of functions which form the basis for the subspace HPL + H̃R.

These functions are referred to as optimal basis functions for the ball since they are

optimal by design in a sense that the product of measures of the concentration of

energy in the spectral region APL and the spatial region R is maximised. From the

set of optimal basis functions, the functions of more significance are the ones that are

highly concentrated in the spatial or spectral region of interest. From (3.58), we can

see that energy concentration of each gu,k is same in both the spatial and spectral

regions. These measures however do not account for the simultaneous concentration in

the both the spatial and spectral domains. Using the Fredholm integral equation, we

develop a linear integral operator which will serve as a measure for the simultaneous

energy concentration in the regions of interest in the spatial and spectral domains.

Theorem 2. The function w ∈ L2(B3), that maximises the product of concentration

of energy in the spectral region APL and that in the spatial region R ⊂ B3, is an
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eigenfunction of an integral operator SM with kernel SM(r̂, r̂′) given by

SM(r̂, r̂′) =
IR(r̂) + IR(r̂′)

2

(L,P )∑
`mp

Z`mp(r̂)Z`mp(r̂′), (3.59)

and the eigenvalue, denoted by µ, of the eigenfunction w such that (SMw)(r̂) = µw(r̂)

is given by

µ = ‖w‖2
R(2‖w‖2

R − 1). (3.60)

Proof. We consider W (r̂) = w(r̂) + εz(r̂), where w is a unit energy function, z ∈

L2(B3) and ε ∈ R quantifies the small perturbation in the solution. The energy

concentration in the spectral region APL and the spatial region R is given as ‖w‖2
PL

and ‖w‖2
R respectively. By applying the variational principle, we find the function w

for which the product of concentration of energy in the spatial and spectral region,

defined as

V =
‖W‖2

R

‖W‖2

‖W‖2
PL

‖W‖2 , (3.61)

is maximised. Here the factor ‖W‖2 is used to ensure unit energy normalization. As

0 ≤ V ≤ 1, we maximize V by maximising log V as

d

dε
(log V )

∣∣∣∣
ε=0

=
d

dε

(
log
‖W‖2

R

‖W‖2 + log
‖W‖2

PL

‖W‖2

)∣∣∣∣
ε=0

= 0.

By substituting ‖W‖R = 〈SRW,SRW 〉 and ‖W‖PL = 〈SPLW,SPLW 〉, we can sim-

plify the above equation as

1

2 ‖w‖2
R

(SR(w z)) (r̂) +
1

2‖w‖2
L

(SPL(w z)) (r̂)

− w(r̂)z(r̂) = 0,

which holds for every z ∈ L2(B3).
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Using the method described in [101] and employing the orthonormality of Fourier-

Laguerre basis functions, it can be shown that

〈SRSPLw,SRw〉 = 〈SPLSRw,SPLw〉

=

(L,P )∑
`mp

w`mp〈Z`mp, w〉R,

and we conclude that

‖w‖2
R = ‖w‖2

L. (3.62)

After rearranging terms we arrive at the result

2 ‖w‖2
R(2‖w‖2

R − 1)w(r̂) = (SPLSRw + SPLw) (r̂), r̂ ∈ R,

2 ‖w‖2
R(2‖w‖2

R − 1)w(r̂) = (SPLSRw) (r̂), r̂ ∈ B3\R. (3.63)

Using the kernels for the operators SR and SPL, given in (3.49) and (3.50), respec-

tively, we conclude that SMw(x̂) = µw(x̂), where the kernel of the operator SM is

given in (3.59) and µ given in (3.60).

Now we show that the basis functions gu,k, u ∈ [1, PL2], k = 1, 2 are the eigen-

functions of the integral operator SM .

Theorem 3. Optimal basis functions gu,k, given in (3.57), are the only eigenfunctions

of the operator SM .

Proof. First we show that the optimal basis functions are eigenfunctions of the op-

erator SM . By substituting function w in (3.63) with any basis function, we obtain

(SMgu,k)(r̂) = µu,kgu,k(r̂). Here the eigenvalue µu,k = ‖gu,k‖2
R(2‖gu,k‖2

R − 1) as given

in (3.60) is a measure of concentration of energy in the spatial and spectral regions.

To show that the optimal basis functions are the only eigenfunctions of the opera-

tor, we first note that the operator SM is self-adjoint which directly follows from the

definition of its kernel SM(r̂, r̂′) given in (3.59). It can also be shown that SM is a
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Hilbert-Schmidt operator. The self-adjointness and square-integrability together with

the fact that zero is not an eigenvalue of the operator SM imply that eigenfunctions

of the operator form complete basis functions for HPL + H̃R. This, together with the

prior discussion that optimal basis functions are a complete set of basis functions for

the subspace HPL + H̃R, completes the proof of this theorem.

There are several consequences of Theorem 3. This implies that SM is a projection

operator which projects a signal x ∈ L2(B3) to the subspace HPL+H̃R. Furthermore,

it maps any signal in HPL + H̃R to a signal in HPL + H̃R. We review the properties

of optimal basis functions in the next section.

3.2.5 Properties of Optimal Basis Functions

Orthogonality of Eigenfunctions: The optimal basis functions gu,k are orthogonal

over both HPL and HR, i.e.,

〈gu,k, gv,k〉R = ‖gu,k‖2
Rδu,v, 〈gu,k, gv,k〉PL = ‖gu,k‖2

PLδu,v.

Spectrum of Eigenvalues: For eigenvalues indexed as 1 > λu ≥ λv > 0, we have

the following distribution for the product of concentration of energy in the spatial

and spectral domains for optimal basis functions for u < v and u, v ∈ [1, PL2]:

1 >‖gu,1‖2
R‖gu,1‖

2
PL > ‖gv,1‖2

R‖gv,1‖
2
PL > 0.25,

0.25 >‖gu,2‖2
R‖gu,2‖

2
PL > ‖gv,2‖2

R‖gv,2‖
2
PL > 0.

For k = 1 the eigenvalue µu,k decreases monotonically to 0 as u increases from 1 to

PL2, whereas for k = 2 it decreases from a negative value to a minimum and then

increases to 0 as u increases from 1 to PL2.
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3.2.6 Signal Representation in Optimal Basis Function

We order the optimal basis functions gu,k, u ∈ [1, PL2], k = 1, 2, as ψ1, ψ2, . . . , ψ2PL2 ,

in decreasing order of eigenvalues’ magnitudes. As mentioned before, we can project

any signal x ∈ L2(B3) to the subspace HPL + H̃R using the optimal basis functions

as

x(r̂) =
2PL2∑
u=1

〈x, ψu〉ψu(r̂), (3.64)

where the inner product is evaluated as

〈x, ψu〉 =

(L,P )∑
`mp

x`mp(ψu)`mp =

(L,P )∑
`mp

x`mp× (3.65)

(αu(fu)`mp + βu

(L,P )∑
`′m′p′

(fu)`′m′p′K`mp,`′m′p′)

and K`mp,`′m′p′ =

∫
R

Z`′m′p′(r̂)Z`mp(r̂)dv(r̂) [41]. If the signal x is spatially concen-

trated in the region R and spectrally concentrated in the region APL, it is expected

that we can represent it using fewer number of terms as the inner product 〈x, ψu〉

decays to 0 as u increases from 1 to 2PL2.
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Part II

Sampling Schemes on the Sphere
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Chapter 4

Improvements in the Optimal

Dimensionality Sampling Scheme

In this chapter, we first review the optimal dimensionality sampling scheme on the

sphere and the associated spherical harmonic transform and later introduce variations

and improvements in this scheme to achieve a transform with higher accuracy. The

computation of the SHT associated with the optimal-dimensionality sampling requires

the inversion of a series of linear systems in an iterative manner. The stability of the

inversion depends on the placement of iso-latitude rings of samples along co-latitude.

In this chapter, we have developed a method to place these iso-latitude rings of

samples with the objective of improving the well-conditioning of the linear systems

involved in the computation of the SHT. We also propose a multi-pass SHT algorithm

to iteratively improve the accuracy of the SHT of band-limited signals. Furthermore,

we propose an antipodally symmetric sampling scheme of optimal dimensionality

for the sampling of band-limited signals. The proposed scheme takes ∼L2 number

of samples for the sampling of spherical signal of band-limit L and the accurate

computation of its spherical harmonic transform (SHT).
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4.1 Optimal Dimensionality Sampling on the Sphere

Recently, an optimal-dimensionality sampling scheme has been proposed in [2] for

the accurate computation of the SHT of band-limited signals using only L2 samples.

