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Abstract

The popularity of social media platforms and knowledge sharing websites has tremendously
increased the amount of user-generated textual content. Such content is usually short in
length and is often written informally (e.g., improper grammar, self-created abbreviations,
and varying spellings). It is also influenced by local languages and mix multiple languages
mid-utterance, a phenomenon known as code-switching. Traditional text analytics and
natural language processing (NLP) approaches perform poorly on short, informal, and
multilingual text as compared to well-written longer documents because of the limited
context and language resources available for learning. In recent years, deep learning has
produced enhanced results for many NLP tasks. However, these approaches have some
major shortcomings: (1) they are tailored for specific problem settings (e.g., short text or
informal languages) and do not generalize well to other settings, (2) they do not exploit
multiple perspectives and resources for effective learning, and (3) they are hampered by
smaller training datasets.

In this research, we present methods and models for effective classification of user-
generated text with a specific application to English and Roman Urdu short and informal
text. We present a novel multi-cascaded deep learning model (McM) for robust classification
of noisy and clean short text. McM incorporates three independent CNN and LSTM (with
and without soft attention) cascades for feature learning. Each cascade is responsible for
capturing a specific aspect of natural language. The CNN based cascade extracts n-gram
information. The LSTM based cascade with soft-attention “highlights" the task-specific
vital words. The third LSTM based cascade captures long-term dependencies of the text.
Each cascade is locally supervised and is trained independently. The deep representations
learned by each cascade are forwarded to a discriminator for final prediction. As a whole,
the architecture is both deep and wide, and is versatile to incorporate learned and linguistic
features for robust text classification.

We evaluate the effectiveness and generality of our model on three different text analytics
problems. First, we show the efficacy of our model for the problem of paraphrase detection.
This is a binary classification problem in which pairs of texts are labeled as either positive
(paraphrase) or negative (non-paraphrase). While deep models produce a richer text repre-



sentation, they require large amounts of data for training purposes. Getting additional pairs
of texts annotated in a crowd-sourced setting is costly. Thus, for this particular task, we
also develop a novel data augmentation strategy, which generates additional paraphrase and
non-paraphrase annotations reliably from existing annotations. The augmentation procedure
involves several steps and a parameter through which the degree of augmentation can be
tuned. We evaluate our model and data augmentation strategy on three benchmark datasets
representing both noisy and clean texts in English language. Our model produces a higher
predictive performance on all three datasets beating all previously published results on them.

Second, we show the usefulness of McM for the task of multi-class classification of
bilingual SMS. Our goal is to achieve this without any prior knowledge of the language,
code-switching indication, language translation, normalizing lexical variations, or language
transliteration. For this purpose, we develop and make publicly available a 12 class large-
scale dataset. The texts in this dataset contain English as well as Roman Urdu, a distinct
informal regional dialect of communication that uses English alphabets to write Urdu. Our
model achieves greater robustness as compared to the baseline model on this dataset.

Third, we demonstrate the utility of the proposed model for the task of sentiment clas-
sification in code-switched tweets. For this purpose, we develop another short text dataset,
namely MultiSenti, that is code-switched between Roman Urdu and English languages. The
proposed model McM outperforms three baseline models on the MultiSenti dataset in terms
of predictive accuracy. We also study the feasibility of adapting language resources from
English and learning domain-specific word embeddings in Roman Urdu for multilingual
sentiment classification.

This research highlights the power of multi-perspective feature learning and data aug-
mentation for short and informal text classification and takes us a step closer to language-
independent text analytics.

x
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Chapter 1

Introduction

With the proliferation of microblogs, knowledge sharing forums, and social networks, the
user-generated textual content is being produced in abundance. This content can be about
virtually anything including sports, politics, hardware, software, products, events, etc. With
the increasing amount of user-generated content came the need by the companies, politicians,
advertisers, service providers, governments, analysts, and researchers to automatically mine,
analyze, and classify this textual content for different uses.

Due to limitation of the number of characters or words, the text produced under question-
answer forums, microblogs, social media platforms, and short message service (SMS) is
short in length [9, 25, 8]. Furthermore, social media posts such as Tweets or SMS, are
commonly written in freestyle and informal verbatim (e.g., language irregularities, improper
grammar, self-created acronyms, varying spellings, jargon). Such contents are referred to
as “noisy texts". Moreover, these texts are also influenced by local languages, where the
writer utilizes two or more languages simultaneously, a factor known as multilingualism [22].
Consequently, alternation of multiple languages in a single text, a phenomenon known as
code-switching, gives birth to new informal dialects of communication [97]. For instance,
Urdu is the national language of Pakistan, while English is treated as the official language of
the country. This leads to the development of a distinct dialect of communication known as
“Roman Urdu", which utilizes English alphabets to write Urdu.

Traditionally, in Natural Language Processing (NLP), texts are considered as a bag of
words where only the appearance of a word in the text is accounted for and its position or the
order in the text does not matter. Therefore, classifiers implemented on this representation
of text mainly try to find keywords that could be used to make correct predictions. This
approach works well with longer texts that follow standard spellings and grammar (also
known as clean texts) but performs poorly for short and noisy ones [72]. Since short and
informal texts hold limited context with unique characteristics, it make them difficult to

1



Table 1.1 Bag of words representation of short and informal text

who is Trump ? will Hilary lose hilry looz

1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 1 1

handle [72]. For instance, the text representation using the traditional bag of words model
becomes high dimensional and very sparse as there are very few words that are common
amongst text in a dataset. Let’s consider the following three texts. (1) who is Trump ? (2)
will Hilary lose ? (3) will hilry looz ? These texts will produce a bag of word representation
as presented in Table 1.1. In this example, each row represents one particular text, while
each column shows the word in the text. Note that as the number of texts in the table grows,
the first row would become sparser as there would be very few words shared with the first
text. Similarly, informal and non-standard spellings of third text produce unnecessary two
dimensions for all texts (shown in the last two columns), consequently increasing the sparsity.
Thus, traditional text analytics and NLP approaches developed for formal, clean, and longer
texts are not well-suited for user-generated short, informal, and code-switched ones and tend
to perform poorly [16, 96].

In recent years, deep learning has been extensively used to understand and model the
short text for many NLP and text analytics tasks [1, 4, 3]. One of the benefits of deep learning
approaches is that it learns richer and denser representations of text as compared to bag of
words models and does not require sophisticated feature engineering to model the richness
of human language [14]. Existing approaches, however, have some major shortcomings.
(1) They are tailored to specific problem settings. The strategies that work well for formal
short text do not give a good performance against informal, noisy, and code-switched text
and vice versa. (2) They do not exploit multiple linguistic perspectives and resources for
robust learning. (3) They are data-hungry and hampered by smaller training datasets [16].

In this thesis, we address these shortcomings and present methods and models for effective
classification of user-generated text with a specific application to English and Roman Urdu
short and informal text. To this end, first, we present a novel multi-cascaded deep learning
architecture called McM for robust classification short text across multiple text analytics tasks.
In contrast to the previous models, McM incorporates multiple linguistic aspects with multi-
perspective learning. Consequently, McM learns richer representations and yields a robust
performance for both clean and noisy short text. Furthermore, McM is also generalizable
across multiple text analytics tasks.
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McM exploits multiple aspects of linguistics through three independent Convolutional
Neural Network (CNN) and Long Short-term Memory (LSTM) based cascades for feature
learning. The first, CNN based cascade, extracts the local features in the form of important n-
grams. The second LSTM based cascade “highlights" the task-specific most important words
in the text. While the third LSTM based cascade learns long-term text dependencies. Each of
these cascades is locally supervised with task-specific labels and is trained independently.
The text representations learned by each cascade is then forwarded to a discriminator network
for final prediction. As a whole, the proposed model is both deep and wide while being
flexible to incorporate both learned and hand-crafted linguistic features to form a robust text
classification system.

We evaluate the effectiveness and generalization power of the proposed model on three
text analytics tasks. First, we show the efficacy of our model for paraphrase identification.
This is treated as a binary classification problem where a pair of texts is marked as paraphrase
if both texts are semantically identical or non-paraphrase otherwise. While deep models
produce a richer text representation, they are data-hungry and require large amounts of
labeled data for learning [16]. On the other hand, obtaining more labeled data in a human-
based computation setting (e.g., crowd-sourcing) incur monetary cost [98]. Thus, for this
particular task, we also develop a novel systematic data augmentation strategy to generate
additional paraphrase and non-paraphrase pairs from existing annotations reliably. The
augmentation procedure is parameterized to control the degree of augmentation. We evaluate
the proposed model and data augmentation method on three benchmark datasets called
Quora [92], Microsoft Research Paraphrase Corpus (MSRP) [17], and SemEval [98]. The
first two datasets contain clean texts while the third dataset contains noisy text. In our
presentation, we show that McM produces current state-of-the-art results on all three datasets.

Secondly, we demonstrate the efficacy of McM on multi-class text classification of
bilingual SMS. This shows that the proposed model is a general-purpose model and can be
utilized across multiple text analytics tasks. We tend to achieve this without using any external
knowledge base, language translation, code-switching indication, language transliteration, or
lexical normalization. To this end, we develop a 12 class large-scale dataset in English as well
as Roman Urdu. We use existing multilingual classification model as baseline, which exhibits
robust performance for text classification of English, French, and Greek languages [58]. Our
model achieves greater robustness as compared to the baseline model on this dataset.

Thirdly, we demonstrate the utility of the proposed model for the task of sentiment
classification of code-switched tweets written in informal language. For this purpose, we
develop another annotated dataset called “MultiSenti". The text in this dataset is code-
switched between Roman Urdu and English languages. We compare the performance of
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1.1 Motivation

McM with three baseline models [58, 103? ] and show that it outperforms them all in terms
of predictive accuracy on MultiSenti. Additionally, we also study the feasibility of adapting
the language resources from English and learning domain-specific word embeddings in
Roman Urdu for this task.

The extensive experiments of this research lead us to conclude that McM can learn
efficient representations from the limited context available for multiple text analytics tasks
while being robust to noise, informal language, improper grammar, code-switching, or
dataset size. The findings highlight the power of multi-perspective feature learning and data
augmentation and take us a step closer to language-independent text analytics.

1.1 Motivation

In recent years, there has been a tremendous increase in the user-generated short, informal,
and multilingual textual content. Publicly available texts are produced in the form of posts
on social media platforms, questions and answers on forums, comments, reviews of products,
news headlines, and personal opinions, to name a few. The information content of this data
is very rich and is of great utility to various sectors of society and the economy. Automatic
text analytics on this content is of great value for companies, governments, manufacturers,
retailers, media organizations, academia, and many other entities. For instance, with millions
of users visiting question-answer websites, people inevitably ask questions with the same
semantic meaning or intention, producing duplicates (paraphrases). On such sites, detecting
a duplicate pair of short text is an essential task as it not only saves storage space on servers
but also saves time for both the answer seekers and knowledge experts. Consequently,
it also increases the efficiency of such forums and helps question answering systems to
deliver focused answers to user’s questions. Paraphrase identification also has applications in
plagiarism detection, query ranking, information retrieval, and document summarization.

Similarly, in e-government practices, citizens provide feedback on different public ser-
vices that they availed using social media or SMS. Manual identification of complaints from
such texts is impractical. Thus, an automated system to identify the category of the text
has an excellent utility for good governance. Such a system can be used by governments
to reduce petty corruption and deficient delivery in services. Although English is the most
common language used over the internet, there is a sizable body of texts that are written in
various other informal languages. In Pakistan, for example, people tend to switch between
English and Urdu languages mid-utterance. Existing linguistic resources and classification
models are limited to the English language mainly. Thus, the research for Roman Urdu
text classification lags behind due to the unavailability of large-scale annotated datasets and
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language-understanding models. Therefore, an annotated dataset and robust language model
for multilingual text classification are of utmost importance.

Moreover, inferring opinions or feelings of the authors of the texts (referred to as senti-
ment classification) is also utilized by governments, manufacturers, advertisers, and orga-
nizations. Manufacturers and content producers can modify product designs or customize
according to the market feedback inferred from sentiments of the reviews and comments
provided by the users. This, in turn, can lead to higher customer satisfaction and hence
enhanced revenue. Advertisers and marketing agencies can use this information to adapt
effective marketing strategies and optimize their budgets. Governments and policymakers
could use it to predict social reactions to a policy proposal. Sports organizations and clubs
can benefit from sentiment analysis on fan’s comments to measure a player’s contribution to
a game and hence estimate player’s worth.

Given the vast volume, velocity, and varying writing styles of such user-generated tex-
tual content, performing manual text analytics, even on a small subset of texts, is nearly
impossible. Various deep learning methods using tools from machine learning, NLP, and
computational linguistics have been developed to automate many text analytics tasks. How-
ever, these methods are tailored mainly for the English language and specific setting [103, 94].
Consequently, this limits the applicability of these methods to particular demographics and
text analytics tasks. Hence, developing a deep learning model that is robust enough to perform
multiple text analytics tasks in a multilingual text can open a broad avenue of applications.

1.2 Problem Statement and Research Objectives

We formalize the problem concerning three tasks described above as following.
We are given a document X ∈ D (in case of multi-class or sentiment classification task)

or a pair of texts (W,X) ∈ D (in case of paraphrase identification task) and a set of labels
Y ∈ {y0,y1, ...,yn}. Labels here are task-specific. The document space D is comprised of
short text, which can be in the English language, Roman Urdu, or a mixture of both English
and Roman Urdu languages. Given a training set T of labeled texts < X ,Y > or <W,X ,Y >,
we wish to develop a supervised classification model or classification function M that can be
used to map texts to the labels.

M : D⇒ Y

Labels act as supervision for M. We denote the supervised learning method by γ and write
γ(T ) = M. The learning method γ takes training set T as input and returns the learned
classification function M and is based on multiple deep learning cascades for learning
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multiple representations of a document. Once the learning is finished, we use M to predict
label Ŷ for unseen testing set τ of labeled texts <U,Y > or a pair of texts <U,V,Y >). The
quality of the model is evaluated through prediction accuracy of Ŷ = Y ∀ texts in τ .

The research objectives include the following research and experimental tasks.

• Conduct a Literature Review on paraphrase identification, multilingual text classifica-
tion, and sentiment classification of informal code-switched short text.

• Development of large-scale annotated datasets for Roman Urdu short text classification
and sentiment analysis.

• Development of robust paraphrase identification model for the English language that
works well on both clean and noisy short text.

• Evaluating the robustness of the model for multi-class and sentiment classification of
code-switched informal short text.

• Extensive error analysis and comparison with existing state-of-the-art models.

1.3 Contributions

The contributions of this thesis are summarized as follows. First, we introduce a novel
deep learning model called McM based on Convolutional Neural Networks (CNN) and
Long Short-term Memory (LSTM) to perform three tasks, i.e., (1) paraphrase identification,
(2) multi-class classification of bilingual text, and (3) sentiment classification of code-
switched text.

Second, for paraphrase identification task, we propose a novel data augmentation strategy
to generate new and reliable annotated data from existing annotations to improve paraphrase
identification performance. We also show the usefulness of this augmentation strategy to
detect and correct potential errors in existing annotations. Moreover, we identify various
linguistic features that are used to improve paraphrase identification accuracy further. We per-
form extensive experimentation and performance comparison on three benchmark paraphrase
identification datasets. We show that our proposed approaches achieve current state-of-the-art
on all three.

Third, we develop a large-scale dataset having texts in Roman Urdu and English languages
to detect petty corruption and poor delivery of public services. The dataset is developed
from SMS feedbacks of the citizens of Pakistan on different public services that they availed.
The dataset has 12 classes, consisting of more than 0.3 million records, and has been made
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Fig. 1.1 Code-switch indication approach

available publicly for future research. We modify McM to take one input (as opposed to two
inputs in case of paraphrase detection) and show that the proposed model yields superior
performance as compared to the baseline model.

Fourth, we develop a second dataset called MultiSenti from Tweets collected during the
general elections of Pakistan in 2018 for sentiment classification of code-switched informal
short text. It has been categorized into 3 classes i.e., negative, positive, and neutral, have
more than 20,000 records, and is made publicly available. We develop a novel model called
CNN-gram to solve the MultiSenti dataset and compare its performance with McM and four
baseline models. We show that McM shows greater robustness across all experiments.

Fifth, we develop domain-specific embeddings in Roman Urdu, having 31,308 tokens
and make them publicly available for future research. We demonstrate its usefulness in
Roman Urdu text classification and sentiment analysis tasks.

Finally, we investigate the feasibility of adapting character-based pre-trained embeddings
from the English language to Roman Urdu through extensive experiments.

Our experiments lead us to conclude that McM has greater robustness and generalization
across multiple tasks, languages, and embeddings. The graphical representation of the tasks
and contributions is shown in Figure 1.1.

1.4 Thesis Organization

The rest of the thesis is arranged, such that chapter 2 presents background and a literature
review of paraphrase identification, bilingual text classification, and sentiment classification
of code-switched short texts. In chapter 3, details of the proposed paraphrase identification
model, data augmentation strategy, and linguistic features are presented. In chapter 4, the
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work on multi-class classification of bilingual SMS is discussed. Chapter 5 introduces the
MultiSenti dataset, feasibility of adapting resources from the English language for sentiment
classification of code-switched informal short text, and usefulness of different embeddings.
We give the concluding remarks and future work in chapter 6.
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Chapter 2

Background and Literature Review

Over the last few decades, text analytics problems have been widely studied and addressed in
many applications such as paraphrase identification, sentiment analysis, document catego-
rization, etc. In this chapter, we present background, related work, and limitations of existing
approaches with specific focus on text representation (feature engineering), paraphrase
identification, and informal multilingual short text analytics.

2.1 Text Representation

Text classification is the task of assigning a predefined label to documents written in natural
language. Preliminary works in this field focused on efficient preprocessing and feature
representation. Most commonly, after preprocessing, the variable-length texts are first
represented as fixed dimensional feature vectors. A classifier is then learned in this feature
space (such as Support Vector Machines (SVM) with linear kernel [39, 52]) to find optimal
class boundaries. The feature representation is sought to be richer in the sense that it preserves
as much information as possible. Initial works in NLP used bag of words (BoW) vector
models to represent text in a document, where only the presence or absence of a word was
considered, and the order of words in the text was not accounted for. A key drawback of
this approach is that it does not account for semantic and syntactic understanding [47]. For
instance, there might be two documents with a high percentage of common words, but a
different context and meanings. However, the BoW representation of both of the texts would
be very similar.

Let us consider the following three sentences: (1) “Mary is beautiful", (2) “is Mary
beautiful", (3) “Ths Iz beautiful". Although the first two sentences are clearly in two different
contexts, they would produce identical sentence representations using BoW. As illustrated in
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2.1 Text Representation

Fig. 2.1 A bag of words representation

Figure 2.1, text 1 and text 2 has identical BoW representation because it does not account for
word order. Furthermore, misspelled words create additional unnecessary dimensions.