Optimal-dimensionality sampling has been customized to serve the needs of appli-

cations in acoustics [6] and diffusion MRI [25]. Although the SHT associated with

this sampling scheme requires the optimal number of samples, it has computational

complexity of O(L3.37). The computation of the SHT for optimal-dimensionality sam-

pling involves inversion of a series of systems of linear equations. In this scheme, L

iso-latitude rings of samples are placed on the sphere at locations (to be explained

shortly) given in vector θ, defined as

θ , [θ0 , θ1 , . . . , θL−1] . (4.1)

Each successive ring has different number of points in it. For instance, the ring placed

at θk contains 2k + 1 equiangular points along longitude φ.

4.1.1 SHT Formulation

We provide here a brief review of the formulation of the SHT using the optimal

dimensionality sampling scheme. For a deeper understanding of the SHT algorithm

the reader is directed to the original manuscript [2]. For a signal f ∈ HL we define a

vector gm, for every |m| < L as

gm ,
[
Gm(θ|m|), Gm(θ|m|+1), . . . , Gm(θL−1)

]T
, (4.2)

where Gm(θk) for each θk ∈ θ is given as

Gm(θk) ,
∫ 2π

0

f(θk, φ)e−imφdφ = 2π
L−1∑
`=m

(f)m` P̃
m
` (θk). (4.3)

Here P̃m
` (θk) , Y m

` (θk, 0) denotes scaled associated Legendre functions. The second

equality in (4.3) is obtained by using (2.3) and (2.11) and employing the orthogonality
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of complex exponentials. By defining another vector fm as

fm =
[
(f)m|m|, (f)m|m|+1, . . . , (f)mL−1

]T
, (4.4)

containing the spherical harmonic coefficients of order m, we formulate a linear system

given as

gm = Pm fm, (4.5)

where the Pm is an (L− |m|)× (L− |m|) matrix with elements given by

Pm(i, j) = P̃m
|m|+j−1(θ|m|+i−1). (4.6)

4.2 Optimized Samples Placement and Multi-Pass

SHT

The spherical harmonic coefficients for each order |m| ≤ L contained in fm can be

recovered by solving the linear system given in (4.5). Computation of the SHT,

that is, the computation of spherical harmonic coefficients of the signal f ∈ HL

sampled according to the optimal-dimensionality sampling scheme, involves the in-

version of a series of linear systems formed by the matrix Pm (defined in (4.6)) for

m = 0, 1, . . . , L− 1 [2]. A condition number minimization method has been proposed

in [2] to determine the locations of these iso-latitude rings indexed in (4.1) such that

the matrix Pm for each m = 0, 1, . . . , L − 1 is well-conditioned and the SHT can

be accurately computed. With an objective to improve the accuracy of the SHT,

we consider the problem of determining the locations of iso-latitude rings of samples

which reduce (improve) the condition number (ratio of the largest to the smallest

eigenvalue value) of the matrices Pm, m = 0, 1, . . . , L − 1. To further improve the

accuracy of the SHT, we also propose a multi-pass SHT algorithm which iteratively

reduces the error between the given signal (samples in spatial domain) and the signal
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synthesized using the computed spherical harmonic coefficients.

4.2.1 Condition Number Minimization

The recovery of fm for each |m| < L using (4.5) requires inversion of the Pm matrix

for each |m| < L. For accurate computation of the SHT, it is therefore necessary that

the matrix Pm is invertible and well-conditioned. Since Pm is a matrix of associated

Legendre polynomials of order m and degrees |m| ≤ ` < L evaluated at θi, i =

|m|, |m + 1|, . . . , L − 1, its accurate inversion depends on the locations of the iso-

latitude rings indexed in (4.1). To determine the locations of the iso-latitude rings,

we propose a condition number minimization technique, herein referred to as the

elimination method, for the construction of the vector θ.

Let Ω be a set of L equiangular co-latitude angles between 0 and π defined as

Ω ,

{
π (2t+ 1)

2L− 1

}
, t = 0, 1, . . . , L− 1. (4.7)

For m = 0, the Pm matrix is formed by inserting all elements of set Ω in (4.6) and

has dimension L × L. Since Pm, for m=1, requires L − 1 co-latitude angles, we

eliminate one element, say Ωj, from the set Ω and calculate the condition number,

denoted by κm, of Pm using all possible L − 1 combinations of residual elements

Ω\Ωj. The element Ωj, whose elimination results in the lowest condition number of

Pm, is then selected as the first element of the θ vector. The Ω set is then updated

as Ω← Ω\Ωj. The same procedure is carried out for the construction of the θ vector

for m = 2, 3, . . . , L− 1 which we summarize below in the form of an algorithm.

The θ vector constructed using the proposed elimination method is optimized in

a sense that the it generates Pm matrices of lower condition number as compared

to the optimal-dimensionality sampling scheme. This improvement in the condition

number comes from the fact that the proposed elimination method has L−|m| choices

for θm such that the condition number of matrix Pm is minimized. In contrast, the

method proposed in [2] has |m| choices for the selection of θm and minimization of

the condition number of matrix the Pm. As an illustration, the condition number
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Algorithm 1 Elimination Method

Require: θ given L
1: procedure Elimination method

2: Ω ,
{
π (2t+1)

2L−1

}
t=0,1,...,L−1

.

3: for m = 0, 1, . . . , L− 1 do
4: for j = 0, 1, . . . , L−m do
5: αj ← Ω\Ωj

6: evaluate Pm using (4.6) and
7: compute condition number κm

8: end for
9: determine index k for minimum value of κm
10: update θm ← Ωk

11: update Ω← αk

12: end for
13: return θ
14: end procedure

m
0 5 10 15 20 25 30 35

C
o
n
d
iti

o
n
 N

u
m

b
e
r,

 κ
m

1

2

3

4

5

6

7

8
Optimal-dimensionality 
Sampling [2]

Proposed Sampling

Figure 4-1: The condition number κm of the matrix Pm, m = 0, 1, . . . , L − 1 using
the proposed optimized placement of iso-latitude rings and the design proposed in [2]
for band-limit L = 32.
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Figure 4-2: The maximum of the condition number max(κm) , 0 ≤ m < L for different
band-limits 16 ≤ L ≤ 512.

κm of the matrix Pm, m = 0, 1, . . . , L− 1 using the proposed optimized placement of

iso-latitude rings and the design proposed in [2] is plotted in Fig. 4-1 for band-limit

L = 32. We also plot the maximum of the condition number κm obtained for different

band-limits 16 ≤ L ≤ 512 in Fig. 4-2. It is evident that the proposed elimination

method improves the well-conditioning of the systems involved in the computation

of the SHT algorithm associated with the optimal-dimensionality sampling on the

sphere.

4.2.2 Multi-pass SHT

In the computation of the SHT of the band-limited signal sampled according to

the optimal-dimensionality sampling scheme, the spherical harmonic coefficients are

computed iteratively for each order in a sequence |m| = L − 1, L − 2, . . . , 0. The

SHT is inherently iterative in nature as the spherical harmonic coefficients of order

|m| are used in the computation of the SHT of order |m| − 1. Consequently, the

error propagates and builds up in the iterative computation of spherical harmonic

coefficients. To reduce this error building-up, we propose a multi-pass SHT algorithm
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which iteratively improves the accuracy of the SHT.