Moreover, the words are treated as discrete atomic symbols, which do not provide useful
information to the system regarding the relationship between the symbols that might exist.
This means that the classification model can leverage very little of what it has learned about
“cats" when it is processing data about “dogs" (such as that they are both animals, four-legged
and pets, etc.) 1. Another limitation of representing words as unique discrete ids is that
it leads to data sparsity, which consequently demands more data to train the classification
models successfully. Therefore, it is necessary to take a step further from handcrafted
features [51, 67] towards automatic learning of the text features [81].

In recent years, a major advance on document representation is the utilization of word
embeddings based text representations [61, 68]. These representations are learned in super-
vised manner and produce a dense vectors, which can overcome some of the shortcomings
of BoW models [60]. Embeddings models represent each word in a corpus as d dimen-
sional continuous vector, where semantically similar words are mapped to nearby points
in Euclidean space (’are embedded nearby each other’) [6]. The core idea is dependent on
distributional hypothesis, which states that words that appear in the same contexts, share
semantic meanings [69, 92, 61, 68, 49]. For any input word, its context is defined by its
neighboring words. The neighbor of a word are the words to its left and right in a predefined
window. Figure 2.2 shows a window, context word, and its neighboring words 2. For each
input word in a window, its neighboring words are predicted using a small neural network.
Once trained, the hidden layer is considered the embedding of the input word. This process is

Fig. 2.2 A window of words to learn embedding of a word “fox"

1https://www.tensorflow.org/tutorials/word2vec
2https://towardsdatascience.com/learn-word2vec-by-implementing-it-in-tensorflow-45641adaf2ac
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2.1 Text Representation

Fig. 2.3 Learning embedding for a word “fox"

illustrated in Figure 2.3 3. Once such embeddings are trained for all the words in a corpus, a
pre-trained embedding database is made available to be used for any text analytics task [61].
While performing any text analytics task, for each word in a text, the pre-trained embedding
database is queried for a word embedding. This way, a text is represented by an embedding
matrix instead of a vector. A benefit of using embedding representation is that it preserves
the context of a word and produces different representation based on word order. Recall
the example of three sentences above. The Figure 2.4 shows how embedding matrix is able
to produce different representation of two texts for which BoW produced identical vector
representation.

One of the drawbacks of adopting word-based embeddings is that they require huge
amounts of data to train and cannot be generalized to unseen (out of vocabulary (OOV))
words. This is evident from the pre-trained embeddings GloVe [68] which has 840 billion
words and yet faces the OOV problem. For example, if an embedding database is trained on
formal English language, querying an informal word would result in OOV error as illustrated
in Figure 2.5

Fig. 2.4 Embedding representations of text 1 and text 2

3http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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2.2 Deep Learning

Fig. 2.5 Encountering out of vocabulary (OOV) error while querying unseen words from
embedding database

One way to remedy this flaw is to use random vector values for all OOV words. However,
this random assignment of word vectors “confuses" the underlying classification model and
is counter-intuitive to the idea of preserving the context of a word by looking at its neighbors.
In order to remove this flaw, word embeddings models are extended to character-based
embeddings [44]. The embedding representations have been more effective as compared to
BoW models for preserving semantic meanings of words, sentences, and eventually docu-
ments, thus, leads to a higher performance of underlying classifiers [92, 81, 79]. These word
vectors are available in the form of pre-trained models such as word2vec [60], GloVe [68],
and ELMo [69]. However, robust embedding models are limited to English language only
and no such pre-trained embeddings are available publicly for Roman Urdu language. To
learn the embedding vectors, deep learning techniques are employed while considering
the contextual appearance of words within a fixed size window of words in a sentence or
document [68]. Embeddings successfully capture the semantic information, unfortunately, it
does not account for syntactic information (i.e., order of the words/characters that form a
sentence or document).

2.2 Deep Learning

Performing analytics tasks on the short text is challenging due to limited information that
a short text holds. Therefore, it is plausible to capture as much semantic and syntactic
information as possible while performing text analytics tasks. As discussed in Section 2.1,
word embeddings are efficient at capturing the semantic information, accounting for syntactic
information however, remains a challenge. Embedding representations enable the use of
classifiers that can capture the syntactic (order of words) and historical information over
time [79].

To this end, deep learning (DL) architectures are used to learn sentence representation
and perform classification, which not only capture the word order but also learn other
linguistic aspects of natural language, hence, perform better than traditional classifiers such
as SVM. Deep learning has been characterized as the re-branding of artificial neural networks.
Before 2006, training deep architectures were unsuccessful and challenging to train due to
computational limitations. After 2006, new methods for unsupervised pre-training or feature
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2.2 Deep Learning

extraction/generation have been developed. In particular, Deep Belief Networks (DBNs) [33]
acted as a pivotal work to reduce the computational cost as these networks were trained
for one layer at a time. In the following year, feasibility of using Restricted Boltzmann
Machines (RBMs) for collaborative filtering was examined [74] and in 2008 autoencoders
were proposed for unsupervised feature learning [85]. These methods are later generalized to
work with document representation and learn distributed representation of text [61]. Deep
learning is capable of learning multiple linguistic features automatically for various text
analytics tasks, which are not possible to define manually using traditional handcrafted
features. Subsequent subsections present the introduction, merits, and demerits of two
specific deep learning architectures for NLP tasks called Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN).

2.2.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is proved to achieve the state of the art results in the
field of image processing and computer vision, even with a limited amount of information.
CNNs are a specialized set of algorithms of deep learning. Opposed to feedforward neural
networks, CNNs do not learn a single global weight matrix between two layers, but instead,
they aim to find a set of locally connected neurons. Their name comes from a “convolution"
operator or simply “filter" that is learned during the training process and is applied to the
data representation in each layer. CNN attempts to learn multiple levels of representation
of increasing complexity and abstraction [48]. Although originally CNNs were designed
for images but later, those were generalized to work with text representations and encoding
tasks [41]. The architecture of CNN is modified to extract n-gram information from the text
to perform any NLP task [41]. It is successfully used in multilingual sentiment classification
text [58, 4] and paraphrase identification of short text [29]. Although, CNNs are better at
exploiting “spatial correlation", they lack the ability to retain long range information.

2.2.2 Recurrent Neural Network (RNN)

In natural language, understanding of a word is based on the understanding of previous words.
The order of the words in a text matter in terms of context, semantics, and overall meaning
and reasoning from previous events can be used to infer later ones. Traditional Artificial
Neural Networks cannot capture this phenomenon of linguistics. Recurrent Neural Networks
(RNNS) are specialized neural network architectures that take one time steps as input at
a time and output encoding for a time series data. In NLP, this translates to considering a
sequence of the words in the order that they appear to model the language. This is achieved
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by recurring with respect to words over time. Lets consider a sequence:

x = [hello,world]

This sequence is fed to a single neuron which has a single connection to itself. At the time
step 0, the word “hello" is given as input while at time step 1, “world" is given as input, and so
on. At final time step, this generates a single encoding/representation of the whole sequence,
which is more abundant and holds context, semantics, and syntactic information [1].

More formally, given a sequence of T words, the RNN updates its recurrent hidden state
ht by

ht = σ(WXt +Uht−1) (2.1)

However, RNN has two major limitations. First, as the gap between two timestamps
grows (i.e., sequence of words get lengthier), the older information “fades away". This
phenomenon is known as the vanishing gradient problem. This occurs due to consecutive
matrix multiplications when the gradient in backpropagation becomes tiny or zero. Second
limitation is opposite to vanishing gradient and is known as exploding gradient where the
gradient gets so big that the model cannot handle the larger values. To cater these limitations,
specialized RNN architectures called Long Short-term Memory (LSTM) [34] and Gated
Recurrent Unit (GRU) [11] are proposed.

They key difference between the LSTM and GRU is the number of gates. The GRU
contains only two gates i.e., reset and update gates, while the LSTM is constituted of three
gates i.e., input, output, and forget gates. Furthermore, LSTM controls the amount of new
memory content independently from forget gate while GRU does not allow this independent
control [12].

More formally, the LSTM represents each time step with an input, a forget, and an output
gate. While processing current time step Xt , LSTM also takes into account the previous
hidden state ht−1. The input, forget, and output gates are denoted as it , ft and ot respectively.
The hidden state ht of an input Xt for each time step t is then given by

it = σ(WiXt +Uiht−1 +bi), (2.2)

ft = σ(Wf Xt +U f ht−1 +b f ), (2.3)

ot = σ(WoXt +Uoht−1 +bo), (2.4)

where σ is sigmoid activation function.
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The memory cell is updated by partially forgetting the existing memory and adding new
memory content ut

ct = it ∗ut + ft ∗ ct−1, (2.5)

where ut is defined as
ut = tanh(Wu +Uuht−1 +bu). (2.6)

Finally, the output of hidden state is given by

ht = ot ∗ tanh(ct), (2.7)

Where, the ∗ is element-wise multiplication. The extent to which existing memory is to be
forgotten is controlled by forget gate while the input gate is responsible to control the degree
to which new memory content is added [12].

With regards to GRU, the activation ht of at time step t is a linear interpolation between
the previous activation ht−1 and the new candidate activation ĥt . More formally, ht is defined
as

ht = (1− zt)ht−1 + zt ĥt . (2.8)

Here, zt denotes the update gate and is used to decide the degree to which the unit updates
its activations. The update is computed by

zt = σ(WzXt +UzHt−1). (2.9)

The ĥt is computed similar to the traditional RNN unit as

ĥt = tanh(WXt +U(rt ∗ht−1)), (2.10)

where rt is the reset gate and ∗ is an element-wise multiplication. The reset gate rt is
computed as

rt = σ(WrXt +Urht−1). (2.11)

Although, LSTM and GRU architectures are similar in many ways, there are a few
differences. GRU has a fewer parameters but it does not allow controlled exposure of
memory content and consequently, it exposes its full content to other units in the network.
While LSTM controls the amount of memory content by output gate [12]. Furthermore,
LSTM is more efficient at remembering longer sequences as compared to GRU. Thus, we
prefer LSTM over GRU for this study.
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LSTM [34] can understand both long and short term dependencies and is able to connect
the gap between two far-away words. As highlighted above, unlike traditional RNNs, LSTM
prevents backpropagated gradients from vanishing or exploding. Instead, errors can flow
backward through unlimited numbers of virtual layers. That is, LSTM can learn tasks that
require memories of events that happened hundreds or even millions of discrete time steps
ago [75].

Around 2007, LSTM became popular for tasks that required sequence modeling such as
speech recognition and connected handwriting recognition. Since 2014, LSTM has become a
go-to RNN architecture for natural language processing tasks. LSTM can learn to recognize
context-sensitive languages, which makes it a perfect candidate to model natural language.

Given these benefits, CNN and LSTM are used in a plethora of text analytics tasks such
as image caption generation [86], machine translation [80], language modeling [40], and
multilingual language processing [26].

2.3 Paraphrase Identification in Short Text

Automatic paraphrase detection has been widely studied in the NLP and Information Retrieval
(IR) communities. It has many applications in text analytics such as plagiarism detection,
natural language inferencing, information retrieval, query ranking, question-answer systems,
and text summarization [1]. It is a binary classification task which detects whether or not a
pair of texts is semantically identical. Traditional approaches for paraphrase identification
take advantage of removing stop words, followed by stemming and then representing each
text as a bag of words. A similarity measure (e.g., Jaccard/Cosine similarity) is then applied,
and the pair is reported to be a paraphrase if the similarity is found above a certain threshold.
However, this technique yields inferior generalization in case of the short text as there can be
two short sentences with exact same words but different meanings (recall example in 2.2),
hence paraphrase detection based on the context/semantic cannot be achieved [89]. Another
approach used by early researchers was to use hand-crafted features to capture n-gram
overlapping, words reordering, and syntactic alignments phenomenon [32, 93]. Such an
approach can work well on some specific datasets but has a pitfall that it ignores lower level
interactive features between two phrases or sentences.

Short text can be clean (i.e., that follows proper grammar and formal diction like news
headlines) or noisy (i.e., that follows language irregularities, improper grammar, self-created
acronyms, varying spellings, and jargon like tweets). An abundance of work has been
done on clean text paraphrase detection. A weighted term frequency approach for text pair
representation along with n-gram overlap features between two texts is proposed in [38] to
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train SVM classifier. In [63], lexical (parts of speech (POS) overlap, minimum edit distance,
text alignment) and semantic (named-entity overlap, topic modeling) features between a
pair of input text are used to train support vector regressor for paraphrase identification
of news tweets in Arabic language. A probabilistic model that relies upon the similarity
between syntactic trees of two input documents is proposed in [13]. The authors in [65]
devise a method for computing semantic similarity based on the lexical database. The model
depends on WordNet meanings and syntactic roles among words in two documents. The
major shortfall of this approach is that it is impractical for the noisy text as lexical databases
lack evolving jargon, self-created abbreviations, and informal spellings.

Several studies have been carried out that utilize deep learning architectures for para-
phrase detection in clean short text. A recursive autoencoder for reliably understanding the
context of texts and performing paraphrase detection is proposed in [76]. This architecture
forms a recursive tree and performs dynamic pooling to convert the input into fixed-sized
representations. However, making a tree requires parsing hence this approach is less prone to
be scalable. In [35], patterns learned on a pair of text through CNN are matched at different
levels of abstraction, introducing explicit interaction between the two documents during
the learning process. In [19], five lexical metrics are used for reliable semantic similarity
detection, where abductive networks are employed to get a composite metric that is used for
classification. A method of decomposing text pair to similar and dissimilar components is
proposed in [95]. A CNN is then trained to convert these components into a fixed dimension
vector and classification. In [100], three attention schemes are used in CNN to form interde-
pendent document representations. However, the sentences were matched at single level of
granularity. More recently, a multi-perspective matching model (BiMPM) is proposed in [92],
that uses character-based LSTM to learn word representations and a bi-directional LSTM
for document representation for each text. After that, it performs four types of matching
in “matching-layers" and finally, all these representations are aggregated by an additional
bi-directional LSTM for paraphrase detection. One extension of this work is the neural
paraphrase detection model based on a self-attended feed-forward network with pre-trained
embeddings on a huge corpus of another paraphrase data [82]. It is shown that this approach
outperforms BiMPM model in terms of testing accuracy with fewer parameters.

As compared to clean short text, less work has been done for noisy short text paraphrase
detection. In [99], string-based features (whether the two words, their stemmed forms, and
their normalized forms are the same, similar or dissimilar), common POS, and common topic
(word’s association with a particular topic) between a pair of text are used as features and a
novel multi-instance learning paraphrase model (MultiP) is proposed. Simple lexical features
based on word and character n-gram overlaps between two texts are constructed to train
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SVM classifier in [20]. An approach in [102] uses corpus-based (similarity between sum of
word vectors of two sentences), syntactic, and sentiment polarity based features and train
SVM classifier. While [101] uses ensemble approach based on seven models using word
embeddings. A major drawback of ensemble models is that it is a dataset specific combination
of models, which is less probable to work on other settings. In [16], a set of lexical (character
and word level n-grams), syntactic (words with matching POS tag, same verbs), semantic
(adjective overlap), and pragmatic (subjective/objective agreement) features are identified
between pair of input text, along with extensive preprocessing (spelling correction, stemming,
stopwords removal, synonymous replacement). Although these features perform well on
noisy short text, it is shown by the authors that it fail to get good predictive performance on
clean text corpus of Microsoft Research Paraphrase (MSRP). A key problem with much of
these works is that a method specifically engineered for clean text does not work for noisy
text and vice versa. This calls for a single model that is oblivious to both settings.

A recent study focuses to develop a single deep learning model that performs well on
both clean and noisy short text paraphrase identification [1]. A CNN and LSTM-based
approach is adopted to learn sentence representations, while a feedforward network is used
for classification. It also utilizes hand-crafted linguistic features, which improves paraphrase
detection accuracy. Our approach follows this trend and we focus on a single model for
paraphrase identification in both clean and noisy datasets. We also use linguistic features but
our set of these features is different than [1]. Furthermore, these models take advantage of
just one kind of feature learning, i.e., either LSTM or Convolutions. Our proposed model
takes advantage of multiple feature learning aspects in a local context. As a result, the
proposed approach outperforms existing approaches on three text analytics tasks.

One major downside of deep learning models is that inherently, they require a large
amount of training data, and smaller datasets limit the quality of the model [16, 82]. For
instance, the AskUbuntu dataset [18] contains very few annotations, thus limiting the gen-
eralization performance of the model [82]. The ability to augment the data with additional
sound annotations without requiring human intervention can improve the performance of
deep models [1, 82]. Such data augmentation has been shown to be fruitful for data analytics
when only a piece of limited ordinal information about the pairwise distance between objects
is provided [46, 45, 31]. Data augmentation has also been shown to be prolific in image
classification [90]. Here, standard image processing such as cropping, rotation, and object
translation is done to generate additional image samples. To the best of our knowledge, a
systematic procedure for augmenting paired data without relying upon the object’s content
has not been presented earlier.

18



2.4 Text Analytics in Informal and Multilingual Short Text

2.4 Text Analytics in Informal and Multilingual Short Text

Most of the existing language resources, such as datasets and language models, are limited to
the English language. However, there is a sizeable body of short textual content that is written
in informal multilingual text (such as tweets and SMS) [4, 59]. Roman Urdu (RU) is one of
such languages. Informal and noisy text in such language pose a challenge while performing
text analytics. For instance, lexical variations reduce the amount of information available
for classifiers as each spelling variation is treated as a distinct word, although they are the
same [71]. Literature shows that the presence of non-standard terms in training data has a
severe effect on the classifier’s accuracy. For example, it has been reported that the Stanford
named entity recognizer (NER) experiences a performance degradation from 91% on formal
text to 46% on tweets (which are written informally) [55]. Therefore, before performing
analytics on informal short text, early studies normalize multiple forms of words to their root
word. The Figure 2.6 shows the example of mapping multiple variations of the word “Police"
to its standard spellings. [28] identifies and normalizes lexical variations in the short text by
building a classifier and generating correct candidates based on morphophonemic similarity
while [54] uses phonetic and string similarity to normalize non-standard words obtained from
Twitter and SMS into standard English terms. However, such techniques for normalization
apply to standard languages for which in-vocabulary (such as English dictionary) terms are
known. But for transliterated, under-resourced languages, such as RU, the aforementioned
techniques are not desirable for practical considerations since standard in-vocabulary terms
are not available. Similarly, the use of language morphology for normalization is not possible
since the stems, root words, suffixes, or prefixes cannot be identified [2].

In Natural Language Processing (NLP), deep learning has revolutionized the modeling
and understanding of human languages. The richness, expressiveness, ambiguities, and
complexity of the natural language can be addressed by deep neural networks without
the need to produce complex engineered features [14]. Deep learning models have been
successfully used in many NLP tasks involving multilingual text. A Convolutional Neural
Network (CNN) based model for sentiment classification of a multilingual dataset was
proposed in [58]. However, a particular record in the dataset belonged to one language
only. In our case, a record can have either one or two languages. There is very little
published work on this specific setting. One approach for an under-resourced language is to

Fig. 2.6 Lexical normalization approach
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2.4 Text Analytics in Informal and Multilingual Short Text

Fig. 2.7 Code-switch indication approach

adapt the resources from resource-rich language [103]. However, such an approach is not
generalizable in the case of RU, as it is an informal language with no proper grammatical
rules and dictionary. Upon that, multilingual text (utilization of two or more languages
in the single text) acts as a catalyst to the challenges faced. Another way to improve the
performance of text analytics tasks on multilingual text is to annotate each word with its
respective language(code-switch indication) [57, 97]. For example, Figure 2.7 shows a
sentence in Roman Urdu “Main is wqt stress feel kr rha hoon" which translates to “I am
feeling stress right now" in English language. Here, the phrases/words that are in Urdu are
marked with <L1>...<Ł1> tags while the phrases/words that are in English language are
marked with <L2>...<Ł2> tags. This way, complete corpus is marked with the respective
languages. However, it is not scalable for large data as the annotation task becomes laborious.
In an effort to handle multiple languages in a multilingual textual content, some researchers
translate the text into English and then utilize the resources of the English language to
perform the task in hand. This has been successfully applied to Arabic, Chines, German,
French, and Japanese [94, 103, 10]. A serious limitation to this approach is that it is only
applicable for languages that have a robust translation resource available, while RU lacks
such resources.

Realizing these limitations, we, therefore, develop two multilingual datasets (code-
switched in RU and English) and propose a deep learning model to perform text analytics
(multi-class classification and sentiment classification) on these datasets. Our model works
well without any translation, lexical normalization, or code-switching indication and shows a
higher performance on both datasets as compared to baseline multilingual models.
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Chapter 3

Paraphrase Identification and Data
Augmentation of Short Text

In recent years, short text in the form of posts on microblogs, question answer forums, news
headlines, and tweets is being generated in abundance [8]. Performing NLP tasks is relatively
easier in longer documents (e.g. news articles) than in short texts (e.g. headlines) because, in
longer documents, greater context is available for semantic understanding [72]. Moreover,
in many cases, short texts (e.g. tweets) tend to use informal language (spelling variations,
improper grammar, slang) compared to longer documents (e.g. blogs). Thus, the techniques
tailored for formal and clean text do not perform well on informal one [16], which call for a
need to develop an approach that can work in both settings (i.e., clean and noisy informal
text) [1].

A paraphrase of a document is another document that can be different in syntax, but that
expresses the same meaning in the same language. Automatically detecting paraphrases
among a set of documents has many significant applications in natural language processing
(NLP) and information retrieval (IR) such as plagiarism detection [5], query ranking [24],
duplicate question detection [92, 7], web searching [88], and automatic question answering
[21].

Paraphrase detection is a binary classification problem in which pairs of texts are labeled
as either positive (paraphrase) or negative (non-paraphrase). In this setting, pairs of texts
are mapped into a fixed-dimensional feature-space, where a standard classifier is learned.
Feature maps based on lexical, syntactic and semantic similarities in conjunction with SVM
are proposed in [16, 20]. More recently, it has been demonstrated that for short text, deep
learning-based pairs representations and classification yield better accuracy [1].

Many deep learning-based schemes employ one or two Convolutional Neural Network
(CNN) or Long Short Term Memory (LSTM) based models to learn features and make
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predictions on clean texts [92, 35, 82], while a recent model also incorporates linguistic
features to detect paraphrases in both clean and noisy short texts [1]. For many NLP tasks
involving short texts, it has been shown that developing wider models can yield significant
gains [73].

While deep models produce richer representations, they require large amounts of training
data for a robust paraphrase detection system [16]. Thus, for small datasets, such as
Microsoft Research Paraphrase (MSRP) corpus and SemEval-2015 Twitter paraphrase dataset
(SemEval), handcrafted features and SVM classifier have been widely used [16, 38]. Labeling
pairs of documents in a human-based computation setting (e.g. crowd-sourcing) is costly [98].
Therefore, [1] and [82] add to the training set each labeled pair also in the reversed order.
However, this simple data augmentation strategy can be extended in a systematic manner
by relying upon set and graph theory. For instance, consider four texts: (a) How can I lose
weight quickly? (b) How can I lose weight fast? (c) What are the ways to lose weight as soon
as possible? (d) Will Trump win US elections?. If in the annotated corpus, documents (a)
and (b) and documents (b) and (c) are marked as paraphrases, then by transitive extension,
documents (a) and (c) can also be considered as paraphrases. Similarly, if documents (a) and
(b) are labeled as paraphrase, while documents (b) and (d) are labeled as non-paraphrase,
then a new non-paraphrase pair based on document (a) and (d) can be inferred reliably.
Such a strategy can be used to generate additional annotations in a sound and cost-effective
manner, and potentially enhance the performance of deep learning models for paraphrase
detection.

In this chapter, we propose a data augmentation strategy for generating additional para-
phrase and non-paraphrase annotations reliably from existing annotations. We consider
notions of paraphrases and non-paraphrases as binary relations over the set of documents.
Representing the binary relation induced by the paraphrase labels as an undirected graph
and performing transitive closure on this graph, we include additional paraphrase annotation
in the training set. Similarly, by comparing paraphrase and non-paraphrase annotations we
infer additional non-paraphrase annotations for inclusion in the training corpus. Our strategy
involves several steps and a parameter through which the data augmentation can be tuned for
enhanced paraphrase detection.

We also present a robust multi-cascaded deep learning model (McM) and show its
usefulness for the task of paraphrase detection in short texts. Our model utilizes three
independent CNN and LSTM (with and without soft attention) cascades for feature learning
in a supervised manner. We also employ a number of additional linguistic features after
corpus-specific text preprocessing. All these features are fed into a discriminator network for
final classification.
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3.1 Data Augmentation for Paraphrase Detection

To show effectiveness of our approach we evaluate the data augmentation and deep model
on three benchmark short text datasets (MSRP and Quora (clean), and SemEval (noisy)) and
show that the proposed model outperforms current best performances on benchmark datasets
of both types. We also perform extensive comparisons with the state-of-the-art methods.
Finally, we analyze the impact of various data augmentation steps and different components
of the multi-cascaded model on paraphrase detection performance.

The rest of the chapter is organized as follows: We present the theory behind data
augmentation strategy and algorithm in Section 3.1. The multi-cascaded model for paraphrase
detection along with detail of each cascade is presented in Section 3.2. Section 3.3 shows the
details on experimental setup, results of augmentation on all three datasets, preprocessing
carried out for each dataset, and linguistic features. This section also showcase an ablation
study, where one cascade is ignored at a time in order to highlight the importance of multi-
cascaded learning. Finally, we present and compare the results of our approach with existing
state-of-the-art for all three datasets in Section 3.4.

3.1 Data Augmentation for Paraphrase Detection

We start the presentation of our enhanced approach for paraphrase detection by discussing the
proposed data augmentation strategy. Paraphrase annotation is costly and time-consuming
while deep learning approaches demand a large corpus of annotated paraphrases. To address
this problem, we develop strategies for generating additional annotations efficiently in a
sound manner. We rely upon set theory and graph theory to model the paraphrase annotation
problem and present an algorithm for generating additional data for training.

Let D= {d1,d2, . . . ,d|D|} be the set of documents in the annotated corpus. The corpus
contains annotations for paraphrases and non-paraphrases. The triplet (di,d j,1) indicates that
documents di ∈D and d j ∈D are considered paraphrases, and the triplet (di,d j,0) denotes
that documents di ∈D and d j ∈D are considered non-paraphrases. Let Np and Nnp denote
the numbers of paraphrase and non-paraphrase annotations in the corpus, and N = Np +Nnp

be the total number of annotations in the corpus. Note that in practice, only a fraction of the
pairs of documents in D will be annotated in the corpus, i.e., N≪ |D|2.

The information contained in the annotated corpus can also be represented as a graph
over the vertex set in D. Each triplet corresponds to an edge in the graph with its label (1 or
0) indicating whether the two documents are considered paraphrases or not. For example,
the triplet (di,d j,1) is represented by an edge between vertex di ∈D and vertex d j ∈D with
label 1. We assume that each edge can have a single label only, i.e., there are no conflicts in
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3.1 Data Augmentation for Paraphrase Detection

the annotated corpus whereby the same pairs of documents are labeled as both 1 and 0. If
such conflicts do exist, they are removed from the corpus.

3.1.1 Generating Additional Paraphrase Annotations

The notion of pairs of documents in D being considered paraphrases can be captured by the
notion of binary relation in set theory. Let Rp ⊂= (D×D) define the binary relation over D
such that ∀i∀ j(di,d j) ∈ Rp implies that di is a paraphrase of d j. In general, the following
two properties hold for Rp:

1. Rp is reflexive, i.e., ∀i,(di,di) ∈ Rp.

2. Rp is symmetric, i.e., ∀(i, j),(di,d j) ∈ Rp =⇒ (d j,di) ∈ Rp.

The notion of paraphrasing is not defined precisely in linguistics. The boundary between
paraphrases and non-paraphrases can lie on the continuum between (strong) paraphrases
on one end and (strong) non-paraphrases on the other [84]. For instance, reflexive relations
exhibit strong paraphrase while a reworded text with equivalent semantic meaning can be a
weak paraphrase. Consider three examples, (a) will Trump win the elections? (b) will Hilary
loose the elections? (c) how to tell if my mobile phone is repaired? In this case, (a) is strong
paraphrase of itself, (a) is a weak paraphrase of (b), and (a) is a strong non-paraphrase of (c).

For clean texts (e.g., news headlines), we may approximate the notion of paraphrase
by the notion of semantic duplicate, i.e., (di,d j,1) implies that documents di and d j are
considered duplicates semantically. In set theory, this corresponds to the equivalence relation.
The equivalence relation Re over D possesses the following property in addition to properties
1 and 2 listed above:

3. Re is transitive, i.e., ∀(i ̸= j ̸= k), [(di,d j) ∈ Re∧ (d j,dk) ∈ Re] =⇒ (di,dk) ∈ Re

Transitivity can be a strong property when applied to the notion of paraphrases, especially
for noisy text. Therefore, we consider Rp to include transitive extensions of the direct relation
R to a pre-selected order K ≥ 1. That is, Rp = Rp∪R∪R1∪·· ·∪RK where R denotes the
relation that two documents are paraphrases due to a direct relationship between them and
relation RK indicates that two documents are considered paraphrases because they are K ≥ 1
intermediate documents relating them (R1 is the transitive extension of R, and RK is the
transitive extension to order K of R). If K = ∗ (i.e., maximum order extension is done) then
we achieve a transitive closure of R.

Now, consider the graph on the vertex set D induced by edges labeled with 1, i.e., pairs
considered to be paraphrases in the annotated corpus. These pairs do not necessarily induce
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3.1 Data Augmentation for Paraphrase Detection

the relation Rp on D. We therefore add more pairs to transform it into the desired relation.
More formally:

1. For each di ∈D, we add (di,di,1) in the corpus, i.e., we declare each di a paraphrase
of itself. We call this step generation by reflexivity.

2. For each (di,d j,1), in the corpus, we add (d j,di,1) in the corpus, i.e., we consider
d j and di to be paraphrases of each other. We call this step generation by paraphrase
symmetry.

3. For every chain of annotations (di,d j1 ,1),(d j1,d j2,1), . . . ,(d jK−1,d jK ,1),(d jK ,dk,1)
starting at di and ending at dk with at most K intermediate documents in the annotated
corpus, we add (di,dk,1) and (dk,di,1) in the corpus. Thus, we consider di and dk to be
paraphrases of each other if these documents are connected by at most K intermediate
documents. We call this step generation by paraphrase transitive extension.

In graph terminology, step 1 corresponds to adding self-loops on each vertex with label 1
while in step 2, we ignore the direction on all edges by considering the graph as an undirected
graph. Step 3 corresponds to performing a transitive extension on the undirected graph
induced by edges labeled with 1. Every vertex needs to be made adjacent to all vertices that
are reachable from it in ≤ K hops. This can be done with a single BFS (breadth first search)
or DFS (depth first search) on the graph.

Note that transitive extension transforms the graph into a collection of cliques (fully
connected vertices) where each clique is a paraphrase class representing a unique concept.

3.1.2 Generating Additional non-Paraphrase Annotations

Let Rnp denote the binary relation that two documents in D are considered non-paraphrases.
By definition, this relation is irreflexive, i.e., ∀i,(di,di) ̸∈Rnp. Obviously, a document cannot
be a non-paraphrase of itself. The relation Rnp is symmetric, i.e., ∀i, j,(di,d j) ∈ Rnp =⇒
(d j,di)∈Rnp. Transitivity does not hold for relation Rnp; if (di,d j)∈Rnp and (d j,dk)∈Rnp,
then we cannot say for sure that di is not a paraphrase of dk.

Additional non-paraphrase annotations can also be inferred by comparing them with
paraphrase annotations. For example, if (di,d j,0) and (d j,dk,1) (i.e., di and d j are non-
paraphrases, while d j and dk are paraphrases), then (di,dk,0) must also be true (i.e., di and
dk are non-paraphrases). Of course, if di and/or dk lie within two different paraphrase classes,
then all pairs of documents in the classes will be considered non-paraphrases. These relations
are also included in Rnp.
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Now, consider the graph on vertex set D, induced by edges labeled with 0, i.e., non-
paraphrases in the annotated corpus. These pairs do not necessarily induce the relation Rnp

on D. We, therefore, add more pairs to transform it into the desired relation as follows:

1. For each (di,d j,0), in the corpus, we add (d j,di,0) in the corpus, i.e., we consider d j

and di to be non-paraphrases as well. We call this step generation by non-paraphrase
symmetry.

2. For every (di,d j,0) in the corpus, let C and C′ be the cliques (paraphrase classes)
containing di and d j, respectively, we add (dm,dn,0) and (dn,dm,0) for each dm ∈ C

and dn ∈ C′ to the corpus. We call this step generation by non-paraphrase transitive
extension.

In terms of graph, the second step corresponds to making a complete bipartite graph
between the vertex set of C and that of C′.

3.1.3 Conflicts and Errors in Annotations

Using the principled strategy outlined earlier, conflicts and errors in annotations can be
identified and potentially fixed. A conflict occurs when a pair of documents is found to
be paraphrase and non-paraphrase either in the original annotated corpus or arises during
augmentation. Based on our data augmentation strategy described above, the following
conflicts can arise: (1) In the original annotated corpus, a pair of documents is labeled as
both paraphrase and non-paraphrase. (2) Erroneous annotations can be generated during
our data augmentation strategy in the following two cases: (a) when generating additional
paraphrases by a transitive extension (b) when generating additional non-paraphrases by
non-paraphrase transitive extension. A detailed analysis of conflicts and errors and their
resolution is beyond the scope of this research in which we focus on data augmentation and
its impact on paraphrase detection. Nonetheless, we believe that this is a fruitful area for
future research.

In this work, we resolve the first type of conflict by removing the conflicting annotations
and the second type of conflict by removing the conflicting non-paraphrase annotation and
retaining the generated paraphrase annotation. We control the number of conflicts and
errors by varying K and selecting/dropping specific generation steps and we evaluate these
variations by their performances on paraphrase detection.
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Algorithm 1 : Data augmentation strategy
1: Input: D (documents), A (original corpus), K (extension order)
2: Output: Ā (augmented corpus)

▷ Remove conflicting annotations
3: for all [(di,d j,0) ∈A∨ (d j,di,0) ∈A]∧ [(di,d j,1) ∈A∨ (d j,di,1) ∈A] do
4: A←A\{(di,d j,0),(d j,di,0),(di,d j,1),(d j,di,1)}
5: Ā←A

▷ Paraphrase augmentation
▷ Step P1: by reflexivity

6: for all di ∈D do
7: Ā← Ā∪ (di,di,1)

▷ Step P2: by paraphrase symmetry
8: for all (di,d j,1) ∈A do
9: Ā← Ā∪ (d j,di,1)

▷ Step P3: by paraphrase transitive extension
10: A← Ā

11: for (n← 1→ K) do
12: for all (di,d j1,1) ∈A∧·· ·∧ (d jn ,dk,1) ∈A do
13: if (di,dk,0) ∈ Ā∨ (dk,di,0) ∈ Ā then
14: Ā← Ā\{(di,dk,0),(dk,di,0){
15: Ā← Ā∪{(di,dk,1),(dk,di,1)}

▷ Non-paraphrase augmentation
▷ Step NP1: by non-paraphrase symmetry

16: for all (di,d j,0) ∈ Ā do
17: Ā← Ā∪ (d j,di,0)

▷ Step NP2: by non-paraphrase transitive extension
18: for all (di,d j,0) ∈ Ā∧ (d j,dk,1) ∈ Ā do
19: Ā← Ā∪{(di,dk,0),(dk,di,0)}
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3.1.4 Algorithm

Algorithm 1 outlines our proposed strategy for augmenting data for enhanced paraphrase
detection. The algorithm takes as input the set of documents D, the (original) annotated
corpus or dataset A, and the parameter K (extension order) and it outputs the augmented
annotated corpus or dataset Ā. After removing conflicts in the dataset (lines 4− 5), the
algorithm proceeds with generating additional paraphrase annotations (lines 6−15) followed
by generating additional non-paraphrase annotations (lines 16−19). Generating paraphrase
annotations involve 3 steps i.e., P1 (lines 6− 7), P2 (lines 8− 9), and P3 (lines 10− 15),
while generating non-paraphrase annotations consists of two steps i.e., NP1 (lines 16−17)
and NP2 (lines 18−19). It is worth noting that step P1 can be performed at any sequence
while the other steps must follow the given sequence. In our experiments, we perform P1
after P2 and P3. Note that step P1 means additionally generated paraphrase pairs would be
equal to the number of unique texts in the training data (minus number of pairs that were
already part of the original annotations).

The worst-case computational complexity of the algorithm is defined by step P3. If Z
is the size of the largest paraphrase class (max. clique size or max. node degree in graph
terminology), then the computational complexity of the algorithm is O(|D|ZK). Note that in
practice both Z and K will be much less than |D|.

3.2 Multi-cascaded Deep Model for Paraphrase Detection

In this section, we present our multi-cascaded deep learning model (McM) for enhanced
paraphrase detection. While deep models have been popularly used in recent years for
paraphrase detection, they are typically tailored to either clean text (e.g., news headlines)
or noisy text (e.g., tweets). Similarly, most employ a single model for feature learning
and discrimination, and some do not utilize linguistic features in their models. In order to
benefit from previous insights and to produce robust paraphrase detection for both clean and
noisy texts, we propose three independent feature learners and a discriminator model that can
consider both learned and linguistic features for paraphrase detection. Note that independence
here means that there is no weight sharing among the feature learners. However, the complete
architecture is trained simultaneously.

Figure 3.1 shows the architecture of our multi-cascaded model for paraphrase detection.
We employ three feature learners that are trained to distinguish between paraphrases and
non-paraphrases with local supervision. The features from these models (one layer before the
output layer) are subsequently fed into a discriminator network together with any additional
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3.2 Multi-cascaded Deep Model for Paraphrase Detection

linguistic features to make the final prediction. The error is backpropagated from final output
of discriminator network all the way to the input.