For a signal f ∈ HL sampled by the optimal-dimensionality sampling scheme,

the spherical harmonic coefficients can be accurately computed by the algorithm

presented in [2]1. We define the residual (error) between the signal f and the signal

synthesized from the recovered spherical harmonic coefficients as

rk(θ, φ) = f(θ, φ)−
L−1∑
`=0

∑̀
m=−`

(f̃k)
m
` Y

m
` (θ, φ) (4.8)

where (f̃k)
m
` denotes the spherical harmonic coefficient computed using the proposed

SHT algorithm and k = 1 (indicating the number of times the transform has been

carried out). Once residual is computed, we use the SHT algorithm to compute its

spherical harmonic coefficients, denoted by (r̃k)
m
` , which we use to update (f̃k)

m
` as

( ˜fk+1)m` = (f̃k)
m
` + (r̃k)

m
` . (4.9)

We propose to iteratively use (4.8) and (4.9) to compute (f̃k)
m
` for k = 1, 2, . . ., until

the following stopping criterion is not satisfied

max |rk+1(θ, φ)| ≤ max |rk(θ, φ)|, (4.10)

where max is taken over the samples of the sampling scheme. Since the proposed

method requires to compute the SHT multiple times, we refer to the proposed method

for the computation of spherical harmonic coefficients as the multi-pass SHT. Later,

we illustrate that the proposed method significantly improves the accuracy of the

SHT.

1SHT can be computed accurately for band-limited signals sampled over optimal-dimensionality
sampling scheme [2] using the MATLAB based package Novel Spherical Harmonic Transform (NSHT)
publicly available at www.zubairkhalid.org/nsht.
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4.2.3 Computational Complexity Analysis

Here we briefly discuss the computational complexity of the proposed elimination

method for the placement of iso-latitude rings and the multi-pass SHT algorithm.

The elimination method has the computational complexity of O(L5). However, it

only needs to be run once for the determination of θ for each L. Furthermore, we

note that the complexity of the method presented in [2] for the placement of samples

is also O(L5). For the optimal-dimensionality sampling scheme, the SHT can be

computed with complexity of O(L3.37). For the proposed multi-pass SHT algorithm,

the complexity scales with the number of iterations, denoted by K, needed for the

convergence of error. In the next section, we provide examples to illustrate that the

proposed multi-pass SHT algorithm converges quickly in K � L number of iterations.

4.2.4 Accuracy Analysis

In this section, we analyse the accuracy of the proposed multi-pass SHT algorithm

of a band-limited signal evaluated using the optimal-dimensionality sampling scheme

with iso-latitude rings placed using the proposed elimination method. We conduct

numerical experiments to compare the proposed developments with the SHT proposed

in [2]. In our experiment, we first take a band-limited signal f ∈ HL by randomly

generating its spherical harmonic coefficients (f)m` with real and imaginary parts

uniformly distributed in [0, 1]. We obtain the signal f in the spatial domain, that is,

over the samples of the optimal-dimensionality sampling scheme (proposed sampling

or [2]) using an inverse SHT. We then apply the SHT presented in [2] and the proposed

multi-pass SHT algorithm to recover the spherical harmonic coefficients, denoted by

(f̃)m` and (f̃k)
m
` respectively. We conduct experiments for 10 different signals to obtain

the average value of the maximum error between reconstructed and original spherical

harmonic coefficients defined as

Emax , max |(f̃)m` − (f)m` |, (4.11)

Ek
max , max |(f̃k)m` − (f)m` |, (4.12)
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Figure 4-3: Maximum errors Emax and Ek
max between the original and recovered spher-

ical harmonic coefficients using original optimal-dimensionality sampling scheme and
the proposed sampling respectively for band-limits 8 ≤ L ≤ 1024. Here k depends on
the stopping criterion given in (4.10) and is different for each band-limit L.

which we plot for band-limits 8 ≤ L ≤ 1024 in Fig. 4-3, where it can be observed that

the proposed multi-pass SHT algorithm and optimized placement of samples results

in the more accurate computation of the SHT.

We also analyse the convergence of the multi-pass SHT algorithm and the improve-

ment in the accuracy of the SHT enabled by the proposed multi-pass SHT algorithm.

We plot the maximum absolute error Ek
max for band-limits L = 128 and L = 256 in

Fig. 4-4, where it can be observed that the proposed multi-pass SHT improves the

accuracy of SHT and converges (quickly) in K � L number of iterations.

4.3 Antipodally Symmetric Optimal Dimensional-

ity Sampling

Next we propose an antipodally symmetric sampling scheme of asymptotic optimal

dimensionality for the acquisition of band-limited signals. For a signal band-limited

at L, the proposed scheme takes ∼L2 number of samples. We develop the transform
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Figure 4-4: Maximum error Ek
max, given in (4.12), between the original and recovered

spherical harmonic coefficients for band-limits L = 128 and L = 256 and different
iterations of the multi-pass SHT.

associated with the proposed sampling scheme for the accurate computation of the

SHT. The SHT developed in this work (having complexity of the order O(L4)) is

computationally efficient by a factor of four thanks to the symmetry of placement of

samples which is exploited to reduce the size of the matrices required to be inverted

for the computation of the SHT.

4.3.1 Proposed Sampling Scheme — Structure and Design

We propose to place L + 1 iso-latitude rings (of samples) symmetric around the

equator (θ = π/2). With this consideration, we define the vector θ containing the

location of these L+ 1 iso-latitude rings as

θ , [θ0, π − θ0, . . . , θL−3, π − θL−3, θL−1, π − θL−1], (4.13)
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for odd L and

θ , [θ0, π − θ0, . . . , θL−4, π − θL−4, θL−2, π − θL−2, π/2], (4.14)

for even L. Here θ0 = 0 for both odd and even band-limits and θn denotes the n-th

entry in the vector θ. We shortly present the location of the remaining rings along

the co-latitude. We note that the placement of rings is symmetric around equator.

In the iso-latitude ring placed at θn, we propose to place the samples along φ as

φnk ,


2kπ

2n+1
, n = 0, 2, . . . , L− 1, k ∈ [0, 2n],

π(2k+1)
2n−1

, n = 1, 3, . . . , L, k ∈ [0, 2(n− 1)],

(4.15)

for odd L and

φnk ,


2kπ

2n+1
, n = 0, 2, . . . , L− 2, k ∈ [0, 2n],

π(2k+1)
2n−1

, n = 1, 3, . . . , L− 1, k ∈ [0, 2(n− 1)],

(4.16)

including 2L − 1 equiangular samples along φ on the ring θL = π/2 for even L. We

use EL and OL to denote the sampling schemes defined above for even and odd L

respectively.

Antipodal Symmetry of Sampling Points: We note that the samples along φ in

the proposed sampling schemes are placed such that the samples in the ring located

at θn are antipodal to the samples in the ring located at θn−1, that is, (θn−1, φ
n−1
k ) =

(π−θn−1, π+φnk) for n = 2, 4, . . . , L−1. As an example, Fig. 4-6 shows the proposed

sampling scheme for L = 21.

Number of Points: The total number of samples in the proposed sampling schemes

is given by

2
L−1∑
n=0
neven

(2n+ 1) = L2 + L, L odd. (4.17)

2L− 1 + 2
L−2∑
n=0
neven

(2n+ 1) = L2 + L− 1, L even. (4.18)
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We note that the proposed sampling schemes for odd and even band-limits take the

optimal number of samples asymptotically. Optimal number of samples is L2 given

by the degrees of freedom of the band-limited signal in harmonic space.

4.3.2 Spherical Harmonic Transform

We develop an algorithm for the computation of the spherical harmonic transform

of the signal band-limited at L from its samples taken using the proposed sampling

scheme. Following the philosophy proposed in [2], we here present the spherical

harmonic transform algorithm for the case when the band-limit of the signal is odd.

For signals with even band-limits, an equivalent formulation can be developed.

We assume that the samples of the band-limited signal f ∈ HL are taken on the

scheme OL proposed in the previous subsection. Exploiting the antipodal structure

of the sampling scheme, we first split the band-limited signal f into antipodally

symmetric (fs) and antipodally asymmetric signals fa given by

fs(θn, φn) =
1

2

(
f(θn, φn) + f(π − θn, π + φn)

)
, (4.19)

fa(θn, φn) =
1

2

(
f(θn, φn)− f(π − θn, π + φn)

)
(4.20)

for all (θn, φn) ∈ OL. It is trivial to show that f = fs + fa. Due to the antipo-

dal symmetry and asymmetry of the spherical harmonics of even and odd degrees

respectively, we have the following expansion of fs and fa

fs(θn, φn) =
L−1∑

`=0,` even

(f)m` Y
m
` (θn, φn), (4.21)

fa(θn, φn) =
L−2∑

`=1,` odd

(f)m` Y
m
` (θn, φn). (4.22)

The separation of the signal into antipodally symmetric and asymmetric signals en-
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Figure 4-5: Representation of non-zero coefficients of the signal band-limited at odd
degree L. The coefficients of the symmetric signal fs and asymmetric signal fa are
indicated as black and blue dots respectively.

abled by the proposed sampling structure also splits the signal in the harmonic space

into even degree harmonics and odd degree harmonics respectively. We illustrate this

in Fig. 4-5, where we plot the spectral domain of the band-limited signal and indicate

the non-zero coefficients of antipodally symmetric (even degrees, black solid dots) and

antipodally asymmetric (odd degrees, blue dots).