Our model takes as input a pair of documents di and d j and outputs the label 1 if the
documents are considered paraphrases and the label 0 if the documents are considered
non-paraphrases. Let di = < wi

1,w
i
2, . . . ,w

i
Ti
> be the sequence of words in a document.

We represent each word in the sequence by an e dimensional fixed-length vector (word
embedding). For a given paraphrase detection problem, we empirically decide length T of
each document to use such that longer documents are truncated and shorter ones are padded
with zero vectors. This decision is made to ensure compatible length vectors for all document
pairs across different models. As discussed in Section 3.3.1, we select an appropriate length
T for each dataset based on the distribution of lengths of documents in the dataset. We
experiment with several linguistic features (syntactic and lexical) for both clean and noisy
text paraphrase detection. The details of these features are given in Section 3.3.3.

The details of the feature learners and the discriminator network are given in the following
subsections.

3.2.1 Feature Learners

We employ three independent cascades to learn contextual features for paraphrase detection.
Each cascade focuses on a different sequential learning model to extract features from
different perspectives. Each cascade takes as input the pair of documents to be classified as
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Fig. 3.1 Multi-cascaded model for enhanced paraphrase detection (Figure best seen in color)
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paraphrase or non-paraphrase, and each is trained independently on the annotated corpus.
The details of all three cascades are discussed in the following paragraphs.

The first cascade is based on CNN with soft-attention (Figure 3.2). The first layer for
each input text (i.e., di and d j) has 300 CNN filters with kernel size of 1. This layer learns
convolutional feature map of uni-grams. Subsequently, soft-attention is applied to highlights
words in documents di and d j that are more important to achieve correct prediction. The result
of soft-attention for document di is then subtracted and multiplied with that of document
d j to learn semantic contrariety. The next layer concatenates the output of CNN layer,
soft-attention output, subtracted output, and multiplied output for both documents (one layer
concatenates these 4 outputs for di and other for d j independent of each other). This output
is forwarded to another CNN layer containing 300 filters with kernel size of 2. The purpose
of this CNN layer is to learn bi-gram feature representation. After this representation, global
max-pooling and global average-pooling is performed. The objective behind applying two
pooling strategy is to obtain most important bi-gram and average of all bi-grams respectively
for both documents. Using global max-pooling forward the value of “strongest" bi-gram. The
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Fig. 3.2 Architecture and dimensions of output for each cascade in our multi-cascaded model
(Figure best seen in color)
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global average pooling gives the spatial average of the feature maps. Global average pooling
enforces correspondence between feature maps by summing out the spatial information
and is more robust to spatial translations of the input [53]. These two representations are
then concatenated to make a single vector of both documents (up till now, both documents
were being treated separately so two streams of same functions were being produced). This
outputs a vector of length 1,200. After this concatenation, a dropout and batch normalization
layer is deployed to avoid any feature co-adaptation. Then this representation is forwarded
to a fully connected layer with 300 units with ReLU activation followed by drop out and
batch normalization. Finally, this representation is squashed into a 150-dimensional vector
by another fully connected layer. This cascade is learned to detect paraphrases and non-
paraphrases, and the learned 150-dimensional representation is forwarded to discriminator
network for final classification.

The second cascade utilizes LSTM to encode long-term dependencies in the documents
[91] (Figure 3.2). This cascade learns contextual representations without any attention or
semantic contrariety. As such, it comprises of a single LSTM layer with 300 units followed
by fully connected hidden layers with 300 and 150 units each and an output layer. Again,
the 150-dimensional representation serves as an input to the discriminator network for final
classification.

The third cascade is based on LSTM with soft-attention (Figure 3.2). This cascade is
similar to the first cascade but uses LSTM units instead of CNN filters. As such, it does not
learn bi-gram feature representation but instead learns long-term dependencies with important
sequences highlighted by attention mechanism. The 150-dimensional vector obtained before
the output layer is used as an input to the discriminator network for final classification.

We empirically decide to use 300 CNN filters, 300 LSTM units, 300 units for first
fully-connected layer, and 150 units for second fully-connected layer in all cascades. In all
feature learning cascades, weights of CNN filters as well as weights of LSTM layers are
shared among di and d j. Weight sharing reduces the number of parameters required and both
documents are converted to deep representations in same embedding space. We use ReLU
activation for every layer except last prediction layer, which uses the softmax function. We
train the model using categorical cross entropy loss. Dropout and batch normalization is used
after every fully-connected layer.

3.2.2 Discriminator Network

Figure 3.1 shows the discriminator network utilized to make the final prediction. For a given
pair of documents di and d j, this network takes as input the features from all three cascades
plus any linguistic features with dropout and batch normalization. Two fully-connected
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hidden layers are then used with 300 and 150 units, respectively, where each is followed
by dropout and batch normalization layer. The activation function for both fully-connected
layer is set to ReLU. On final layer softmax activation function is used with categorical
cross-entropy as loss. This network outputs final prediction for documents di and d j as
either paraphrase or non-paraphrase. We also do early-stopping if validation accuracy of
discriminator is not improved for 10 epochs. A checkpoint of the model is created after the
training epoch at which validation accuracy is improved.

3.3 Experimental Setup

In this section, we describe the settings for the experimental evaluation of our enhanced
paraphrase detection model. We discuss the key characteristics of the three datasets used in
our evaluations before and after augmentation. We also present the parameter settings of the
model, the text preprocessing performed, and the linguistic features used in our experiments.

3.3.1 Datasets and their Augmentation

We use three real-world datasets in our experimental evaluations. The Quora questions pairs
dataset (Quora) [92] contains pairs of questions in English with their annotations (paraphrase
or non-paraphrase)1. This dataset is collected from questions posted on the Quora question-
answering website. This is a clean text dataset. The Microsoft Research Paraphrase Corpus
(MSRP) [17] contains pairs of sentences in English together with their paraphrase/non-
paraphrase annotation2. The sentences are extracted from news articles on the web. Thus,
this is another example of a clean text dataset. The SemEval-2015 Twitter paraphrase dataset
(SemEval) [99] contains pairs of tweets in English with their paraphrase/non-paraphrase
annotation 3. This is a noisy text dataset. The Quora and SemEval datasets have pre-defined
training, development, and test sets available. The MSRP dataset has predefined training and
test sets only. The statistics for each split of all the datasets are presented in Table 5.1. We
describe the characteristics of the training set of each dataset before and after augmentation
in the following subsections.

1https://github.com/zhiguowang/BiMPM
2https://www.microsoft.com/en-us/download/details.aspx?id=52398
3https://github.com/cocoxu/SemEval-PIT2015
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Table 3.1 Statistics for all datasets

Dataset Split Total Pairs Paraphrase Pairs Non-paraphrase Pairs Debatable Pairs

Quora
Train 384,348 139,306 245,042 −
Dev 10,000 5,000 5,000 −
Test 10,000 5,000 5,000 −

MSRP
Train 4,076 2,753 1,323 −
Test 1,725 1,147 578 −

SemEval
Train 13,063 3,996 7,534 1,533
Dev 4,727 1,470 2,672 585
Test 972 175 663 134

Table 3.2 Numbers of paraphrase and non-paraphrase annotations in the datasets before and
after augmentation. P1 = reflexivity, P2 = symmetry, P3 = transitivity, NP1 = non-paraphrase
symmetry, NP2 = non-paraphrase transitive extension

Dataset
Paraphrases Non-Paraphrases

Original P2 P3 P1 Original NP1 NP2

Quora 139,306 278,612 447,378 964,509 245,042 490,015 655,219
MSRP 2,753 5,506 5,874 13,688 1,323 2,646 2,647
SemEval 3,996 7,992 94,722 107,953 7,534 15,068 23,205

Quora Dataset

The Quora dataset contains annotations for 517,968 unique questions. We first analyze
the dataset using reflexivity property (step P1) and notice that there are 30 incorrect non-
paraphrase annotations in the dataset. The texts in these 30 annotations are identical but they
are marked as non-paraphrases. We remove these annotations from the dataset.

An exploratory analysis of this dataset reveals that questions have an average length of
about 13 words with a standard deviation of 6.7 words and a maximum length of 272 words.
Based on this analysis, we select T = 40 for this dataset.

Table 3.2 shows the numbers of paraphrases and non-paraphrases in the Quora dataset
before and after each step of augmentation. For this clean text dataset, we perform step P3
(paraphrase generation by transitive extension) using K = ∗, i.e., we generate by transitive
closure. Applying step P2 (paraphrase generation by symmetry) almost doubles the number of
paraphrase annotations. Performing transitive closure (step P3) generates 168,766 additional
paraphrase annotations. Subsequently, generating paraphrase annotations by reflexivity
(step P1) produces an additional 517,131 paraphrase pairs, bringing the total of paraphrase
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Table 3.3 Examples of errors detected during paraphrase augmentation using transitive
extension on Quora dataset (1 = paraphrase, 0 = non-paraphrase)

Question Pair Original Label Generated Label

What is the colour of the Sun?
0 1

What is the color of the sun?

Is pro wrestling fake?
0 1

Wwe is real fight?

How can I get free iTunes gift cards online?
0 1

What ’s the best way to legally get free iTunes gift cards?

annotations to 964,509. As an example of generated paraphrase pairs through transitive
closure, consider following three questions. (a) What causes deja vu ? (b) Read below, what
causes deja vu ? (c) What is the cause of someone frequently experiencing deja vu ?. The
questions (a) and (b) and questions (b) and (c) are marked as paraphrases in the original
annotations. After transitive closure, a new pair based on questions (a) and (c) is correctly
inferred.

For augmentation of non-paraphrase annotations, step NP1 (non-paraphrase generation
by symmetry) brings the total number of non-paraphrase pairs to 490,015. Subsequently,
performing step NP2 (generation by non-paraphrase transitive extension) an additional
165,204 non-paraphrase pairs are produced, bringing the total number of non-paraphrase
annotations to 655,219. Similar to the example of paraphrase annotation generation, the
proposed data augmentation strategy successfully generates non-paraphrase annotations also.
Consider following four questions. (a) Why does Quora censor opinions and answers ?
(b) Is Quora censored ? (c) Why does Quora want to censor/collapse the truth ? (d) Why
does Quora have a character limit for question titles and details ?. In original annotations,
questions (a), (b), and (c) are recorded as paraphrases while questions (b) and (d) are
recorded as non-paraphrases. Using non-paraphrase transitive extension, additional non-
paraphrase pairs (a), (d) and (c), (d) are correctly inferred.

After performing step P3 (generation by transitive closure), it is observed that there are
57,119 unique paraphrase classes (cliques) corresponding to distinct concepts about which
questions are being asked. Note that transitive closure converts the graph on paraphrase
annotations into a disjoint collection of cliques. Therefore, the node degree after transitive
closure is one less than the number of questions (nodes) in which that node lies.

As discussed in Section 3.1.3, our data augmentation strategy can highlight conflicts
and errors in the original annotations. For example, a paraphrase annotation generated by
transitive closure can be in conflict with an existing non-paraphrase annotation. Usually,
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a generated annotation is based on strong evidence of related annotations, hence, such
conflicts may indicate an error in the existing annotations. We find 214 such conflicts in
the training set of the Quora dataset. The number of conflicts can also be considered as a
measure of annotation quality. Upon subjective evaluation of these conflicts, it is observed
that annotations generated by the proposed data augmentation strategy are correct while the
original annotations are erroneous. Table 3.3 shows some examples of such conflicts in the
Quora dataset. If we consider the first example, the only difference between both question is
the spelling of the word “color", yet it is marked as non-paraphrase in the original label while
the paraphrase transitive extension marks it as paraphrase, which is correct. Similarly, in
second example, same question is asked with different wordings but the original annotations
mark it as non-paraphrase while the proposed data augmentation strategy correctly marks it
as paraphrase. These results confirm that our data augmentation strategy works well to detect
and distinguish unique concepts and generate new pairs along with their associated labels
from existing annotations reliably.

MSRP Dataset

The MSRP dataset is a much smaller dataset containing annotations for 7,814 unique
sentences. There are no conflicting annotations found in this dataset. We select T = 25 based
on exploratory analysis of the dataset which reveals that the average length of sentences is
about 19 words with a standard deviation of 5.1 word and a maximum length of 31 words.

Table 3.2 gives the numbers of paraphrases and non-paraphrases before and after aug-
mentation in this dataset. There are only 4,076 annotations in the original train split of
the dataset out of which 2,753 are for paraphrases and 1,323 are for non-paraphrases. The
number of paraphrases is doubled after performing step P2 (generation by paraphrase sym-
metry), an additional 368 paraphrase annotations are generated in step P3 (generation by
transitive closure), and step P1 generates an additional 7,814 paraphrase annotations. Step
NP1 doubles the number of non-paraphrase annotations while step NP2 generates just one
more non-paraphrase annotation. As seen from these results, transitive closure does not add
many annotations implying that there are generally small paraphrase classes in this dataset.

In this dataset, there were no conflicts detected while employing the proposed augmenta-
tion strategy.

SemEval Dataset

The SemEval dataset has paraphrase and non-paraphrase annotations for 13,231 unique
tweets. The original train split of the dataset has 3,996 paraphrase, 7,534 non-paraphrase,
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Table 3.4 Numbers of paraphrase and non-paraphrase annotations after step P3 and step NP2,
respectively, in SemEval dataset with different orders of transitive extension

Tr. extension
Paraphrases Non-Paraphrases

P3 P1 NP2

K = 1 30,738 43,969 18,539
K = 2 59,538 72,769 23,490
K = 3 90,042 103,273 24,175
K = ∗ 94,722 107,952 23,205

and 1,533 debatable annotations [98]. All existing studies on this dataset ignore the debatable
annotations while reporting their results; therefore, we also choose to ignore these annotations
in our experiments. No conflicting annotations are found in the dataset.

For this dataset, we choose T = 19. This number corresponds to the maximum length of
tweets in the dataset with the average length being around 8 words.

Table 3.2 presents the numbers of paraphrases and non-paraphrases in this dataset before
and after each step of our data augmentation strategy. These numbers are obtained when
transitive closure is performed during step P3, i.e., K = ∗. It is seen that the number of
paraphrases jumps from 3,996 to 107,953 while the number of non-paraphrases increases
from 7,534 to 23,205. A major increase in paraphrases occurs during step P3. This can be
attributed to the following two reasons: 1) The SemEval is based on a dataset developed
for the task of semantic similarity estimation. As such, the notions of paraphrase and non-
paraphrase are not well separated which is then blurred by the process of transitive closure.
2) The SemEval dataset contains short and noisy text that makes annotation difficult and
prone to errors. For such datasets, transitive closure can be a “blunt instrument" during the
data augmentation strategy.

Table 3.4 shows the numbers of paraphrases and non-paraphrases after steps P3, P1,
and NP2 when transitive extension of orders K = 1, K = 2, K = 3, and K = ∗ (transitive
closure) is performed. The numbers for step P2 and NP1 are not shown in this table as they
are identical to those given in Table 3.2. It is clear from this table that order K controls
the number of paraphrases that are generated during step P3. For example, when K = 1
the number of paraphrases after step P3 is 30,738 which is significantly lower than 94,722
when K = ∗. Note that the number of non-paraphrases actually increases slightly as the
order of transitive extension is reduced. This is due to the fact that more conflicts arise
as K is increased that are resolved by retaining the generated paraphrase annotation and
discarding the conflicting non-paraphrase annotation, and fewer non-paraphrase annotations
will produce fewer additional non-paraphrase annotations during non-paraphrase extension
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(step NP2). The number of conflicts during step P3 are 4, 14, 22, and 23 for K = 1, K = 2,
K = 3, and K = ∗, respectively.

3.3.2 Preprocessing

Text preprocessing is an essential component of many NLP applications. However, in
case of short text, common text preprocessing steps such as removing punctuations and
stopwords can result in loss of information critical to the application [20]. Therefore, we
keep preprocessing to a minimum in our experiments. For SemEval dataset, which represents
noisy texts, we perform lemmatization and correct commonly misspelled words such as
dnt to do not. We use a predefined dictionary to map misspelled words to their standard
forms. Preprocessed tweets are used while training our multi-cascaded model as well as
to extract linguistic features. For the other two datasets, which represent clean texts, we
perform preprocessing (stopword removal and lemmatization) only for computing linguistic
features while the raw text is used in our multi-cascaded model. The details of the linguistic
features are given in the next subsection.

3.3.3 Linguistic Features

We employ a set of NLP/linguistic features in our experiments as it has been shown that
including linguistic features for paraphrase identification in short text can improve the
performance of deep learning models [1]. We identify the following linguistic and statistical
features to be used alongside learned features in our multi-cascaded model.

1. 2 features based on cosine similarity between TF-IDF vectors of documents di and d j,
before and after removing stopwords and doing lemmatization.

2. 4 n-gram overlapping ratio features based on uni-grams and bi-grams that are common
to a given document pair, divided by total number of n-grams in di and d j respectively.

3. 2 features based on cosine similarity between ELMo [69] embeddings vectors of di

with d j, before and after removing stopwords and doing lemmatization.

4. 2 features based on cosine similarity between Universal Encoder 4 vectors of di and d j,
before and after removing stopwords and doing lemmatization.

5. 1 feature based on count of uni-grams that has same POS tag in di and d j.

4https://tfhub.dev/google/universal-sentence-encoder/2
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6. 6 features based on length of intersection of character bi-grams, tri-grams and quad-
grams of di in d j, before and after removing stopwords and doing lemmatization.

7. 2 features based on longest substring match in di and d j, before and after removing
stopwords and doing lemmatization.

8. 2 features based on longest subsequence match in di and d j, before and after removing
stopwords and doing lemmatization.

9. 3 syntactic features based on number of Verbs, Nouns and Adjectives common in di

and d j.

10. 2 Named-entity recognition (NER) features in di and d j based on number of same
NER tags and numbers of same word-NER tuple.

We use all linguistic features for clean text datasets and linguistic features 1−4 only for
the noisy text dataset. Linguistic features are passed through a single CNN layer with 300
dimensions and then provided as input to discriminator network.

3.3.4 Hyper-parameters Tuning

A number of hyper-parameters are required in our multi-cascaded model for paraphrase
detection. We tune and select these hyper-parameters on the development sets of each dataset
using a grid search. As MSRP dataset has train and test splits only, we hold-out 10% of the
training set as the development set for the purpose of hyper-parameters tuning. We decide
the type of word embeddings among GloVe 5 [68], Word2Vec [61], and ELMo. For selecting
an optimizer, we decide among nAdam, Adam, Adadelta, and SGD. We consider dropout
rates 0.1, 0.2, 0.3, 0.4 and 0.5 in our model.

3.3.5 Performance Evaluation and Comparison

Since paraphrase detection is a binary classification problem, standard measures of per-
formance can be used for evaluation [77]. We report performances as percent accuracy,
precision, recall, and F1-value on the test sets after training over the respective training set
of the datasets. Each dataset has a fixed training and test sets. Therefore, results can be
compared with previously reported results on the same datasets.