4.3.3 Formulation of Spherical Harmonic Transform (SHT)

To formulate the SHT, we first define an iso-latitude transform, that is, the Fourier

transform along φ for symmetric and asymmetric signals as

sGm(θ) ,
∫ 2π

0

fs(θ, φ)e−imφdφ (4.23)

= 2π
L−1∑

`=2d|m/2|e,` even

(f)m` Ỹ
m
` (θ), (4.24)
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aGm(θ) ,
∫ 2π

0

fa(θ, φ)e−imφdφ (4.25)

= 2π
L−2∑

`=2b|m/2|c+1,` odd

(f)m` Ỹ
m
` (θ), (4.26)

where Ỹ m
` (θ) , Y m

` (θ, 0). We also define vectors sfm and afm as

sfm =
[
(f)m2d|m/2|e, (f)m2d|m/2|e+2, . . . , (f)mL−1

]
, (4.27)

afm =
[
(f)m2b|m/2|c+1, (f)m2b|m/2|c+3, . . . , (f)mL−2

]
, (4.28)

containing m-th order spherical harmonic coefficients of even degrees and odd degrees

respectively. Be defining

sgm = [sGm(θ2d|m/2|e), sGm(θ2d|m/2|e+2), . . . , sGm(θL−1)],

agm = [aGm(θ2d|m/2|e), aGm(θ2d|m/2|e+2), . . . , aGm(θL−1)],

for each |m| < L, we can express sgm using the formulation of sfm, which respectively

contains spherical harmonic coefficients of order |m| < L and even degrees m ≤ ` < L

and iso-latitude transforms of order |m| < L evaluated along the rings placed at

θ2d|m/2|e, θ2d|m/2|e+2, . . . , θL−1, we can write (4.23) as

sgm = 2πsP
m
L fm, |m| ≤ L, (4.29)

where sP
m
L , containing Ỹ m

` (θn) consistent with the formulation of sGm(θ) in (4.23),

is a square matrix of number of rows (or columns) equal to (L− 2d|m/2|e+ 1)/2. We

can similarly express agm as

agm = 2πaP
m
L fm, |m| ≤ L. (4.30)

Using (4.29) and (4.30) for each order |m| < L, we can recover the spherical harmonic

coefficients of order m and even and odd degrees respectively provided the rings

are placed such that sP
m
L and aP

m
L are well-conditioned (invertible) and iso-latitude
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(a) (b)

Figure 4-6: Samples of the proposed sampling schemes are plotted for L = 21 with (a)
North pole view and (b) South pole view. The points in the Northern hemisphere are
are shown in black and the antipodally symmetric points in the Southern hemisphere
are shown in blue.

transform along φ can be computed accurately. For the structure of the samples along

φ of the proposed sampling scheme, an iso-latitude transform sGm(θ) and aGm(θ) can

be computed accurately by taking FFT over the samples of symmetric and asymmetric

signals respectively.

Remark 1. We note that the computation of the spherical harmonic coefficients, that

is, the spherical harmonic transform using the formulation proposed above requires the

inversion of matrices sP
m
L and aP

m
L for each |m| < L. Therefore the computational

complexity of the proposed transform is (O(L4)) equal to the complexity of the trans-

form associated with optimal dimensionality sampling without antipodal symmetry [2].

Although we require twice the number of matrices to be inverted, the size of the ma-

trices in our formulation is half the size of matrices required to be inverted for the

computation of SHT proposed in [2]. We therefore note the improvement in the SHT

computation time by a factor of (approximately) 4 using the proposed scheme.
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4.3.4 Placement of Rings of Samples along Co-latitude

We now present a method to place the rings of samples along co-latitude, that is, we

determine positions indexed in (4.13) such that the matrices sP
m
L and aP

m
L are well-

conditioned. We first note that either sP
m
L or aP

(m−1)
L depend on θ2d|m/2|e, θ2d|m/2|e+2, . . . , θL−1

and sP
−m
L = (−1)msP

m
L and aP

−m
L = (−1)maP

m
L .

Since the locations of the rings indexed in θ given in (4.13) appear in pairs due

to the antipodal symmetry of the proposed sampling scheme, we are only required

to find the locations of the rings in the Northern hemisphere (θ ∈ [0, π/2)). We take

a set of equiangular M > L samples in the Northern hemisphere along co-latitude

given by

Θ =

{
π(t)

2M

}
, t = 0, 1, . . . ,M − 1. (4.31)

We propose the following method to iteratively place the rings of samples along co-

latitude.

• Choose θL−1 = π(M − 1)/2M , that is the farthest sample from the poles in the

set Θ.

• For each m = L − 3, L − 5, . . . 2, choose θm from the set Θ such that sum of

the condition numbers of the four matrices sP
m, sP

m−1, aP
m−1 and aP

m−2 is

minimized.

• Choose the last ring location θ0 = 0.

As an example, we plot the sampling positions on the sphere for L = 21 in Fig. 4-6,

where we use M = 15L equiangular points in the set Θ. Such placement ensures that

the SHT can be accurately computed by taking samples using the proposed sampling

scheme and the associated SHT developed in the previous section.

4.3.5 Numerical Accuracy Analysis

We analyse the accuracy of the SHT developed for the proposed sampling scheme in

this section. To evaluate the numerical accuracy, we obtain a band-limited test signal
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Figure 4-7: Plots of the maximum error Emax and the mean error Emean, given in
(4.32) and (4.33) respectively, for band-limits 15 ≤ L ≤ 127.

ft for band-limit 15 ≤ L ≤ 127 in the harmonic domain by generating its spherical

harmonic coefficients (ft)
m
` for 0 < ` < L with real and imaginary parts uniformly

distributed in the interval [−1, 1]. We then use (2.8) to obtain the signal at the

samples of proposed sampling schemes EL or OL. We then apply the proposed SHT

to compute the spherical harmonic coefficients, denoted by (fr)
m
` , of the reconstructed

signal. We repeat this test 10 times for each band-limit and compute the average

values for the maximum error Emax and the mean error Emean, given by

Emax , max |(ft)
m
` − (fr)

m
` |, (4.32)

Emean ,
1

L2

L−1∑
`=0

∑̀
m=−`

|(ft)
m
` − (fr)

m
` |, (4.33)

which are plotted in Fig. 4-7 over the range of band-limits, where it is evident that the

proposed transform enables accurate computation of SHT with errors on the order of

machine (double) precision.
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Chapter 5

Spatially-Limited Sampling of

Band-Limited Signals on the

Sphere

Spherical signal processing techniques analyse signals in both the spatial and spec-

tral domains. To extract spectral information of a signal, the spherical harmonic

transform (SHT) given in (2.9) computes the spherical harmonic coefficients using

samples of the signal in spatial domain. Sampling schemes have been proposed which

lead to either theoretically exact or accurate computation of the SHT. All of these

schemes assume that samples are available on the entire sphere. However, there are

applications where samples cannot be taken over some region, for instance, the polar

gap problem in geodesy [65], south polar cap region in HRTF measurements [7] and

SDSS DR7 quasar binary mask in cosmology [41]. In this chapter, we consider a

problem to compute the SHT when some region on the sphere is inaccessible. By

enclosing the inaccessible region within an ellipsoidal region, followed by the rotation

of the ellipsoidal region either to a polar cap region or the equatorial belt region, we

propose spatially-limited iso-latitude sampling on the sphere for the computation of

the SHT.
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5.1 Regions on the Sphere

We first define different types of regions on the sphere which will be used in the

subsequent sections. The (South) polar cap region, parameterized by co-latitudinal

radius θp and denoted by Rp(θp), is defined as

Rp(θp) , {û(θ, φ) ∈ S2|θp ≤ θ ≤ π, 0 ≤ φ < 2π}, (5.1)

with surface area |Rp(θp)| =
∫
Rp(θp)

ds(û) = 2π(1− cos θp), where ds(û) = sin θdθdφ

represents the differential surface element on S2.