Precision, Recall, and F1-score are defined as equations 3.1−3.3.

5https://nlp.stanford.edu/projects/glove/
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Precision =
T P

T P+FP
, (3.1)

Recall =
T P

T P+FN
, (3.2)

F1− score =
2×Precision×Recall

Precision+Recall
(3.3)

3.3.6 Implementation

We use networkX library in Python for graph analysis and data augmentation6. For im-
plementing and evaluating our multi-cascaded model we use Keras7 as the front-end with
TensorFlow8 on the backside. All model parameters or weights are initialized randomly, and
to ensure reproducibility the random seed is fixed. The code and implementation setting used
in our experimental evaluation is available from the website9.

3.3.7 Ablation Study

In this section, we discuss the results for the ablation study that is performed to examine
the need for multiple cascades. It is well-settled that learning in DL models is hindered
by smaller datasets [16]. The MSRP and SemEval datasets only have 4,076 and 13,063
annotations respectively. Thus, for this ablation study, we use the non-augmented (original)
version of the Quora dataset. The intuition behind choosing this particular dataset is that
it is a large-scale dataset (having 384,348 records in train split and 10,000 records in test
split); hence the model would not be hampered by the size of the data and findings would
reflect true insights about the learning capabilities of the cascades. We design the ablation
experiments as follows.

First, we only use one cascade at a time amongst all three and note down the results on
the test split. Second, we make mutually exclusive pairs of cascades (i.e., CNN + Attention
LSTM, CNN + LSTM, and Attention LSTM + LSTM). Finally, we use all three cascades for
training and testing the model. We use hyperparameters as described in Section 3.4.1 and the
random seed is fixed to mitigate the effect of randomness.

Figure 3.3 illustrates the result obtained for each configuration of ablation study. With
regards to the configuration that utilizes only a single cascade, it is observed that LSTM-based
cascade (learner) yields the poorest performance with an accuracy of 86.23, closely followed

6https://networkx.github.io/
7https://keras.io/
8https://www.tensorflow.org/
9https://github.com/haroonshakeel/multi-cascaded-deep-network-for-paraphrase-identification
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by CNN-based learner with an accuracy of 86.98. Most exciting results are achieved by
Attention LSTM cascade, which gives an accuracy of 88.46. These results make intuitive
sense as LSTM only captures the order of words and long-term dependencies of text while
CNN captures n-gram features only. Introducing the attention mechanism generates more
informative features as it learns semantic contrariety amongst the most important words
between two inputs concerning the label.

Next, we combine two cascades and re-run the experiments. In this particular case of
pairs of cascades, CNN + LSTM gives the minimum performance with an accuracy of 88.59.
This, however, is still better than the highest performing single cascade of Attention LSTM.
The CNN + Attention LSTM combination gives an accuracy of 88.96 while Attention LSTM
+ LSTM combination shows a marginal improvement with an accuracy of 89.16. These
results are insightful in a sense that Attention LSTM contributes more towards the correct
prediction as compared to other cascades. However, when we combine all three cascades, the
final accuracy is pushed a little further, and the model is able to achieve the testing accuracy
of 89.43. Note that as the model accuracy come closer to 100, even a marginal improvement
is considered significant. This is evident from the existing studies on the dataset and the
incremental improvements quoted in Table 3.6.
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These results lead us to conclude that n-gram features are more informative than capturing
the order of the words (recall LSTM learner). However, when combined, they surpass single-
perspective learning. Moreover, attention-based LSTM exhibits the highest performance.
However, all three kinds of information are pertinent to linguistics. Thus, combining all three
gives the highest predictive performance and sets justification for utilizing all three cascades.

3.4 Results and Discussion

In this section, we present and discuss the evaluation of our multi-cascaded model and data
augmentations strategy in terms of paraphrase detection predictive performance. We first
present results on each dataset with and without data augmentation and linguistic features.
Subsequently, we discuss the performance of different components of our multi-cascaded
model. Finally, we present the key takeaways from our experimental study.

3.4.1 Quora Dataset

For this dataset, the hyper-parameters of our model are tuned on the provided dev set. GloVe
embeddings are selected as the best choice while among optimizers, nAdam with learning
rate of 0.002 is found to be optimal. Similarly, the dropout rate of 0.1 is found to be optimal.

Table 3.5 shows the predictive performance of our enhanced paraphrase detection model
on the Quora dataset. Performances (accuracy, precision, recall, and F1-score) on test sets are
given for different data augmentation steps with learned features and learned plus linguistic
features. We first discuss results obtained by using learned features only. Using the original
data without any augmentation, our model achieves an accuracy of 89.4%. Augmenting
the data with step P2 and NP1 (paraphrase and non-paraphrase generation by symmetry)
increases the accuracy slightly. Note that this augmentation step has also been performed in
earlier works [82, 1]. However, noticeable increase in accuracy is observed when the data

Table 3.5 Paraphrase detection performance on Quora dataset

Augmentation
Learned Features Learned + Linguistic Features

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

None 89.4 90.3 88.4 89.3 89.8 90.0 89.6 89.8
P2, NP1 89.6 90.6 88.4 89.5 74.9 67.6 95.5 79.2
P2, P3 89.9 90.0 89.7 89.9 90.1 91.2 88.7 89.9
P2, P3, P1 90.2 90.3 90.1 90.2 90.0 90.2 89.6 89.9
P2, P3, NP1 90.0 90.5 89.5 90.0 90.0 89.9 90.1 90.0
P2, P3, P1, NP1 90.3 90.9 89.5 90.2 90.1 89.7 90.5 90.1
P2, P3, P1,NP1, NP2 89.9 90.7 89.0 89.8 89.9 90.2 89.5 89.9
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is augmented with additional paraphrases using step P2, step P3 (generation by transitive
closure), and step P1 (generation by reflexivity), jumping the accuracy to 90.2%. We obtain
the best performance of 90.3% when in addition to augmenting paraphrases via steps P3,
P2, and P1 additional non-paraphrases are generated via step NP1. This is also the current
state-of-the-art performance on this dataset.

Note that by including additional non-paraphrase annotations using step NP2 (generation
by non-paraphrase transitive extension) decreases the accuracy to 89.9% from the high of
90.3% obtained when steps P2, P3, P1, and NP1 are executed. The reason behind this
decrease can be determined by analyzing paraphrase concepts (clique in paraphrase graph).
Recall from Section 3.1.2 that even a single edge with label 0 (a non-paraphrase annotation)
between two cliques will generate a complete set of edges between the nodes of the two
cliques with label 0. Thus, any error in such a non-paraphrase annotation gets magnified
during the NP2 non-paraphrase augmentation step and degrades the quality of the dataset
for paraphrase detection. For example, the incorrect annotation of questions Is there a way
to hack Facebook account ? and How can I hack Facebook ? as non-paraphrase generates
numerous erroneous non-paraphrase annotations between paraphrases of the first and second
question. Therefore, step NP2 has the potential to degrade paraphrase detection performance
when errors exist in non-paraphrase annotations that link large paraphrase concepts.

When we perform experiments by including linguistic features with learned features,
slightly lower performances are obtained. This highlights that when sufficiently large dataset
is available, deep learning models can effectively capture the semantics and contexts of
short texts for improved paraphrase detection; for such datasets, the extra effort of including
linguistic features is not beneficial.

Table 3.6 presents the performance of previously published work on this dataset. Accuracy
values are given in this table because previous works report accuracies only. In [50], 7
different models are re-implemented on several tasks involving sentence pairs. Quora
dataset is used to get results for paraphrase detection task. We only include results of best
performing model among all 7. They find that Shortcut-Stacked Sentence Encoder Model
(SSE) [64] performs the best, giving testing accuracy of 87.8%. The previous best accuracy
is 88.4% [82]. Our multi-cascaded model beats this result without any data augmentation
with an accuracy of 89.4%. As seen from the table, our enhanced model outperforms all
previous results. Ensemble BiMPM model achieves an accuracy of 88.2% accuracy while pt-
DECATTchar shows a slightly better performance with an accuracy of 88.4%. In comparison,
our model achieves an accuracy of 90.3%, which is almost 2% improvement over the previous
best performance. In contrast to [92], we avoid using ensemble model approach (which is
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Table 3.6 Comparison of our model’s performance with previously published performances
on Quora dataset

Model Accuracy

Wang et al. (2017) (Saimese-CNN) [92] 79.6
Wang et al. (2017) (Multi-Perspective-CNN) [92] 81.4
Wang et al. (2017) (Saimese-LSTM) [92] 82.58
Wang et al. (2017) (Multi-Perspective-LSTM) [92] 83.2
Wang et al. (2017) (L.D.C) [92] 85.6
Wang et al. (2017) (BiMPM) [92] 88.2
Tomar et al. (2017) (pt-DECATTword) [82] 87.5
Tomar et al. (2017) (pt-DECATTchar) [82] 88.4
Lan and Xu (2018) (SSE) [50] 87.8

Our model 90.3

computationally costly). Similarly, contrary to results in [82], our results are based on word
features only and do not use computationally expensive character-based features.

The most interesting results are observed when augmentation P2 and NP1 was used
along with linguistic features. This particular configuration achieved a high Recall but a
lower Precision. This is a significant difference from same configuration of augmentation
but without linguistic features. Upon further investigation of this particular result, it was
found that the model has a higher tendency of predicting positive class (i.e., paraphrase).
Adding linguistic features to this particular augmentation scheme leads the model to yield a
higher number of false positives (FP). Thus, it can be deduced that linguistic features favor
the paraphrase class more as compared to non-paraphrase class. The confidence on this
deduction is strengthened when we observe the results with augmented pairs added by step
P3 or P1. The effect of linguistic features is diminished and the model is able to learn both
classes almost equally (as evident of similar Precision and Recall scores).

3.4.2 MSRP Dataset

We use the pre-defined split provided in MSRP dataset for training and testing our model. No
dev set is provided with this dataset; hence, we hold-out 10% of the training split randomly
as dev set. By using a grid search, we find optimal hyper-parameters on this dev set. ELMo
embeddings are found to be better for this dataset, while Adam optimizer is selected as
optimal one with learning rate of 0.002. When optimizing dropout rate on this dataset, 0.5 is
found to yield the best results.
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Table 3.7 Paraphrase detection performance on MSRP dataset

Augmentation
Learned Features Learned + Linguistic Features

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

None 74.1 75.3 90.9 82.4 74.7 76.2 90.2 82.6
P2, NP1 74.8 76.9 88.9 82.5 75.2 77.1 89.2 82.7
P2, P3 74.4 76.0 89.9 82.3 75.0 76.8 89.5 82.7
P2, P3, P1 76.8 77.1 92.7 84.2 77.4 77.0 91.7 84.2
P2, P3, NP1 74.4 75.6 90.7 82.5 74.1 74.7 92.5 82.6
P2, P3, P1, NP1 77.0 77.3 92.7 84.3 78.3 79.3 91.0 84.8
P2, P3, P1, NP1, NP2 77.0 77.3 92.7 84.3 78.3 79.3 91.0 84.8

Table 3.7 shows the predictive performance of our enhanced paraphrase detection model
on MSRP dataset. Performances are given for configurations with and without linguistic
features after applying various data augmentation steps. It is observed that without data
augmentation, we achieve an F1-score of 82.4%. Doubling the data (step P2 and NP1)
increases performance slightly in terms of F1-score but the significant gain is obtained when
augmenting the data using symmetry, transitivity, and reflexivity (steps P2, P3, P1). This
configuration of augmentation gives F1-score of 84.2%. The highest F1-score in experiments
without any linguistic features of 84.3% is achieved when P2, P3, P1, and NP1 augmentation
steps are performed. Please note that adding a pair generated by NP2 augmentation did not
affect the performance of the model as it only produces 1 additional pair (recall Section
3.3.1).

Using linguistic features along with learned features boosts the performance of the model.
In comparison with experiments without linguistic features, this gain is consistent with
the exception of P2, P3 and P1 augmentation scheme, where the F1-score for experiments
without and with linguistic features remains the same. Without any augmentation, the F1-
score is increased from 82.4% to 82.6% by introducing linguistic features, while with P2
and NP1 augmentation scheme, it is improved from 82.5 to 82.7. We achieve maximum
performance using data augmentation schemes of P2, P3, P1, and NP1 while using linguistic
features. This configuration yields an accuracy of 78.3% and an F1-Score of 84.8%, which
is the highest among all of our experiments. Note that this augmentation scheme also has the
highest F1-score when no linguistic features were used. Adding one additional pair generated
by NP2 augmentation did not affect the model’s performance.

These results prove that the usefulness of linguistic features is dataset domain and size-
specific, and is not generalizable. In particular, the impact of linguistic features is limited
when the dataset is large (e.g., Quora dataset) while it is more significant for small datasets
(e.g., MSRP dataset).
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Table 3.8 Comparison of our model’s performance with previously published performances
on MSRP dataset

Model Accuracy F1-score

Socher et al. (2011) [76] 76.8 83.6
Madnani et al. (2012) [56] 77.4 84.1
Ji and Eisenstein (inductive) (2013) [38] 77.8 84.3
Hu et al. ARC-I (2014) [35] 69.6 80.3
Hu et al. ARC-II (2014) [35] 69.9 80.9
El-Alfy et al. (2015) [19] 73.9 81.2
Kenter and de Rijke (2015) [43] 76.6 83.9
Eyecioglu and Keller (2015) [20] 74.4 82.2
He et al. (2015) [29] 78.6 84.7
Dey et al. (2016) [16] − 82.5
Wang, Mi et al. (2016) [95] 78.4 84.7
Yin et al. (2016) [100] 78.9 84.8
Pagliardini et al. (2018) [66] 76.4 83.4
Ferreira et al. (2018) [23] 74.08 83.1
Agarwal et al. (2018) [1] 77.7 84.5
Arora and Kansal (2019) [3] 79.0 −

Our model 78.3 84.8
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3.4 Results and Discussion

We compare our best performing variation of experiments with existing state of the art
approaches on MSRP dataset in Table 3.8. The current state of the art on MSRP is reported
to be in [38]. They report their best results as 80.4% accuracy and an F1-score of 85.9%.
However, they assume that they have access to testing data at the time of training a model and
call it a form of transductive learning. On the other hand, our model is based on inductive
learning where training is done in total isolation from the test split. Therefore, it is only fair
to compare both models in inductive setup. The training of the model by [38] in inductive
setup yields 77.8% accuracy and F1-score of 84.3% [1]. These results are far less than what
were originally reported in [38] using transductive learning. Thus, the current state-of-the-art
results in inductive setup are reported by [29] and [95], with an F1-score of 84.7%. Our best
model yields an F1-score of 84.8%, which is slightly higher than previous state-of-the-art.

In terms of accuracy, the highest performance is reported in [3] which is 79.0%. However,
the F1-score was not reported by the authors. As the class label distribution is highly skewed
in this dataset (recall Table 5.1), the accuracy is not a good measure of performance. In such
cases, it is plausible to use F1-score to measure the predictive performance of the models [77].
Therefore, despite higher accuracy reported by the authors, it cannot be concluded that their
model yields higher performance than other reported results.

3.4.3 SemEval Dataset

In SemEval dataset, the provided dev split is used to fine-tune hyper-parameters using grid
search. We find that ELMo embeddings yield the best results when Adam is used as optimizer
with learning rate 0.002. The dropout rate is found to be 0.2.

Table 3.9 presents the predictive performance of our model on this dataset. In this table,
data augmentation is done with full transitive closure, i.e., K = ∗ for step P3. Without data
augmentation and linguistic features, our model achieves an F1-score of 40.2%. However,
when we apply data augmentation, the F1-score tends to increase. The maximum F1-score

Table 3.9 Paraphrase detection performance on SemEval dataset

Augmentation
Learned Features Learned + Linguistic Features

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

None 51.1 27.1 78.9 40.2 89.0 70.8 80.6 75.4
P2, NP1 78.8 48.5 21.1 29.4 88.9 82.5 59.4 69.1
P2, P3 82.5 57.7 60.0 58.9 84.6 63.7 61.1 62.4
P2, P3, P1 82.2 56.1 68.6 61.7 87.6 77.5 57.1 65.8
P2, P3, NP1 84.4 62.6 62.3 62.5 84.0 60.5 67.4 63.8
P2, P3, P1, NP1 84.1 60.7 68.0 64.2 84.4 60.0 76.0 67.0
P2, P3, P1, NP1, NP2 82.7 57.1 68.6 62.3 84.7 62.4 67.4 64.8
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Fig. 3.4 Performance of our model with paraphrase transitive extensions of order K = 1,
K = 2, K = 3, and K = ∗ on SemEval dataset; (a) learned features, (b) learned + linguistic
features

without linguistic features is 64.2% which is achieved with P2, P3, P1, and NP1 augmentation.
This is consistent with the results of other two datasets used in the study, which also yield
maximum performance on this particular augmentation combination. In noisy text, linguistic
features affect performance by a large margin.

Our enhanced model outperforms existing approaches on SemEval dataset in terms of
F1-score when no augmentation is done but linguistic features are provided along with
learned features. This particular experiment yields Precision and Recall of 70.8% and 80.6%,
respectively. However, it is noticed that precision is lower than recall. When we augment the
data using P2 and P3, the precision and recall values tend to become closer, highlighting that
model is more robust in distinguishing the two classes. But, the F1-score drops significantly.

The reason behind this degradation in performance can be found by investigating pairs
generated by transitive closure. It is observed that as we move along the path in graph to
find transitive pairs, the meaning of text tends to change, and it becomes more probable that
the two documents are no longer paraphrases. This phenomenon is more likely in a noisy
short text such as the SemEval dataset. Therefore, instead of applying transitive closure
with K = ∗, transitive extension to an order K is plausible. To investigate the effect of K
in transitive extension, we perform same experiments with K = 1, K = 2, and K = 3. The
results of these experiments in terms of F1-score is given in Figure 3.4 (plots (a) and (b) are
for without and with linguistic features, respectively). Complete tables of results are included
in Appendix A.