We also define the equatorial belt region of co-latitudinal width 2θe as

Re(θe) , {(θ, φ)|π
2
− θe ≤ θ ≤ π

2
+ θe, 0 ≤ φ < 2π}, (5.2)

and note that |Re(θe)| = 4π sin θe. Lastly, we define an ellipsoidal region RE(θc, a) on

the sphere, centered at the North pole, given as

RE(θc, a) ,
{
û(θ, φ) ∈ S2 |∆ (û , v̂1) + ∆ (û, v̂2) ≤ 2a

}
, (5.3)

where v̂1 ≡ v1(θc, 0) and v̂2 ≡ v2(θc, π) represent the two foci, ∆(û, v̂) measures the

angular distance between two points û, v̂ ∈ S2 [1] and a is the length of the semi-

major axis aligned with the x-axis. The semi-minor axis of RE(θc, a) having length b,

such that ∆ (ŵ , v̂1) + ∆ (ŵ, v̂2) = 2a, is aligned with the y-axis and ŵ ≡ w(b, π/2).

5.2 Sampling Design – Inaccessible Ellipsoidal Re-

gion

We first devise a sampling scheme on the sphere when the ellipsoidal region R
′
E(θc, a)

is inaccessible. We later take into account the arbitrary shaped region by enclosing

it with the ellipsoidal region. We propose to take iso-latitude rings of samples of

the band-limited signal f ∈ HL on the sphere over the accessible region. For the
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inaccessible ellipsoidal region R
′
E(θc, a), the iso-latitude rings of samples of the signal

f can be taken on S2\Rp(a) and therefore the surface area available for sampling

is 4π − |Rp(a)| = 2π(1 + cos a). If we rotate the signal and inaccessible ellipsoidal

region by π/2 along z-axis and then by π/2 along y-axis, its semi-major and minor

axes get aligned with the y-axis and z-axis respectively and the iso-latitude rings of

samples of the rotated signal D(0, π/2, π/2)f can now be taken on S2\Re(b) of surface

area 4π(1 − sin b). If (1 + cos a) > 2(1 − sin b) for a given inaccessible ellipsoidal

region R
′
E(θc, a), we rotate the signal prior to sampling such that the major axis of the

inaccessible ellipsoidal region is aligned with the y-axis as such judicious choice ensures

the availability of larger area for the sampling of the signal. With this consideration,

we propose to take L iso-latitude rings of samples at locations such that θk ∈ Θ where

Θ =

θ ∈ [0, π − a] (1 + cos a) < 2(1− sin b)

θ ∈ [0, π
2
− b] ∪ [π

2
+ b, π] otherwise.

(5.4)

For a ring placed at θk, we take 2k+ 1 equally spaced points along φ. Before we learn

the method to determine the ring locations θk, k = 0, 1, . . . , L− 1 such that the SHT

of the band-limited signal can be computed accurately, we reader is advised to review

the formulation of the spherical harmonic transform presented in Section 4.1.1.

5.3 Placement of Iso-latitude Rings

The vector fm containing the SHT coefficients of order m can be recovered by solving

a system of linear equations provided Pm is well-conditioned and gm can be computed

correctly. For the proposed sampling scheme, Gm(θk) for k = |m|, |m+ 1|, . . . , L− 1

can be computed correctly by employing FFT as we have taken 2k+ 1 samples along

φ on a ring placed at θk [2]. We use the following method to determine the optimal

location of L iso-latitude rings, that is θk, k = 0, 1, . . . , L − 1 , in a spatially limited

region (θk ∈ Θ) such that the matrix Pm given in (4.6) is well-conditioned for each

m.
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• Consider a set of N � L equiangular points taken over Θ.

• Choose the θL−1 from Θ as the point farthest away from the poles (θ = 0 or

θ = π).

• For k = L − 2, L − 3..., 1, 0, choose θk from the remaining elements of Θ for

which the condition number of the matrix Pm defined in (4.6) is minimum.

Determining the location of the rings by using the method described above ensures

well-conditioning of Pm matrix for every m. Consequently, the spherical harmonic

transform can be accurately computed by solving the system given in gm = Pmfm

for each |m| = 0, 1 . . . , L− 1. For the case when the ellipsoidal region and the signal

are rotated to align the inaccessible region along equatorial belt region, we recover,

through SHT, the coefficients of the rotated signal D(0, π/2, π/2)f which we can use

in (2.15) to obtain the SHT of the signal f .

Multi-pass SHT

To further improve the accuracy of the computation of the SHT from the samples

over the spatially limited region, we use a multi-pass algorithm Section 4.2.2.

5.3.1 Inaccessible Arbitrary Region

We have devised the sampling scheme when ellipsoidal region is inaccessible on the

sphere. For the case when an arbitrary shaped region R ⊂ S2 is inaccessible, we

propose to rotate the signal and the region R such that the region R is enclosed by

the ellipsoidal region RE(θc, a), where we choose rotation parameters and ellipsoidal

region parameters which ensure that RE ∩R = R and |RE −R| is minimized.

5.4 Accuracy Analysis

We here analyse the numerical accuracy of the proposed spatially-limited sampling

scheme on the sphere and the associated multi-pass SHT. In order to analyse the

accuracy, we carry out numerical experiments where we obtain a band-limited test
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signal ft ∈ HL by randomly generating its spherical harmonic coefficients (ft)
m
` with

uniform distribution in the interval [−1, 1] for both the real and imaginary parts

and then synthesizing a signal ft over the proposed sampling scheme when the ellip-

soidal region RE(θc, a) is inaccessible. We use multi-pass SHT to recover the spherical

harmonic coefficients denoted by (fr)
m
` and compute the mean error given by

Emean ,
1

L2

L−1∑
`=0

|(ft)m` − (fr)
m
` | , (5.5)

which is averaged over 10 realizations of the experiment and plotted for the band-

limit L = 32, semi-major axis length a = 2π/10, 3π/20 and π/10 and different values

of the flattening 0 ≤ fl , a−b
a
≤ 1 of the ellipsoidal region in Fig. 5-1, where it can

observed that the rotation of the ellipsoidal region to the equatorial belt region enables

accurate reconstruction for the larger values of fl (directional ellipsoidal region). For

the smaller values of fl, the reconstruction error is smaller if the ellipsoidal region

is not rotated which is due to the fact that the surface area for sampling is larger

when the ellipsoidal region of smaller fl is enclosed by the polar cap region than the

equatorial belt region. We also extend our analysis and plot the mean error Emean in

Fig. 5-2 for different band-limits 8 ≤ L ≤ 64, semi-major axis length a = π/10 and

two values of flattening fl = 0.5 (when the ellipsoidal region remains at the North

pole) and fl = 0.95 (when the ellipsoidal region is rotated to the equatorial belt).

Accuracy analysis reveals that the proposed sampling design on the sphere enables

accurate computation of the SHT when the samples of the band-limited signal are

inaccessible over some region on the sphere. For a given inaccessible region R ⊂ S2,

we note that the bounds on the reconstruction error can be obtained by taking into

account the surface area 4π− |R| available for sampling and the signal band-limit L.

However, it is the subject of future work.
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Figure 5-1: Mean error observed when flattening varies in the range 0 ≤ fl < 1 for a
constant band-limit L = 32 and semi-major axis a = 0.2π, 0.15π and 0.1π.

5.5 Illustration

Here we use the proposed sampling scheme and the associated multi-pass SHT al-

gorithm for the computation of the SHT of the signal obtained from the analytical

HRTF model [102]. The following parameters are used in the model to obtain the

HRTF signal f : head radius a = 0.09 m, distance from the center of the sphere to the

source r = 1 m, sound frequency fs = 15 kHz and speed of sound c = 340 m/s. Since

the HRTF measurements are unreliable at the South polar region, we design the sam-

pling scheme for the region R = {(θ, φ)|0 ≤ θ ≤ 8π/10, 0 ≤ φ < 2π} for band-limit

L = 38. We then use multi-pass SHT algorithm to obtain the reconstructed signal f̂ .