These results show that using linguistic features improves predictive performance as
compared to when only learned features are used, and this improvement is consistent for
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3.4 Results and Discussion

Table 3.10 Comparison of our model’s performance with previously published performances
on SemEval dataset

Model Precision Recall F1-score

Das and Smith (2009) [13] 62.9 63.2 63.0
Guo and Diab (2012) [27] 58.3 52.5 65.5
Ji and Eisenstein (2013) [38] 66.4 62.8 64.5
Xu et al. (2014) [99] 72.2 72.6 72.4
Eyecioglu and Keller (2015) [20] 68.0 66.9 67.4
Zarella et al. (2015) [101] 56.9 80.6 66.7
Zhao and Lan (2015) [102] 76.7 58.3 66.2
Vo et al. (2015) [87] 68.5 63.4 65.9
Karan et al. (2015) [42] 64.5 67.4 65.9
Dey et al. (2016) [16] 75.6 72.6 74.1
Huang et al. (2017) [36] 64.3 65.7 65.0
Lan and Xu (2018) [50] − − 65.6
Agarwal et al. (2018) [1] 76.0 74.2 75.1

Our model 70.8 80.6 75.4

all K and all data augmentation configurations. For order K of transitive extension, we
note that moving beyond K = 1 yield minor improvements in performance. Without any
linguistic features, K = 1 produces the highest F1-score overall, with exception of just one
configuration, i.e., P2, P3, P1, NP1, NP2. Similarly, maximum F1-score with linguistic
features is also achieved with K = 1. These observations prove that in noisy text, full
transitive closure can produce lower performances and the order K of transitive extension
needs to be investigated to determine the optimal data augmentation strategy. Without
linguistic features, as opposed to K = ∗, augmenting data with NP2 using K = 1,2 or 3 does
not drop the predictive performance of the model drastically but rather shows a noticeable
improvement. However, with inclusion of linguistic features, NP2 augmentation has variable
effect on the performance for each order of K.

We compare our results with existing work in terms of precision, recall and F1-score on
test split in Table 3.10. On this dataset, [50] in their comparative study of re-implementing 7
different models, found that Pairwise Word Interaction Model (PWIM) [30] performs the best
and achieves F1-score of 65.6%, which we report in the table. State of the art performance
on the SemEval dataset is reported by [1] with F1-score of 75.1%. Our best performing
model outperforms state of the art by achieving an F1-score of 75.4%.
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Fig. 3.5 Accuracy versus training epochs for each feature learning cascades and discriminator
network on (a) Quora, (b) MSRP, and (c) SemEval datasets

3.4.4 Impact of Multiple Cascades

As all cascades are supervised, we can record predictive performances (on test set) for every
cascade after each training epoch and compare them with that produced by discriminator
network (complete multi-cascaded model). Figure 3.5 shows the performance of every
cascade and the complete multi-cascaded model on Quora (plot (a)), MSRP (plot (b)), and
SemEval (plot (c)) datasets.

It can be observed that the LSTM-based feature learner yields least performance and
remains at the bottom throughout the training, while attention-based convolution feature
learner is the next best performer. The attention-based LSTM learner is closely following the
discriminator’s performance but discriminator remains at the top during the training process
after every epoch. This confirms that training a discriminator based on features learned from
multiple perspectives is more fruitful as compared to relying on features learned by only one
type of deep learning model. The same trend is followed in all the datasets. These results are
presented only for the configuration which yields best results on each dataset.

3.4.5 Summary

Our extensive experiments evaluated our enhanced paraphrase detection model along several
dimensions. These dimensions include noisy versus clean datasets, large versus small
datasets, data augmentation steps and their variations, learned and linguistic features, and
cascades in the multi-cascaded model. The key findings of our experiments are summarized
below.

1. Data augmentation improves paraphrase detection predictive performance on all
datasets (noisy, clean, large, and small). These easy steps can generate additional
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annotations that translate into the higher predictive performance from deep learning
models.

2. Each step for generating additional paraphrase annotations produces an improvement
in the prediction performance. On the other hand, only step NP1 for generating
additional non-paraphrase annotations consistently improve performance; step NP2 can
sometimes cause a decrease in predictive performance especially when the annotation
is error-prone (e.g., the notion of paraphrase is not well defined, noisy text).

3. Linguistic features are important if a dataset is relatively small and noisy in nature.
For such datasets, including linguistic features can produce significant boost in the
predictive performance of our model.

4. When a dataset is sufficiently large, using linguistic features does not have any effect
on the predictive performance.

5. For clean text, augmentation scheme of P2, P3, P1, and NP1 gives maximum perfor-
mance in terms of F1-score on both datasets while for user-generated noisy text, this
scheme yields maximum performance only with learned features only. When linguistic
features are used, maximum performance is achieved without any augmentation.

6. It is not recommended to use full transitive closure (K = ∗) for user-generated noisy
datasets as no noticeable and consistent improvement in performance is observed. For
such datasets, data augmentation with the transitive extension should be investigated.

Dataset Text

Dataset Size
Learned Features 

+
Linguistic Features

NoisyClean

Learned Features
+

Data Augmentation
+

Linguistic Features

Learned Features
+

Data Augmentation

Small Large

Fig. 3.6 Summary of the findings of results on paraphrase identification
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Figure 3.6 summarizes the findings of the results on paraphrase identification task in the
form of a decision tree.

The problem of paraphrase identification in short text analytics is a challenging one. Lets
consider three benchmark datasets for paraphrase identification task. MSRP dataset is the
oldest among three. The Table 3.8 shows previous published work on this dataset. It can be
observed that Socher et al. (2011) [76] achieved 83.6 F1-score. Which is later followed with
an F1-score of 84.1, 84.3 and so on. These very small improvements in numerous studies
reflect that a small improvement is considered a lot. Similar trend can be observed from
Table 3.10 on SemEval dataset an Table 3.6 on Quora dataset. Furthermore, the models
that show a good performance on noisy text do not show a good performance on clean text
and vice versa. Lets consider Ji and Eisenstien [38] in Table 3.8 and Table 3.10 showing
performances on clean and noisy texts respectively. Their model is able to achieve 84.3
F1-score on clean text of MSRP but only 64.5 F1-score on noisy text of SemEval. Our model
shows a greater robustness across clean, noisy, large, or small datasets.
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Chapter 4

SMS Classification of Bilingual Short
Text

Social media such as Facebook, Twitter, and Short Text Messaging Service (SMS) are popular
channels for getting feedback from consumers on products and services. In Pakistan, with
the emergence of e-government practices, SMS is being used for getting feedback from the
citizens on different public services with the aim to reduce petty corruption and deficient
delivery in services. Automatic classification of these SMS into predefined categories can
greatly decrease the response time on complaints and consequently improve the public
services rendered to the citizens. However, these SMS texts contain multilingual text written
in the non-native script and informal diction (recall Chapter 1). Factors like informal verbiage,
improper grammar, variation in spellings, code-switching, and short text length make the
problem of automatic bilingual SMS classification highly challenging.

In this chapter, we present a modified version of multi-cascaded deep learning network
McM for multi-class classification of bilingual short text (modifications are made in order to
make McM compatible with single input as opposed to two inputs of paraphrase identification
task). Our goal is to perform bilingual short text classification without any prior knowledge of
the language, code-switching indication, language translation, normalizing lexical variations,
or language transliteration. In multilingual text classification, previous approaches employ
a single deep learning architecture, such as CNN or Long Short Term Memory (LSTM)
for feature learning and classification. McM, on the other hand, employs three cascades
(aka feature learners) to learn richer textual representations from three perspectives. These
representations are then forwarded to a small discriminator network for final prediction.
We compare the performance of the proposed model with existing CNN-based model for
multilingual text classification [58]. We report a series of experiments using 3 kinds of
embedding initialization approaches as well as the effect of attention mechanism [96].
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4.1 Dataset Acquisition and Description

The English language is well studied under the umbrella of NLP, hence many resources
and datasets for the different problems are available. However, research on English-Roman
Urdu bilingual text lags behind because of non-availability of gold standard datasets. To this
end, we present a large scale annotated dataset in Roman Urdu and English language with
code-switching, for multi-class classification. The dataset consists of more than 0.3 million
records and has been made available for future research.

The rest of the chapter is organized as follows. Section 4.1 introduces the dataset
development process, preprocessing steps, and provides an explanation of the class labels
assigned during the annotation process. In section 5.3, the modified architecture of the
proposed model McM, its hyperparameters, evaluation metrics, and the experimental setup is
discussed. Finally, we discuss the results of all variations of experiments and their comparison
with baseline in section 4.3.

.

4.1 Dataset Acquisition and Description

The dataset consists of SMS feedbacks of the citizens of Pakistan on different public services
availed by them. The objective of collecting these responses is to measure the performance
of government departments rendering different public services. Preprocessing of the data is
kept minimal. All records having only single word in SMS were removed as cleaning step.
To construct the “gold standard", 313,813 samples are manually annotated into 12 predefined
categories by two annotators in supervision of a domain-expert. Involvement of the domain-
expert was to ensure the practicality and quality of the “gold standard". Finally, stratified
sampling method was opted for splitting the data into train and test partitions with 80−20
ratio (i.e., 80% records for training and 20% records for testing). This way, training split
has 251,050 records while testing split has 62,763 records. The rationale behind stratified
sampling was to maintain the ratio of every class in both splits. The preprocessed and
annotated data along with train and test split is made available 1. Note that the department
names and service availed by the citizens is mapped to an integer identifier for anonymity.

Class label ratios, corresponding labels, and it’s description are presented in Table 4.1.

1https://github.com/haroonshakeel/bilingual_sms_classification
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4.2 Proposed Model and Experimentation

Table 4.1 Description of class label along with distribution of each class (in %) in the acquired
dataset

Class label Description Class%

Appreciation Citizen provided appreciative feedback. 43.1%

Satisfied Citizen satisfied with the service. 31.1%

Peripheral complaint Complains about peripheral service like
non-availability of parking or complexity
of the procedure.

8.2%

Demanded inquiry More inquiry is required on the complaint. 5.7%

Corruption Citizen reported bribery. 3.5%

Lagged response Department responded with delay. 2.1%

Unresponsive No response received by the citizen from
the department.

2.0%

Medicine payment Complainant was asked to buy basic
medicine on his expense.

1.8%

Adverse behavior Aggressive/intolerant behavior of the staff
towards the citizen.

1.5%

Resource nonexistence Department lacks necessary resources. 0.6%

Grievance ascribed Malfeasance/Abuse of powers/official mis-
conduct/sexual harassment to the com-
plainant.

0.3%

Obnoxious/irrelevant The SMS was irrelevant to public services. 0.2%

4.2 Proposed Model and Experimentation

The proposed model McM, introduced in Chapter 3, is modified in order to take one input
instead of two inputs. The linguistic features branch is also dropped. The three cascades are
also modified. The details of the modified model architecture as as follows.

The input text is first mapped to embedding matrix of size l× d where l denotes the
number of words in the text while d is dimensions of the embedding vector for each of these
words. More formally, let T ∈ {w1,w2, ...,wl} be the input text with l words, embedding
matrix is defined by X ∈Rl×d . This representation is then fed to three feature learners, which
are locally supervised. The learned features are then forwarded to discriminator network for
final prediction as shown in Fig. 4.1. Each of these components are discussed in subsequent
subsections.
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Fig. 4.1 Multi-cascaded model (McM) for bilingual short text classification (Figure best seen
in color)

4.2.1 Stacked-CNN Learner

CNN learner is employed to learn n-gram features for identification of relationships between
words. A 1-d convolution filter is used with a sliding window (kernel) of size k (number
of n-grams) in order to extract the features. A filter W is defined as W ∈ Rk×d for the
convolution function. The word vectors starting from the position j to the position j+ k−1
are processed by the filter W at a time. The window h j is expressed as:

h j = [X j⊕X j+1⊕, ...,⊕X j+k−1] (4.1)

Where, the ⊕ represents the concatenation of word vectors. The number of filters are usually
decided empirically. Each filter convolves with one window at a time to generate a feature
map f j for that specific window as:

f j = σ(h j⊙W +b) (4.2)

Where, the ⊙ represents convolution operation, b is a bias term, and σ is a nonlinear
transformation function ReLU, which is defined as σ(x) = max(x,0). The feature maps
of each window are concatenated across all filters to get a high level vector representation
and fed as input to next CNN layer. Output of second CNN layer is followed by (i) global
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max-pooling to remove low activation information from feature maps of all filters, and
(ii) global average-pooling to get average activation across all the n-grams.

These two outputs are then concatenated and forwarded to a small feedforward network
having two fully-connected layers, followed by a softmax layer for prediction of this particular
learner. Dropout and batch-normalization layers are repeatedly used between both fully-
connected layers to avoid features co-adaptation [78, 37].

4.2.2 Stacked-LSTM Learner

The traditional methods in deep learning do not account for previous information while
processing current input. LSTM, however, is able to memorize past information and correlate
it with current information [91]. LSTM structure has memory cells (aka LSTM cells) that
store the information selectively. Each word is treated as one time step and is fed to LSTM
in a sequential manner. While processing the input at current time step Xt , LSTM also takes
into account the previous hidden state ht−1. The LSTM represents each time step with an
input, a memory, and an output gate, denoted as it , ft and ot respectively. The hidden state ht

of input Xt for each time step t is given by:

it = σ(WiXt +Uiht−1 +bi), (4.3)

ft = σ(Wf Xt +U f ht−1 +b f ), (4.4)

ot = σ(WoXt +Uoht−1 +bo), (4.5)

ut = tanh(Wu +Uuht−1 +bu), (4.6)

ct = it ∗ut + ft ∗ ct−1, (4.7)

ht = ot ∗ tanh(ct). (4.8)

Where, the ∗ is element-wise multiplication and σ is sigmoid activation function.
Stacked-LSTM learner is comprised of two LSTM layers. Let H1 be a matrix consisting

of output vectors {h1,h2, ...,hl} that the first LSTM layer produced, denoting output at each
time steps. In terms of unrolled LSTM, it would be unrolled l times. Here l are number of
words in embedding matrix. Once the matrix H1 is produced, this is fed to second LSTM
layer. Similarly, second layer produces another output matrix H2 which is used to apply
global max-pooling and global-average pooling. These two outputs are concatenated and
forwarded to a two layered feedforward network for intermediate supervision (prediction),
identical to previously described stacked-CNN learner.
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4.2.3 LSTM Learner

LSTM learner is employed to learn long-term dependencies of the text as described in [91].
This learner encodes complete input text recursively. It takes one word vector at a time
as input and outputs a single vector. The dimensions of the output vector are equal to the
number of LSTM units deployed. This encoded text representation is then forwarded to
a small feedforward network, identical to aforementioned two learners, for intermediate
supervision in order to learn features. This learner differs from stacked-LSTM learner as it
learns sentence features, and not average and max features of all time steps (input words).

4.2.4 Discriminator Network

The objective of discriminator network is to aggregate features learned by each of above
described three learners and squash them into a small network and get the final prediction.
The discriminator employs two fully-connected layers with batch-normalization and dropout
layer along with ReLU activation function for non-linearity. The softmax activation function
with categorical cross-entropy loss is used on the final prediction layer to get probabilities of
each class. The class label is assigned based on maximum probability. This is treated as final
prediction of the proposed model. This discriminator is identical to the variation of McM
with two inputs (recall paraphrase identification task) as defined in Chapter 3 section 3.2.2.
The complete architecture, along with dimensions of each output is shown in Fig. 4.1.

4.2.5 Experimental Setup

Pre-trained word embeddings on massive data, such as GloVe [68], give boost to predictive
performance for multi-class classification [79]. However, such embeddings are limited to
English language only with no equivalence for Roman Urdu. Therefore, in this study, we
avoid using any word-based pre-trained embeddings to give equal treatment to words of each
language. We perform three kinds of experiments. (1) Embedding matrix is constructed
using ELMo embeddings [69], which utilizes characters to form word vectors and produces
a word vector with d = 1024. We call this variation of the model McME . (2) Embedding
matrix is initialized randomly for each word with word vector of size d = 300. We refer this
particular model as McMR . (3) We train domain specific embeddings2 using word2vec with
word vector of size d = 300 as suggested in original study [61]. We refer to this particular
model as McMD .

2These embeddings are also made available along with dataset.
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Furthermore, we also introduce soft-attention [96] between two layers of CNN and LSTM
(in respective feature learner) to evaluate effect of attention on bilingual text classification.
Attention mechanism “highlights" (assigns more weight) a particular word that contributes
more towards correct classification. We refer to attention based experiments with subscript A
for all three embedding initializations (i.e., McMEA , McMRA , McMDA). This way, a total
of 6 experiments (3 without attention and 3 with attention) are performed with different
variations of the proposed model. To mitigate effect of random initialization of network
weights, we fix the random seed across all experiments. We train each model for 20 epochs
and create a checkpoint at epoch with best predictive performance on test split.

We re-implement the model proposed in [58], and use it as a baseline for our problem.
The rationale behind choosing this particular model as a baseline is it’s proven good pre-
dictive performance on multilingual text classification. For McM, the choices of number
of convolutional filters, number of hidden units in first dense layer, number of hidden units
in second dense layer, and recurrent units for LSTM are made empirically. Rest of the
hyperparameters were selected by performing grid search using 20% stratified validation set
from training set on McMR . Available choices and final selected parameters are mentioned
in Table 5.2. These choices remained same for all experiments and the validation set was
merged back into training set.

Table 4.2 Hyperparameter tuning, the selection range, and final choice

Hyperparameter Possible Values Chosen Value

First CNN layer kernel size (k) 1, 2, 3, 4, 5 1
Second CNN layer kernel size (k) 1, 2, 3, 4, 5 2

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.2
Optimizer Adam, Adadelta, SGD Adam

Learning rate 0.001, 0.002, 0.003, 0.004, 0.005 0.002

4.2.6 Evaluation Metrics

We employed the standard metrics that are widely adapted in the literature for measuring
multi-class classification performance. These metrics are accuracy, precision, recall, and
F1-score, where latter three can be computed using micro-average or macro-average strate-
gies [77]. In micro-average strategy, each instance holds equal weight and outcomes are
aggregated across all classes to compute a particular metric. This essentially means that
the outcome would be influenced by the frequent class, if class distribution is skewed. In
macro-average however, metrics for each class are calculated separately and then averaged,
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irrespective of their class label occurrence ratio. This gives each class equal weight instead
of each instance, consequently favoring the under-represented classes.

In our particular dataset, it is more plausible to favor smaller classes (i.e., other than
“Appreciation" and “Satisfied") to detect potential complaints. Therefore, we choose to report
macro-average values for precision, recall, and F1-score which are defined by (4.9), (4.10),
and (4.11) respectively.

Precision =
∑

C
i=1

T Pi
T Pi+FPi

C
, (4.9)

Recall =
∑

C
i=1

T Pi
T Pi+FNi

C
, (4.10)

F1− score =
∑

C
i=1

2×Precisioni×Recalli
Precisioni+Recalli

C
. (4.11)

4.3 Results and Discussion

Before evaluating the McM, we first tested the baseline model on our dataset. Table 5.3
presents results of baseline and all variations of our experiments. As each feature learner is
supervised, we also show metrics for all three feature learners along with the final discrim-
inator network. We focus our discussion on F1-score as accuracy is often misleading for
dataset with unbalanced class distribution. However, for completeness sake, all measures are
reported.

It is observed from the results that baseline model performs worst among all the experi-
ments. The reason behind this degradation in performance can be traced back to the nature of
the texts in the datasets (i.e., datasets used in original paper of baseline model [58] and in our
study). The approach in base model measure the performance of the model on multilingual
dataset in which there is no code-switching involved. The complete text belongs to either
one language or the other. However, in our case, the SMS text can have code-switching
between two language, variation of spelling, or non-standard grammar. Baseline model is
simple 1 layered CNN model that is unable to tackle such challenges. On the other hand,
McM learns the features from multiple perspectives, hence feature representations are richer,
which consequently leads to a superior predictive performance. As every learner in McM
is also supervised, all 4 components of the proposed model (i.e., stacked-CNN learner,
stacked-LSTM learner, LSTM-learner, and discriminator) can also be compared with each
other.

In our experiments, the best performing variation of the proposed model is McMD . On
this particular setting, discriminator is able to achieve an F1-score of 0.69 with precision
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Table 4.3 Performance evaluation of variations of the proposed model and baseline. Showing
highest scores in boldface

Model Component Accuracy Precision Recall F1-score
Baseline [58] - 0.68 0.52 0.37 0.39

McME Stacked-CNN Learner 0.83 0.66 0.62 0.63
Stacked-LSTM Learner 0.84 0.70 0.60 0.64
LSTM Learner 0.80 0.69 0.48 0.51
Discriminator 0.84 0.68 0.63 0.66

McMEA Stacked-CNN Learner 0.82 0.65 0.57 0.60
Stacked-LSTM Learner 0.82 0.65 0.57 0.60
LSTM Learner 0.80 0.62 0.49 0.51
Discriminator 0.83 0.66 0.60 0.62

McMR Stacked-CNN Learner 0.82 0.66 0.59 0.62
Stacked-LSTM Learner 0.82 0.66 0.58 0.61
LSTM Learner 0.81 0.62 0.59 0.59
Discriminator 0.83 0.64 0.61 0.62

McMRA Stacked-CNN Learner 0.80 0.65 0.52 0.53
Stacked-LSTM Learner 0.81 0.65 0.55 0.58
LSTM Learner 0.81 0.64 0.55 0.58
Discriminator 0.81 0.64 0.58 0.59

McMD Stacked-CNN Learner 0.84 0.71 0.63 0.66
Stacked-LSTM Learner 0.85 0.71 0.67 0.69
LSTM Learner 0.83 0.68 0.60 0.63
Discriminator 0.86 0.72 0.68 0.69

McMDA Stacked-CNN Learner 0.82 0.66 0.59 0.62
Stacked-LSTM Learner 0.84 0.69 0.64 0.66
LSTM Learner 0.83 0.67 0.61 0.63
Discriminator 0.85 0.70 0.66 0.67

and recall values of 0.72 and 0.68 respectively. Other components of McM also show the
highest stats for all performance measures. However, for McMDA , a significant reduction
in performance is observed, although, attention-based models have been proven to show
improvement in performance [96]. Investigating the reason behind this drop in performance
is beyond the scope of this study. The model variations trained on ELMo embedding have
second highest performance. Discriminator of McME achieves an F1-score of 0.66, beating
other learners in this experiment. However, reduction in performance is persistent when
attention is used for McMEA .
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Fig. 4.2 Test error for all three feature learners and discriminator network over the epochs for
all 4 variations of the model, showing lowest error for domain specific embeddings while
highest for random embedding initialization

Regarding the experiments with random embedding initialization, McMR shows similar
performance to McMEA , while McMRA performs the worst. It is worth noting that in each
experiment, discriminator network stays on top or performs equally as compared to other
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components in terms of F1-score. This is indication that discriminator network is able to
learn richer representations of text as compared to methods where only single feature learner
is deployed.

Furthermore, the results for testing error for each component (i.e., 3 learners and a
discriminator network) for all 4 variations of the proposed model are presented in Fig. 4.2. It
is evident that the least error across all components is achieved by McMD model. Turning
now to individual component performance, in ELMo embeddings based two models, lowest
error is achieved by discriminator network, closely followed by stacked LSTM learner and
stacked-CNN learner, while LSTM learner has the highest error. As far as model variations
with random embeddings initializations are concerned, most interesting results are observed.
As shown in subplot (c) and (d) in Fig. 4.2, McMR and McMRA tend to overfit. After second
epoch, the error rate for all components of these two variations tend to increase drastically.
However, it shows minimum error for discriminator in both variations, again proving that the
features learned through multiple cascades are more robust and hold greater discriminative
power. Note that in all 6 variations of experiments, the error of discriminator network is the
lowest as compared to other components of McM. Hence it can be deduced that learning
features through multiple perspectives and aggregating them for final prediction is more
fruitful as compared to single method of learning.
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Chapter 5

Sentiment Classification of Bilingual
Short Text

Social media platforms are increasingly becoming popular for sharing sentiments towards a
variety of topics. Thus, automatic sentiment classification of text posted on these platforms
has become an important task to capture the overall “feel" of the masses towards a subject of
interest. However, the posts on such platforms are often influenced by regional languages
and are often noisy (recall Chapter 1). As a consequence, factors like informal diction,
non-standard grammar, spelling variations, code-switching, acronyms, jargon, and short text
length make the problem of automatic sentiment classification highly challenging.

It is established that pre-trained word embeddings, such as GloVe [68], give a boost to
predictive performance of language models [79]. However, such “word-based" embeddings
are limited to English language only with no equivalence for informal languages. An
alternative, therefore, is to use “character-based" embedding [70, 83, 3]. Such embeddings
are available in the form of pre-trained models on large scale data of English language, hence
are well-suited for any language that uses English alphabets.

The focus of this chapter is sentiment classification “Roman Urdu" (RU) (refer to
Chapter 1). Despite its prevalence, RU sentiment classification has got little attention and
research on this “language" lags behind due to the non-availability of gold-standard datasets.

With respect to this particular task, our first contribution is that we develop an annotated
dataset called MultiSenti for the problem of sentiment classification of RU short text. This
dataset is intended to detect overall sentiment and “feel" of the citizens of Pakistan towards
a topic of interest. Such sentiment analysis can be used by the government to gauge the
response of the population towards a particular policy proposal or by politicians to gauge
his/her popularity. This dataset is made available publicly to further the research in this
direction.
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5.1 MultiSenti Dataset

Our second contribution is that we investigate the feasibility of adapting character-based
pre-trained embedding models for sentiment classification of RU short text. To exhibit
the contrast with adapted embeddings, we also train our own word-based multilingual
embeddings on Roman Urdu corpus. The performance of both types of methods (i.e.,
adapting existing character-based embeddings vs training own word-based embeddings) in
terms of sentiment classification accuracy is assessed exhaustively.

Our third contribution is that we propose two deep learning models for sentiment classifi-
cation of RU short text, namely McM and CNN-gram. Recall from Chapter 4 that the former
model employs three cascades (aka feature learners) to learn rich textual representations
from three perspectives. These representations are then forwarded to a small discriminator
network for final prediction. The latter model is inspired by [4] who showed that n-gram
information are sufficient for multilingual short text sentiment classification. CNN-gram
extracts n-gram information from the input text to detect sentiment. Both of these models
tend to learn from raw text only without utilizing lexical normalization, language translation,
language transliteration, or code-switching indication. The performance of the proposed
models is compared with three existing multilingual sentiment classification models known
as (i) ConvNet [58], (ii) Attention-LSTM [103], and (iii) SimpleConv [4]. These comparisons
are made in terms of the F1-score on MultSenti dataset. The results demonstrate that McM
outperforms other models in all of the experiments while CNN-gram achieves comparable
results with existing models. The study also proves the practicality and usefulness of adapting
character-based pre-trained embeddings from English language for Roman Urdu language.

The rest of the chapter is organized as follows. Section 5.1 describes MultiSenti dataset
development process and its characteristics. Details on language resource adaptation are
discussed in section 5.2. The proposed model architectures, their hyperparameters, imple-
mentation details, evaluation metrics, and domain-specific multilingual embeddings are
introduced in section 5.3. We discuss the results of proposed models, their run time, and
comparison with baseline models in section 5.4.

5.1 MultiSenti Dataset

The MultiSenti dataset is collected from Twitter during and after the general elections of
Pakistan in the year 2018. The objective behind the collection of this dataset is to identify
the overall emotion and sentiment of populous towards on-going election process and its
result. The dataset has been categorized into “negative", “positive", and “neutral" sentiments.
A sentiment in a tweet can either be expressed in monolingual or multilingual form. We
focus on three types of manifestations for each sentiment namely, (i) Roman Urdu, (ii)
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Table 5.1 MultiSenti dataset characteristics

Class Label Class %age Language Language %age

Negative 48.27% Roman Urdu 46.34%
Positive 35.10% English 2.52%
Neutral 16.63% Mixed 51.14%

English, and (iii) Mixed. Romain Urdu means that the sentiment is expressed in Romanized
Urdu, English means that the sentiment is expressed in English, while Mixed means that
the sentiment is expressed through both Roman Urdu and English text. Preprocessing of
the data is kept minimal to the extent of lowering the cases and removing all the records
having only single word in tweet. The “gold standard" is constructed by manually annotating
20,735 samples into predefined categories by two annotators in supervision of a domain-
expert. The involvement of the domain-expert was deemed necessary for the quality of
the “gold standard". In case of conflict between two annotators, decision of domain expert
was considered. Class labels percentages and language ratios in the dataset are presented
in the Table 5.1. Finally, stratified sampling method was opted for splitting the data into
train and test partitions with 80/20 ratio (i.e., 80% records for training and 20% records for
testing). This way, training split has 16,588 records while testing split has 4,147 records.
The rationale behind stratified sampling was to maintain the ratio of every class in both
splits. The preprocessed and annotated data along with train and test split is made available
publicly1.

5.2 Language Resource Adaptation

We first opted to examine the feasibility of resource adaptation from other related studies.
This includes deep learning models for multilingual sentiment classification and word em-
bedding choices. As for the model choices, three models are selected from the literature that
has proven good predictive performance on multilingual sentiment classification in under-
resourced languages. These models include (i) ConvNets [58], (ii) Attention-LSTM [103],
and (iii) SimpleConv [4]. All of these models were reimplemented using hyperparameters
as defined in the original studies in order to validate their performance on the MultiSenti
dataset.

As regards to word embedding choices for informal and unstructured short text, a well-
known problem is the “out-of-vocabulary" where certain words are not found in the em-

1https://github.com/haroonshakeel/multisenti
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5.2 Language Resource Adaptation

bedding base. In such cases, either random initialization of embeddings [4] or utilizing
character-based pre-trained embeddings [3] is plausible. We investigate both strategies on
MultiSenti dataset using all three deep learning models mentioned above. For our experi-
ments, random embeddings are initialized from a uniform distribution with 300 dimensions.
The choice of character-based pre-trained embeddings is restricted to ELMo [69], which
is trained on a large-scale English language corpus and produces an embedding of 1024
dimensions. During the training of a model, embedding layer can be finetuned (i.e., weights
of the embeddings are updated during training, aka “transfer-learning" of a pre-trained model)
or training can proceed without finetuning (i.e., where weights of the embeddings are not
updated) [103]. These two cases are also analyzed to get more concrete insight into the
adaptability. To assess the out-of-the-box performance of pre-trained embedding model, we
also take prediction directly from ELMo by introducing a softmax layer on top of ELMo. This
way, a total of 14 experiments were performed. The performance of each experiment was
evaluated in terms of sentiment classification accuracy on test split of MultiSenti. Figure 5.1
compares the results of these tests.

The experiments reveal that ELMo out-of-the-box performs on par with the other vari-
ations, though finetuning does not affect its predictive performance. However, random
embedding initialization benefits from finetuning on all three models. Slightly superior
results are achieved when ConvNet and Attention-LSTM deep learning models are used on
top of ELMo. Interestingly, SimpleConv model shows significant decline in the performance
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Fig. 5.1 Sentiment classification accuracy of each adapted model on MultiSenti dataset. FT
= Finetuning (Figure best seen in color)
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when ELMo embedding without finetuning was used. However, with finetuning, it was able
to achieve comparable results with other variants. It is also worth noting that employing ran-
dom embedding without finetuning yields lowest performance. These planned comparisons
reveal that finetuning the embedding layer is more beneficial as compared to freezing the
weight updates during the training, and using a deep model on top of an embedding layer is a
perceptive choice.

However, all models on this informal language dataset underperform relative to the results
reported on formal languages such as English, French, Greek, and Chinese [58, 103]. These
observations clearly indicate that existing models for formal languages are not well-suited
for informal language and call for novel model architectures specifically tailored for informal
and unstructured language.

5.3 Proposed Solution

To learn the richer representations from the informal short text, two model architectures
are proposed. Let T ∈ {w1,w2, ...,wl} be the input text with l words, embedding matrix is
defined by X ∈ Rl×d , where d is the dimensions of the embedding vector for each of the
words. This matrix is then fed to the deep learning models. Details of both models are
described in subsequent subsections.
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5.3.1 Multi-cascaded Model (McM)

The proposed model, named multi-cascaded model (McM), owes a lot to the findings by
Reimers, N., & Gurevych (2017), who concluded that deeper models have negligible effect on
the predictive performance of NLP tasks [73]. McM exhibits a wider model, which employs
three feature learners (cascades) that are trained for classification with local supervision in
parallel as shown in Figure 5.2. The learned features from these cascades are then forwarded
to a discriminator network for final prediction. A brief description of each of these four
components is given below.

Stacked-CNN Learner

CNN learner is employed to learn n-gram features for identification of relationships between
words. A 1-d convolution filter is used with a sliding window (kernel) of size k (number
of n-grams) in order to extract the features. A filter W is defined as W ∈ Rk×d for the
convolution function. The word vectors starting from the position j to the position j+ k−1
are processed by the filter W at a time. The window h j is expressed as:

h j = [X j⊕X j+1⊕, ...,⊕X j+k−1] (5.1)

Where the ⊕ represents the concatenation of word vectors. Each filter convolves with one
window at a time to generate a feature map f j for that specific window as:

f j = σ(h j⊙W +b) (5.2)

Where⊙ represents convolution operation, b is a bias term and σ is a nonlinear transformation
function ReLU, which is defined as σ(x) = max(x,0). The feature maps of each window
are concatenated across all filters to get first level feature representation and fed as input
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to the next CNN layer. The output of second CNN layer is followed by (i) global max-
pooling to remove low activation information from feature maps of all filters, and (ii) global
average-pooling to get average activation across all the n-grams.

These two outputs are then concatenated and forwarded to a small feedforward network
having two fully-connected layers, followed by a softmax layer for the prediction of this
particular learner. Dropout and batch-normalization layers are repeatedly used between both
fully-connected layers to avoid features co-adaptation [78, 37].

Table 5.2 Hyperparameters, the selection range, and final choice for each of the proposed
model

Hyperparameter Values Choices Chosen for McM Chosen for CNN-gram
First CNN layer kernel size (k) 1, 2, 3, 4, 5 1 -

Second CNN layer kernel size (k) 1, 2, 3, 4, 5 2 -
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.5 0.4

Optimizer RMSprop, Adam, Adadelta, SGD Adam Adadelta
Learning rate (Adam) 0.001, 0.002, 0.003, 0.004, 0.005 0.002 -

Learning rate (Adadelta) 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 - 1.0

Stacked-LSTM Learner

The traditional methods in deep learning do not account for previous information while
processing current input. LSTM, however, is able to memorize past information and correlate
it with current information [91]. LSTM structure has memory cells (aka LSTM cells) that
store the information selectively. Each word is treated as one time step and is fed to LSTM
in a sequential manner. While processing the input at the current time step Xt , LSTM also
takes into account the previous hidden state ht−1. The LSTM represents each time step with
an input, a memory, and an output gate, denoted as it , ft and ot respectively. The hidden state
ht of input Xt for each time step t is given by:

it = σ(WiXt +Uiht−1 +bi), (5.3)

ft = σ(Wf Xt +U f ht−1 +b f ), (5.4)

ot = σ(WoXt +Uoht−1 +bo), (5.5)

ut = tanh(Wu +Uuht−1 +bu), (5.6)

ct = it ∗ut + ft ∗ ct−1, (5.7)

ht = ot ∗ tanh(ct), (5.8)
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Where the ∗ is element-wise multiplication and σ is sigmoid activation function. Stacked-
LSTM learner is comprised of two LSTM layers. The output of the first LSTM layer is fed to
second LSTM layer and the output produced by second LSTM layer is forwarded to global
max-pooling and global-average pooling layers. The former drops the low activations while
the latter averages activations across all time steps. These two outputs are concatenated and
forwarded to a two-layered feedforward network for intermediate supervision (prediction),
identical to previously described stacked-CNN learner.

LSTM Learner

LSTM learner is employed to learn long-term dependencies of the text as described in [91].
This learner encodes complete input text recursively. It takes one word vector at a time
as input and returns a single vector. The dimensions of the output vector are equal to the
number of LSTM units deployed. This encoded text representation is then forwarded to a
small feedforward network identical to the aforementioned two learners, for intermediate
supervision in order to learn features. This learner differs from stacked-LSTM learner as it
learns sentence features, not average and max-features of all time steps (input words).

Discriminator Network

The objective of the discriminator network is to aggregate features learned by each of the
above described three learners and squash them into a small network for final prediction.
The discriminator employs two fully-connected layers with batch-normalization and dropout
layer along with ReLU activation function for non-linearity. The softmax activation function
with categorical cross-entropy loss is used on the final prediction layer to get probabilities of
each class. The class label is assigned based on maximum probability. This is treated as the
final prediction of the proposed model. The complete architecture, along with dimensions of
each output is shown in Figure 5.2.

5.3.2 Convolutional Neural Network n-gram Model (CNN-gram)

In NLP, n-gram information can be used to learn a certain pattern from text [4]. The second
proposed model named CNN-gram learns patterns based on uni-gram, bi-gram, tri-gram, and
quadgram using CNN. Complete model architecture is illustrated in Figure 5.3. The first CNN
layer uses kernel size of 1 with ReLU activation function to learn un-igram representations
followed by a max-pooling layer with pool size of 2. Max-pooling is utilized to drop low
activation values from learned representations, which also acts as dimensionality reduction
by downsampling the output. The max-pooled output is then forwarded to another CNN
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layer which uses kernel size of 2 to learn bi-gram patterns. This is followed by another
max-pooling layer identical to first layer. Similarly, third and fourth CNN layers with max-
pooling are used to learn tri-gram and quad-gram patterns respectively. Note that these are
not bi-gram, tri-gram, and quad-gram patterns in “true" sense as one of the two activations is
dropped during max-pooling process with pool size of 2 after every CNN layer. However,
on forwarded high activations, the notion of bi-gram, tri-gram, and quad-gram holds true.
Outputs of all four max-pooling layers are concatenated followed by a global average-pooling
layer, which takes the average value as the feature corresponding to each filter. A dropout and
batch-normalization layer is then utilized to avoid feature co-adaptation, followed by softmax
activation function for final prediction of the sentiment. The categorical cross-entropy is used
as loss function.

5.3.3 Hyperparameters Tuning

In both proposed models, the choices of the number of convolutional filters, number of
units in dense layers, and number of LSTM units are made empirically. Figures 5.2 and 5.3
show these choices for McM and CNN-gram respectively. For both models, rest of the
hyperparameters were selected by performing a grid search using a 20% stratified validation
set taken from training set and utilizing random embedding initialization without finetuning.
Available choices and final selected parameters are mentioned in Table 5.2. These choices
remained same for all other experiments and the validation set was merged back into training
set.