We plot the absolute value of the signal |f |, sampling points of the proposed scheme

over the accessible region, samples of the signal |f | and the error |f − f̂ | in Fig. 5-3,

where it can be observed that the proposed sampling scheme enables the accurate

reconstruction, with error on the order of 10−7, over the inaccessible region.
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Figure 5-2: Mean error observed when ellipse remains at the North pole (fl = 0.5)
and when it is rotated to the equatorial belt (fl = 0.95) as band-limit varies in the
range 8 ≤ L ≤ 64. Here a = 0.1π

(a) |f(x̂)| (b) Proposed Sampling Design

(c) |f(x̂)|, x̂ ∈ S2\R (d) |f(x̂)− f̂(x̂)|

Figure 5-3: HRTF signal (a) |f |, (b) the proposed sampling points for L = 32, (c)
the known signal |f | and (d) the reconstruction error |f − f̂ |.
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Chapter 6

Efficient Equiangular Sampling on

the Sphere

In this chapter, we consider those schemes which enable exact computation of the SHT

of band-limited signals. It is desirable for a sampling scheme and its associated SHT

algorithm to utilize the least number of samples, exhibit stability, be computationally

efficient and have low complexity in order to exactly or accurately represent a band-

limited signal on the sphere. In the light of these criteria, we propose a variant of the

equiangular sampling scheme [85]: a method for the exact computation of the SHT

with a slight increase in the complexity. The motivation behind the design of this

scheme is to reduce the number of samples required to represent a spherical signal.

6.1 Equiangular Sampling Scheme on the Sphere

Here we briefly overview the equiangular sampling scheme [85], denoted by EL in this

dissertation, which requires ∼ (asymptotically) 2L2 samples to compute a theoreti-

cally exact transform on the sphere. In this scheme, L iso-latitude rings of samples

are placed on the sphere, where each ring has 2L−1 points except for the ring located

at the pole which has just one sample point. The co-latitude location of the rings is

determined by

θt =
π(2t+ 1)

2L− 1
, where t ∈ {0, 1, . . . , L− 1}. (6.1)
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For any ring the sample points are placed along φ as

φr =
2πr

2L− 1
, where r ∈ {0, 1, . . . , 2L− 2}. (6.2)

The complexity of the SHT associated with this scheme is O(L3).

6.1.1 Sampling Efficiency

We define the sampling efficiency of a sampling scheme X as the ratio of the number

of coefficients required to accurately represent a band-limited signal in the harmonic

domain, to the number of samples required to represent a signal in the spatial domain.

Mathematically it can be written as

E(X) =
dL

N(X)
, (6.3)

where N(X) represents the total number of samples required by the sampling scheme

X. The optimal value of E(X) is 1. The sampling efficiency of the equiangular scheme

is E(EL) = 1
2
.

6.2 Efficient Equiangular Sampling on the Sphere

We propose a sampling scheme, denoted by RL, that requires less than 2L2 samples

on the sphere to compute an exact SHT.

6.2.1 Proposed Sampling Scheme – Structure and Design

For L = 2n, n ∈ {1, 2, . . .}, we place L + 1 iso-latitude rings (of samples) on the

sphere at the positions indexed in the vector θ given by

θ , [0, π, θ1, θ2, . . . , θL−1], (6.4)
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such that the location θ1 is chosen to be the center of the previous two values of

co-latitude rings, that is, θ1 = π/2. We continue to place the remaining rings such

that the new rings are placed between the centers of the previously placed rings. For

example, the two rings θ2 = π/4, θ3 = 3π/4 are placed at the centers of the previous

three rings and the next four rings are placed at the centers of the previous five rings.

We place different number of samples along longitude in each iso-latitude ring. The

rings at the poles contain one sample point each. The ring at θ1 has 2L−1 equidistant

samples along φ. For every k = 1, 2, . . . , log2 L, the ring at θx, x ∈ [2k−1, 2k − 1] has

2L+ 1− 2k samples with longitude location given as

φxn ,
2nπ

2L+ 1− 2k
, n ∈ [0, 2L− 2k]. (6.5)

The total number of samples in the proposed sampling scheme RL is given by

N(RL) = 2 +

log2 L∑
k=1

2k−1(2L+ 1− 2k) =
4

3
L2 − L+

5

3
. (6.6)

As L → ∞, the number of samples N(RL) → 1.33. Furthermore, the sampling

efficiency of this scheme is E(RL) = 3
4
.

6.2.2 Spherical Harmonic Transform (SHT) – Formulation

We now formulate the SHT associated with the efficient equiangular sampling scheme

on the sphere. For a signal f ∈ HL, we define

Fm(θ) ,
∫ 2π

0

f(θ, φ)e−imφdφ = 2π
L−1∑
`=|m|

(f)m` Ỹ
m
` (θ), (6.7)

as the m-th order Fourier transform of the signal along longitude. Here Ỹ m
` (θ) =

Y m
` (θ, 0) and we have used (2.8) and the orthogonality of complex exponentials to
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obtain the second equality. Using Fm(θ), the signal f can be represented as

f(θ, φ) =
L−1∑

m=−(L−1)

Fm(θ) eimφ. (6.8)

The spherical harmonic Ỹ m
` (θ), a polynomial of degree ` in (cos θ), can be formulated

as

Ỹ m
` (θ) = (sin θ)|m| Qm

` (θ), m ≥ 0 (6.9)

where Qm
` (θ) is a polynomial of degree ` − |m| in (cos θ). Using (6.9), we can refor-

mulate Fm(θ) in (6.7) as

Fm(θ) = 2π(sin θ)|m|−1 sin θ
L−1∑
`=|m|

(f)m` Q
m
` (θ)

︸ ︷︷ ︸
Hm(θ)

. (6.10)

Here Hm(θ) is a polynomial of degree L−|m| and therefore can be expanded in terms

of complex exponentials as

Hm(θ) =

(L−m)∑
m′=−(L−m)

Hm,m′ e
im′θ. (6.11)

We further note that Hm(0) = Hm(π) = 0, |m| 6= 0. Using the following expansion

of spherical harmonic in terms of Wigner-d functions [1]

Ỹ m
` (θ) = i−m

√
2`+ 1

4π

∑̀
u=−`

∆`
u,m∆`

u,0e
iuθ, (6.12)

where ∆`
u,m = d`u,m(π/2) is the Wigner-d function of degree ` and orders u,m evalu-
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ated at π/2, we can compute the spherical harmonic transform as

(f)m` =

∫ π

θ=0

Fm(θ)Ỹ m
` (θ) sin θdθ,

= i−m
√
π(2`+ 1)

(L−m)∑
m′=−(L−m)

∑̀
u=−`

Hm,m′∆
`
u,m×

∆`
u,0

∫ π

θ=0

(sin θ)mei(u+m′)θdθ︸ ︷︷ ︸
I(m,u+m′)

. (6.13)

The integral in (6.13) can be computed as [103]

I(p, q) =

∫ π

θ=0

(sin θ)peiqθdθ

=
π eiqπ/2Γ(p+ 2)

2p(p+ 1)Γ(p+q+2
2

)Γ(p−q+2
2

)
. (6.14)

The method of computing the spherical harmonic coefficients using this transform is

explained below.

6.3 Computation of the Spherical Harmonic Trans-

form (SHT)

For the computation of the SHT using the formulation in (6.13), we are required

to compute Hm,m′ , which can be computed using Hm(θ), which is simply a scaled

multiple of Fm(θ). In the forth-coming subsections we give a detailed explanation of

these steps for different values of the order m.

6.3.1 Compute SHT for order |m| = L− 1

Since f(θ, φ) is composed of 2L − 1 complex exponentials as given in (6.8), we can

compute Fm(θ) for all |m| ≤ L− 1 exactly by taking FFT over 2L− 1 samples along

the longitude. Starting with the ring located at θ1 = π/2, we first compute Fm(θ1)

followed by Hm(θ1) and then compute Hmm′ for |m| = L− 1. Using HL−1,m′ , we can
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determine the spherical harmonic coefficients (f)m` for |m| = L− 1 and ` = L− 1.

We use (f)mL−1, |m| = L−1 to update the values of the signal at the samples taken

on the rings placed at θ2, θ3, . . . , θL−1

f(θ, φ)← f(θ, φ)− f̃L−1(θ, φ), (6.15)

where

f̃m(θ, φ) =
L−1∑
`=m

(
(f)m` Y

m
` (θ, φ) + (f)−m` Y −m` (θ, φ)

)
, (6.16)

is the part of the signal f(θ, φ) synthesized using the spherical harmonic coefficients

of orders m, −m and all degrees m ≤ ` < L.

6.3.2 Compute SHT for orders |m| = L− 2 and |m| = L− 3

The signal after the update given in (6.15) can be expanded as

f(θ, φ) =
L−2∑

m=−(L−2)

Fm(θ) eimφ, (6.17)

which means that the computation of Fm(θ) now requires at-least 2L− 3 samples of

the updated signal along longitude.

As we take 2L−3 samples in the rings placed at θk, k = [2, 3], we compute Fm(θk)

using FFT along longitude for these rings for all |m| ≤ L − 2. Now we have Fm(θk)

and Hm(θk) for k = 1, 2, 3 since Fm(θ1) has been already computed for all |m| ≤ L−1.

We extend the domain of co-latitude θ to (π, 2π) so that we can utilize the FFT

for the computation of Hmm′ from Hm(θ). Noting Ỹ m
` (2π − θ) = (−1)mỸ m

` (θ), we

define H̃m(θ) over the extended domain as

H̃m(θ) =

Hm(θ), θ ∈ [0, π],

Hm(2π − θ), θ ∈ (π, 2π).

(6.18)
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Following this periodic extension, we have Hm(θk) for |m| ≤ L− 2 and for 8 equian-

gular points (0, π, θk, 2π − θk, k = 1, 2, 3) and therefore FFT can be used to recover

Hm,m′ for |m| = L − 2 and |m| = L − 3. Once Hm,m′ is determined, it is used to

compute spherical harmonic coefficients (f)m` for orders |m| = L − 2, L − 3 and all

degrees |m| ≤ ` < L.

Next, we update the signal as

f(θ, φ)← f(θ, φ)− f̃L−2(θ, φ)− f̃L−3(θ, φ). (6.19)

6.3.3 Compute SHT for orders 1 ≤ |m| < L− 3

For the remaining values of |m|, we follow the same pattern as discussed in Section

III-A. For Example, |m| = L−1, we needed one ring. Then we worked with two more

rings for |m| = L−2 and |m| = L−3. So now we will need four more rings to compute

the coefficients of orders |m| = L − 3, . . . , L − 6, and update the signal. After that

we need eight more rings to determine the coefficients orders |m| = L− 7, . . . , L− 14

and so on. We repeat this process for all orders up to |m| = 1.

6.3.4 Compute SHT for order m = 0

Since F0(θ) is a polynomial in cos θ of degree L− 1, it can be expanded as

F0(θ) =

(L−1)∑
m′=−(L−1)

F0,m′ e
im′θ. (6.20)

We also define F0(θ) over the extended domain (π, 2π) as

F0(2π − θ) = F0(θ) θ ∈ (π, 2π). (6.21)

Following the computation of spherical harmonic coefficients of all orders 1 ≤ |m| < L,

we have F0(θk) for all L+1 rings (θk ∈ θ, including samples at the poles). By defining

F0 over the extended domain [0, 2π) as in (6.21), we extended F̃m(θk) over 2L points.
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(a) Normalized Minimum Geodesic Distance

Figure 6-1: Comparison of the normalized minimum geodesic distance. The proposed
and equiangular sampling scheme is shown in red and blue colour respectively.

We can use FFT over the extended domain to recover F0,m′ , formulated in (6.20),

using which we compute the spherical harmonic coefficients for m = 0 as

(f)0
` =

∫ π

θ=0

F0(θ)Ỹ 0
` (θ) sin θdθ,

=
√
π(2`+ 1)

(L−1)∑
m′=−(L−1)

∑̀
u=−`

F0,m′
(
∆`
u,0

)2
I(u+m′). (6.22)

The integral in (6.22) can be computed as

I(q) =

∫ π

θ=0

(sin θ)eiqθdθ =


2

1−q2 q even,

±iπ
2

q = ±1,

0 otherwise,

(6.23)

6.4 Analysis and Evaluation

We now discuss some attributes of the efficient sampling scheme RL. The SHT al-

gorithm associated with the proposed scheme is an exact method but has a higher
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(a) Mesh Norm

(b) Mesh Ratio

Figure 6-2: Comparison of the geometrical properties (a) mesh norm and (b) mesh
ratio. The proposed and equiangular sampling scheme is shown in red and blue colour
respectively.

complexity as compared to equiangular sampling scheme. We analyse a few geomet-

rical properties defined below:
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(a) Riesz s-energy

Figure 6-3: Comparison of the Riesz s-energy for s = 1. The proposed and equiangular
sampling scheme is shown in red and blue colour respectively.

6.4.1 Normalized Minimum Geodesic Distance

The smallest great circle or spherical distance between two points û(θu, φu) and

v̂(θv, φv) divided by the sampling efficiency, given by σ(RL) , 1
E(RL)

min
û,v̂∈RL

∆(û, v̂),

where

∆(û, v̂) = cos−1 (cos θu cos θv + sin θu sin θv cos(φu − φv)) . (6.24)

It is desirable to have a higher value of the normalized minimum geodesic distance.

6.4.2 Mesh Norm

The smallest (spherical) radius of a covering of the sphere by spherical caps centered

at sampling point û ∈ RL, mathematically given by

λ(RL) ,
1

E(RL)
max
û

min
v̂

∆(û, v̂). (6.25)

The lower the mesh norm, the better the sampling scheme.
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6.4.3 Mesh Ratio

The ratio of twice the mesh norm to the normalized geodesic distance is called the

mesh ratio and is mathematically given as

Γ(RL) =
2λ(RL)

σ(RL)
. (6.26)

A lower value of the mesh ratio is evidence of a good sampling scheme.

6.4.4 Riesz s-Energy

The Riesz s-energy is defined as

Es =
∑

û,v̂∈RL û 6=v̂

1

(∆(û, v̂))s
. (6.27)

We prefer the Riesz s-energy to be lower for a good sampling scheme. We compare the

geometrical properties of the equiangular sampling scheme and the proposed scheme

in Fig. 6.1 – 6.3, where we can see that the proposed scheme (red lines) performs

better than the equiangular scheme (blue lines).
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Chapter 7

Conclusions and Future Work

This chapter draws conclusions and provides insights to the work presented in this

thesis. In addition, the way forward to extend this research further and to improve

the proposed design is also given.

7.1 Conclusions

In this thesis, we first presented Slepian functions on the sphere and the ball. We have

propoesed a generalization of the Slepian concentration problem on the sphere by in-

troducing weighting functions in the formulation of the problem. Assigning different

values to the weighting functions, we have formulated the two variants: differential

and weighted Slepian concentration problems of finding band-limited optimally con-

centrated functions on the sphere. The differential Slepian concentration problem

takes into account two regions on the sphere and maximises the energy concentration

of a band-limited signal in one region while the energy is minimized in the other

region. The weighted Slepian concentration problem uses non-negative weighting as

a window function in the formulation for the localization of the signal energy. The

solution of each problem yields eigenfunctions, referred to as Slepian functions, that

serve as alternative basis functions for the representation of band-limited functions.

We have also presented and analysed the properties of the proposed Slepian functions.

Furthermore, we demonstrated the usefulness of the proposed Slepian functions for
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signal representation, localized spectrum estimation and signal modeling to support

the applications in cosmology, geophysics, acoustics and beyond.

Based on the Slepian problem on the unit ball, we have presented the design

of complete orthonormal optimal basis functions with simultaneous maximal energy

concentration in both the spectral (harmonic) and spatial domain. We design opti-

mal basis as a linear combination of spectrally concentrated space-limited functions

and spatially concentrated band-limited functions. The proposed developments have

been presented in the form of 3 theorems. First, we have determined the optimal

weights which maximise the product of concentration of energy in harmonic and spa-

tial domains. We have also shown that the proposed optimal basis functions span

the subspace given by the vector sum of subspace of space-limited spectrally concen-

trated functions and subspace of band-limited spatially concentrated functions. We

have also formulated the integral operator as a projection operator that projects the

signal on the ball to the vector sum of subspaces and maximises the product of energy

concentrations in harmonic as well as spatial domains. We have also shown that the

proposed optimal bases are the only eigenfunctions of the proposed integral operator.