For McM, value for kernel size (k) for first and second CNN turned out to be 1 and 2
respectively. As for the dropout rate, 0.5 was optimal while Adam optimizer with a learning
rate of 0.002 was selected. Turning now to CNN-gram, the kernel sizes for all CNN layers
were fixed, as stated in section 5.3.2. While dropout rate, optimizer, and learning rate were
chosen to be 0.4, Adadelta, and 1.0 respectively.

5.3.4 Multilingual Embeddings

Embeddings developed on domain-specific corpus can give a boost to the classification
performance of the models [62, 79]. Keeping this in view, multilingual embeddings were
also constructed from a combined corpus constituted of MultiSenti dataset and another large
scale Roman Urdu dataset 2. The total number of words in this combined corpus were more
than 6.5 millions. We use skip-gram model of word2vec with word vector of size d = 300 as
suggested in original study [61]. These embeddings are trained for 500,000 iterations. By

2These embeddings are made available along with dataset.
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incorporating these embeddings for our experiments, we aim to answer the question “Does
it worth to train multilingual embeddings from informal language text when pre-trained
embeddings on a large scale corpus of English language are readily available to adapt?"

5.3.5 Evaluation Metrics

We employed the standard metrics that are widely adopted in the literature for measuring
sentiment classification performance involving more than two classes. These metrics are
accuracy, precision, recall, and F1-score, where latter three can be computed using micro-
average or macro-average strategies [77, 4]. In the micro-average strategy, the outcome for
any metric is influenced by the majority class, if the distribution is skewed. Therefore, it is
plausible to use macro-average strategy which is insensitive to skewness in class distribution.
In MultiSenti dataset, “neutral" class is underrepresented, hence we choose to report macro-
average values for precision, recall, and F1-score which are defined by (5.9), (5.10), and
(5.11) respectively.

Precision =
∑

C
i=1

T Pi
T Pi+FPi

C
, (5.9)

Recall =
∑

C
i=1

T Pi
T Pi+FNi

C
, (5.10)

F1− score =
∑

C
i=1

2×Precisioni×Recalli
Precisioni+Recalli

C
. (5.11)

Where T P,FP, and FN stand for true positives, false positives and false negatives respectively,
while C is the number of unique classes in the dataset.

5.3.6 Implementation Details

All the implementation is done in Python using Keras library with Tensorflow backend. All
weights of the networks are initialized randomly and to mitigate the effect of randomness,
random seed is fixed across all experiments. In each of the experiments, the model is trained
for 100 epochs. A checkpoint of the learned weights is saved at epoch with best predictive
performance on the test split. The early stopping approach is also opted and training is
stopped if testing error does not decrease for 10 epochs.
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Table 5.3 Performance evaluation of variations of the proposed models and baselines. (Show-
ing highest scores in boldface)

Without Finetuning With Finetuning

Model Embedding Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
ELMo [69] - 0.63 0.66 0.55 0.57 0.63 0.64 0.55 0.57

ConvNet [58] Random 0.60 0.57 0.58 0.57 0.63 0.60 0.61 0.61
ELMo 0.64 0.63 0.59 0.60 0.64 0.62 0.60 0.61
Multilingual 0.63 0.60 0.57 0.58 0.65 0.62 0.60 0.61

Attention-LSTM [103] Random 0.59 0.56 0.56 0.55 0.66 0.64 0.64 0.64
ELMo 0.66 0.64 0.61 0.62 0.64 0.63 0.60 0.61
Multilingual 0.64 0.61 0.61 0.61 0.66 0.63 0.62 0.62

SimpleConv [4] Random 0.64 0.63 0.58 0.60 0.67 0.65 0.63 0.63
ELMo 0.17 0.06 0.33 0.10 0.62 0.65 0.54 0.55
Multilingual 0.35 0.12 0.33 0.17 0.35 0.12 0.33 0.17

McM Random 0.67 0.67 0.61 0.62 0.67 0.69 0.60 0.62
ELMo 0.67 0.66 0.62 0.63 0.68 0.65 0.65 0.65
Multilingual 0.68 0.67 0.64 0.65 0.69 0.71 0.62 0.64

CNN-gram Random 0.49 0.32 0.38 0.35 0.64 0.68 0.57 0.59
ELMo 0.66 0.67 0.61 0.63 0.65 0.66 0.59 0.60
Multilingual 0.65 0.63 0.59 0.60 0.66 0.66 0.60 0.62

5.4 Results and Discussion

This section summarizes the main findings of the work. The results of both of the proposed
models are compared with existing multilingual sentiment classification models described in
section 5.2. We focus the discussion on F1-score of all the models. However, a comprehensive
comparison of all the metrics is given in Table 5.3. For each variation of the embedding,
results for both cases (i.e.,with and without embedding finetuning) are presented. Based on
the results, we make following observations.

Using pre-trained embeddings out-of-the-box yields identical performance when used
either without or with finetuning. Specifically talking about the case when a model is
used on top of the embeddings, ELMo embeddings without finetuning outperform the
random and multilingual embeddings on ConvNet, Attention-LSTM, and CNN-gram models.
Interestingly, in the case of SimpleConv model, ELMo yields poorest performance. Further
examination of this particular case revealed that model was unable to learn when any pre-
trained embeddings were used. However, using random embeddings for this particular
model gives output comparable to other models. This implies that the model was specifically
engineered to work with random embedding (as is evident from the original study). Regarding
the use of random embedding for other models, the proposed model McM achieves highest
F1-score, while the proposed CNN-gram model yields the poorest performance. Amongst
rest of the models, ConvNet marginally outperforms Attention-LSTM. Regarding the use of
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multilingual embeddings, it was found that the least F1-score was achieved by SimpleConv,
while McM achieved the highest score, which surpasses all the experiments without finetuning
the embeddings.

Table 5.4 Language wise breakdown of predictive performance of each model (in terms of %
correctly classified)

Without Finetuning With Finetuning

Model Embedding Roman Urdu English Mixed Roman Urdu English Mixed
ELMo [69] − 63.57% 67.88% 63.09% 62.54% 65.14% 62.71%

ConvNet [58] Random 58.74% 58.72% 60.35% 63.63% 65.14% 62.29%
ELMo 64.41% 64.22% 63.85% 63.99% 66.05% 63.42%
Multilingual 64.72% 58.71% 61.44% 66.44% 59.63% 63.28%

Attention-LSTM [103] Random 59.78% 54.13% 58.88% 67.01% 67.89% 65.78%
ELMo 66.13% 69.72% 64.65% 65.30% 64.22% 63.52%
Multilingual 65.71% 62.38% 62.90% 67.22% 63.30% 64.32%

SimpleConv [4] Random 64.41% 60.55% 64.08% 68.10% 66.97% 65.87%
ELMo 16.54% 33.94% 15.83% 62.80% 62.38% 62.09%
Multilingual 31.63% 39.44% 37.99% 31.63% 39.44% 37.99%

McM Random 68.16% 66.97% 66.20% 68.26% 69.72% 66.54%
ELMo 66.91% 68.80% 67.43% 68.78% 72.47% 67.06%
Multilingual 69.04% 66.05% 67.81% 70.49% 61.46% 68.01%

CNN-gram Random 58.49% 39.44% 50.70% 66.44% 61.46% 62.61%
ELMo 66.18% 70.64% 66.30% 66.33% 68.80% 63.75%
Multilingual 67.48% 57.79% 62.66% 67.48% 57.79% 65.64%

Turning now to the case of finetuning, ConvNet performs identical in terms of F1-score
for all of the embeddings, while Attention-LSTM and SimpleConv benefit from finetuning
when random embeddings are used. For the proposed model CNN-gram, multilingual
embeddings yield the highest score. If we now turn to McM model, ELMo embeddings yield
the highest F1-score of 0.65. This is an interesting finding as it is identical to the F1-score
of McM when multilingual embedding was used. As CNN-gram model ignores longterm
dependencies and only accounts for n-gram information, it performs worst than McM but is
comparable with other models.

Figure 5.4 presents average time taken per epoch (at log scale; because values for simple
models like ConvNets were so small, that these were difficult to capture at regular scale).
With respect to multilingual embedding, the pre-training time of 500,000 iterations is not
part of this analysis. It is worth noting that even though simpler networks such as ConvNets
and SimpleConv take the least amount of time, their performance is inconsistent across all
settings. While the proposed model McM shows the highest performance in majority of
the cases with ±3% variation for each embedding. These findings lead to conclude that no
apparent advantage exists in training word-based multilingual embeddings from scratch. The
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pre-trained character-based embedding on the English language with finetuning suffices for
informal language to get identical results while avoiding pre-training overhead. However, to
get most out of these embedding, a carefully tailored model for sentiment classification of
informal short text is crucial.

As was mentioned in section 5.1, a particular tweet can be entirely in Roman Urdu,
English, or both languages. Table 5.4, presents a more detailed analysis of the experiments
and compares the performance of the models in terms of language-wise prediction accuracy,
that is; how many instances of a specific language were correctly classified. It is worthwhile
to note that all the models were trained on all the languages combined. The language-wise
analysis sheds light on the model’s tendency to favor a particular language. It is found
that, in general, ELMo embedding tends to favor the English language, which sustains the
intuitive sense as these embeddings are trained on English language. It is interesting to
note that multilingual embedding tends to favor Roman Urdu (and consequently Mixed)
language. However, this does not affect the model’s performance drastically, hence it does
not help to draw a strong conclusion that training a domain-specific embedding is always
favorable. Furthermore, training the embedding from scratch is a costly approach and as
results suggest, the performance gains for the models are not worthwhile. One can argue that
embeddings trained on an informal multilingual corpus, which is comparable in size to the
corpus of English language, could yield better performance than adapting the embeddings.
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Fig. 5.4 Average training time per epoch (in seconds) for each configuration (Figure best
seen in color)
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However, this leads to the initial paradox of not having enough data resources for the informal
languages.

Table 5.5 Predictions of best performing variation of each model on specific tweets. (RU =
Roman Urdu, E = English, M = Mixed, − = negative, + = positive, 0 = neutral)

Tweet [Translation] Lang. Ground
Truth

ELMo Conv-
Net

Attention-
LSTM

Simple-
Conv

McM CNN-
gram

ik ki bongian [ik and his foolishness] RU − + + 0 0 + 0

aur karo burayi [malign more] RU − + + − 0 − −

pmln mera janon meri jan [pmln my
passion my life]

RU + − + + + + +

sialkot sy b pmln jeet gya tottaly
[pmln has totally won from sialkot
also]

M 0 − 0 0 0 0 0

i agree with this bhai log vote
daal rahay hotay to itni seats jeetna
mushkil hota [i agree with this it
would’ve been difficult to win these
much seats if gangsters were voting]

M + − − − − − −

ik today in banigala E 0 + 0 0 0 0 0

has aleem khan won punjab seat E 0 + 0 + 0 0 +

Table 5.5 lists a few examples from the test split of the MultiSenti dataset and their
corresponding predicted label from the best-performing variation of each model. Translation
of each tweet in English is given in square braces to enhance the readability. It is observed
that for all selected tweets, irrespective of language, ELMo fails to correctly classify them.
Sarcastic tweets in Roman Urdu are misclassified by all of the models, which demands to
investigate the phenomenon further, this, however, is beyond the scope of this study. In
general, the proposed models perform better for shorter tweets. However, longer tweets in
any language that are nuanced (like using “if" and “but" to negate what was said before) are
not classified correctly by any classifier. These insights open up avenues for future research
in this direction.
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Chapter 6

Conclusion and Future Work

In this thesis, we present a novel deep learning model architecture called multi-cascaded
model (McM). The model employs multiple feature learners to encode and classify short texts.
As such, it exploits multiple semantic cues to distinguish between the classes. The proposed
multi-cascaded model is both deep and wide in architecture, and it embodies previous best
practices in deep models. We show its utility for three short text analytics tasks.

First, the effectiveness of the proposed model is shown on the task of paraphrase identifi-
cation. We carry out an ablation study where one cascade is ignored at a time to justify the
utilization of multiple cascades. The results confirm that multiple learners are able to produce
a more robust model as compared to the single learner. We evaluate and compare our model
on three benchmark datasets of short texts in the English language, representing both noisy
and clean text. Our model produces a higher predictive performance on all three datasets
beating all previously published results on them. The proposed model exhibits generalization
across both noisy and clean texts. As deep learning models are inherently data-hungry,
we also present a data augmentation strategy to enhance the model’s performance. The
data augmentation strategy generates additional paraphrase and non-paraphrase annotations
based on the graph analysis of the existing annotations. We find the data augmentation
strategy useful to enhance the model’s predictive performance. We also study the impact of
different steps in data augmentation and the use of linguistic features in conjunction with
learned features. We found that linguistic features can improve the performance of the model
when the dataset has too few records (a couple of thousands) while they are ineffectual
when the dataset is sufficiently large (having a couple of hundred thousand records). With
regards to the data augmentation strategy, we find that it yields significant improvement
in the performance of the proposed model for paraphrase detection on a clean text dataset.
However, noisy text demands caution while employing the proposed data augmentation
strategy. To this end, we parametrize the strategy to control the level of augmentation. It
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is plausible that the augmentation strategy inflicts conflicts in annotation, where a pair of
text is declared as a paraphrase, while in actual annotations, it is non-paraphrase and vice
versa. The subjective analysis of such conflicts highlighted that the annotation produced by
data augmentation is correct, while the existing annotation from crowd-source was erroneous.
In the future, it would be beneficial to carry out a more in-depth analysis of conflicts and
investigate strategies for resolving them. Furthermore, this strategy can also be adapted in
intelligent crowd-sourcing platforms, where pairs of texts are labeled in order to improve the
annotation quality and detect errors in real-time.

Second, we show the efficacy of McM for multi-class classification of bilingual (English-
Roman Urdu) text with code-switching. For this purpose, a new dataset of 313,813 from
SMS feedbacks is developed. The dataset is intended for the enhancement of petty corruption
detection in public offices and to provide grounds for future research in this direction. Fur-
thermore, three word embedding initialization techniques and the soft-attention mechanism
is also investigated. The observations from extensive experimentation led us to conclude that:
(1) word embeddings vectors generated through characters tend to favor bilingual text classi-
fication as compared to random embedding initialization, (2) the attention mechanism tends
to decrease the predictive performance of the model, irrespective of embedding types used,
(3) using features learned through single perspective yield poor performance for bilingual
text with code-switching, (4) training domain-specific embeddings on a large corpus and
using them to train the model achieves the highest performance. With regards to future work,
it is worthwhile to investigate the reason behind the degradation of model performance with
soft-attention, as in literature, attention is known to improve the performance of the model.

Third, the advantage of using McM for the task of sentiment classification in the code-
switched informal short text (tweets in Roman Urdu) is demonstrated. For this purpose, we
develop another dataset of 20,735 tweets that are collected during the general elections of
Pakistan in the year 2018. For this task, we investigate the feasibility of adapting embeddings
and language models from resource-rich languages. Furthermore, we also propose another
model inspired by findings in [4] and compare it with McM and three other baselines. Our
work has led us to conclude that adapting existing resources from a resource-rich language to
an informal language is practical. The evidence from this study suggests that this is only true
for the tasks that demand the availability of large scale corpus, such as training embeddings.
It is evident from the results that an embedding trained on sufficiently large corpus in the
English language can successfully be adapted for an informal language. However, this is
not necessarily true for the model choice. It is crucial that a model is explicitly engineered
towards a colloquial language as compared to adapting models developed for other languages.
Our work has a limitation that it only investigates the adaptation of one character-based
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embedding, while there exist different character-based pre-trained embeddings trained on the
English language, such as BERT [15] (for which a multilingual variant is also made available
recently). To further this research, we plan to investigate other embedding choices. Given
the results of the current extensive experimentation, we hope that further tests will be in line
with the findings of this study.

In summary, in this research, we have highlighted the importance of text analytics
for freestyle, informal, and multilingual short text. In particular, we have presented a
novel deep learning architecture that learns the context and semantics of user-generated
clean and noisy short text from multiple perspectives. In our presentation, we demonstrate
the effectiveness and efficiency of the proposed model on three tasks, i.e., (1) paraphrase
identification, (2) multilingual multi-class text classification, and (3) sentiment classification
of code-switched short text. For the last two tasks, two large-scale annotated datasets
are developed and made publicly available to further the research in this direction. We
also compare different embedding initialization approaches, and our findings clarify that
a carefully tailored model plays a more critical role than embedding initialization for a
robust text analytics system. We have devised a systematic data augmentation strategy for
paraphrase identification task. Our results suggest that employing this strategy reliably
generates additional paraphrase and non-paraphrase annotations from existing annotations,
consequently improving the performance of the model. Furthermore, we also show the utility
of the proposed augmentation strategy to identify erroneous annotation in the dataset.

This research has taken a step closer to language-independent text analytics, which we
are currently in the process of investigating.
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Appendix A

Effect of Paraphrase Transitive
Extension Levels on SemEval Dataset

Table A.1 Paraphrase detection performance on SemEval dataset with K=1

Augmentation
Learned Features Learned + Linguistic Features

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

P2, P3 82.8 57.9 65.1 61.3 86.8 71.3 61.1 65.8
P2, P3, P1 82.1 55.9 68.0 61.3 85.3 66.9 58.9 62.6
P2, P3, NP1 81.9 55.2 69.7 61.6 87.4 72.5 63.4 67.7
P2, P3, P1, NP1 82.8 57.1 70.9 63.3 86.8 72.2 59.4 65.2
P2, P3, P1, NP1, NP2 85.2 64.9 63.4 64.2 84.6 61.9 68.6 65.1

Table A.2 Paraphrase detection performance on SemEval dataset with K=2

Augmentation
Learned Features Learned + Linguistic Features

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

P2, P3 82.2 56.7 62.9 59.6 85.0 65.6 58.9 62.0
P2, P3, P1 81.1 53.6 72.0 61.4 83.3 58.1 71.4 64.1
P2, P3, NP1 82.0 56.3 61.7 58.9 85.1 65.6 60.0 62.7
P2, P3, P1, NP1 83.5 59.9 64.0 61.9 85.4 66.5 61.1 63.7
P2, P3, P1, NP1, NP2 84.2 62.1 62.9 62.5 83.2 57.1 78.3 66.0
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Table A.3 Paraphrase detection performance on SemEval dataset with K=3

Augmentation
Learned Features Learned + Linguistic Features

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

P2, P3 82.6 57.9 60.6 59.2 86.0 63.7 61.1 62.4
P2, P3, P1 81.7 54.8 71.4 62.0 86.3 67.6 65.7 66.7
P2, P3, NP1 85.0 69.0 50.9 58.6 81.5 54.1 75.4 63.0
P2, P3, P1, NP1 86.0 73.4 52.0 60.9 86.8 69.5 65.1 67.3
P3, P2, P1, NP1, NP2 85.6 65.9 64.0 64.9 85.6 65.2 66.3 65.7
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