We reviewed some of the properties of proposed optimal bases.

The second area of focus in this thesis is related to the sampling schemes on the

sphere and their associated spherical harmonic transforms (SHTs). We have proposed

variations in the SHT associated with the optimal-dimensionality sampling scheme

which consist of iso-latitude rings of samples and enables accurate computation of the

SHT of band-limited signals using the optimal number of samples given by the degrees

of freedom required to represent a band-limited signal in harmonic space. We have

presented the elimination method for the iterative placement of iso-latitude rings of

samples. The proposed placement reduces the condition number of matrices involved

in the computation of SHT and consequently improves the accuracy of the SHT.

We have also proposed the multi-pass SHT algorithm which iteratively reduces the

residual between the given signal and the reconstructed signal and therefore improves

the overall accuracy of the SHT. We have analysed the changes in the computational

complexity and improvement in accuracy with the use of proposed variations in the
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computation of the SHT. We have also conducted numerical experiment to illustrate

the improvement in accuracy enabled by the proposed methods.

We have proposed an antipodally symmetric sampling scheme on the unit sphere

for the sampling of band-limited signals. Using the proposed scheme, the accurate

computation of the SHT can be done by taking (asymptotically) L2 number of sam-

ples of the signal with band-limit L. The proposed scheme attains optimal spatial

dimensionality because the number of samples are asymptotically equal to the degrees

of freedom of the signal in harmonic space. While formulating the SHT associated

with the proposed sampling scheme, we used the antipodal symmetry of the sampling

points. This separates the signal into antipodally symmetric and asymmetric signals

due to which the signal also splits in harmonic space into the signals of even and odd

spherical harmonic degrees. This type of splitting allows our method to be compu-

tationally efficient by a factor of four as compared to the existing sampling schemes

that attain optimal spatial dimensionality. To analyse the numerical accuracy of the

proposed SHT, we conducted numerical experiments and showed that the proposed

sampling and its associated SHT enable accurate signal reconstruction for signals in

the band-limit range 15 ≤ L ≤ 127.

In chapter 5, we propose a spatially-limited sampling scheme for the computation

of spherical harmonic coefficients (using a multi-pass SHT algorithm) of a band-

limited signal when an arbitrary region on the sphere is inaccessible for taking signal

measurements or samples. We propose to place iso-latitude rings of samples on the

sphere after the exclusion of the minimum area ellipsoidal region enclosing the inac-

cessible region. Prior to sampling, the ellipsoidal region may be rotated to the polar

cap or the equatorial belt depending upon the surface area available for placement

of samples in each case. Placement of the rings according to the proposed method

results in accurate computation of the SHT. The numerical accuracy of the proposed

sampling scheme was analysed and gives promising results. As an illustration we

compute the SHT of the HRTF signal using the proposed spatially-limited sampling

method and note that its accuracy has improved as compared to the existing schemes.

Lastly, we proposed an efficient variant of the equiangular sampling scheme for the
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computation of spherical harmonic coefficients of a band-limited signal on the sphere.

The proposed sampling scheme is an exact method to compute the SHTs. We also

presented the harmonic formulation and method of computation of the SHT algorithm

associated with the proposed scheme. Since the proposed sampling scheme uses fewer

number of samples as compared to the equiangular sampling scheme, it results in a

faster SHT algorithm with higher sampling efficiency. We also demonstrate that the

proposed sampling scheme outperforms the equiangular sampling scheme in terms

of the geometrical properties such as normalized minimum geodesic distance, mesh

norm, mesh ratio and Riesz s-energy.

7.2 Future Work

Below we provide details of the potential future research directions:

• The variations of the sampling schemes which are proposed in this thesis require

an optimal number of samples and exhibit the smallest attainable reconstruction

error. Future research related to sampling schemes on the sphere should consider

applications where the number of measurements required for the computation

of the SHT is less than the optimal number. Reducing the samples in such a

way will lead to a compromise on the accuracy of the SHT.

• The differential and weighted Slepian functions on the sphere presented in chap-

ter 3 of this thesis, may be further extended to higher dimensions, i.e., on the

ball B3. A manuscript related to this work is already under preparation, and

mentioned here for ease of reference:

C5. W. Nafees, and Z. Khalid, “Differential and weighted Slepian functions on the

Ball,” in IEEE Int. Conf. Acoust., Speech and Signal Process., ICASSP’2021,

Toronto, Canada, June 2021, (to be submitted).

• In this thesis, we use the Fourier-Laguerre basis functions for the representation

of signal on the ball in the harmonic domain. In chapter 3, we carried out
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spectral estimation on the sphere. It may be interesting to investigate how the

Fourier-Laguerre basis functions can be utilized for localized spectral estimation

on the ball.

• In chapter 4, we proposed the multi-pass SHT technique to reduce the recon-

struction error in the SHT algorithm related to the optimal dimensionality

sampling scheme. The multi-pass SHT method can be applied to other sam-

pling schemes and their associated SHT algorithms to reduce the reconstruction

error, for example, the equiangular sampling scheme.

• In chapter 6, we proposed an efficient equiangular sampling scheme on the

sphere wherein we reduced the number of samples by compromising the com-

plexity of the associated algorithm. We may explore other methods to reduce

the number of samples required to represent a signal on the sphere by compro-

mising some other attribute of the sampling scheme, for instance the exactness,

efficiency, etc. The concept of polar optimization can be used for this purpose

and a manuscript related to this work is already in the pipeline by the author,

and being mentioned here as a reminder:

J3. W. Nafees, Z. Khalid, and J. D. McEwen, “Polar-optimized Equiangular Sam-

pling Scheme on the Sphere,” IEEE Signal Process. Letters, (to be submitted),

2020.
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Appendix

Orthogonality of the Differential Slepian Functions

Proof. Using the definition of the differential Slepian functions:

〈fα, fβ〉R1
− 〈fα, fβ〉R2

= λα 〈fα, fβ〉S2 . (7.1)

If α = β, then 〈fα, fα〉R2
≥ 0 and 〈fα, fα〉S2 = 1, therefore (7.1) reduces to

〈fα, fα〉R1
≥ λα. (7.2)

Say S2 = R1 +R2 +R∗, then for α 6= β we can rewrite (3.20) as

〈fα, fβ〉R1
+ 〈fα, fβ〉R2

+ 〈fα, fβ〉R∗ = 0. (7.3)

Adding (7.1) and (7.3) we get

2 〈fα, fβ〉R1
= −〈fα, fβ〉R∗ . (7.4)

Using the Cauchy-Schwarz inequality for 〈fα, fβ〉R∗ , we get

| 〈fα, fβ〉R∗ | ≤
√
〈fα, fα〉R∗

√
〈fβ, fβ〉R∗ , (7.5)
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where

√
〈fα, fα〉R∗ =

√
〈fα, fα〉S2 − 〈fα, fα〉R1

− 〈fα, fα〉R2

≤
√

1− 〈fα, fα〉R1

≤
√

1− λα. (7.6)

So (7.5) implies that | 〈fα, fβ〉R∗ | ≤
√

1− λα
√

1− λβ and using this in (7.4) results

in

| 〈fα, fβ〉R1
| ≤ 1

2

√
1− λα

√
1− λβ. (7.7)

To find the bound on the angle between two Slepian functions, we use (7.7) in the

definiton of inner product as

|fα|R1|fβ|R1| cos γfα,fβ | ≤
1

2

√
1− λα

√
1− λβ. (7.8)

Since

λα = |fα|2R1
− |fα|2R2

⇒ λα ≤ |fα|2R1
. (7.9)

Then for positive eigenvalues, we can say
√
λα ≤ |fα|R1 , or

1

|fα|R1

≤ 1√
λα
. (7.10)

Rearranging (7.8) and employing (7.10), we can prove that

| cos γfα,fβ | ≤
1

2

√
1− λα

√
1− λβ√

λα
√
λβ

λα,β > 0. (7.11)
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